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The special purpose sorting operation, context directed swap (CDS), is an example of the block
interchange sorting operation studied in prior work on permutation sorting. CDS has been
postulated to model certain molecular sorting events that occur in the genome maintenance
program of some species of ciliates. We investigate the mathematical structure of permutations
not sortable by the CDS sorting operation. In particular, we present substantial progress
towards quantifying permutations with a given strategic pile size, which can be understood as a
measure of CDS non-sortability. Our main results include formulas for the number of
permutations in Sn with maximum size strategic pile. More generally, we derive a formula for
the number of permutations in Sn with strategic pile size k, in addition to an algorithm for
computing certain coefficients of this formula, which we call merge numbers.
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1. Introduction

Sorting is a fundamental step in numerous natural, industrial, commercial, and
scientific computing processes. Correspondingly, the mathematical analysis of
sorting operations has a long history. The typical concerns with a sorting process
include the efficiency of the sorting operation, a characterization of the situations in
which the sorting operation achieves the sorting objective, and a characterization of
the situations in which the sorting operation does not achieve the sorting objective.
In this paper, we focus on the third of these concerns. In particular, we seek to
quantify for a specific sorting operation the prevalence of what can be seen as the
worst case obstruction to sortability.

The specific sorting operation we consider aims to sort a permuted list of the
numbers 1,2,..,n to the canonical ordered list (1,2,..,n). This sorting operation appears
in two prior works. It appears in the 2003 template model for the construction of a
new macronucleus from its scrambled precursor micronucleus in certain ciliate
species [9]. In this model the sorting operation is named dlad. For more on this
fascinating biological background the reader may consult the review [8] and the
textbook [5]. It turns out, by hindsight, that this sorting operation also includes
special cases of the block interchange sorting operation examined in [4] by Christie.
The minimal block interchanges identified by Christie are special cases of the dlad
operation.

In yet another investigation into genome rearrangement combinatorics, the
double cut and join operation, denoted DC]J, is introduced by Yancopoulos et al. [11]
to establish a mathematical measure of distance between two genomes. In the DC]
theory, generic block interchanges studied by Christie [4] are modeled by a very
specific sequence of DC]J events, visualized in [11, Fig. 6]. Modeling dlad as a DC]
operation requires specifying additional DC] constraints. To emphasize the specific
mathematical nature of the sorting operation we consider here, the operation will be
called context directed swap, denoted CDS; CDS is an example of a block interchange
sorting algorithm. We base our treatment on the mathematical counterpart of the
essential features identified in the paper [9].

A permuted list of numbers is said to be CDS-sortable if there is a sequence of
applications of the CDS sorting operation (to be defined in Sec. 2) that results in the
numbers listed in increasing order. Not every permutation is sortable by CDS.
CDSsortability criteria have been given previously (for instance, see [6]). Also, from
prior work one can deduce that when CDS can sort a permutation, it is the most
efficient block interchange sorting algorithm [4]. Mathematically interesting
phenomena arise from the study of permutations not sortable by applications of CDS.
The essential structural obstacle to a permutation’s CDS-sortability was identified in
[1], giving rise to the notion of the strategic pile of a permutation.
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Quantifying CDS sortability of permutations
The notions of CDS-sortability, the strategic pile of a permutation, and appropriate

notation and terminology will be introduced in Sec. 2. In this section, we explicitly
describe the problem being treated in this paper, and we report our findings in Secs.
3-5.

In Sec. 3, we determine the number of elements in S, that have the maximum size
strategic pile among all elements of S,. This counting problem reduces to a variation
of the cycle factoring problem for S, studied previously, and depends on the cycle
factoring results of [2, 3]. In Sec. 4, we investigate how prevalent it is for permutations
in Sn to have strategic piles of cardinality k. As a result of this work we develop
formulas in closed form that produce the terms of the integer sequences A267323,
A267324,and A267391 in [10]. We also contribute the integer sequence A281259 to
[10], as well as its formula. In Sec. 5, we highlight a more challenging component of
our formula from Sec. 4.

2. Preliminaries

For a positive integer n, the symbol S, denotes the set of one-to-one functions from

the set {1,2,..,n} to itself, also known as permutations of {1,2,..,n}. The notation

[ar az - an1  an (2.1)

denotes the permutation 7 for which n(i) = aifor 1 <i < n. In current literature, the
notation in (2.1) is called one-line notation. This one-line notation should be

distinguished from

(1 c2 - k-1 cw), (2.2)

which is the so-called cycle notation that denotes the permutation = where m(c1) =
c2,m(c2) = ¢3,...,(ck-1) = cx1(Ck) = €1, and where™ (1) =i for i & {c1, ..., cx}

(note that this notation is very similar to notation we will later use to describe
ordered lists. The two can be distinguished by noting that we do not use commas to
describe a cycle permutation, but will use them to describe ordered lists).

To define the CDS sorting operation, associate with each entry of the permutation
7 € Snleft and right pointers as follows: For an entry k € {1,2,..,n} of m, the left pointer
of ki is (k —1, k’>, while the right pointer ofk is (k. k +1) By convention, the smallest
entry, 1, does not have a left pointer, and the largest entry, n, does not have a right
pointer.

Example 2.1. Equation (2.3) shows the permutation 7 = [2 4 3 1 5] with all pointers
marked:

m=l122es @atun e3es Loy wsd] (2.3)
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Observe that each pointer in a permutation occurs twice. Given two pointers, p
and g, in the permutation 7, the sorting operation CDS at these pointers acts as follows
on m: If the pointers do not appear in the order «-:p+-:q +-p-++q -+ in 7, then CDS does
not apply and we say that the pointer context is invalid. Otherwise, the two segments
of m that are flanked by the pointer context p---q are interchanged. The pointers
p=(3,4) and ¢ = (4, 5>appear in «++p+++q +++p---q -+ context in the permutation 7 = [2
4 3 15]. CDS applied to 7 for this pointer context produces the permutation [2 1 3 4
5]. On the other hand, as the pointers " = (1, 2)angs = (3, 4) appearin «:r.:geeeseeeree
context in 7, CDS cannot be applied.

When there are no pointers p and q that appear in context «--p-+-q +++p--+q +-- in T,
the permutation 7 is said to be a CDS fixed point. For each positive integer n, there are
exactly n CDS fixed points in S», namely the permutations [k+1 -+n12--- k] for1 <k

< n, and the identity permutation [1 2 --- n-1 n].

By [1], we know that for each permutation m in S, that is not a CDS fixed point,
some sequence of applications of CDS to r terminate in a CDS fixed point. If a sequence
of applications of CDS to the permutation 7 terminates in the identity permutation [1
2 .-+ n], we say that m is CDS-sortable. The CDS-sortability of permutations has been
characterized in prior works such as [1, 6]. In [1], the obstacle to CDS-sortability of a
permutation 7 € Snis identified as follows. Suppose =

[a1az - an]. Define the cycle permutations X»and Y= by

Xo:=(0 1 2 -+ n) and (2.4)
Yr:= (O an an-1 oo al). (25)

Then define
Cn:: Yn'OXn. (26)

In Eg. (2.6), the symbol “°” denotes functional composition, and we use the standard
convention that f° g(x) denotes the value f{g(x)).

When the entries 0 and n occur in the same cycle in the disjoint cycle
decomposition of Cr, we shall write this cycle in the form

O ur wz =+ u n b1 bz - by (2.7)

The set SP(m) = {b1,b2,.., bk} is said to be the strategic pile of m. If 0 and n do not appear
in the same cycle, we define SP(m) to be the empty set. The ordered list SP*(m) =
(b1, b2,...,bk) is called the ordered strategic pile of m, and its ordering is determined by

the order of appearance in (2.7). In [1], it was proven that a permutation m is CDS-
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Quantifying CDS sortability of permutations
sortable if and only if its strategic pile is the empty set (i.e., if and only if 0 and n do

not appear in the same cycle).

Example 2.2. For the permutationm=[25 14 3] we have Czr=Yz°Xs=(03415 2)(0
12345)=(05 3 1)(24), written in disjoint cycle form. Thus, the strategic pile of ©
is the set SP(m) = {1,3}, while SP*(m) = (3,1).

The strategic pile of a permutation 7 is intimately related to the set of achievable
CDS fixed points.

Theorem 2.3 ([1, Theorem 2.22]). If a permutation m € Sy is not CDS-sortable, then
the following are equivalent for 1 < k < n:

(1) There is a sequence of applications of CDS to m that terminates in the CDS fixed point
[k+1k+2--n12--k] (2) kisa member of the strategic pile of .

3. Maximum Size Strategic Piles

We now investigate the number of permutations in S, with maximum size strategic
piles; these permutations can be considered to have maximal CDS nonsortability.
Since there are n CDS fixed points (including the identity permutation), Theorem 2.3
implies that a strategic pile of a permutation in S» can have at most n - 1 elements.

Lemma 3.1. If there is a permutation in Sn which has a strategic pile of size n-1, then n
is even.

Proof. By (2.7), if the strategic pile of permutation 7 has size n - 1, then
Cr= (O nbibz--- bn—l). [31)

But Cr is the composition of two (n + 1)-cycles, and thus an even permutation.
Therefore n is even. |

As we shall see later, the converse of Lemma 3.1 also holds. As a consequence of
Lemma 3.1 we get the following.

Corollary 3.2. If n is odd, then the strategic pile of an element of S» has at most n — 2
elements.

We shall also later see that there are permutations in S, with strategic pile of size

n - 2 for every odd integer n = 1. In Secs. 3.1 and 3.2 we count for each n the number
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of permutations in S» with strategic pile of maximal size for n. Section 3.1 is dedicated

to the case when n is even, and Sec. 3.2 is dedicated to the case when n is odd.

3.1. Maximum size strategic piles for even values of n
Theorem 3.3. For each even number n, the number of permutations in S» with strategic
pile of sizen - 1is
2(n —1)!
n

As noted in the proof of Lemma 3.1, an element of S, having a strategic pile of size
n - 1 is related to the possibility of factoring certain (n + 1)-cycles into two
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(n+1)-cycles. As a result, to prove Theorem 3.3, we first introduce some additional
notation, which we will use to define injective maps between sets of factorizations.

Notation 3.4.

¢ Let A denote the set of all factorizations of X»-2 into two (n - 1)-cycles.

Let B denote the set of all factorizations of X» into two (n+1)-cycles where the

rightmost factor is of the form (0 n ---).

Let Bidenote the subset of B whose elements have rightmost factors of form
Define A, = (0 1) and ¢,= (12 -+ n - 1).

We begin by constructing a bijection between the sets A and B:in Lemmas 3.6 and
3.8. We then show in Lemma 3.9 that Bi1 - B2,B2 = B3,..,Bn-2 > Bn-1, and Bs-1 - Bj,
where — indicates an injective map. Since the injective maps between the B;sets form
a cycle, it follows that |A| = |B1| = - = |Bs-1|. Finally, we determine |A4| using the
following prior result that counts the number of factorizations of an arbitrary (n - 1)-

cycle into two cycles of length n - 1.

Lemma 3.5 ([3, Theorem 3]). Let o € Sn-1 be an even (n - 1)-cycle. Then the number

of factorizations of o into two (n — 1)-cycles is

2(n —2)!
n
We now establish the previously described injections.

Lemma 3.6. There is an injective map from A to B
Proof. Let y°6 be a factorization in A. Namely, suppose y and § are (n-1)-cycles

satisfying y ° § = Xn-2. Define y1and 61 as follows:
y1:=Anocney e (cn)7,

01:=cCn°0° (Cn)_l °An

Note that if71 = %, then? = 7', which shows that the map is injective. Therefore, to
complete the proof it suffices to show that y1and 61 are (n + 1)-cycles, that 61is of the
form (0 n 1 ---), and that y1° 61= Xn.
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Since conjugation preserves cycle structure, the factors cn° y ° (cn)~ of y1 form an
(n - 1)-cycle with elements {0,2,3,..,n — 1}. Composing A, with this (n — 1)-cycle creates
an (n + 1)-cycle with elements {0,1,2,...,n}.

o

Similarly, the factors ca° © ¢ (ca)-! of &1 form an (" - 1)-cycle with elements

{0,2,3,..,n - 1}. Composing this (n - 1)-cycle with A»adds the elements n and 1 to form
an (n + 1)-cycle of the form (0n 1 --).

Finally,
v0d = (A,oc,0v0 (cn)_l) o(cpo0do (cn)_1 °oAp)
- )\n O0Cp O Ap_20 (Cn)_l o )\n
=Xo0(0 2 3 -+ m—1)o\, =X,. |

2050014-6
Example 3.7. Let n = 6. Then X»-2=X4= (0 1 2 3 4). Consider the factorization

Xa=(0 1 2 3 4=0 2 4 1 3)(0 4 3 2 1)

4 S

Using the maps defined in Lemma 3.6, we get y1 =
A6° ce°y o (c6)-1
=(0 6 1)(1 2 3 4 50 2 4 1 3)5 4 3 2 1)

=0 3 52 4 6 1)

and 61=c6° §° (c6)-1° A6

=(12 3 4 5)(0 4 3 2
G 4 3 2 1o 6 1) = (0
6 1 5 4 3 2).

Note that these are (n + 1)-cycles, that 61 is of the form (0 n 1 ---), and that

yiedi=(0 3 5 2 46 1)0 6 1 5 4 3 2)

=(0 1 2 3 4 5 6)=X,
as desired.
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Quantifying CDS sortability of permutations
Lemma 3.8. There is an injective map from B1ito A.
Proof. Let y1°61= (0 t1t2 -+ tn)(0 n 1 v1--- va-2) be an arbitrary factorization in B1. It

suffices to show that we can associate to y1°61a unique factorization y ° § of Xp-21in A.
To this end, let § := (cn)~1° 61° (An)~1° cn. Then,

6={(cn) 1 (0 n 1 vi - Vn-2) ° (An)~1° cn
= (Cn)_lO [0 Vi e Vn—Z)(l) [n) °Cn
=(0 vi-1 - wvn2-1).

It follows that 6 is an (n—1)-cycle. Moreover, changing 61 also changes §, implying that
the map is injective.
Since y1= (0 t1t2 -+ tn) and y1°61 = Xn, we have that tn=1 and ts-1=n.

Lety = (cn)~1° (An)-1° y1° cn. Then,

y={(cn) Lo (An)1= (0 t1 tn-2 n

1) ° ca= (ca) 1o (0 t1

tn—Z) [n) (1) °Cn.

Since conjugation preserves cycle structure, y is an (n — 1)-cycle.
Finally,

yeo &= (cn-1°An-1°y1°cn)° (cn-1° 81° An-1° Cn)
= Cn—l ° An—l o Xno An—l o cn= Xn-2.

We have shown that for each factorization y1 °61 in Bi, there are unique

corresponding (n — 1)-cycles y and 6 such that y ¢ § = Xy-2. It follows that y - § € 4, and

this completes the proof. O

Since the injective maps defined in the proof of Lemma 3.8 are merely inverses of
those defined in the proof of Lemma 3.6, these maps in fact serve as bijective maps
between the sets A and Bi. It follows that |A| = |B1|. The next lemma will function to

show that |Bi| = --* = | Ba-1].
Lemma 3.9.
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(1) Forevery1<isn -2, thereisan injection from Bito Bi:1.

(2) There is an injection from Bu-1to Bi.
In other words, B1— B2 — -+ = Bu-1— B1, where each — indicates an injective map.

Proof. We prove the two statements separately.
(1). Letisatisfy 1 <i<n - 2. Let yiand d:be (n + 1)-cycles, where 6:is of the form (0 n

i---), and where yi° 6i= Xn. Let r» denote the cycle (2 1 n). Define

Yi+1=rne cn° Yic (cn)-1, Oi+1=Cn°

6i° (cn)-1.
It suffices to show that yi+1and 6i+1 are (n + 1)-cycles, that §i+1is of the form (0ni+ 1
--+), and that yi+1° is1= Xn.

Since conjugation preserves the cycle structure of a permutation, both cn° yie (cn)1
and 8i+1 = cn° 8i° (cn) 1 are (n + 1)-cycles. One can also check that composition with ry
does not affect the cycle structure of cn° yi° (cn)~1, meaning yi+1is also an (n + 1)-cycle.
Next, observe that

6i+1(0) = cn(6i(0)) = cn(n) =n
and
6i+1(n) = cn(8i(n)) = cn(@) =i + 1.
Therefore, 6i+1is of the form (0ni+1--).
Finally,
yis1 o Gi+1= (rne cne yio (cn)-1) o (cne 8i° (cn)-1)

:I"n°Cn°Xn°(Cn]—1
=m°(0 2 3 -« n-1 1 n)

= Xn.

(2). Statement (2) follows from the observations thatd1 7 0; # Onforall 1 <i <n, and
that 6» = 1. The latter observation follows directly from the fact that the order of cnin

the group of permutationsisn - 1.0
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Example 3.7 (Continued). One can check that under the 6; = 6i:1 map defined in the
proof of Lemma 3.9, we get

51=(0 6 1 5 4 3 2)»(0 6 2 15 4 3)-»(0 6 3 2 1 5 4

>0 6 432 1 5550 65 4 3 2 1)
-0 6 1 5 4 3 2)=6n

We now prove the main result of this section, Theorem 3.3.

Proof of Theorem 3.3. Since X, = Yz 1 °Cr, we count the factorizations of X, into two

(n+1)-cycles where the second factor has the form (0 n ---). This is the sum

. 2(n—2)!
ZlSiSn*l |Bi | By Lemma 3.5, thereare — »  factorizations of Xs-2 into two (n - 1)-

_ 2(n=2)!
cycles. In other words, |[A| = ~ » . By Lemmas 3.6, 3.8, and 3.9, we have that |4| =

|B1| = +++ = | Bn-1|. It follows that for each even n, the number of permutations in S, with

strategic pile size n - 1 is

> 1Bl = (-4 = 20

1<i<n—1

’

as desired. O

3.2. Maximum size strategic piles for odd values of n

We now prove an analog of Theorem 3.3 to address the case that n is odd.

Theorem 3.10. For each odd number n, the number of permutations in S, with strategic
pilesizen - 2 is 2(n - 2)\.

A permutation 7 = [a1 a2 -+- an] is said to have an adjacency if there is an index i <n
such that aii1=ai+ 1.

Lemma 3.11. Let n > 1 be an odd number and let ™ be an element of S». If ™ has a
strategic pile of cardinality n - 2, then m has a single adjacency.

Proof. Let = [a1 az-*- an]. We have that

Cr= (0 an e al) °© (O 1 ---n),
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which is an even permutation. It follows from Lemma 3.1 that Cris not a single cycle.
Since m has a strategic pile of cardinality n — 2, we have that Cris of the form

C:=(0 n c - cn2)°(x)
The singleton cycle (x) comes about on account of the following configuration in the
computation of Cr:

(... x+1 x ...) o (O 1 .o x x+1 .o n)_
Thus, in T we have that for some i, ai= x and ai+1=x + 1. O

When a permutation 7 in Sy has a single adjacency, it can be projected to a unique
corresponding permutation P(m) in S,-1 which has no adjacencies, as follows: Let m =
[ai az -+ ai ai+1 -+ an] € Sn have the single adjacency ai+1 = ai+1. We define P(m) by
removing the second element of the adjacency and reducing all larger elements by
one. More precisely, P(m) =[ay ay - a%—1], where

(1 la ifjsi
la; —1  if

if

and a; < ai,

LajJrl -1 ifn> ) and Qji1 > Qi1
j <ianda; > ay,

a1 n>j>idand aj11 < aipq

Example 3.12. The permutation 7 =[2 3 6 1 5 4] has one adjacency. P(m) =[25 1 4 3]
has no adjacencies. Observe that there are five different elements of S¢, each with a
single adjacency, that give rise in this way to [2 5 1 4 3], namely:
[236154],[256143],[361254],[261453],and[261534].

Remark 3.13. If n > 1 is an odd number and 7 € S is a permutation with a strategic
pile of cardinality n - 2, then P(m) € S»-1is a permutation with a strategic pile of

cardinality n - 2.

ay aby - a,_, Conversely, if we are given a permutation # € S,-1 which
E a

a . . i .
has no adjacencies, say [], and any position i, we can construct

aunique permutation (i) = [ 12+ an] in Snwhich has a single adjacency, and for which

P(E(u,1)) = p: Namely, define ®i+1 t0 be ajy 1; forj <idefine % = a9 +1

. p— ,, . . . ' - p— ,, 1 ,v /.
if ai<aj,and % = %otherwise; for j > i define %+1 = ¢; if aj < @i and
. — . .
aj+1 = @4y 1 otherwise.

2050014-12
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Remark 3.14. If n > 1 is an odd number and # € S,-1is a permutation with a strategic

pile of cardinality n-2, and if i < n-1, then E(u,i) € Sais a permutation with a strategic

pile of cardinality n - 2.

With these facts at our disposal we now prove Theorem 3.10.

Proof of Theorem 3.10. By Remark 3.14 each permutation # € S,-1 with full strategic

pile produces n - 1 permutations mi= E(y,) for i < n - 1 in Sp with strategic pile of size

2(n=2)!
n-2. Thus by Theorem 3.3 there are at least (" — - == =

2(n-2)! elements of Sp with strategic pile of size n-2. Conversely, by Lemma 3.11 each
element of S that has a strategic pile of size n - 2 arises in this way. O

4. Strategic Piles of Size k

Having quantified the number of permutations with maximum size strategic piles, we
next produce an analogous quantification for permutations with strategic piles of
arbitrary size. Before stating the main result of this section, we first establish
terminology and structural properties of permutations with strategic piles of size k.

4.1. Structure of permutations with strategic pile of size k

Proposition 4.1. For a permutation 1 in Sn, SP *(1t) = (b,bz,...bk) if and only if the
following are true:

(1) m(1) =be+ 1.
(2) m(n) = b1
(3) Forallj€{23,..k- 1}, the element bjappears to the immediate left of bi-1+ 1 inm

(when written in one-line notation).

Proof. First note that Cz(bx) = 0 if and only if Yz(br+ 1) = 0, since Crx(bk) = Yz(X(bx)) =
Yz(br+ 1). Also, by definition, Yz(bx+ 1) = 0 if and only if m(1) = br+ 1. Therefore, Cr(bx)
=0 ifand only if (1) = b+ 1.

Second, Cx(n) = b1 if and only if Yz(0) = b1, since Cx(n) = Yz(X(n)) = Y=(0). Also, by
definition, Y=(0) = b1 if and only if m(n) = b1. Therefore, Cz(n) = b1if and only if m(n) =
b1.

Finally, forj € {2,3,..,k — 1}, Cx(bj-1) = b;if and only if Yz(bj-1 + 1) = bj, since Cx(bj-1)

= Yn(X(bj-1)) = Ya(bj-1+1). Also, by definition, Yz(b;-1+1) = b;if and only if byimmediately
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precedes bj-1 + 1 in . Therefore, Cz(bj-1) = b;if and only if bjappears immediately to
the left of bj-1+ 1 in 7.

Since SP*(m) = (b1,bz,...,bx) if and only if Cz(bx) = 0, Cx(n) = b1, and Cr(bj-1) = bjfor all
j€{2,3,..,k -1}, our proposition holds.OI

With b denoting the jth element of the ordered strategic pile of a permutation 7,
adjacent entries of the form b;bj-1+1 in m are called a pair. Viewing subscripts modulo
k, we also consider b1 bx+ 1 a pair. In general, a permutation  with SP*(1) = (by,b2,...,bk)

has the following form in terms of its pairs:

[bk+ 1 bxabxi-1+ 1+ bxabxe-1+ 1 *** bxccibxici-1+ 1 -+ bl] (41)

Definition 4.2. The ordered list
Oon= (bX1,bxz,...,ka71,b1),

consisting of the first member of each pair, in the order of occurrence in 7, is said to
be the ordered pair list of m.

Since b1 is the final entry of a permutation = with a nonempty strategic pile, b1 is
always the terminating member of the ordered pair list 0.

Example 4.3. The permutation 7 = [6 4 5 8 7 2 3 1] has strategic pile SP(m)={1,5,7},
and SP*(m)=(1,7,5)=(b1,b2,b3s). Therefore, m =

[64b38b223 b1] =[bs+14bsbz+1bzb1+13 b1], as suggested by
Proposition 4.1. This gives that oz = (b3, bz,b1).

In Definition 4.2 we defined the ordered pair list with respect to a specified
permutation m. Note, however, that we can instead define an ordered pair list
independently of a specific permutation. Using this interpretation, any permutation
where the xith strategic pile element leads the ith pair forall 1 <i < k - 1 will be said

to have the ordered pair list 0 = (bxy, bxa-.., bxx-1,b1).

Example 4.4. Consider the ordered pair list o = (b2,b3,b1), defined independently of a
specific permutation. Any permutation with SP*= (b1,b2,b3) that is of the form

[b3+1 -+ b2 b1+1 - b3 b2+1 - bi]

will have ordered pair list . In particular, the permutation m=[2 3 6 1 4 5] has SP*=
(5,3,1) and thus oz = (3,1,5) = (b2,b3,b1) = 0. Similarly, the permutationv=[4163 2
5] has SP*=(5,1,3) and thus ov=(1,3,5) = (b2,b3,b1) = 0.
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As Example 4.6 will illustrate, for subsequent pairs bxibx-1+ 1 and by bxii-1+ 1 of
a permutation 7 it may happen that bx-1 + 1 = by, in which case by and bx.: are
consecutive entries of 7. As these adjacencies will be of central importance in the

proof of Theorem 4.10, we formalize their definition as follows.

Definition 4.5. An adjacency of strategic pile members bx;and bx.1in m is said to be a

merge between bxand bx..in . Such a merge will be denoted bxibxis1.

Example 4.6. The permutation w = [5 4 6 3 2 1] has strategic pile SP(rr) = {1, 3, 4, 5},
and SP*(m) = (1, 3, 5, 4) = (by, bz, bs, ba). Moreover, o=

(b3, b4, b2, b1) since m has the form [b3 b4 6 b2 2 b1]. The strategic pile members b3 and
bsare adjacent in 7, and thus there is a merge in 7. Since we are also considering b1 b4
+ 1 apairin m, b1 bsis also ruled a merge in .

When considering strategic piles of size k, we refer to an arrangement of the
strategic pile variables biand bi+ 1 for 1 <i < k as a strategic pile variable arrangement
if the arrangement satisfies the properties described in Proposition 4.1. All possible

strategic pile variable arrangements can be obtained by shifting and merging pairs

within the possible frameworks of the form (4.1).

Example 4.7. The following are five of the possible strategic pile variable
arrangements for permutations in Sy with SP* = (b1,b2,b3) and ordered pair list o =

(bz,b3,b1), where the ___’s can be filled in by any remaining permutation elements:

(1) [b3+1_— b2b1+ 1 bsbz2+ 1 b1] (no merges),
(2) [b3+1b2b1+1__ bsbz2+ 1 b1] (no merges),
(3) [b2b1+1 —bsbz+ 1 b1] (merge b1b2),

(4) [b2b1+1b3b2+1___ __ b1] (merge b1 b2),

(5) [b2b1+1__ ___ __ bsbi] (merges bz b1and b1 bz).

The above definitions and structural properties regarding permutations with
strategic piles of size k suggest an approach for quantifying such permutations. Since
a permutation has strategic pile size k if and only if it takes the form described in
Proposition 4.1, we start by counting the number of strategic pile variable
arrangements. To this end, we define merge numbers.

Definition 4.8. Consider the set of permutations 7 € S, with SP*() = (by,...,bx). Given
¢ >0, the symbol ci denotes the number of ways to choose an ordered pair list ox
along with merges. The number cy, is said to be a merge number.
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Example 4.9. For permutations with SP*= (b1,b2,b3), the only possible ordered pair
lists are (bz,bs,b1) and (bs,b2,b1), which correspond to the following permutation
structures:

(1) [bs+1-+b2bi+1--bsbza+1--b1],
(2) [bs+1++b3bz+1--b2b1+1--b1].

In the first form, each of the merges b2 b3, b3 b1, and b1 bz are possible, so there are
three ways to create a single merge with this ordered pair list. In the second form, a

merge cannot occur at all, since it would require that b;+ 1 = b;, which is impossible.
Therefore,c31=1-3+1:0=3.

We are now ready to state the main result of this section.

4.2. Main result

Theorem 4.10. For 1 <k<n-1andevenn, or 1 <k <n -2 and odd n, the number of

permutations in Snwith strategic pile of size k is

i n—(k+1)
—k)! i .
-3 G )
As there is a limit on the number of merges that can occur in a permutation, each
merge number ck;: will be zero for all i above a certain value. We leave determining

this maximum number of merges, as well as the general method for computing merge
numbers, to Sec. 5. To prove Theorem 4.10, we will

e use merge numbers to determine the number of strategic pile variable
arrangements (see Lemma 4.12 and Corollary 4.13) and

¢ determine the number of ways to assign numerical values to the resulting variable
arrangements (see Lemma 4.14).

Assuming we can compute each merge number cki, we can suppose we are given
a framework comprised of an ordered pair list and a set of merges. To quantify the
possible strategic pile variable arrangements, we are left to account for how this
framework can shift within n positions. To this end, we develop terminology to refer
to the components of this framework.

Example 4.11. Consider an ordered pair list ¢ = (bx, bxy, ..., bxi-1, b1), which by Lemma
4.1 yields a permutation of the form [bk+ 1 bxi bxi-1+ 1 -

bxz bx-1+ 1
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bxi1 bxici-1+1 bl]

After a merge, say between bx and bx., we get
[bk—|—1 cee by bﬂ byy—1+1 -+ by, by 1 +1 - b1]
In Example 4.11, observe that it may not be intuitive to call bxi bx. bx.-1 + 1 a pair;
we use the term grouping to refer to pairs as well as any set of pairs joined by merges.

Recall that br+1 and b1 are always in the first and last positions of a permutation,
respectively. Moreover, observe that the position of each underlined element in
Example 4.11 is determined by the placement of the leftmost element in its grouping.
We call both of these types of elements determined.

In a permutation with strategic pile of size k with no merges, there are k+1
determined elements (i.e., b1, bk + 1, and bj-1+ 1 for 2 < j < k). Furthermore, observe
that “merging” groupings do not affect the total number of determined elements, since
a merge has the effect of equating a determined element with an undetermined
element. In Example 4.11, the merge between bx and bx. equates bxu-1 + 1 (a
determined element) with bx. (an undermined element), making a grouping with two
determined elements, the same total number that the pairs bxi bxi-1 + 1 and by bxa-1 +
1 had to begin with. Therefore, any grouping arrangement, despite the number of

merges, will have k + 1 determined elements.

Lemma 4.12. Given an ordered pair list o = (bx,...,bx) and a set of i merges, there are

(6-"0)

ways to place the resulting groupings within a permutation of length n.

Proof. Recall that in a permutation with strategic pile size k, there are always k +1
determined elements. For each determined element, we set aside one space in the
permutation. This leaves n - (k + 1) unoccupied spaces in which to place the
groupings. Since the leftmost variable of each grouping is the only undetermined
variable in the grouping, we must only place these (k-1)-i undetermined variables,

and the placement of all other variables follows. Because there are n—(k+1) spaces in
n—(k+1)
which to place these undetermined Variables,((k’—l)—’i) represents the number of

ways to place the groupings.0l

Corollary 4.13. The number of strategic pile variable arrangements in the set of
permutations in S»with strategic piles of size k and i merges is

)
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Proof. By definition of the merge number cx;, there are cxiways to choose an ordered
pair list 0 = (bx,....bx) along with i merges. Each fixed ordered pair list and set of

merges defines a framework of groupings, which by Lemma 4.12 can be placed
(n—(k?-l-l)) . i

k—i—1 ) different ways among n positions. Thus, there are a total of

(n—(k+1)
C/w( k—i—1 ) different strategic pile variable arrangements. a

We now determine the number of ways to assign a numerical value to each
variable and to the remaining elements of the permutation.

Lemma 4.14. Given a fixed strategic pile variable arrangement (i.e., an ordered pair list
o of strategic pile elements {bs,.,br}, a set of merges, and a fixed set of grouping

positions), there are (n - k)! permutations in S, with that arrangement.

Proof. Given a strategic pile variable arrangement, the only thing left to do is assign
values to the variables comprising the permutation. For each b; € SP, there is some
variable b; +1, whose value follows immediately from a value assignment of b;.

Therefore, only n-k values need to be assigned, and there are (n-k)! possible

assignments. O
We are now ready to prove our main result of this section.

Proof of Theorem 4.10. By Corollary 4.13, there are ©# (nl;(fjll )) strategic pile
variable arrangements in the set of permutations in S, with strategic piles of size k
and i merges. Summing over the number of merges i, we get that the total number of
strategic pile variable arrangements for permutations in S, with strategic piles of size
kis

We have by Lemma 4.14 that there are (n-k)! permutations corresponding to each

strategic pile variable arrangement. It follows that there are

permutations in S, with strategic pile size k. a

5. Determining the Values of Merge Numbers

As mentioned in Sec. 4, there is a limit to the number of merges that can occur in a

permutation with strategic pile of size k. Thus, there exists an i such thatCk, = 0
Table 1. Merge numbers found using ad hoc methods.
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k| 123 4 5 6 - k - | oEIs
k| 012 3 4 5 A0001
N O R -V 42
ck 31 9 6 A1307
'Clk 36 0 111 ) 11 21 3 41 51 44
g 1 13 6 k(k —

6 0 ?
ck 8 108 ?
3 0 0
ck 9 54 ?
4 0 0

Ck,
i

Table 2. Known formulas for the number of permutations with strategic piles of size k.

k | Number of elements of Snh with strategic piles of size k OEIS

1| (=1 (",2)on A000142
2 (n — ) (" )1 A062119
3| (n=3)("yH2 4+ ("3 + ()3 A267323
4 (n - 4)'[(”—5)3' +(",°)16 + (" ®)16] A267324
51 (=904 + (75990 + (5,%) 130 + (7 %)80 + (™ °)90] A267391
6 | (n—O6)N[(";7)5+ (",7)576 + (” 1116 + (" 7)1080+ ("7 7)540] A281259

ke ) E D+ (T e+ + T ek 21 (koda)

)

foralli’ > i, In this section, we determine this i and derive an algorithm for computing
merge numbers. As described later this section, determining the efficiency of this
algorithm is dependent on the solutions of certain open problems. However, we can
explicitly compute merge numbers in some limited cases (see Table 1). Using these
merge numbers, Theorem 4.10 gives the formulas given in Table 2.

We now discuss how to compute merge numbers in general. First, however, we
define two graph theoretic tools, which will be useful for accomplishing both of the
aforementioned goals.

5.1. Merge graphs and t-graphs

As in Example 4.9, the ordered pair list determines the set of possible merges for
permutations with that ordered pair list. As a result, it will often be of use to classify
permutations based on ordered pair list.

Definition 5.1. Let 0 be an ordered pair list. Define To:= {m € Sn|0or= 0}.
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Moreover, to count the number of ways to choose an ordered pair list along with
merges (i.e., to compute merge numbers), it is crucial that we are first able to
determine the set of allowable merges corresponding to an ordered pair list. To this
end, we define the following.

Definition 5.2. Consider the set of permutations in S, with ordered strategic pile
SP*(m) = (by,bz,..,br) and ordered pair list 0 = (bxy,bxa..., bxx-1,b1). Define

e := (b1bz- bk),

o 0% = (by, byy -+ by, b

o T, =00 ), and

Observe that there exists a permutation m € Ts with bi+ 1 = bjif and only if 7+(b:) =
bj. In other words, 7, describes exactly the allowable merges for the set of

permutations To. It will often be useful for us to encode this information graphically.

Definition 5.3. The t-graph corresponding to an ordered pair list o is an at most in-
degree one, out-degree one directed graph To= (V, E), where V = {b1,bs,...,br} and (b;b;)

€ Eif and only if bi+ 1 = bjin some permutation in To.

Note that an edge (b;bj) in a T-graph T, corresponds to the equality bi+1 = bj, and
not to the merge b b;. Rather, the edge (b;b;) represents the existence of a merge bi+1

bjin some permutation " € T,. Furthermore, it may be useful to note that r-graphs are

comprised completely of cycles and isolated vertices, and that each cycle in the 7-
graph Ts corresponds to a cyclic factor of the cycle permutation ..

Example 5.4. Consider the set of permutations T, corresponding to the ordered pair
list o = (b1,be,b7,bs,b2,b4,b3). Then

To=0«°Y=(br bes b7 bs b2 ba b3)o(br b2 b3 bs bs be b7)
=(b1 bsa b2)(bs be b7)(b3),

which indicates that there are two cycles in T, formed by the edges {(b1, bs), (bs,b2),

(bz,b1)} and {(bs, b7), (b7, bs), (be,bs)}. Figure 1 shows this graph.

We now define a second graph theoretic tool, the merge graph, which will be
similar to the 7-graph, but will correspond to a specific permutation rather than to an
ordered pair list.
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Fig. 1. The t-graph To corresponding to o = (bs,be,b4,b2,b3,b7,b1).

Definition 5.5. The merge graph of m is an in-degree at most one, out-degree at most
one directed graph Mr= (V,E), where V = {by,bs,..,bk} and (b,b;) € E if and only if bi+ 1

= bjin the permutation .

Observe that if 7 is a permutation with ordered pair list o, then the merge graph
Mn, is an edge subgraph of the t-graph T,. Moreover, Lemma 5.6 will show that Mxis
a proper subgraph of T, and that any acyclic edge subgraph of Tsis a merge graph.

Lemma 5.6. A graph is a merge graph if and only if it is an acyclic edge subgraph of a
T-graph.

Proof. Suppose on the contrary that r is a permutation such that its merge graph M
contains an -cycle between consecutive verticesV1; V2; - - -, Uz for some > 0, and let by
be the strategic pile element corresponding to the vertex v; for 1< ¢ < £, Then, by
definition of Mz, bxi+ 1 = bxa= bxs— 1, SO bx1 = bxs— 2. Continuing in this manner, we see
thatt =0 —((—s z¢1). However, as the directed edges among these vertices
form a cycle, we also have that bz, = bayt 1. Since > 0, this is impossible.
Conversely, given an acyclic edge subgraph of a 7-graph, one can construct an
ordered pair list with the corresponding merges. This can be done because our only
constraint on merges that can occur is cyclic relationship between strategic pile

variables. O

Example 5.7.Form=[54 6 3 2 1] we have SP*(m)=(1, 3, 5, 4)=(by, b2, b3, b4) and ordered
pair list o = (5, 4, 3, 1) = (b3, bs, bz, b1). Thus, p =
(1354)=(b1b2b3bs) and 0*= (54 3 1) = (b3 ba b2 b1). Note that 7,= 0%~ 1 = (b3

babz b1) ° (b1 b2 b3 ba) = (b1) ° (b2 ba b3).

The cycle (b2 ba b3) in the cycle decomposition of the permutation 7sindicates that the
t-graph T, will have edges (bz,b4), (bs,b3), and (b3, bz). Lemma 5.6 implies that any

2050014-21



M. Gaetz et al.

proper subset of these three edges can occur in M. Indeed, b2+ 1 = bsand ba+ 1 = b3
in 7, whilebs + 1 # b2 in 7, The merge graph Mrand t-graph Tsare depicted in Fig. 2.

5.2. Maximum number of merges

We will now determine the maximum number of merges that can occur in a
permutation in S, with strategic pile size k. This will function to show that cxi= 0 for
all i greater than a certain value. We start with the following observation.

Remark 5.8. Let 6 = (bxy, bxs,...,bx-1,b1). Since s € Skis the composition of two cycles of
the same length k, 75is an even permutation. It follows that if k is even, then 7, cannot

be a k-cycle.

Fig. 2. Merge graph of m =[5 4 6 3 2 1] (solid) as a subgraph of the 7-graph corresponding to or (solid and
dashed).

This observation, in conjunction with our graph theoretic tools, will give us our
desired result.

Lemma 5.9. Consider the set T of permutations with strategic piles of size k.

(1) Ifkis odd, then the number of merges for any permutation in T is at most k - 1.

(2) Ifkis even, then the number of merges for any permutation in T is at most k — 2.

Proof. Case 1: Let k be odd. Suppose 7 € Sphas ordered strategic pile SP*(m) = (by,...,bk).
Consider the merge graph Mz, which will have k vertices. By definition, Mris at most
in-degree one and out-degree one. Since Lemma 5.6 gives that Mris acyclic, it follows
that the number of edges in M~ does not exceed k - 1. Thus, there are at most k - 1

merges in 7.
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Case 2: Let k be even. By Remark 5.8, the cycle decomposition of T does not contain a

k-cycle, and thus the largest possible cycle in T is a (k -1)-cycle. It follows that there

are at most k — 2 merges in any permutation ¢ € T.O

Lemma 5.9 tells us that cxi = 0 for large enough i, or in other words, that the
number of permutations of n elements with strategic pile of size k can be written

t
n—(k+1)
—k)! i
(n—=k) ;c’“ ( k—i—1 )
wheret=k-1ifkisoddand t =k - 2 if kis even.

5.3. Merge number algorithm

In Sec. 5.2, we established that cxi= 0 for i > k-1 when k is odd and for i > k-2 when k
is even. We now discuss how to compute the merge numbers corresponding to
smaller i. We present Algorithm 5.10 for computing such merge numbers, prove its
correctness, and discuss its complexity and what work still needs to be done in order

to make this algorithm more efficient.

Algorithm 5.10. Merge Number Computation
Input: Integers k and where! < k — 1 if kis odd and? < k — 2 if kis even.
Output: The merge number ck.

(1) Consider all possible cycle structures for a T-graph with k vertices.
(2) For each of these cycle structures:
(a) Determine the number of ordered pair lists 0 = (bxy,bxz..., bxu-1,b1)
which yield the given cycle structure.

(b) Multiply by the number of ways merges can be chosen from the given
cycle structure.

(3) Sum the results of the calculation for each cycle structure.

5.3.1. Correctness and complexity of Step 1

Step 1 of Algorithm 5.10 requires considering all possible cycle structures for a 7-
graph with k vertices. Recall that a 7-graph consists only of cycles and isolated
vertices. As a result, we can use the following notation to refer to the cycle structure
of a t-graph.
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Notation 5.11. Let [a1,az,..,am] denote the cycle structure of a T-graph Ts, where a1 2
azz -+ 2 am> 0, and where each ai corresponds to the number of edges of a cycle in To.

We do not include isolated vertices in our cycle structure representation.

Since any 7-graph is in-degree at most one and out-degree at most one, a t-graph
on k vertices has at most k edges. As a result, the cycle structure [ai,az,...,am]
corresponding to Ty satisfies ZlSiSm @i < k. Therefore, to consider all possible cycle
structures for a r-graph with k vertices, it would suffice to consider all integer
partitions of at most k. However, to speed up Step 1, we would like to be able to
consider a smaller set of partitions.

To this end, note that a 7-graph Ts on k vertices contains no self-loops, since this
would imply that bi +1 = bifor some strategic pile element b.. Moreover, note that the
cycle structure of T, must have an even number of even parts, since 75 is an even
permutation. To summarize:

Remark 5.12. Every 7-graph on k vertices has a cycle structure in the form of an
integer partition [ai,az,..,am], with no parts of size one, with an even number of even

parts, and with21Si§m ai < k.

Example 5.13. Consider the graph in Fig. 3, which has cycle structure [3,3]. Notice
that this cycle structure satisfies the conditions described in Remark 5.12, which are
necessary conditions for a cycle structure to correspond to a z-graph.

7 i

Fig.3.A  t-graphwithcyclestructure [3 3].

Indeed, this graph can be derived from the ordered pair list o = (bs,bs,bs,b2,be,b1), and
is thus a 7-graph.

We will not prove that every integer partition satisfying the conditions of Remark
5.12 corresponds to the cycle structure of a T-graph on k vertices (i.e., the converse of
Remark 5.12), since it will not affect the correctness of our algorithm. If it happens
that we consider in Step 1 a partition that does not correspond to the cycle structure
of a t-graph on k vertices, Step 2(a) will yield a zero, so we will not be over-counting.
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Unfortunately, the best way currently known to determine the set of integer
partitions satisfying the properties of Remark 5.12 is the brute force method of
checking every partition of every integer from 1 to k. Since the number of integer
partitions of an integer n grows exponentially with n [7], Step 1 is inefficient for large
k.

5.3.2. Correctness and complexity of Step 2(a)

Step 2(a) requires determining the number of ordered pair lists o =

(bxy,bxa...,bxi-1,b1) which yield a given t-graph cycle structure. As in Step 1, this can be
done through brute force; namely, one can generate all O(k!) possible ordered pair
lists, and for each ordered pair list g, can compute 7o= 0* ° 1) to determine whether 7,
has the given cycle structure. Since each computation of 7, requires O(k) time, Step
2(a) can be completed in O(k - k!) with this brute force method.

It is possible, however, that this step could be accomplished in polynomial time
using a recursive formula. We will now derive such a formula, though a method for
efficiently computing the base cases for this formula is currently unknown. Our
derivation will involve understanding the relationship between t-graphs on k vertices
with cycle structure [a1,az,..,am] and T-graphs on k - 1 vertices with the

(a) (b)

Fig. 4. T-graphs for Example 5.14. (a) Original 7-graph corresponding to the ordered pair list (bz,bs,bs,b3,b1).
(b) Rotated t-graph with bsas an isolated vertex. (c) t-graph after removing bs.

same cycle structure. To build intuition for this relationship, let us consider an
example.

Example 5.14. The aforementioned relationship will be established by rotating and
removing vertices from 7-graphs. For example, consider the t-graph corresponding
to the ordered pair list (bz,bs,bs,b3,b1) (see Fig. 4(a)). In Lemma 5.15, we will prove
that any rotation of a 7-graph is also a 7-graph. In particular, any rotation of the 7-
graph in Fig. 4(a) is a t-graph; Fig. 4(b) shows the rotation that is the z-graph
corresponding to the ordered pair list (bs,bs,ba,b2,b1). Note that this t-graph has bs as
an isolated vertex.
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In a graph with bk (in this case bs) as an isolated vertex, removing br will give us
another t-graph; this is because when bk is an isolated vertex, removing the vertex bk
corresponds to removing bk + 1..brfrom the beginning of the pair ordering. This will
leave bk-1+ 1 at the beginning of the pair ordering, which will yield a valid ordered
pair list on k-1 strategic pile elements. Figure 4(c) shows the t-graph corresponding
to the ordered pair list (bs,b4,b2,b1) that occurs when bs is removed from our example

T-graph.

am) be the set of T-graphs with k vertices

and with cycle structure [ai,az,...am]. We are interested in finding a relationship

Thus we get a group action on X [a,az...an].

Lemma 5.15. Let 0 = (bxy,....bx1,b1) be an ordered pair list, and define ¢ :

where f= (12 3 -+ k). Then ¢ is a group action.

Proof. Let 0 = (bxy,...bx-1,b1) be an ordered pair list and suppose 75 has cycle structure

[as,...am].

it is clear that ¢(i,75) will be a graph on k vertices with cycle structure [as,...am]. We

have left to show that ¢(i7s) corresponds to an ordered pair list o (i.e., that
@(ivTa) = Ta’)-
Recall that 7,= 0*° 1. Therefore, ¢(i,70) = fic To° f-i= fic +° P ° f-i= fic 0+

o f-ie fio o f-i

Observe that ficyof-i = 1. Furthermore,3'00* 037" =0’ is a k-cycle containing the

elements {bs,..,bi}, and thus represents an ordered pair list. As a result,

that ¢ satisfies the axioms of group actions. Clearly, = fis the identity permutation,
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and therefore ¢(0,75) = to. In addition, ¢(i + j, o) = Si+j° To° f-(i+) = Pifj° To° L-if-i=
¢(1¢(i70)). O

We can use Lemma 5.15 to give a process for deriving X[a1,az..an] from

Xk—l, [a,az,...,am].
Lemma 5.16. Let G = (V,E) with V = {bs,..,bi}, and let a,..,am € Z be such that a1 + az +
w+an<k ThenC € Xk [a1,a2...am) If and only if there exists some Gr= (V,, Er) € orbx(G) such

that bk is an isolated vertex in Grand Gs:= (Vr\{bk},Er) € Xk-1,[as,az,..an].

G

Proof. Assume ™ € Xk[avaz..am]. SiNCe a1 + az + +++ + am < k, there exists at least one

isolated vertex in G. Therefore, some rotation of G has bxas an isolated vertex. Let this
rotation be Grand let Gsbe defined as in the lemma statement. We have left to show
that Gsis a T-graph. Since Grhas bkas an isolated vertex, any permutation with ordered
pair list corresponding to Grmust be of the form
br+1 -+ by bp—1+1 - by by,_1+1 -+ by,
bop_p—1+1 -+ by

Removing the bk br-1+ 1 pair, we are left with an ordered pair list o =

(beysbey, - oo be_y, b1) of k—1 strategic pile elements. This ordered pair list clearly

1 farazam] - corresponds to the graph Gs, meaning Gsis a 7-

C ly, let G5 = (Vs, Fs .
OHVEISE, ¢ ( graph; it follows that Gs € Xk

) be an arbitrary graph in X-1,[a,az..a-], and

let Gr:= (Vs U {bx},Es). Then Gris also a t-graph, since the ordered pair list associated
with Gris the ordered pair list associated with Gs with the addition of bk as the first

element. Note that orbz(Gr) is a subset of Xi[avaz...an] Since Zkx acts on Xi[asaz..an]. It
follows that G € Xk [ay,.an) fOr any G € orbz(Gr).O

Using Lemma 5.16, we can determine the number of elements in X[aiaz..a.] by
adding a vertex to each graph in Xx-1,(a1,2..,an], and then considering all rotations of each

of those graphs. However, the graphs formed through this method are not necessarily

distinct. One of the reasons this is true is due to the fact that two graphs in Xk-1,[a1,az..an]
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may be in the same orbit when the vertex bris added. The following lemma addresses

this issue.

Lemma 5.17. ForallT € Xk [araz..,am), let Zz be the set of all T-graphs in the orbit of T under

Zxwhich do not have bk as an isolated vertex. Then

ar+as + -+
|stab(7)]|

17| =

Proof. Define? := a1 + a2 + - - - + a.m, and note that this is the number of edges in

any member of X[a1,az...an]. Let T € Xi[ayaz..an] and label the edges of T as

€1,€2,...,€ Let z;be the rotation of t such that e;is a directed edge terminating at
br. Then Z; = {z1, 29,..., Zf}, since bk is not an isolated vertex if and only if some
edge points to br. However these z;are not necessarily distinct.

Observe that for a given i, the number of times z;appears in Z:is given by |stab(z:)|.

Moreover, since z: € orbz(t), we have that |stab(z:)| = |stab(7)|. Therefore,

—_1 2 a+a+

.t an |2+] = |stab(7)] [stab(7)]|

We now have what we need to prove the main relationship between

| Xk [avaz...aml| and | Xk-1,[asaz,..am]|.

Theorem 5.18. For any ai,az,..,am € Z such that a1 + az + - + am< k

lek—l,[alA,agA,...,a,m]
— (a1 +a2+"'+am)_

|Xk7[(1,1,(1,2,...7am] | = k’

Proof. By Lemma 5.16, in order to count |Xk[a1,a2..am|, Wwe can add a vertex to every
graph in Xk-1,(a1,a....an] and consider all rotations of these new graphs. Each of these

graphs has k possible rotations. However, this does not produce distinct elements of
Xklayaz...an). In fact, for each T € Xk[a1z...an], we have counted it |stabz(7)|-|orbz(t)\Z|

times. Since the addition of the vertex bk can cause nonisomorphic graphs in
Xk-1,[avaz.,an] to be in the same orbit under Zk (see Fig. 5), we have over-counted each
orbit in Xk[a1az..am by @ factor of |orbz(t)\Zz|. Due to rotational symmetry, we over-

count T € orbz(t) by a factor of |stabz(1)].
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tlZ | — ai1tast-tam
By Lemma 5.17, for all T € Xk [a1,a2..an], we have that =" [stab(T)]

Recall that Z: € orbz(7). Therefore,

[stabz(7)| - |orbz(T)\Z:| = |stabz(T)|(Jorbz(T)| - | Z|)
= |stabz(7)| - |orbz(t)| - |stabz(7)]| - | Z|

= |stabz(7)]| - |orba(7)| - (a1 + az -+ + am).

@

Fig. 5. Two non-isomorphic graphs that will be in the same Zk-orbit after the addition of the vertex .

Then, by the orbit stabilizer theorem, |stabz(t)| - |orbz(t)| = |Zk| = k, so we have

counted each rotation k — (a1 + az + -+ + am) times. Therefore,

lek_17[a1,a2,...,am]|
_(a1—|—a2—|-"'+am)_ o

|Xk,[a1,a2,...,am]| = A

This recursive relationship could be useful for addressing SteF 2(a) of the merge
number algorithm. However it is only useful when the base cases,

(wherel = a1 +az +---+ax), are already known. Unfortunately, there is no known
efficient way to compute these base cases. Using brute force in the same way as we
can for Step 2(a) (see the beginning of Sec. 5.3.2), these base cases could be computed
in O(¢- E') time. Since! = O ) in the worst case, this is not a significant improvement
over the original brute force algorithm for Step 2(a).

Lar,az,...,am]

5.3.3. Step 2(b)

Step 2(b) of the algorithm requires determining the number of ways merges can be
picked with the given cycle structure. From Lemma 5.6, we can know that this is
equivalent to choosing edges so that no cycle is formed.

Given a graph with cycle structure [ay,az,..,an], let e be the number of edges in the

graph. This means that e = a1 +az ++-*+am. The total number of ways to choose edges
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15(2) The total number of ways to choose edges that include at least one cycle can be
found using the inclusion-exclusion principle as follows:

Z<—1>”1Z{(Z_a’“_“’“2_"'_“’“"> 1<k, ks <,

—a —a — e — QL. P
i=1 k1 ™ Che ki all distinct.

Subtracting this from (Z) yields the total number of ways to choose edges without
picking a cycle, which is what we wanted.
6. Future Work

According to Theorem 3.10, for an odd natural number n, the number of elements of
Snthat have a maximum size strategic pile is 2 - (n - 2)! This number is related to the

number of factorizations given in the following result from Bertram and Wei.

Theorem 6.1 ([2, Theorem 1]). For n = 3, each odd permutation in Sn has exactly 2(n
-2)! factorizations of the form a° f where a is an n-cycle and f is an (n — 1)-cycle.
Viewing Theorem 6.1 in our context, let n = 3 be an odd integer, and let 7 be an

element of Sp. With X», Yr, and Cr as defined in Egs. (2.4)-(2.6), we are considering

factorizations of X, of the form

Xn=Yn-1° Cn,

where Cris a single cycle of length n, while X,and Yrare cycles of length n + 1. Applying
Theorem 6.1, we see that according that theorem there are 2(n - 1)! factorizations of
Xnof the form pev where p is an (n+1)-cycle and v is an n-cycle. In each of these cases,
we can write ¢ as a Yr~1for some 7 € Sy, and for 2(n - 2)! of these m the corresponding

visa Crofthe form (O ni--).

Example 6.2. Consider n = 5. The following table indicates that Xs has factorizations
into a 6-cycle and a 5-cycle for which the corresponding permutations  have various
strategic pile sizes.

2050014-30



T Cr Strategic pile | Strategic pile size
[24135] (04321) 1) 0

[5 231 4.] (0 315 4) {4} Quantifying CDS sottability of permutations
[21534] | (02541} {1, 4} 2
[35124] | (05432) 2,3, 4

{ }

Thus, it can happen that the cycle Crof length n in the factorization of X»represents
a strategic pile of size less than the maximal possible size for n. It would be interesting
to determine, for odd integers n and for each strategic pile size 0 < k <n - 2 how many
of the permutations in S» for which Cris a cycle of length n have strategic pile size k.
We have also not addressed the analogous question for the case when n is an even
integer.

In addition to the problem just described, we would like to either (1) improve the
merge number algorithm described in Sec. 5.3 or (2) construct an alternative
algorithm for computing merge numbers.

Accomplishing (1) would require improving the following aspects of our
algorithm. Let k indicate strategic pile size. Recall that Step 1 of this algorithm
requires determining the set of integer partitions of k with no parts of size one, and
with an even number of even parts. As previously mentioned, the number of integer
partitions of k grows exponentially in k [7], meaning Step 1 is inefficient for large k.
To make this step of the algorithm less costly, we would like a better method for
computing the number of partitions with the aforementioned properties. Recall also
that Step 2(a) of this algorithm can be done through brute force in O(k - k!) time. We
offer a recursive method for completing Step 2(a) with runtime polynomial in k.
However, this recursive method is only useful when the base cases,|X1’-,[a1»a2»~~,am] |
(where! = ai +az + - -+ + an), are already known. Unfortunately, the best known
method for computing the base cases of this algorithm requires (¢ é!) time. Since
this is no better than the brute force method for Step 2(a), we would like an efficient

method for computing base cases so that our recursive method can be used to make
Step 2(a) more efficient.

Alternatively, it would be ideal to (2) construct an algorithm for computing merge
numbers that completely circumvents the dependency on exponential time
computations. However, due to the nature of merge numbers described above, it
seems that these dependencies might be unavoidable. Consequently, it is not clear
how realistic it would be to accomplish (2).
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