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The	special	purpose	sorting	operation,	context	directed	swap	(CDS),	is	an	example	of	the	block	
interchange	 sorting	 operation	 studied	 in	 prior	 work	 on	 permutation	 sorting.	 CDS	 has	 been	
postulated	 to	model	 certain	molecular	 sorting	events	 that	occur	 in	 the	genome	maintenance	
program	of	some	species	of	ciliates.	We	investigate	the	mathematical	structure	of	permutations	
not	 sortable	 by	 the	 CDS	 sorting	 operation.	 In	 particular,	 we	 present	 substantial	 progress	
towards	quantifying	permutations	with	a	given	strategic	pile	size,	which	can	be	understood	as	a	
measure	 of	 CDS	 non-sortability.	 Our	 main	 results	 include	 formulas	 for	 the	 number	 of	
permutations	in	Sn	with	maximum	size	strategic	pile.	More	generally,	we	derive	a	formula	for	
the	 number	 of	 permutations	 in	 Sn	with	 strategic	 pile	 size	 k,	 in	 addition	 to	 an	 algorithm	 for	
computing	certain	coefficients	of	this	formula,	which	we	call	merge	numbers.	

Keywords:	Permutation	sorting;	context	directed	swap;	strategic	pile;	factorization	into	cycles.	
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1. Introduction	
Sorting	 is	 a	 fundamental	 step	 in	 numerous	 natural,	 industrial,	 commercial,	 and	
scientific	 computing	 processes.	 Correspondingly,	 the	 mathematical	 analysis	 of	
sorting	operations	has	a	 long	history.	The	 typical	 concerns	with	a	 sorting	process	
include	the	efficiency	of	the	sorting	operation,	a	characterization	of	the	situations	in	
which	the	sorting	operation	achieves	the	sorting	objective,	and	a	characterization	of	
the	situations	in	which	the	sorting	operation	does	not	achieve	the	sorting	objective.	
In	 this	 paper,	 we	 focus	 on	 the	 third	 of	 these	 concerns.	 In	 particular,	 we	 seek	 to	
quantify	for	a	specific	sorting	operation	the	prevalence	of	what	can	be	seen	as	the	
worst	case	obstruction	to	sortability.	

The	 specific	 sorting	 operation	we	 consider	 aims	 to	 sort	 a	 permuted	 list	 of	 the	
numbers	1,2,...,n	to	the	canonical	ordered	list	(1,2,...,n).	This	sorting	operation	appears	
in	two	prior	works.	It	appears	in	the	2003	template	model	for	the	construction	of	a	
new	 macronucleus	 from	 its	 scrambled	 precursor	 micronucleus	 in	 certain	 ciliate	
species	 [9].	 In	 this	 model	 the	 sorting	 operation	 is	 named	 dlad.	 For	 more	 on	 this	
fascinating	 biological	 background	 the	 reader	 may	 consult	 the	 review	 [8]	 and	 the	
textbook	 [5].	 It	 turns	 out,	 by	 hindsight,	 that	 this	 sorting	 operation	 also	 includes	
special	cases	of	the	block	interchange	sorting	operation	examined	in	[4]	by	Christie.	
The	minimal	block	 interchanges	 identified	by	Christie	are	 special	 cases	of	 the	dlad	
operation.	

In	 yet	 another	 investigation	 into	 genome	 rearrangement	 combinatorics,	 the	
double	cut	and	join	operation,	denoted	DCJ,	is	introduced	by	Yancopoulos	et	al.	[11]	
to	establish	a	mathematical	measure	of	distance	between	two	genomes.	In	the	DCJ	
theory,	 generic	 block	 interchanges	 studied	 by	 Christie	 [4]	 are	modeled	 by	 a	 very	
specific	 sequence	 of	 DCJ	 events,	 visualized	 in	 [11,	 Fig.	 6].	Modeling	dlad	 as	 a	 DCJ	
operation	requires	specifying	additional	DCJ	constraints.	To	emphasize	the	specific	
mathematical	nature	of	the	sorting	operation	we	consider	here,	the	operation	will	be	
called	context	directed	swap,	denoted	CDS;	CDS	is	an	example	of	a	block	interchange	
sorting	algorithm.	We	base	our	 treatment	on	 the	mathematical	 counterpart	of	 the	
essential	features	identified	in	the	paper	[9].	

A	permuted	 list	of	numbers	 is	 said	 to	be	CDS-sortable	 if	 there	 is	a	 sequence	of	
applications	of	the	CDS	sorting	operation	(to	be	defined	in	Sec.	2)	that	results	in	the	
numbers	 listed	 in	 increasing	 order.	 Not	 every	 permutation	 is	 sortable	 by	 CDS.	
CDSsortability	criteria	have	been	given	previously	(for	instance,	see	[6]).	Also,	from	
prior	work	 one	 can	 deduce	 that	when	 CDS	 can	 sort	 a	 permutation,	 it	 is	 the	most	
efficient	 block	 interchange	 sorting	 algorithm	 [4].	 Mathematically	 interesting	
phenomena	arise	from	the	study	of	permutations	not	sortable	by	applications	of	CDS.	
The	essential	structural	obstacle	to	a	permutation’s	CDS-sortability	was	identified	in	
[1],	giving	rise	to	the	notion	of	the	strategic	pile	of	a	permutation.	
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The	notions	of	CDS-sortability,	the	strategic	pile	of	a	permutation,	and	appropriate	
notation	and	terminology	will	be	introduced	in	Sec.	2.	 In	this	section,	we	explicitly	
describe	the	problem	being	treated	in	this	paper,	and	we	report	our	findings	in	Secs.	
3–5.	

In	Sec.	3,	we	determine	the	number	of	elements	in	Sn	that	have	the	maximum	size	
strategic	pile	among	all	elements	of	Sn.	This	counting	problem	reduces	to	a	variation	
of	 the	cycle	 factoring	problem	for	Sn,	 studied	previously,	and	depends	on	the	cycle	
factoring	results	of	[2,	3].	In	Sec.	4,	we	investigate	how	prevalent	it	is	for	permutations	
in	 Sn	 to	 have	 strategic	 piles	 of	 cardinality	 k.	 As	 a	 result	 of	 this	 work	 we	 develop	
formulas	in	closed	form	that	produce	the	terms	of	the	integer	sequences	A267323,	
A267324,	and	A267391	in	[10].	We	also	contribute	the	integer	sequence	A281259	to	
[10],	as	well	as	its	formula.	In	Sec.	5,	we	highlight	a	more	challenging	component	of	
our	formula	from	Sec.	4.	

2. Preliminaries	

For	a	positive	integer	n,	the	symbol	Sn	denotes	the	set	of	one-to-one	functions	from	

the	set	{1,2,...,n}	to	itself,	also	known	as	permutations	of	{1,2,...,n}.	The	notation	

 [a1	 a2	 ···	 an−1	 an]	 (2.1)	

denotes	the	permutation	π	for	which	π(i)	=	ai	for	1	≤	i	≤	n.	In	current	literature,	the	

notation	 in	 (2.1)	 is	 called	 one-line	 notation.	 This	 one-line	 notation	 should	 be	

distinguished	from	

 (c1	 c2	 ···	 ck−1	 ck),	 (2.2)	

which	is	the	so-called	cycle	notation	that	denotes	the	permutation	π	where	π(c1)	=	
c2,π(c2)	=	c3,...,π(ck−1)	=	ck,π(ck)	=	c1,	and	where 	

(note	 that	 this	 notation	 is	 very	 similar	 to	 notation	 we	 will	 later	 use	 to	 describe	
ordered	lists.	The	two	can	be	distinguished	by	noting	that	we	do	not	use	commas	to	
describe	a	cycle	permutation,	but	will	use	them	to	describe	ordered	lists).	

To	define	the	CDS	sorting	operation,	associate	with	each	entry	of	the	permutation	
π	∈	Sn	left	and	right	pointers	as	follows:	For	an	entry	k	∈	{1,2,...,n}	of	π,	the	left	pointer	
of	 ,	while	the	right	pointer	of .	By	convention,	the	smallest	
entry,	1,	does	not	have	a	left	pointer,	and	the	largest	entry,	n,	does	not	have	a	right	
pointer.	

Example	2.1.	Equation	(2.3)	shows	the	permutation	π	=	[2	4	3	1	5]	with	all	pointers	
marked:	

 .	 (2.3)	
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Observe	that	each	pointer	in	a	permutation	occurs	twice.	Given	two	pointers,	p	
and	q,	in	the	permutation	π,	the	sorting	operation	CDS	at	these	pointers	acts	as	follows	
on	π:	If	the	pointers	do	not	appear	in	the	order	···p···q	···p···q	···	in	π,	then	CDS	does	
not	apply	and	we	say	that	the	pointer	context	is	invalid.	Otherwise,	the	two	segments	
of	π	 that	 are	 flanked	 by	 the	 pointer	 context	 p···q	 are	 interchanged.	 The	 pointers

	appear	in	···p···q	···p···q	···	context	in	the	permutation	π	=	[2	
4	3	1	5].	CDS	applied	to	π	for	this	pointer	context	produces	the	permutation	[2	1	3	4	
5].	On	the	other	hand,	as	the	pointers	 and 	appear	in	···r	···s···s···r···	
context	in	π,	CDS	cannot	be	applied.	

When	there	are	no	pointers	p	and	q	that	appear	in	context	···p···q	···p···q	···	in	π,	
the	permutation	π	is	said	to	be	a	CDS	fixed	point.	For	each	positive	integer	n,	there	are	
exactly	n	CDS	fixed	points	in	Sn,	namely	the	permutations	[k+1	···	n	1	2	···	k]	for	1	≤	k	

<	n,	and	the	identity	permutation	[1	2	···	n−1	n].	

By	[1],	we	know	that	for	each	permutation	π	 in	Sn	that	is	not	a	CDS	fixed	point,	
some	sequence	of	applications	of	CDS	to	π	terminate	in	a	CDS	fixed	point.	If	a	sequence	
of	applications	of	CDS	to	the	permutation	π	terminates	in	the	identity	permutation	[1	
2	···	n],	we	say	that	π	is	CDS-sortable.	The	CDS-sortability	of	permutations	has	been	
characterized	in	prior	works	such	as	[1,	6].	In	[1],	the	obstacle	to	CDS-sortability	of	a	
permutation	π	∈	Sn	is	identified	as	follows.	Suppose	π	=	
[a1	a2	···	an].	Define	the	cycle	permutations	Xn	and	Yπ	by	 	

 Xn	:=	(0	 1	 2	 ···	 n)	 and	 (2.4)	

 Yπ	:=	(0	 an	 an−1	 ···	 a1).	

Then	define	

(2.5)	

Cπ	:=	Yπ	◦	Xn.	 (2.6)	

In	Eq.	(2.6),	the	symbol	“◦”	denotes	functional	composition,	and	we	use	the	standard	

convention	that	f	◦	g(x)	denotes	the	value	f(g(x)).	

When	 the	 entries	 0	 and	 n	 occur	 in	 the	 same	 cycle	 in	 the	 disjoint	 cycle	
decomposition	of	Cπ,	we	shall	write	this	cycle	in	the	form	

 (0	 u1	 u2	 ···	 uj	 n	 b1	 b2	 ···	 bk).	 (2.7)	

The	set	SP(π)	=	{b1,b2,...,bk}	is	said	to	be	the	strategic	pile	of	π.	If	0	and	n	do	not	appear	
in	 the	 same	 cycle,	we	 define	 SP(π)	 to	 be	 the	 empty	 set.	 The	 ordered	 list	 SP∗(π)	 =	
(b1,b2,...,bk)	is	called	the	ordered	strategic	pile	of	π,	and	its	ordering	is	determined	by	
the	order	of	appearance	in	(2.7).	In	[1],	it	was	proven	that	a	permutation	π	is	CDS-
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sortable	if	and	only	if	its	strategic	pile	is	the	empty	set	(i.e.,	if	and	only	if	0	and	n	do	
not	appear	in	the	same	cycle).	

Example	2.2.	For	the	permutation	π	=	[2	5	1	4	3]	we	have	Cπ	=	Yπ	◦	X5	=	(0	3	4	1	5	2)(0	

1	2	3	4	5)	=	(0	5	3	1)(2	4),	written	in	disjoint	cycle	form.	Thus,	the	strategic	pile	of	π	

is	the	set	SP(π)	=	{1,3},	while	SP∗(π)	=	(3,1).	

The	strategic	pile	of	a	permutation	π	is	intimately	related	to	the	set	of	achievable	
CDS	fixed	points.	

Theorem	2.3	([1,	Theorem	2.22]).	If	a	permutation	π	∈	Sn	is	not	CDS-sortable,	then	

the	following	are	equivalent	for	1	≤	k	<	n:	

(1)	There	is	a	sequence	of	applications	of	CDS	to	π	that	terminates	in	the	CDS	fixed	point	

[k	+	1	k	+	2	···	n	1	2	···	k].	(2)	k	is	a	member	of	the	strategic	pile	of	π.	

3. Maximum	Size	Strategic	Piles	

We	now	investigate	the	number	of	permutations	in	Sn	with	maximum	size	strategic	
piles;	 these	 permutations	 can	 be	 considered	 to	 have	maximal	 CDS	 nonsortability.	
Since	there	are	n	CDS	fixed	points	(including	the	identity	permutation),	Theorem	2.3	
implies	that	a	strategic	pile	of	a	permutation	in	Sn	can	have	at	most	n	−	1	elements.	

Lemma	3.1.	If	there	is	a	permutation	in	Sn	which	has	a	strategic	pile	of	size	n−1,	then	n	

is	even.	

Proof.	By	(2.7),	if	the	strategic	pile	of	permutation	π	has	size	n	−	1,	then	

 Cπ	=	(0	n	b1	b2	···	bn−1).	 (3.1)	

But	 Cπ	 is	 the	 composition	 of	 two	 (n	 +	 1)-cycles,	 and	 thus	 an	 even	 permutation.	
Therefore	n	is	even.	 	

As	we	shall	see	later,	the	converse	of	Lemma	3.1	also	holds.	As	a	consequence	of	
Lemma	3.1	we	get	the	following.	

Corollary	3.2.	If	n	is	odd,	then	the	strategic	pile	of	an	element	of	Sn	has	at	most	n	−	2	
elements.	

We	shall	also	later	see	that	there	are	permutations	in	Sn	with	strategic	pile	of	size	
n	−	2	for	every	odd	integer	n	≥	1.	In	Secs.	3.1	and	3.2	we	count	for	each	n	the	number	
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of	permutations	in	Sn	with	strategic	pile	of	maximal	size	for	n.	Section	3.1	is	dedicated	

to	the	case	when	n	is	even,	and	Sec.	3.2	is	dedicated	to	the	case	when	n	is	odd.	

3.1. Maximum size strategic piles for even values of n 

Theorem	3.3.	For	each	even	number	n,	the	number	of	permutations	in	Sn	with	strategic	
pile	of	size	n	−	1	is	

.	
As	noted	in	the	proof	of	Lemma	3.1,	an	element	of	Sn	having	a	strategic	pile	of	size	

n	−	1	is	related	to	the	possibility	of	factoring	certain	(n	+	1)-cycles	into	two	
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(n+1)-cycles.	As	a	result,	 to	prove	Theorem	3.3,	we	first	 introduce	some	additional	
notation,	which	we	will	use	to	define	injective	maps	between	sets	of	factorizations.	

Notation	3.4.	

• Let	A	denote	the	set	of	all	factorizations	of	Xn−2	into	two	(n	−	1)-cycles.	

• Let	B	denote	 the	 set	 of	 all	 factorizations	 of	 Xn	 into	 two	 (n+1)-cycles	where	 the	

rightmost	factor	is	of	the	form	(0	n	···).	

• Let	Bi	denote	the	subset	of	B	whose	elements	have	rightmost	factors	of	form	

1)	and	cn	=	(1	2	···	n	−	1).	

We	begin	by	constructing	a	bijection	between	the	sets	A	and	B1	in	Lemmas	3.6	and	

3.8.	We	then	show	in	Lemma	3.9	 that	B1	→	B2,B2	→	B3,...,Bn−2	→	Bn−1,	and	Bn−1	→	B1,	

where	→	indicates	an	injective	map.	Since	the	injective	maps	between	the	Bi	sets	form	

a	 cycle,	 it	 follows	 that	 |A|	 =	 |B1|	 =	 ···	 =	 |Bn−1|.	 Finally,	we	 determine	 |A|	 using	 the	

following	prior	result	that	counts	the	number	of	factorizations	of	an	arbitrary	(n	−	1)-

cycle	into	two	cycles	of	length	n	−	1.	

Lemma	3.5	([3,	Theorem	3]).	Let	σ	∈	Sn−1	be	an	even	(n	−	1)-cycle.	Then	the	number	

of	factorizations	of	σ	into	two	(n	−	1)-cycles	is	

.	
We	now	establish	the	previously	described	injections.	

Lemma	3.6.	There	is	an	injective	map	from	A	to	B1.	

Proof.	 Let	 γ◦δ	 be	 a	 factorization	 in	 A.	 Namely,	 suppose	 γ	 and	 δ	 are	 (n−1)-cycles	

satisfying	γ	◦	δ	=	Xn−2.	Define	γ1	and	δ1	as	follows:	

γ1	:=	λn	◦	cn	◦	γ	◦	(cn)−1,	

δ1	:=	cn	◦	δ	◦	(cn)−1	◦	λn.	

Note	that	if ,	then ,	which	shows	that	the	map	is	injective.	Therefore,	to	
complete	the	proof	it	suffices	to	show	that	γ1	and	δ1	are	(n	+	1)-cycles,	that	δ1	is	of	the	
form	(0	n	1	···),	and	that	γ1	◦	δ1	=	Xn.	
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Since	conjugation	preserves	cycle	structure,	the	factors	cn	◦	γ	◦	(cn)−1	of	γ1	form	an	

(n	−	1)-cycle	with	elements	{0,2,3,...,n	−	1}.	Composing	λn	with	this	(n	−	1)-cycle	creates	

an	(n	+	1)-cycle	with	elements	{0,1,2,...,n}.	

Similarly,	 the	 factors	 cn	 ◦	 δ	 ◦	 (cn)−1	 of	 δ1	 form	 an	 (n	 −	 1)-cycle	 with	 elements	

{0,2,3,...,n	−	1}.	Composing	this	(n	−	1)-cycle	with	λn	adds	the	elements	n	and	1	to	form	

an	(n	+	1)-cycle	of	the	form	(0	n	1	···).	

Finally,	

	
Example	3.7.	Let	n	=	6.	Then	Xn−2	=	X4	=	(0	1	2	3	4).	Consider	the	factorization	

.	
Using	the	maps	defined	in	Lemma	3.6,	we	get	γ1	=	

λ6	◦	c6	◦	γ	◦	(c6)−1	

 =	(0	 6	 1)(1	 2	 3	 4	 5)(0	 2	 4	 1	 3)(5	 4	 3	 2	 1)	

 =	(0	 3	 5	 2	 4	 6	 1)	

and	δ1	=	c6	◦	δ	◦	(c6)−1	◦	λ6	

=	(1	 2	 3	 4	 5)(0	 4	 3	 2

	 1)(5	 4	 3	 2	 1)(0	 6	 1)	 =	 (0

	 6	 1	 5	 4	 3	 2).	

Note	that	these	are	(n	+	1)-cycles,	that	δ1	is	of	the	form	(0	n	1	···),	and	that	

 γ1	◦	δ1	=	(0	 3	 5	 2	 4	 6	 1)(0	 6	 1	 5	 4	 3	 2)	

 =	(0	 1	 2	 3	 4	 5	 6)	=	Xn,	

as	desired.	

X	4	=(0	 1	 2	 3	 4)=(0	 2	 4	 1	 3)	
	 	 	γ	

(0	 4	 3	 2	 1)	
	 	 	δ	
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Lemma	3.8.	There	is	an	injective	map	from	B1	to	A.	

Proof.	Let	γ1	◦δ1	=	(0	t1	t2	···	tn)(0	n	1	v1	···	vn−2)	be	an	arbitrary	factorization	in	B1.	It	
suffices	to	show	that	we	can	associate	to	γ1	◦δ1	a	unique	factorization	γ	◦	δ	of	Xn−2	in	A.	
To	this	end,	let	δ	:=	(cn)−1	◦	δ1	◦	(λn)−1	◦	cn.	Then,	

δ	=	(cn)−1	◦	(0	 n	 1	 v1	 ···	 vn−2)	◦	(λn)−1	◦	cn	

=	(cn)−1	◦	(0	 v1	 ···	 vn−2)(1)(n)	◦	cn	

=	(0	 v1	−	1	 ···	 vn−2	−	1).	

It	follows	that	δ	is	an	(n−1)-cycle.	Moreover,	changing	δ1	also	changes	δ,	implying	that	

the	map	is	injective.	

Since	γ1	=	(0	t1	t2	···	tn)	and	γ1◦δ1	=	Xn,	we	have	that	tn	=	1	and	tn−1	=	n.	

Let	γ	=	(cn)−1	◦	(λn)−1	◦	γ1	◦	cn.	Then,	

γ	=	(cn)−1	◦	(λn)−1	◦	(0	 t1	 ···	 tn−2	 n

	 1)	◦	cn	=	(cn)−1	◦	(0	 t1	 ···

	 tn−2)(n)(1)	◦	cn.	

Since	conjugation	preserves	cycle	structure,	γ	is	an	(n	−	1)-cycle.	
Finally,	

γ	◦	δ	=	(cn−1	◦	λn−1	◦	γ1	◦	cn)	◦	(cn−1	◦	δ1	◦	λn−1	◦	cn)	

=	cn−1	◦	λn−1	◦	Xn	◦	λn−1	◦	cn	=	Xn−2.	

We	 have	 shown	 that	 for	 each	 factorization	 γ1	 ◦δ1	 in	 B1,	 there	 are	 unique	

corresponding	(n	−	1)-cycles	γ	and	δ	such	that	γ	◦	δ	=	Xn−2.	It	follows	that	γ	◦	δ	∈	A,	and	

this	completes	the	proof.	 	

Since	the	injective	maps	defined	in	the	proof	of	Lemma	3.8	are	merely	inverses	of	
those	defined	in	the	proof	of	Lemma	3.6,	these	maps	in	fact	serve	as	bijective	maps	
between	the	sets	A	and	B1.	It	follows	that	|A|	=	|B1|.	The	next	lemma	will	function	to	
show	that	|B1|	=	···	=	|Bn−1|.	

Lemma	3.9.	
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(1) For	every	1	≤	i	≤	n	−	2,	there	is	an	injection	from	Bi	to	Bi+1.	

(2) There	is	an	injection	from	Bn−1	to	B1.	

In	other	words,	B1	→	B2	→	···	→	Bn−1	→	B1,	where	each	→	indicates	an	injective	map.	

Proof.	We	prove	the	two	statements	separately.	
(1).	Let	i	satisfy	1	≤	i	≤	n	−	2.	Let	γi	and	δi	be	(n	+	1)-cycles,	where	δi	is	of	the	form	(0	n	

i	···),	and	where	γi	◦	δi	=	Xn.	Let	rn	denote	the	cycle	(2	1	n).	Define	

γi+1	=	rn	◦	cn	◦	γi	◦	(cn)−1,	δi+1	=	cn	◦	

δi	◦	(cn)−1.	

It	suffices	to	show	that	γi+1	and	δi+1	are	(n	+	1)-cycles,	that	δi+1	is	of	the	form	(0	n	i	+	1	
···),	and	that	γi+1	◦	δi+1	=	Xn.	

Since	conjugation	preserves	the	cycle	structure	of	a	permutation,	both	cn	◦	γi	◦	(cn)−1	

and	δi+1	=	cn	◦	δi	◦	(cn)−1	are	(n	+	1)-cycles.	One	can	also	check	that	composition	with	rn	

does	not	affect	the	cycle	structure	of	cn	◦	γi	◦	(cn)−1,	meaning	γi+1	is	also	an	(n	+	1)-cycle.	

Next,	observe	that	

δi+1(0)	=	cn(δi(0))	=	cn(n)	=	n	

and	

δi+1(n)	=	cn(δi(n))	=	cn(i)	=	i	+	1.	

Therefore,	δi+1	is	of	the	form	(0	n	i	+	1	···).	

Finally,	

γi+1	◦	δi+1	=	(rn	◦	cn	◦	γi	◦	(cn)−1)	◦	(cn	◦	δi	◦	(cn)−1)	

=	rn	◦	cn	◦	Xn	◦	(cn)−1	
 =	rn	◦	(0	 2	 3	 ···	 n	−	1	 1	 n)	

=	Xn.	

(2).	Statement	(2)	follows	from	the	observations	that 	for	all	1	<	i	<	n,	and	
that	δn	=	δ1.	The	latter	observation	follows	directly	from	the	fact	that	the	order	of	cn	in	
the	group	of	permutations	is	n	−	1.	 	
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Example	3.7	(Continued).	One	can	check	that	under	the	δi	→	δi+1	map	defined	in	the	

proof	of	Lemma	3.9,	we	get	

δ1	=	(0	 6	 1	 5	 4	 3	 2)	→	(0	 6	 2	 1	 5	 4	 3)	→	(0	 6	 3	 2	 1	 5	 4)	

 →	(0	 6	 4	 3	 2	 1	 5)	→	···	→	(0	 6	 5	 4	 3	 2	 1)	

 →	(0	 6	 1	 5	 4	 3	 2)	=	δn.	

We	now	prove	the	main	result	of	this	section,	Theorem	3.3.	

Proof	of	Theorem	3.3.	Since	Xn	=	Yπ−1	◦Cπ,	we	count	the	factorizations	of	Xn	into	two	

(n+1)-cycles	 where	 the	 second	 factor	 has	 the	 form	 (0	 n	 ···).	 This	 is	 the	 sum

.	By	Lemma	3.5,	there	are	 	factorizations	of	Xn−2	into	two	(n	−	1)-

cycles.	In	other	words,	|A|	 .	By	Lemmas	3.6,	3.8,	and	3.9,	we	have	that	|A|	=	

|B1|	=	···	=	|Bn−1|.	It	follows	that	for	each	even	n,	the	number	of	permutations	in	Sn	with	

strategic	pile	size	n	−	1	is	

,	
as	desired.	 	

3.2. Maximum size strategic piles for odd values of n 

We	now	prove	an	analog	of	Theorem	3.3	to	address	the	case	that	n	is	odd.	

Theorem	3.10.	For	each	odd	number	n,	the	number	of	permutations	in	Sn	with	strategic	
pile	size	n	−	2	is	2(n	−	2)!.	

A	permutation	π	=	[a1	a2	···	an]	is	said	to	have	an	adjacency	if	there	is	an	index	i	<	n	

such	that	ai+1	=	ai	+	1.	

Lemma	3.11.	Let	n	>	1	be	an	odd	number	and	 let	π	be	an	element	of	Sn.	 If	π	has	a	
strategic	pile	of	cardinality	n	−	2,	then	π	has	a	single	adjacency.	

Proof.	Let	π	=	[a1	a2	···	an].	We	have	that	

 Cπ	=	(0	 an	 ···	 a1)	◦	(0	 1	 ···n),	
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which	is	an	even	permutation.	It	follows	from	Lemma	3.1	that	Cπ	is	not	a	single	cycle.	
Since	π	has	a	strategic	pile	of	cardinality	n	−	2,	we	have	that	Cπ	is	of	the	form	

 Cπ	=	(0	 n	 c1	 ···	 cn−2)	◦	(x).	

The	singleton	cycle	(x)	comes	about	on	account	of	the	following	configuration	in	the	
computation	of	Cπ:	

 (···	 x	+	1	 x	 ···)	◦	(0	 1	 ···	 x	 x	+	1	 ···	 n).	

Thus,	in	π	we	have	that	for	some	i,	ai	=	x	and	ai+1	=	x	+	1.	 	

When	a	permutation	π	in	Sn	has	a	single	adjacency,	it	can	be	projected	to	a	unique	

corresponding	permutation	P(π)	in	Sn−1	which	has	no	adjacencies,	as	follows:	Let	π	=	

[a1	a2	 ···	ai	ai+1	 ···	an]	 ∈	 Sn	have	 the	 single	 adjacency	ai+1	=	ai+1.	We	 define	P(π)	 by	

removing	the	second	element	of	the	adjacency	and	reducing	all	 larger	elements	by	

one.	More	precisely,	 ],	where	
 ⎧⎪⎪aj	 if	j	≤	i	

and	aj	≤	ai,	

,	.	

Example	3.12.	The	permutation	π	=	[2	3	6	1	5	4]	has	one	adjacency.	P(π)	=	[2	5	1	4	3]	
has	no	adjacencies.	Observe	that	there	are	five	different	elements	of	S6,	each	with	a	
single	adjacency,	that	give	rise	in	this	way	to	[2	5	1	4	3],	namely:	
[2	3	6	1	5	4],	[2	5	6	1	4	3],	[3	6	1	2	5	4],	[2	6	1	4	5	3],	and	[2	6	1	5	3	4	].	

Remark	3.13.	If	n	>	1	is	an	odd	number	and	π	∈	Sn	is	a	permutation	with	a	strategic	

pile	 of	 cardinality	n	−	2,	 then	P(π)	∈	Sn−1	 is	 a	 permutation	with	 a	 strategic	 pile	 of	

cardinality	n	−	2.	

Conversely,	 if	we	are	given	a	permutation	μ	∈	Sn−1	which	

has	no	adjacencies,	say	[],	and	any	position	i,	we	can	construct	

a	unique	permutation	(μ,i)	=	[	1	2	···	an]	in	Sn	which	has	a	single	adjacency,	and	for	which	

P(E(μ,i))	=	μ:	Namely,	define	 +	1;	for	j	<	i	define	 	

if	ai	<	aj,	and	 	otherwise;	for	j	>	i	define	 ,	and	
+	1	otherwise.	
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Remark	3.14.	If	n	>	1	is	an	odd	number	and	μ	∈	Sn−1	is	a	permutation	with	a	strategic	

pile	of	cardinality	n−2,	and	if	i	≤	n−1,	then	E(μ,i)	∈	Sn	is	a	permutation	with	a	strategic	

pile	of	cardinality	n	−	2.	

With	these	facts	at	our	disposal	we	now	prove	Theorem	3.10.	

Proof	of	Theorem	3.10.	By	Remark	3.14	each	permutation	μ	∈	Sn−1	with	full	strategic	

pile	produces	n	−	1	permutations	πi	=	E(μ,i)	for	i	≤	n	−	1	in	Sn	with	strategic	pile	of	size	

n−2.	Thus	by	Theorem	3.3	there	are	at	least	( 	

2(n−2)!	elements	of	Sn	with	strategic	pile	of	size	n−2.	Conversely,	by	Lemma	3.11	each	

element	of	Sn	that	has	a	strategic	pile	of	size	n	−	2	arises	in	this	way.	 	

4. Strategic	Piles	of	Size	k	

Having	quantified	the	number	of	permutations	with	maximum	size	strategic	piles,	we	
next	 produce	 an	 analogous	 quantification	 for	 permutations	with	 strategic	 piles	 of	
arbitrary	 size.	 Before	 stating	 the	 main	 result	 of	 this	 section,	 we	 first	 establish	
terminology	and	structural	properties	of	permutations	with	strategic	piles	of	size	k.	

4.1. Structure of permutations with strategic pile of size k 

Proposition	4.1.	For	 a	 permutation	 π	 in	 Sn,	 SP ∗(π)	 =	 (b1,b2,...,bk)	 if	 and	 only	 if	 the	
following	are	true:	

(1) π(1)	=	bk	+	1.	
(2) π(n)	=	b1.	
(3) For	all	j	∈	{2,3,...,k	−	1},	the	element	bj	appears	to	the	immediate	left	of	bj−1	+	1	in	π	

(when	written	in	one-line	notation).	

Proof.	First	note	that	Cπ(bk)	=	0	if	and	only	if	Yπ(bk	+	1)	=	0,	since	Cπ(bk)	=	Yπ(X(bk))	=	
Yπ(bk	+	1).	Also,	by	definition,	Yπ(bk	+	1)	=	0	if	and	only	if	π(1)	=	bk	+	1.	Therefore,	Cπ(bk)	
=	0	if	and	only	if	π(1)	=	bk	+	1.	

Second,	Cπ(n)	=	b1	if	and	only	if	Yπ(0)	=	b1,	since	Cπ(n)	=	Yπ(X(n))	=	Yπ(0).	Also,	by	
definition,	Yπ(0)	=	b1	if	and	only	if	π(n)	=	b1.	Therefore,	Cπ(n)	=	b1	if	and	only	if	π(n)	=	
b1.	

Finally,	for	j	∈	{2,3,...,k	−	1},	Cπ(bj−1)	=	bj	if	and	only	if	Yπ(bj−1	+	1)	=	bj,	since	Cπ(bj−1)	

=	Yπ(X(bj−1))	=	Yπ(bj−1+1).	Also,	by	definition,	Yπ(bj−1+1)	=	bj	if	and	only	if	bj	immediately	
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precedes	bj−1	+	1	in	π.	Therefore,	Cπ(bj−1)	=	bj	if	and	only	if	bj	appears	immediately	to	

the	left	of	bj−1	+	1	in	π.	

Since	SP∗(π)	=	(b1,b2,...,bk)	if	and	only	if	Cπ(bk)	=	0,	Cπ(n)	=	b1,	and	Cπ(bj−1)	=	bj	for	all	
j	∈	{2,3,...,k	−	1},	our	proposition	holds.	 	

With	bj	denoting	the	jth	element	of	the	ordered	strategic	pile	of	a	permutation	π,	

adjacent	entries	of	the	form	bj	bj−1	+1	in	π	are	called	a	pair.	Viewing	subscripts	modulo	

k,	we	also	consider	b1	bk	+	1	a	pair.	In	general,	a	permutation	π	with	SP∗(π)	=	(b1,b2,...,bk)	

has	the	following	form	in	terms	of	its	pairs:	

[bk	+	1	···	bx1	bx1−1	+	1	···	bx2	bx2−1	+	1	···	bxk−1	bxk−1−1	+	1	···	b1].	(4.1)	

Definition	4.2.	The	ordered	list	

σπ	=	(bx1,bx2,...,bxk−1,b1),	

consisting	of	the	first	member	of	each	pair,	in	the	order	of	occurrence	in	π,	is	said	to	
be	the	ordered	pair	list	of	π.	

Since	b1	is	the	final	entry	of	a	permutation	π	with	a	nonempty	strategic	pile,	b1	is	
always	the	terminating	member	of	the	ordered	pair	list	σπ.	
Example	4.3.	The	permutation	π	=	[6	4	5	8	7	2	3	1]	has	strategic	pile	SP(π)={1,5,7},	
and	SP∗(π)=(1,7,5)=(b1,b2,b3).	Therefore,	π	=	

[6	4	b3	8	b2	2	3	b1]	=	[b3	+	1	4	b3	b2	+	1	b2	b1	+	1	3	b1],	as	suggested	by	
Proposition	4.1.	This	gives	that	σπ	=	(b3,b2,b1).	

In	 Definition	 4.2	 we	 defined	 the	 ordered	 pair	 list	 with	 respect	 to	 a	 specified	
permutation	 π.	 Note,	 however,	 that	 we	 can	 instead	 define	 an	 ordered	 pair	 list	
independently	of	a	specific	permutation.	Using	this	interpretation,	any	permutation	
where	the	xith	strategic	pile	element	leads	the	ith	pair	for	all	1	≤	i	≤	k	−	1	will	be	said	
to	have	the	ordered	pair	list	σ	=	(bx1,bx2,...,bxk−1,b1).	

Example	4.4.	Consider	the	ordered	pair	list	σ	=	(b2,b3,b1),	defined	independently	of	a	
specific	permutation.	Any	permutation	with	SP∗	=	(b1,b2,b3)	that	is	of	the	form	

 [b3	+	1	 ···	 b2	 b1	+	1	 ···	 b3	 b2	+	1	 ···	 b1]	

will	have	ordered	pair	list	σ.	In	particular,	the	permutation	π	=	[2	3	6	1	4	5]	has	SP∗	=	
(5,3,1)	and	thus	σπ	=	(3,1,5)	=	(b2,b3,b1)	=	σ.	Similarly,	the	permutation	ν	=	[4	1	6	3	2	
5]	has	SP∗	=	(5,1,3)	and	thus	σν	=	(1,3,5)	=	(b2,b3,b1)	=	σ.	
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As	Example	4.6	will	illustrate,	for	subsequent	pairs	bxi	bxi−1	+	1	and	bxi+1	bxi+1−1	+	1	of	
a	 permutation	π	 it	may	 happen	 that	 bxi−1	+	 1	 =	 bxi+1,	 in	 which	 case	 bxi	and	 bxi+1	are	
consecutive	 entries	 of	π.	 As	 these	 adjacencies	will	 be	of	 central	 importance	 in	 the	
proof	of	Theorem	4.10,	we	formalize	their	definition	as	follows.	

Definition	4.5.	An	adjacency	of	strategic	pile	members	bxi	and	bxi+1	in	π	is	said	to	be	a	
merge	between	bxi	and	bxi+1	in	π.	Such	a	merge	will	be	denoted	bxi	bxi+1.	

Example	4.6.	The	permutation	π	=	[5	4	6	3	2	1]	has	strategic	pile	SP(π)	=	{1,	3,	4,	5},	
and	SP∗(π)	=	(1,	3,	5,	4)	=	(b1,	b2,	b3,	b4).	Moreover,	σπ	=	

(b3,	b4,	b2,	b1)	since	π	has	the	form	[b3	b4	6	b2	2	b1].	The	strategic	pile	members	b3	and	
b4	are	adjacent	in	π,	and	thus	there	is	a	merge	in	π.	Since	we	are	also	considering	b1	b4	
+	1	a	pair	in	π,	b1	b3	is	also	ruled	a	merge	in	π.	

When	 considering	 strategic	 piles	 of	 size	 k,	 we	 refer	 to	 an	 arrangement	 of	 the	
strategic	pile	variables	bi	and	bi	+	1	for	1	≤	i	≤	k	as	a	strategic	pile	variable	arrangement	
if	the	arrangement	satisfies	the	properties	described	in	Proposition	4.1.	All	possible	
strategic	pile	variable	arrangements	can	be	obtained	by	shifting	and	merging	pairs	
within	the	possible	frameworks	of	the	form	(4.1).	

Example	 4.7.	 The	 following	 are	 five	 of	 the	 possible	 strategic	 pile	 variable	
arrangements	for	permutations	in	S7	with	SP∗	=	(b1,b2,b3)	and	ordered	pair	list	σ	=	
(b2,b3,b1),	where	the	 ’s	can	be	filled	in	by	any	remaining	permutation	elements:	

(1) [b3	+	1	 	b2	b1	+	1	b3	b2	+	1	b1]	(no	merges),	
(2) [b3	+	1	b2	b1	+	1	 	b3	b2	+	1	b1]	(no	merges),	
(3) [b2	b1	+	1	 b3	b2	+	1	b1]	(merge	b1	b2),	

(4) [b2	b1	+	1	b3	b2	+	1	 	b1]	(merge	b1	b2),	

(5) [b2	b1	+	1	 	b3	b1]	(merges	b3	b1	and	b1	b2).	

The	 above	 definitions	 and	 structural	 properties	 regarding	 permutations	 with	
strategic	piles	of	size	k	suggest	an	approach	for	quantifying	such	permutations.	Since	
a	permutation	has	strategic	pile	size	k	 if	and	only	 if	 it	 takes	 the	 form	described	 in	
Proposition	 4.1,	 we	 start	 by	 counting	 the	 number	 of	 strategic	 pile	 variable	
arrangements.	To	this	end,	we	define	merge	numbers.	

Definition	4.8.	Consider	the	set	of	permutations	π	∈	Sn	with	SP∗(π)	=	(b1,...,bk).	Given	
0,	 the	symbol	ck,	denotes	 the	number	of	ways	 to	choose	an	ordered	pair	 list	σπ	

along	with		merges.	The	number	ck,	is	said	to	be	a	merge	number.	
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Example	4.9.	For	permutations	with	SP∗	=	(b1,b2,b3),	the	only	possible	ordered	pair	
lists	 are	 (b2,b3,b1)	 and	 (b3,b2,b1),	 which	 correspond	 to	 the	 following	 permutation	
structures:	

(1) [b3	+	1	···	b2	b1	+	1	···	b3	b2	+	1	···	b1],	

(2) [b3	+	1	···	b3	b2	+	1	···	b2	b1	+	1	···	b1].	

In	the	first	form,	each	of	the	merges	b2	b3,	b3	b1,	and	b1	b2	are	possible,	so	there	are	
three	ways	to	create	a	single	merge	with	this	ordered	pair	list.	In	the	second	form,	a	
merge	cannot	occur	at	all,	since	it	would	require	that	bi	+	1	=	bi,	which	is	impossible.	
Therefore,	c3,1	=	1	·	3	+	1	·	0	=	3.	

We	are	now	ready	to	state	the	main	result	of	this	section.	

4.2. Main result 

Theorem	4.10.	For	1	≤	k	≤	n	−	1	and	even	n,	or	1	≤	k	≤	n	−	2	and	odd	n,	the	number	of	

permutations	in	Sn	with	strategic	pile	of	size	k	is	

.	
As	there	is	a	limit	on	the	number	of	merges	that	can	occur	in	a	permutation,	each	

merge	number	ck,i	will	be	zero	for	all	i	above	a	certain	value.	We	leave	determining	
this	maximum	number	of	merges,	as	well	as	the	general	method	for	computing	merge	
numbers,	to	Sec.	5.	To	prove	Theorem	4.10,	we	will	

• use	 merge	 numbers	 to	 determine	 the	 number	 of	 strategic	 pile	 variable	

arrangements	(see	Lemma	4.12	and	Corollary	4.13)	and	

• determine	the	number	of	ways	to	assign	numerical	values	to	the	resulting	variable	

arrangements	(see	Lemma	4.14).	

Assuming	we	can	compute	each	merge	number	ck,i,	we	can	suppose	we	are	given	
a	framework	comprised	of	an	ordered	pair	list	and	a	set	of	merges.	To	quantify	the	
possible	 strategic	 pile	 variable	 arrangements,	 we	 are	 left	 to	 account	 for	 how	 this	
framework	can	shift	within	n	positions.	To	this	end,	we	develop	terminology	to	refer	
to	the	components	of	this	framework.	

Example	4.11.	Consider	an	ordered	pair	list	σ	=	(bx1,	bx2,	...,	bxk−1,	b1),	which	by	Lemma	

4.1	yields	a	permutation	of	the	form	[bk	+	1	 ···	 bx1	 bx1−1	+	1	···

	bx2	 bx2−1	+	1	
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 ···	 bxk−1	 bxk−1−1	+	1	 ···	 b1].	

After	a	merge,	say	between	bx1	and	bx2,	we	get	

.	
In	Example	4.11,	observe	that	it	may	not	be	intuitive	to	call	bx1	bx2	bx2−1	+	1	a	pair;	

we	use	the	term	grouping	to	refer	to	pairs	as	well	as	any	set	of	pairs	joined	by	merges.	
Recall	that	bk	+1	and	b1	are	always	in	the	first	and	last	positions	of	a	permutation,	

respectively.	 Moreover,	 observe	 that	 the	 position	 of	 each	 underlined	 element	 in	
Example	4.11	is	determined	by	the	placement	of	the	leftmost	element	in	its	grouping.	
We	call	both	of	these	types	of	elements	determined.	

In	 a	 permutation	 with	 strategic	 pile	 of	 size	 k	with	 no	 merges,	 there	 are	 k+1	

determined	elements	(i.e.,	b1,	bk	+	1,	and	bj−1	+	1	for	2	≤	j	≤	k).	Furthermore,	observe	

that	“merging”	groupings	do	not	affect	the	total	number	of	determined	elements,	since	

a	 merge	 has	 the	 effect	 of	 equating	 a	 determined	 element	 with	 an	 undetermined	

element.	 In	 Example	 4.11,	 the	 merge	 between	 bx1	 and	 bx2	 equates	 bx1−1	 +	 1	 (a	

determined	element)	with	bx2	(an	undermined	element),	making	a	grouping	with	two	

determined	elements,	the	same	total	number	that	the	pairs	bx1	bx1−1	+	1	and	bx2	bx2−1	+	

1	had	 to	begin	with.	Therefore,	 any	grouping	arrangement,	 despite	 the	number	of	

merges,	will	have	k	+	1	determined	elements.	

Lemma	4.12.	Given	an	ordered	pair	list	σ	=	(bx1,...,bxk)	and	a	set	of	i	merges,	there	are	

	
ways	to	place	the	resulting	groupings	within	a	permutation	of	length	n.	

Proof.	Recall	that	in	a	permutation	with	strategic	pile	size	k,	there	are	always	k	+1	
determined	elements.	For	each	determined	element,	we	set	aside	one	space	 in	 the	
permutation.	 This	 leaves	 n	 −	 (k	 +	 1)	 unoccupied	 spaces	 in	 which	 to	 place	 the	
groupings.	 Since	 the	 leftmost	 variable	 of	 each	 grouping	 is	 the	 only	 undetermined	
variable	in	the	grouping,	we	must	only	place	these	(k−1)−i	undetermined	variables,	
and	the	placement	of	all	other	variables	follows.	Because	there	are	n−(k+1)	spaces	in	

which	 to	 place	 these	 undetermined	 variables, 	represents	 the	 number	 of	
ways	to	place	the	groupings. 	
Corollary	 4.13.	 The	 number	 of	 strategic	 pile	 variable	 arrangements	 in	 the	 set	 of	
permutations	in	Sn	with	strategic	piles	of	size	k	and	i	merges	is	

.	
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Proof.	By	definition	of	the	merge	number	ck,i,	there	are	ck,i	ways	to	choose	an	ordered	
pair	 list	σ	=	 (bx1,...,bxk)	 along	with	 i	merges.	 Each	 fixed	 ordered	pair	 list	 and	 set	 of	
merges	 defines	 a	 framework	 of	 groupings,	 which	 by	 Lemma	 4.12	 can	 be	 placed	

	different	ways	among	n	positions.	Thus,	there	are	a	total	of	

	different	strategic	pile	variable	arrangements.	 	
We	 now	 determine	 the	 number	 of	 ways	 to	 assign	 a	 numerical	 value	 to	 each	

variable	and	to	the	remaining	elements	of	the	permutation.	

Lemma	4.14.	Given	a	fixed	strategic	pile	variable	arrangement	(i.e.,	an	ordered	pair	list	

σ	 of	 strategic	 pile	 elements	 {b1,...,bk},	 a	 set	 of	 merges,	 and	 a	 fixed	 set	 of	 grouping	

positions),	there	are	(n	−	k)!	permutations	in	Sn	with	that	arrangement.	

Proof.	Given	a	strategic	pile	variable	arrangement,	the	only	thing	left	to	do	is	assign	

values	to	the	variables	comprising	the	permutation.	For	each	bj	∈	SP,	 there	is	some	

variable	 bj	 +1,	 whose	 value	 follows	 immediately	 from	 a	 value	 assignment	 of	 bj.	

Therefore,	 only	 n−k	 values	 need	 to	 be	 assigned,	 and	 there	 are	 (n−k)!	 possible	

assignments.	 	

We	are	now	ready	to	prove	our	main	result	of	this	section.	

Proof	 of	 Theorem	 4.10.	 By	 Corollary	 4.13,	 there	 are 	strategic	 pile	
variable	arrangements	in	the	set	of	permutations	in	Sn	with	strategic	piles	of	size	k	
and	i	merges.	Summing	over	the	number	of	merges	i,	we	get	that	the	total	number	of	
strategic	pile	variable	arrangements	for	permutations	in	Sn	with	strategic	piles	of	size	
k	is	

.	
We	have	by	Lemma	4.14	that	there	are	(n−k)!	permutations	corresponding	to	each	

strategic	pile	variable	arrangement.	It	follows	that	there	are	

	
permutations	in	Sn	with	strategic	pile	size	k.	 	

5. Determining	the	Values	of	Merge	Numbers	

As	mentioned	in	Sec.	4,	there	is	a	limit	to	the	number	of	merges	that	can	occur	in	a	
permutation	with	strategic	pile	of	size	k.	Thus,	there	exists	an	i	such	that 	

Table	1.	Merge	numbers	found	using	ad	hoc	methods.	
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k	 1	 2	 3	 4	 5	 6	 ··
·	

k	 ··
·	

OEIS	

ck
,0	
ck
,1	
ck
,2	

0
!	
1
!	

2
!	
3	
3	

3
!	
1
6	
1
6	

4
!	
9
0	
13
0	

5!	
57
6	
111
6	

	

?	

	 A0001
42	
A1307
44	

ck
,3	 	 	 	 	 8

0	
108
0	

	 ?	 	 	

ck
,4	
.	
.	
.	
ck,
i	

	 	 	 	 9
0	

54
0	

	 ?	 	 	

Table	2.	Known	formulas	for	the	number	of	permutations	with	strategic	piles	of	size	k.	

 −	 −	 −	 −	 ···	 −	

for	all .	In	this	section,	we	determine	this	i	and	derive	an	algorithm	for	computing	
merge	 numbers.	 As	 described	 later	 this	 section,	 determining	 the	 efficiency	 of	 this	
algorithm	is	dependent	on	the	solutions	of	certain	open	problems.	However,	we	can	
explicitly	compute	merge	numbers	in	some	limited	cases	(see	Table	1).	Using	these	
merge	numbers,	Theorem	4.10	gives	the	formulas	given	in	Table	2.	

We	now	discuss	how	to	compute	merge	numbers	in	general.	First,	however,	we	
define	two	graph	theoretic	tools,	which	will	be	useful	for	accomplishing	both	of	the	
aforementioned	goals.	

5.1. Merge graphs and τ-graphs 

As	 in	Example	4.9,	 the	ordered	pair	 list	determines	 the	 set	 of	possible	merges	 for	
permutations	with	that	ordered	pair	list.	As	a	result,	it	will	often	be	of	use	to	classify	
permutations	based	on	ordered	pair	list.	

Definition	5.1.	Let	σ	be	an	ordered	pair	list.	Define	Tσ	:=	{π	∈	Sn	|σπ	=	σ}.	

k	 Number	of	elements	of	Sn	with	strategic	piles	of	size	k	 OEIS	
1	
2	
3	
4	
5	
6	
.	
.	
.	

(n	
(n	
(n	
(n	
(n	
(n	 	

A000142	
A062119	
A267323	
A267324	
A267391	
A281259	

k	 (n	 ]	(k	odd)	 	
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Moreover,	to	count	the	number	of	ways	to	choose	an	ordered	pair	list	along	with		
merges	 (i.e.,	 to	 compute	 merge	 numbers),	 it	 is	 crucial	 that	 we	 are	 first	 able	 to	
determine	the	set	of	allowable	merges	corresponding	to	an	ordered	pair	list.	To	this	
end,	we	define	the	following.	

Definition	5.2.	Consider	the	set	of	permutations	in	Sn	with	ordered	strategic	pile	

SP∗(π)	=	(b1,b2,...,bk)	and	ordered	pair	list	σ	=	(bx1,bx2,...,bxk−1,b1).	Define	

•	ψ	:=	(b1	b2	···	bk),	

),	and	

Observe	that	there	exists	a	permutation	π	∈	Tσ	with	bi	+	1	=	bj	if	and	only	if	τσ(bi)	=	
bj.	 In	 other	 words,	 τσ	 describes	 exactly	 the	 allowable	 merges	 for	 the	 set	 of	
permutations	Tσ.	It	will	often	be	useful	for	us	to	encode	this	information	graphically.	

Definition	5.3.	The	τ-graph	corresponding	to	an	ordered	pair	list	σ	is	an	at	most	in-

degree	one,	out-degree	one	directed	graph	Tσ	=	(V,	E),	where	V	=	{b1,b2,...,bk}	and	(bi,bj)	

∈	E	if	and	only	if	bi	+	1	=	bj	in	some	permutation	in	Tσ.	

Note	that	an	edge	(bi,bj)	in	a	τ-graph	Tσ	corresponds	to	the	equality	bi+1	=	bj,	and	
not	to	the	merge	bi	bj.	Rather,	the	edge	(bi,bj)	represents	the	existence	of	a	merge	bi+1	

bj	in	some	permutation	π	∈	Tσ.	Furthermore,	it	may	be	useful	to	note	that	τ-graphs	are	
comprised	completely	of	 cycles	and	 isolated	vertices,	 and	 that	each	cycle	 in	 the	τ-
graph	Tσ	corresponds	to	a	cyclic	factor	of	the	cycle	permutation	τσ.	

Example	5.4.	Consider	the	set	of	permutations	Tσ	corresponding	to	the	ordered	pair	
list	σ	=	(b1,b6,b7,b5,b2,b4,b3).	Then	

 τσ	=	σ∗	◦	ψ	=	(b1	 b6	 b7	 b5	 b2	 b4	 b3)	◦	(b1	 b2	 b3	 b4	 b5	 b6	 b7)	

 =	(b1	 b4	 b2)(b5	 b6	 b7)(b3),	

which	indicates	that	there	are	two	cycles	in	Tσ	formed	by	the	edges	{(b1,	b4),	(b4,b2),	

(b2,b1)}	and	{(b5,	b7),	(b7,	b6),	(b6,b5)}.	Figure	1	shows	this	graph.	

We	 now	 define	 a	 second	 graph	 theoretic	 tool,	 the	merge	 graph,	 which	will	 be	
similar	to	the	τ-graph,	but	will	correspond	to	a	specific	permutation	rather	than	to	an	
ordered	pair	list.	
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Fig.	1.	The	τ-graph	Tσ	corresponding	to	σ	=	(b5,b6,b4,b2,b3,b7,b1).	
Definition	5.5.	The	merge	graph	of	π	is	an	in-degree	at	most	one,	out-degree	at	most	

one	directed	graph	Mπ	=	(V,E),	where	V	=	{b1,b2,...,bk}	and	(bi,bj)	∈	E	if	and	only	if	bi	+	1	

=	bj	in	the	permutation	π.	

Observe	that	if	π	is	a	permutation	with	ordered	pair	list	σ,	then	the	merge	graph	
Mπ,	is	an	edge	subgraph	of	the	τ-graph	Tσ.	Moreover,	Lemma	5.6	will	show	that	Mπ	is	
a	proper	subgraph	of	Tσ,	and	that	any	acyclic	edge	subgraph	of	Tσ	is	a	merge	graph.	

Lemma	5.6.	A	graph	is	a	merge	graph	if	and	only	if	it	is	an	acyclic	edge	subgraph	of	a	
τ-graph.	

Proof.	Suppose	on	the	contrary	that	π	is	a	permutation	such	that	its	merge	graph	Mπ	

contains	an	-cycle	between	consecutive	vertices 	for	some		>	0,	and	let	bxi	
be	 the	 strategic	pile	 element	 corresponding	 to	 the	 vertex	vi	 for	1 .	Then,	 by	
definition	of	Mπ,	bx1	+	1	=	bx2	=	bx3	−	1,	so	bx1	=	bx3	−	2.	Continuing	in	this	manner,	we	see	
that 	1).	However,	as	the	directed	edges	among	these	vertices	
form	a	cycle,	we	also	have	that	 +	1.	Since		>	0,	this	is	impossible.	

Conversely,	 given	 an	 acyclic	 edge	 subgraph	 of	 a	τ-graph,	 one	 can	 construct	 an	
ordered	pair	list	with	the	corresponding	merges.	This	can	be	done	because	our	only	
constraint	 on	 merges	 that	 can	 occur	 is	 cyclic	 relationship	 between	 strategic	 pile	
variables.	 	

Example	5.7.	For	π	=[5	4	6	3	2	1]	we	have	SP∗(π)=(1,	3,	5,	4)=(b1,	b2,	b3,	b4)	and	ordered	
pair	list	σ	=	(5,	4,	3,	1)	=	(b3,	b4,	b2,	b1).	Thus,	ψ	=	
(1	3	5	4)	=	(b1	b2	b3	b4)	and	σ∗	=	(5	4	3	1)	=	(b3	b4	b2	b1).	Note	that	τσ	=	σ∗	◦	ψ	=	(b3	

b4	b2	b1)	◦	(b1	b2	b3	b4)	=	(b1)	◦	(b2	b4	b3).	

The	cycle	(b2	b4	b3)	in	the	cycle	decomposition	of	the	permutation	τσ	indicates	that	the	
τ-graph	Tσ	will	 have	 edges	 (b2,b4),	 (b4,b3),	 and	 (b3,b2).	 Lemma	5.6	 implies	 that	 any	

b	1	

b	2	

b	3	

b	4	 b	5	

b	6	

b	7	
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proper	subset	of	these	three	edges	can	occur	in	Mπ.	Indeed,	b2	+	1	=	b4	and	b4	+	1	=	b3	
in	π,	while .	The	merge	graph	Mπ	and	τ-graph	Tσ	are	depicted	in	Fig.	2.	

5.2. Maximum number of merges 

We	 will	 now	 determine	 the	 maximum	 number	 of	 merges	 that	 can	 occur	 in	 a	
permutation	in	Sn	with	strategic	pile	size	k.	This	will	function	to	show	that	ck,i	=	0	for	
all	i	greater	than	a	certain	value.	We	start	with	the	following	observation.	

Remark	5.8.	Let	σ	=	(bx1,bx2,...,bxk−1,b1).	Since	τσ	∈	Sk	is	the	composition	of	two	cycles	of	

the	same	length	k,	τσ	is	an	even	permutation.	It	follows	that	if	k	is	even,	then	τσ	cannot	

be	a	k-cycle.	

	

Fig.	2.	Merge	graph	of	π	=	[5	4	6	3	2	1]	(solid)	as	a	subgraph	of	the	τ-graph	corresponding	to	σπ	(solid	and	
dashed).	

This	observation,	in	conjunction	with	our	graph	theoretic	tools,	will	give	us	our	
desired	result.	

Lemma	5.9.	Consider	the	set	T	of	permutations	with	strategic	piles	of	size	k.	

(1) If	k	is	odd,	then	the	number	of	merges	for	any	permutation	in	T	is	at	most	k	−	1.	

(2) If	k	is	even,	then	the	number	of	merges	for	any	permutation	in	T	is	at	most	k	−	2.	

Proof.	Case	1:	Let	k	be	odd.	Suppose	π	∈	Sn	has	ordered	strategic	pile	SP∗(π)	=	(b1,...,bk).	

Consider	the	merge	graph	Mπ,	which	will	have	k	vertices.	By	definition,	Mπ	is	at	most	

in-degree	one	and	out-degree	one.	Since	Lemma	5.6	gives	that	Mπ	is	acyclic,	it	follows	

that	the	number	of	edges	in	Mπ	does	not	exceed	k	−	1.	Thus,	there	are	at	most	k	−	1	

merges	in	π.	

b	2	

b	1	

b	3	

b	4	
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Case	2:	Let	k	be	even.	By	Remark	5.8,	the	cycle	decomposition	of	τ	does	not	contain	a	

k-cycle,	and	thus	the	largest	possible	cycle	in	T is	a	(k	−1)-cycle.	It	follows	that	there	

are	at	most	k	−	2	merges	in	any	permutation	α	∈	T.	 	

Lemma	 5.9	 tells	 us	 that	 ck,i	=	 0	 for	 large	 enough	 i,	 or	 in	 other	words,	 that	 the	
number	of	permutations	of	n	elements	with	strategic	pile	of	size	k	can	be	written	

,	
where	t	=	k	−	1	if	k	is	odd	and	t	=	k	−	2	if	k	is	even.	

5.3. Merge number algorithm 

In	Sec.	5.2,	we	established	that	ck,i	=	0	for	i	>	k−1	when	k	is	odd	and	for	i	>	k−2	when	k	

is	 even.	 We	 now	 discuss	 how	 to	 compute	 the	 merge	 numbers	 corresponding	 to	

smaller	i.	We	present	Algorithm	5.10	for	computing	such	merge	numbers,	prove	its	

correctness,	and	discuss	its	complexity	and	what	work	still	needs	to	be	done	in	order	

to	make	this	algorithm	more	efficient.	

Algorithm	5.10.	Merge	Number	Computation	
Input:	Integers	k	and		where is	odd	and 	is	even.	
Output:	The	merge	number	ck,.	

(1) Consider	all	possible	cycle	structures	for	a	τ-graph	with	k	vertices.	
(2) For	each	of	these	cycle	structures:	

(a) Determine	 the	 number	 of	 ordered	 pair	 lists	 σ	 =	 (bx1,bx2,...,	 bxk−1,b1)	
which	yield	the	given	cycle	structure.	

(b) Multiply	by	the	number	of	ways		merges	can	be	chosen	from	the	given	
cycle	structure.	

(3) Sum	the	results	of	the	calculation	for	each	cycle	structure.	

5.3.1.	Correctness	and	complexity	of	Step	1	

Step	1	of	Algorithm	5.10	requires	considering	all	possible	cycle	structures	 for	a	τ-
graph	 with	 k	 vertices.	 Recall	 that	 a	 τ-graph	 consists	 only	 of	 cycles	 and	 isolated	
vertices.	As	a	result,	we	can	use	the	following	notation	to	refer	to	the	cycle	structure	
of	a	τ-graph.	
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Notation	5.11.	Let	[a1,a2,...,am]	denote	the	cycle	structure	of	a	τ-graph	Tσ,	where	a1	≥	

a2	≥	···	≥	am	>	0,	and	where	each	ai	corresponds	to	the	number	of	edges	of	a	cycle	in	Tσ.	
We	do	not	include	isolated	vertices	in	our	cycle	structure	representation.	

Since	any	τ-graph	is	in-degree	at	most	one	and	out-degree	at	most	one,	a	τ-graph	
on	 k	 vertices	 has	 at	 most	 k	 edges.	 As	 a	 result,	 the	 cycle	 structure	 [a1,a2,...,am]	
corresponding	to	Tσ	satisfies	 .	Therefore,	to	consider	all	possible	cycle	
structures	 for	 a	 τ-graph	 with	 k	 vertices,	 it	 would	 suffice	 to	 consider	 all	 integer	
partitions	 of	 at	most	k.	 However,	 to	 speed	up	 Step	 1,	we	would	 like	 to	 be	 able	 to	
consider	a	smaller	set	of	partitions.	

To	this	end,	note	that	a	τ-graph	Tσ	on	k	vertices	contains	no	self-loops,	since	this	
would	imply	that	bi	+1	=	bi	for	some	strategic	pile	element	bi.	Moreover,	note	that	the	
cycle	 structure	 of	Tσ	must	 have	 an	 even	number	 of	 even	parts,	 since	τσ	 is	 an	 even	
permutation.	To	summarize:	

Remark	5.12.	Every	τ-graph	on	k	vertices	has	a	 cycle	 structure	 in	 the	 form	of	 an	
integer	partition	[a1,a2,...,am],	with	no	parts	of	size	one,	with	an	even	number	of	even	
parts,	and	with .	

Example	5.13.	Consider	the	graph	in	Fig.	3,	which	has	cycle	structure	[3,3].	Notice	
that	this	cycle	structure	satisfies	the	conditions	described	in	Remark	5.12,	which	are	
necessary	conditions	for	a	cycle	structure	to	correspond	to	a	τ-graph.	

	

Indeed,	this	graph	can	be	derived	from	the	ordered	pair	list	σ	=	(b5,b3,b4,b2,b6,b1),	and	
is	thus	a	τ-graph.	

We	will	not	prove	that	every	integer	partition	satisfying	the	conditions	of	Remark	
5.12	corresponds	to	the	cycle	structure	of	a	τ-graph	on	k	vertices	(i.e.,	the	converse	of	
Remark	5.12),	since	it	will	not	affect	the	correctness	of	our	algorithm.	If	it	happens	
that	we	consider	in	Step	1	a	partition	that	does	not	correspond	to	the	cycle	structure	
of	a	τ-graph	on	k	vertices,	Step	2(a)	will	yield	a	zero,	so	we	will	not	be	over-counting.	

b	1	

b	2	

b	3	

b	4	

b	5	

b	6	

Fig.3.A	 τ	-	graphwithcyclestructure	 [3	,	3].	



Quantifying	CDS	sortability	of	permutations	

2050014-25	

Unfortunately,	 the	 best	 way	 currently	 known	 to	 determine	 the	 set	 of	 integer	
partitions	 satisfying	 the	 properties	 of	 Remark	 5.12	 is	 the	 brute	 force	 method	 of	
checking	every	partition	of	every	 integer	 from	1	 to	k.	 Since	 the	number	of	 integer	
partitions	of	an	integer	n	grows	exponentially	with	n	[7],	Step	1	is	inefficient	for	large	
k.	

5.3.2.	Correctness	and	complexity	of	Step	2(a)	

Step	 2(a)	 requires	 determining	 the	 number	 of	 ordered	 pair	 lists	 σ	 =	
(bx1,bx2,...,bxk−1,b1)	which	yield	a	given	τ-graph	cycle	structure.	As	in	Step	1,	this	can	be	

done	through	brute	force;	namely,	one	can	generate	all	O(k!)	possible	ordered	pair	

lists,	and	for	each	ordered	pair	list	σ,	can	compute	τσ	=	σ∗	◦	ψ	to	determine	whether	τσ	

has	the	given	cycle	structure.	Since	each	computation	of	τσ	requires	O(k)	time,	Step	

2(a)	can	be	completed	in	O(k	·	k!)	with	this	brute	force	method.	

It	is	possible,	however,	that	this	step	could	be	accomplished	in	polynomial	time	
using	a	recursive	formula.	We	will	now	derive	such	a	formula,	though	a	method	for	
efficiently	 computing	 the	 base	 cases	 for	 this	 formula	 is	 currently	 unknown.	 Our	
derivation	will	involve	understanding	the	relationship	between	τ-graphs	on	k	vertices	
with	cycle	structure	[a1,a2,...,am]	and	τ-graphs	on	k	−	1	vertices	with	the	

	
 (a)	 (b)	 (c)	

Fig.	4.	τ-graphs	for	Example	5.14.	(a)	Original	τ-graph	corresponding	to	the	ordered	pair	list	(b2,b5,b4,b3,b1).	
(b)	Rotated	τ-graph	with	b5	as	an	isolated	vertex.	(c)	τ-graph	after	removing	b5.	

same	 cycle	 structure.	 To	 build	 intuition	 for	 this	 relationship,	 let	 us	 consider	 an	
example.	

Example	5.14.	The	aforementioned	relationship	will	be	established	by	rotating	and	
removing	vertices	from	τ-graphs.	For	example,	consider	the	τ-graph	corresponding	
to	the	ordered	pair	list	(b2,b5,b4,b3,b1)	(see	Fig.	4(a)).	In	Lemma	5.15,	we	will	prove	
that	any	rotation	of	a	τ-graph	is	also	a	τ-graph.	In	particular,	any	rotation	of	the	τ-
graph	 in	 Fig.	 4(a)	 is	 a	 τ-graph;	 Fig.	 4(b)	 shows	 the	 rotation	 that	 is	 the	 τ-graph	
corresponding	to	the	ordered	pair	list	(b5,b3,b4,b2,b1).	Note	that	this	τ-graph	has	b5	as	
an	isolated	vertex.	
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In	a	graph	with	bk	(in	this	case	b5)	as	an	isolated	vertex,	removing	bk	will	give	us	

another	τ-graph;	this	is	because	when	bk	is	an	isolated	vertex,	removing	the	vertex	bk	
corresponds	to	removing	bk	+	1...bk	from	the	beginning	of	the	pair	ordering.	This	will	

leave	bk−1	+	1	at	the	beginning	of	the	pair	ordering,	which	will	yield	a	valid	ordered	

pair	list	on	k−1	strategic	pile	elements.	Figure	4(c)	shows	the	τ-graph	corresponding	

to	the	ordered	pair	list	(b3,b4,b2,b1)	that	occurs	when	b5	is	removed	from	our	example	

τ-graph.	

We	will	now	formalize	this	idea.	Let	Xk,[a1,a2,...,am]	be	the	set	of	τ-graphs	with	k	vertices	

and	 with	 cycle	 structure	 [a1,a2,...,am].	 We	 are	 interested	 in	 finding	 a	 relationship	

between	|Xk,[a1,a2,...,am]|	and	|Xk−1,[a1,a2,...,am]|.	We	begin	by	showing	that	if	a	given	τ-graph	

is	in	Xk,[a1,a2,...,am],	then	so	are	all	rotations	of	that	graph.	

Thus	we	get	a	group	action	on	Xk,[a1,a2,...,am].	

Lemma	5.15.	Let	σ	=	(bx1,...,bxk−1,b1)	be	an	ordered	pair	list,	and	define	ϕ	:	

Z
k	×	Xk,[a1,...,am]	→	Xk,[a1,...,am]	as	ϕ(i,τσ)	=	βi	◦	τσ	◦	β−i,	

where	β	=	(1	2	3	···	k).	Then	ϕ	is	a	group	action.	

Proof.	Let	σ	=	(bx1,...,bxk−1,b1)	be	an	ordered	pair	list	and	suppose	τσ	has	cycle	structure	

[a1,...,am].	

We	first	show	that	ϕ(i,τσ)	∈	Xk,[a1,...,am].	Since	conjugation	preserves	cycle	structure,	
it	is	clear	that	ϕ(i,τσ)	will	be	a	graph	on	k	vertices	with	cycle	structure	[a1,...,am].	We	
have	 left	 to	 show	 that	 ϕ(i,τσ)	 corresponds	 to	 an	 ordered	 pair	 list	 σ	 (i.e.,	 that	

	
Recall	that	τσ	=	σ∗	◦	ψ.	Therefore,	ϕ(i,τσ)	=	βi	◦	τσ	◦	β−i	=	βi	◦	σ∗	◦	ψ	◦	β−i	=	βi	◦	σ∗	

◦	β−i	◦	βi	◦	ψ	◦	β−i.	

Observe	 that	βi◦ψ◦β−i	=	ψ.	 Furthermore, -cycle	 containing	 the	

elements	{b1,...,bk},	and	thus	represents	an	ordered	pair	list.	As	a	result,	

.	It	follows	that	ϕ(i,τσ)	∈	Xk,[a1,...,am],	as	desired.	Finally,	we	check	

that	ϕ	satisfies	the	axioms	of	group	actions.	Clearly,	β0	=	βk	is	the	identity	permutation,	



Quantifying	CDS	sortability	of	permutations	

2050014-27	

and	therefore	ϕ(0,τσ)	=	τσ.	In	addition,	ϕ(i	+	j,τσ)	=	βi+j	◦	τσ	◦	β−(i+j)	=	βiβj	◦	τσ	◦	β−jβ−i	=	

ϕ(i,ϕ(j,τσ)).	 	

We	can	use	Lemma	5.15	to	give	a	process	for	deriving	Xk,[a1,a2,...,am]	from	

Xk−1,[a1,a2,...,am].	

Lemma	5.16.	Let	G	=	(V,E)	with	V	=	{b1,...,bk},	and	let	a1,...,am	∈	Z be	such	that	a1	+	a2	+	

···	+	am	<	k.	Then	G	∈	Xk,[a1,a2,...,am]	if	and	only	if	there	exists	some	Gr	=	(Vr,Er)	∈	orbZk(G)	such	

that	bk	is	an	isolated	vertex	in	Gr	and	Gs	:=	(Vr\{bk},Er)	∈	Xk−1,[a1,a2,...,am].	

Proof.	Assume	G	∈	Xk,[a1,a2,...,am].	 Since	a1	+	a2	+	 ···	 +	am	<	 k,	 there	 exists	 at	 least	 one	

isolated	vertex	in	G.	Therefore,	some	rotation	of	G	has	bk	as	an	isolated	vertex.	Let	this	
rotation	be	Gr	and	let	Gs	be	defined	as	in	the	lemma	statement.	We	have	left	to	show	
that	Gs	is	a	τ-graph.	Since	Gr	has	bk	as	an	isolated	vertex,	any	permutation	with	ordered	
pair	list	corresponding	to	Gr	must	be	of	the	form	

	
Removing	the	bk	bk−1	+	1	pair,	we	are	left	with	an	ordered	pair	list	σ	=	

1	strategic	pile	elements.	This	ordered	pair	list	clearly	
corresponds	 to	 the	 graph	Gs,	 meaning	Gs	 is	 a	 τ-

graph;	it	follows	that	Gs	∈	Xk	

)	be	an	arbitrary	graph	in	Xk−1,[a1,a2,...,am],	and	

let	Gr	:=	(Vs	∪	{bk},Es).	Then	Gr	is	also	a	τ-graph,	since	the	ordered	pair	list	associated	
with	Gr	is	the	ordered	pair	list	associated	with	Gs	with	the	addition	of	bk	as	the	first	
element.	 Note	 that	 orbZk(Gr)	 is	 a	 subset	 of	Xk,[a1,a2,...,am]	since	 Zk	acts	 on	Xk,[a1,a2,...,am].	 It	

follows	that	G	∈	Xk,[a1,...,am]	for	any	G	∈	orbZk(Gr).	 	

Using	Lemma	5.16,	we	 can	determine	 the	number	of	 elements	 in	Xk,[a1,a2,...,am]	by	
adding	a	vertex	to	each	graph	in	Xk−1,[a1,a2,...,am],	and	then	considering	all	rotations	of	each	
of	those	graphs.	However,	the	graphs	formed	through	this	method	are	not	necessarily	
distinct.	One	of	the	reasons	this	is	true	is	due	to	the	fact	that	two	graphs	in	Xk−1,[a1,a2,...,am]	
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may	be	in	the	same	orbit	when	the	vertex	bk	is	added.	The	following	lemma	addresses	
this	issue.	

Lemma	5.17.	For	all	τ	∈	Xk,[a1,a2,...,am],	let	Zτ	be	the	set	of	all	τ-graphs	in	the	orbit	of	τ	under	

Zk	which	do	not	have	bk	as	an	isolated	vertex.	Then	

.	
Proof.	Define ,	and	note	that	this	is	the	number	of	edges	in	

any	member	of	Xk,[a1,a2,...,am].	Let	τ	∈	Xk,[a1,a2,...,am]	and	label	the	edges	of	τ	as	
.	Let	zi	be	the	rotation	of	τ	such	that	ei	is	a	directed	edge	terminating	at	

,	since	bk	is	not	an	isolated	vertex	if	and	only	if	some	
edge	points	to	bk.	However	these	zi	are	not	necessarily	distinct.	
Observe	that	for	a	given	i,	the	number	of	times	zi	appears	in	Zτ	is	given	by	|stab(zi)|.	

Moreover,	since	zi	∈	orbZk(τ),	we	have	that	|stab(zi)|	=	|stab(τ)|.	Therefore,	

 	 a	+	a	+	
···	+	am	
 .	 	

We	now	have	what	we	need	to	prove	the	main	relationship	between	

|Xk,[a1,a2,...,am]|	and	|Xk−1,[a1,a2,...,am]|.	

Theorem	5.18.	For	any	a1,a2,...,am	∈	Z such	that	a1	+	a2	+	···	+	am	<	k	

.	

Proof.	By	Lemma	5.16,	in	order	to	count	|Xk,[a1,a2,...,am]|,	we	can	add	a	vertex	to	every	

graph	 in	Xk−1,[a1,a2,...,am]	and	consider	all	 rotations	of	 these	new	graphs.	Each	of	 these	

graphs	has	k	possible	rotations.	However,	this	does	not	produce	distinct	elements	of	

Xk,[a1,a2,...,am].	In	fact,	for	each	τ	∈	Xk,[a1,a2,...,am],	we	have	counted	it	|stabZk(τ)|·|orbZk(τ)\Zτ|	

times.	 Since	 the	 addition	 of	 the	 vertex	 bk	 can	 cause	 nonisomorphic	 graphs	 in	

Xk−1,[a1,a2,...,am]	to	be	in	the	same	orbit	under	Zk	(see	Fig.	5),	we	have	over-counted	each	

orbit	in	Xk,[a1,a2,...,am]	by	a	factor	of	|orbZk(τ)\Zτ|.	Due	to	rotational	symmetry,	we	over-

count	τ	∈	orbZk(τ)	by	a	factor	of	|stabZk(τ)|.	
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By	Lemma	5.17,	for	all	τ	∈	Xk,[a1,a2,...,am],	we	have	that .	
Recall	that	Zτ	⊆	orbZk(τ).	Therefore,	

|stabZk(τ)|	·	|orbZk(τ)\Zτ|	=	|stabZk(τ)|(|orbZk(τ)|	−	|Zτ|)	

=	|stabZk(τ)|	·	|orbZk(τ)|	−	|stabZk(τ)|	·	|Zτ|	

=	|stabZk(τ)|	·	|orbZk(τ)|	−	(a1	+	a2	···	+	am).	

	

Fig.	5.	Two	non-isomorphic	graphs	that	will	be	in	the	same	Zk-orbit	after	the	addition	of	the	vertex	.	

Then,	by	the	orbit	stabilizer	theorem,	|stabZk(τ)|	·	|orbZk(τ)|	=	|Zk|	=	k,	so	we	have	

counted	each	rotation	k	−	(a1	+	a2	+	···	+	am)	times.	Therefore,	

 .	 	
This	recursive	relationship	could	be	useful	for	addressing	Step	2(a)	of	the	merge	

number	algorithm.	However	it	is	only	useful	when	the	base	cases, 	
(where ),	are	already	known.	Unfortunately,	there	is	no	known	
efficient	way	to	compute	these	base	cases.	Using	brute	force	in	the	same	way	as	we	
can	for	Step	2(a)	(see	the	beginning	of	Sec.	5.3.2),	these	base	cases	could	be	computed	
in	 !)	time.	Since )	in	the	worst	case,	this	is	not	a	significant	improvement	
over	the	original	brute	force	algorithm	for	Step	2(a).	

5.3.3.	Step	2(b)	

Step	2(b)	of	the	algorithm	requires	determining	the	number	of	ways		merges	can	be	
picked	with	 the	 given	 cycle	 structure.	 From	Lemma	5.6,	we	 can	 know	 that	 this	 is	
equivalent	to	choosing		edges	so	that	no	cycle	is	formed.	

Given	a	graph	with	cycle	structure	[a1,a2,...,am],	let	e	be	the	number	of	edges	in	the	
graph.	This	means	that	e	=	a1	+a2	+···+am.	The	total	number	of	ways	to	choose		edges	
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is .	The	total	number	of	ways	to	choose		edges	that	include	at	least	one	cycle	can	be	
found	using	the	inclusion–exclusion	principle	as	follows:	

	all	distinct.	

Subtracting	 this	 from	 	yields	 the	 total	number	of	ways	 to	choose	 	edges	without	
picking	a	cycle,	which	is	what	we	wanted.	
6. Future	Work	
According	to	Theorem	3.10,	for	an	odd	natural	number	n,	the	number	of	elements	of	

Sn	that	have	a	maximum	size	strategic	pile	is	2	·	(n	−	2)!	This	number	is	related	to	the	

number	of	factorizations	given	in	the	following	result	from	Bertram	and	Wei.	

Theorem	6.1	([2,	Theorem	1]).	For	n	≥	3,	each	odd	permutation	in	Sn	has	exactly	2(n	

−2)!	factorizations	of	the	form	α◦	β	where	α	is	an	n-cycle	and	β	is	an	(n	−	1)-cycle.	

Viewing	Theorem	6.1	in	our	context,	let	n	≥	3	be	an	odd	integer,	and	let	π	be	an	

element	of	Sn.	With	Xn,	Yπ,	and	Cπ	as	defined	 in	Eqs.	(2.4)–(2.6),	we	are	considering	

factorizations	of	Xn	of	the	form	

Xn	=	Yπ−1	◦	Cπ,	

where	Cπ	is	a	single	cycle	of	length	n,	while	Xn	and	Yπ	are	cycles	of	length	n	+	1.	Applying	

Theorem	6.1,	we	see	that	according	that	theorem	there	are	2(n	−	1)!	factorizations	of	

Xn	of	the	form	μ◦ν	where	μ	is	an	(n+1)-cycle	and	ν	is	an	n-cycle.	In	each	of	these	cases,	

we	can	write	μ	as	a	Yπ−1	for	some	π	∈	Sn,	and	for	2(n	−	2)!	of	these	π	the	corresponding	

ν	is	a	Cπ	of	the	form	(0	n	i	···).	

Example	6.2.	Consider	n	=	5.	The	following	table	indicates	that	X5	has	factorizations	
into	a	6-cycle	and	a	5-cycle	for	which	the	corresponding	permutations	π	have	various	
strategic	pile	sizes.	
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 {	 }	

Thus,	it	can	happen	that	the	cycle	Cπ	of	length	n	in	the	factorization	of	Xn	represents	

a	strategic	pile	of	size	less	than	the	maximal	possible	size	for	n.	It	would	be	interesting	

to	determine,	for	odd	integers	n	and	for	each	strategic	pile	size	0	≤	k	≤	n	−	2	how	many	

of	the	permutations	in	Sn	for	which	Cπ	is	a	cycle	of	length	n	have	strategic	pile	size	k.	

We	have	also	not	addressed	the	analogous	question	for	the	case	when	n	is	an	even	

integer.	

In	addition	to	the	problem	just	described,	we	would	like	to	either	(1)	improve	the	
merge	 number	 algorithm	 described	 in	 Sec.	 5.3	 or	 (2)	 construct	 an	 alternative	
algorithm	for	computing	merge	numbers.	

Accomplishing	 (1)	 would	 require	 improving	 the	 following	 aspects	 of	 our	
algorithm.	 Let	 k	 indicate	 strategic	 pile	 size.	 Recall	 that	 Step	 1	 of	 this	 algorithm	
requires	determining	the	set	of	integer	partitions	of	k	with	no	parts	of	size	one,	and	
with	an	even	number	of	even	parts.	As	previously	mentioned,	the	number	of	integer	
partitions	of	k	grows	exponentially	in	k	[7],	meaning	Step	1	is	inefficient	for	large	k.	
To	make	 this	 step	 of	 the	 algorithm	 less	 costly,	we	would	 like	 a	 better	method	 for	
computing	the	number	of	partitions	with	the	aforementioned	properties.	Recall	also	
that	Step	2(a)	of	this	algorithm	can	be	done	through	brute	force	in	O(k	·	k!)	time.	We	
offer	 a	 recursive	 method	 for	 completing	 Step	 2(a)	 with	 runtime	 polynomial	 in	 k.	
However,	this	recursive	method	is	only	useful	when	the	base	cases, 	
(where ),	 are	 already	 known.	Unfortunately,	 the	 best	 known	
method	for	computing	the	base	cases	of	this	algorithm	requires	 !)	time.	Since	
this	is	no	better	than	the	brute	force	method	for	Step	2(a),	we	would	like	an	efficient	
method	for	computing	base	cases	so	that	our	recursive	method	can	be	used	to	make	
Step	2(a)	more	efficient.	

Alternatively,	it	would	be	ideal	to	(2)	construct	an	algorithm	for	computing	merge	
numbers	 that	 completely	 circumvents	 the	 dependency	 on	 exponential	 time	
computations.	 However,	 due	 to	 the	 nature	 of	 merge	 numbers	 described	 above,	 it	
seems	 that	 these	dependencies	might	be	unavoidable.	Consequently,	 it	 is	not	clear	
how	realistic	it	would	be	to	accomplish	(2).	
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π	 Cπ	 Strategic	pile	 Strategic	pile	size	
[2	4	1	3	5]	 (0	4	3	2	1)	 ∅	 0	
[5	2	3	1	4]	 (0	3	1	5	4)	 {4}	 1	

[2	1	5	3	4]	 (0	2	5	4	1}	 {1,	4}	 2	
[3	5	1	2	4]	 (0	5	4	3	2)	 2,	3,	4	 3	
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