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Anomalous primes
Elliptic Korselt numbers

1. Introduction

In 1989, Gordon [5,6] defined elliptic pseudoprimes for CM elliptic curves, the first 
to do so according to Silverman [10]. For a full discussion of Gordon’s approach, see 
[10, Remark 4] and the works cited there. In this paper, we work with the definition 
introduced by Silverman [10] which is well-defined for arbitrary elliptic curves.

Namely, for a given elliptic curve E/Q and point P ∈ E(Z/nZ) a natural number n is 
an elliptic pseudoprime with respect to P ∈ E if n has at least two distinct prime factors, 
E has good reduction at every prime p dividing n, and (n + 1 − an)P ≡ 0 (mod n)
where an denotes the nth coefficient of the L-series of E/Q. When we write E(Z/nZ), 
we follow the convention of [10, Remark 2] by assuming that E has good reduction at 
all primes p dividing n. In this case, a minimal Weierstrauss equation defines a smooth 
group scheme E → Spec(Z/nZ) (see [9, Section IV.5] for details of the construction). 
Then the Z/nZ-points of this group scheme form an abelian group, which we denote by 
E(Z/nZ).

A composite integer n is an elliptic Carmichael number for a given elliptic curve E/Q

if n is an elliptic pseudoprime for every point P ∈ E(Z/nZ) (note that by our convention, 
E must have good reduction at the primes dividing n). In analogy with classical case 
of the Korselt criterion for Carmichael numbers, Silverman [10] gives two Korselt-type 
criteria for elliptic Carmichael numbers, introducing the notion of an elliptic Korselt 
number of Type I and of Type II. The elliptic Korselt criterion of Type I is a practical 
sufficient condition for elliptic Carmichael numbers, given the prime factorization of the 
number.

For a given elliptic curve E/Q, a prime p is anomalous if E has good reduction at 
p and #E(Fp) = p. In [10, Proposition 17], Silverman proves that if n = pq is a Type 
I elliptic Korselt number for E and p is not too small with respect to q, then p and q
are anomalous primes for E. Silverman notes that Type I elliptic Korselt numbers of the 
form pq are interesting since there are no classical Carmichael numbers of this form. In 
this paper, we further explore the connection between squarefree elliptic Korselt numbers 
and anomalous primes.

In Section 2, we prove a generalization of [10, Proposition 17]. We show that if n =
p1 · · · pm is a squarefree Type I elliptic Korselt number with p1 < · · · < pm and 

√
pm

4m ≤
p1 · · · pm−1 ≤ 4m, then pm is anomalous and an = 1. Hence all but an even number of 
the primes pi are anomalous, and if pi is not anomalous, then api

= −1. Furthermore, 
we note an error in the proof of [10, Proposition 17], providing a counterexample and the 
corrected statement. In particular, we show that if n = pq is an elliptic Korselt number 
of Type I with p < q for E/Q and 13 ≤ p ≤ √

q/16, then p and q are anomalous for E.
In Section 3, we prove that for an elliptic Korselt number of Type I for E/Q of the form 

n = pq where p < q are prime, the probability that p and q are anomalous approaches 
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1 as p, q → ∞. Our result relies on a result proven in the preprint [1, Section 6] which 
appeared as a conjecture in an early draft of this paper. Computational evidence for our 
original conjecture is collected in an appendix.

Finally, we combine our results with a result from [8] to show that (assuming the 
Hardy-Littlewood Conjecture) there are infinitely many Type I elliptic Korselt numbers 
for any curve E : y2 = x3 + D, where D ∈ Z is neither a square nor a cube in Q(

√
−3)

and D �= 80d6 for any d ∈ Z[(1 +
√
−3)/2].

2. Squarefree elliptic Korselt numbers of Type I

The classical notions of pseudoprimes and Carmichael numbers are related to the or-
ders of numbers in the multiplicative group (Z/nZ)∗. These concepts can be generalized 
to other algebraic groups, such as elliptic curves. The notions of elliptic pseudoprimes 
and elliptic Carmichael numbers were introduced in [6] for curves with complex multi-
plication.

In [10] these notions were extended to arbitrary elliptic curves E/Q. The definition 
of an elliptic pseudoprime for an arbitrary elliptic curve is as follows: let n be a positive 
integer greater than 1, let E/Q be an elliptic curve given by a minimal Weierstrass 
equation, and let P ∈ E(Z/nZ). Write the L-series of E/Q as L(E/Q, s) =

∑
an/n

s. 
Then n is an elliptic pseudoprime for (E, P ) if n has at least two distinct prime factors, E
has good reduction at every prime dividing n, and P is (n +1 −an)-torsion in E(Z/nZ). 
Following the analogy with classical pseudoprimes, if n = p is a prime of good reduction, 
the last condition holds trivially. Indeed, E(Z/pZ) is an elliptic curve over Fp of order 
p + 1 − ap, so every point is (p + 1 − ap)-torsion.

The definition of an elliptic Carmichael number for an arbitrary elliptic curve is as 
follows: let n be a positive integer greater than 1 and let E/Q be an elliptic curve. Then 
n is an elliptic Carmichael number for E if n is an elliptic pseudoprime for (E, P ) for 
every point P ∈ E(Z/nZ). In this section, we only consider integers n that are coprime 
with 2 and 3. In classical number theory, Korselt’s criterion—which is satisfied by a 
composite number n if (p −1) | (n −1) for every prime p dividing n—can be used to test 
for Carmichael numbers. In [10], Silverman introduces an analogous criterion for elliptic 
curves.

Definition 2.1. Fix an elliptic curve E/Q. A positive integer n is called an elliptic Korselt 
number of Type I for E if it has at least two distinct prime factors, such that for every 
prime p dividing n, the following hold:

(1) E has good reduction at p
(2) p + 1 − ap | n + 1 − an

(3) ordp(an − 1) ≥ ordp(n) −
{

1 ap �≡ 1 (mod p)
0 ap ≡ 1 (mod p)

.
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Here, ap is the Frobenius trace of E(Fp) as usual, and an is the nth coefficient of 
the L-series of E/Q; for how to compute this coefficient, see [12]. In particular, an is a 
multiplicative function when n is square-free, in the sense that if n =

∏
i pi for distinct 

pi, then an =
∏

i api
. Finally, ordp(n) denotes the highest power of p that appears in the 

prime factorization of n, with ordp(0) = ∞. In [10] it has been shown that any number 
satisfying this elliptic Korselt criterion is an elliptic Carmichael number, but the converse 
need not be true.

Proposition 2.2. If n is an elliptic Korselt number of Type I for an elliptic curve E, then 
n is an elliptic Carmichael number for E.

Proof. See [10, Proposition 11]. �
Recall that an anomalous prime for an elliptic curve E/Q is a prime such that E has 

good reduction at p and #E(Fp) = p (or equivalently, ap = 1).

Proposition 2.3. Let E be an elliptic curve and let p1, p2, . . . , pm be distinct anomalous 
primes for E. Then n =

∏m
i=1 pi is an elliptic Korselt number of Type I for E.

Proof. The first condition of Definition 2.1 is satisfied since elliptic curves have good 
reduction at anomalous primes. The second condition is satisfied since an =

∏m
i=1 api

=
1, and each pi divides n. The third condition is satisfied because for each i, ordpi

(an−1) =
ordpi

(0) = ∞. �
The converse of Proposition 2.3 is not true: not all elliptic Korselt numbers of Type 

I for an elliptic curve E are products of distinct primes which are anomalous for E. 
However, for a product of two distinct primes n = pq there are conditions on p and q
under which both p and q must be anomalous. A result of this form was obtained in [10, 
Proposition 17]. This proposition states if n = pq is Type I elliptic Korselt for E with 
17 < p <

√
q, then ap = aq = 1 i.e. p and q are anomalous for E. However, there is a 

mistake in the proof, resulting in incorrect bounds. A counterexample is included below.

Counterexample 2.4. Let E : y2 = x3 + 1, p = 53 and q = 2971. We have ap = 0 and 
aq = 56, and pq an elliptic Korselt number of Type I for E. However, 17 < p <

√
q is 

satisfied.

The remainder of this section is devoted to proving a generalization of [10, Proposition 
17] to squarefree Type I elliptic Korselt numbers. In particular, we include conditions 
on distinct primes p, q so that if pq is Type I elliptic Korselt for a curve E, then p and 
q are anomalous for E.
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Theorem 2.5. Let E/Q be an elliptic curve and let n = p1p2 . . . pm be an elliptic Korselt 
number of Type I for E such that 5 ≤ p1 < p2 < · · · < pm, where m ≥ 2. Then one of 
the following conditions is satisfied:

(1) p1 · · · · · pm−1 ≤ 4m
(2) apm

= 1, and for 1 ≤ i ≤ m − 1, api
= −1 for an even number of values of i and the 

remaining traces are equal to 1
(3) p1 · · · · · pm−1 ≥

√
pm

4m .

Proof. Assume p1 · · · pm−1 = n
pm

> 4m. We show that one of the two remaining condi-
tions of the theorem are satisfied. We have

n + 1 − an = n

pm
(pm + 1 − apm

) − n

pm
+ apm

n

pm
+ 1 − an. (1)

The divisibility criterion of Type I elliptic Korselt numbers with (1) implies

(pm + 1 − apm
) |

(
− n

pm
+ apm

n

pm
+ 1 − an

)
.

We now consider two cases: − n
pm

+ apm

n
pm

+1 − an = 0 and − n
pm

+ apm

n
pm

+1 − an �= 0.

Case 1 − n
pm

+ apm

n
pm

+ 1 − an = 0.

In this case, we have

n

pm
(apm

− 1) = an − 1. (2)

Suppose for sake of contradiction that apm
�= 1. We will show that this leads to n

pm
≤ 4m. 

We have

n

pm
= an − 1

apm
− 1 =

(ap1 · · · apm−1)apm
− 1

apm
− 1 .

For simplicity of notation, let r denote ap1 · · · apm−1 . Since apm
�= 1 is an integer, the 

possible values of n
pm

in terms of r are

. . . ,
2r + 1

3 ,
r + 1

2 , 1, 2r − 1, 3r − 1
2 ,

4r − 1
3 , . . . ,

where apm
∈ Z − {1}, respectively. If r < 0 then the maximum of these values is 1, so 

the desired inequality is clear. Assume instead that r is positive. Then n
pm

is maximized 

when apm
= 2, in which case n

pm
= 2r− 1. Now by Hasse’s theorem, r ≤ 2m−1

√
n
pm

, and 
so
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n

pm
≤ 2 · 2m−1

√
n

pm
− 1 < 2m

√
n

pm
,

so n
pm

≤ 4m, as desired. However, by assumption, n
pm

> 4m. Thus, we have a contra-
diction: if apm

− p1 · · · pm−1 − ap1 · · · apm
+ 1 = 0, then apm

must be 1. We can say 
more: if apm

= 1, then by (2), ap1 · · · apm−1 = 1. Thus, an even number of traces api
for 

1 ≤ i ≤ m − 1 must be equal to −1, while the rest of these traces must be equal to 1.

Case 2 − n
pm

+ apm

n
pm

+ 1 − an �= 0.

Since pm + 1 − apm
| − n

pm
+ apm

n
pm

+ 1 − an, we have

pm + 1 − 2√pm ≤ |pm + 1 − apm
| ≤ 2 n

pm

√
pm + n

pm
+ 2m√

pm

√
n

pm
− 1. (3)

Subtracting the left-most quantity from the right-most in (3) gives:

(2√pm + 1) n

pm
+ 2m√

pm

√
n

pm
− pm − 2 + 2√pm ≥ 0.

Solving the quadratic equation for 
√

n
pm

yields:

√
n

pm
≥

−2m√
pm +

√
4mpm − 4(2√pm + 1)(−pm − 2 + 2√pm)

2(2√pm + 1) . (4)

Using the following claim, we will show the right-hand side of (4) is at least 1
2m p

1/4
m .

Claim.(
8 − 16

4m

)
p3/2
m − 8p5/4

m −
(

12 + 16
4m

)
pm − 4p3/4

m +
(

8 − 4
4m

)
p1/2
m + 8 ≥ 0. (5)

For m = 2 it can be verified with a computer algebra system (e.g. [11]) that (5) is true 
when p2 ≥ 19. By assumption, p1 > 16, so this is always the case. Specifically, note that 
for fixed m, the left-hand side of (5) is a polynomial in 

√
4pm. One may find the roots 

numerically and determine the asymptotic behavior. For m = 3 it can be verified with a 
computer algebra system that (5) is true when p3 ≥ 13 (using the same process described 
above). Note that p3 > 11 because otherwise we have p1p2 ≤ 5 · 7 = 35, contradicting 
our assumption. Thus, the claim holds for m = 3.

Now, let f(m, pm) be the left-hand side of (5). Observe that if pm > 0 is held constant 
and m is increased, then f(m, pm) increases. This is because we may write

f(m, pm) = g(pm) − 16
p3/2
m − 16

pm − 4
p1/2
m ,
4m 4m 4m
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where

g(pm) = 8p3/2
m − 8p5/4

m − 12pm − 4p3/4
m + 8p1/2 + 8,

and as m increases, − 16
4m and − 4

4m increase. Thus, since f(3, pm) ≥ 0 for pm ≥ 13, 
f(m, pm) ≥ 0 for pm ≥ 13 for all m > 3. Since 13 is the fourth prime greater than or 
equal to 5, pm ≥ 13 for all m > 3. This completes the proof of the claim.

Thus, we have

(
8 − 16

4m

)
p3/2
m − 8p5/4

m −
(

12 + 16
4m

)
pm − 4p3/4

m +
(

8 − 4
4m

)
p1/2
m + 8 ≥ 0,

which implies

4mpm + 8pm
√
pm − 12pm + 8√pm + 8 ≥

(
2

2m (2√pm + 1)p1/4
m + 2m√

pm

)2

.

The right-hand side above is positive and smaller than the left-hand side, so the left-hand 
side is also positive. Taking square roots and rearranging yields

−2m√
pm +

√
4mpm − 4(2√pm + 1)(−pm − 2 + 2√pm)

2(2√pm + 1) ≥ 1
2m p1/4

m .

Thus, n
pm

= p1 · · · pm−1 ≥
√
pm

4m , concluding the proof of Theorem 2.5. �
Note that for m ≥ 4 the inequality p1 · · · pm−1 ≤ 4m, i.e. the first condition of Theo-

rem 2.5, is never satisfied.

Remark 2.6. Theorem 2.5 can be restated as follows. Let E be an elliptic curve and let 
n = p1p2 · · · pm be an elliptic Korselt number of Type I for E such that 5 ≤ p1 < p2 <

· · · < pm, for m ≥ 2. If 4m < p1 · · · pm−1 <
√
pm

4m , then apm
= 1 and for 1 ≤ i ≤ m − 1, 

api
= −1 for an even number of values of i and api

= 1 for the remaining values.

The following corollary of Theorem 2.5 corrects the claim of Proposition 17 in [10].

Corollary 2.7. Let E be an elliptic curve and let n = pq be an elliptic Korselt number of 
Type I for E such that p < q. Then one of the following conditions holds:

• p ≤ 13
• p and q are anomalous for E.
• p ≥

√
q

16
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3. Elliptic Korselt numbers of Type I of the form pq

In Proposition 2.3, we showed that any product of distinct anomalous primes of an 
elliptic curve is an elliptic Korselt number of Type I. Corollary 2.7 gives sufficient con-
ditions for when an elliptic Korselt number of Type I of the form n = pq is a product of 
anomalous primes. In this section, we show that the probability that an elliptic Korselt 
number of Type I of the form n = pq is a product of anomalous primes goes to 1 as 
n → ∞.

Part of our proof relies on the following proposition which is proven in the preprint 
[1, Corollary 6.18]. This particular statement appeared as a conjecture in an early draft 
of this paper which included numerical evidence to support the conjecture. We have 
relegated that numerical evidence to an appendix.

Proposition 3.1. [1] For N ≥ 7, let 5 ≤ p, q ≤ N be distinct primes chosen uniformly, 
and let n = pq. Let E(Z/nZ) be an elliptic curve chosen uniformly from the set of 
elliptic curves defined over Z/nZ with good reduction over Fp and Fq such that #E(Fp)
and #E(Fq) divide n + 1 − an. Then

lim
N→∞

Pr[#E(Z/nZ) = n + 1 − an] = 1.

Note that #E(Z/nZ) = (p + 1 − ap)(q + 1 − aq) and n + 1 − an = pq + 1 − apaq. We 
have the following heuristic justification for the conjecture. Note that by Hasse’s bound, 
p + 1 − ap and q + 1 − aq are close in value to p and q, respectively, and pq + 1 − apaq is 
close in value to pq. Thus, if p +1 −ap and q+1 −aq divide n +1 −an and their product 
is not equal to n + 1 − an, then p + 1 − ap and q + 1 − aq must share many factors; this 
should happen rarely.

From the conditions listed in Proposition 3.1, it is clear that n satisfies the first two 
conditions of the elliptic Korselt of Type I criterion for E. In other words, n is “nearly;; 
elliptic Korselt number of Type I. The lemma below states that when p, q ≥ 7, the third 
elliptic Korselt condition is a redundancy given the first and second. We will need this 
and the following results to prove the Theorem 3.7 of this section.

Lemma 3.2. For N ≥ 7, let 5 ≤ p, q ≤ N be uniformly chosen distinct primes, and let 
n = pq. Let E(Z/nZ) be an elliptic curve chosen uniformly among those for which n is 
an elliptic Korselt number of Type I. Then

lim
N→∞

Pr[p is anomalous for E and q is not] = 0.

In this statement, we do not fix a particular curve E. Instead, for a given N , we pick 
random values of p and q and then pick a random E with the stated property. Lemma 3.2
states that as N approaches infinity, the probability that for these random p, q, E, p is 
anomalous for E and q is not approaches zero.
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Proof. Let N , p, q, and E be as in the statement. Assume that ap = 1 and aq �= 1. By 
the Korselt divisibility condition, we have that p and q+ 1 − aq divide pq+ 1 − aq. Since 
p | pq + 1 − aq, we have p | 1 − aq. Since 1 − aq �= 0,

p ≤ |1 − aq| ≤ |aq| + 1 ≤ 2√q + 1 ≤ 2
√
N + 1.

The probability that a randomly chosen prime below N is at most 2
√
N +1 goes to zero 

as N → ∞. Since p ≤ 2
√
N + 1 is a necessary condition for ap = 1 and aq �= 1 for E, it 

follows that the desired probability approaches zero. �
Although the proposition below holds for any squarefree integer, we will only use the 

case n = pq.

Proposition 3.3. If n = p1 · · · pk is squarefree with pi ≥ 7 for all i and E is an elliptic 
curve with good reduction over each Fpi

, then n is an elliptic Korselt number of Type I 
for E if and only if pi + 1 − api

divides n + 1 − an for all i.

Proof. The “only if” direction holds by definition. Suppose that E has good reduction 
at each pi and that each pi + 1 − api

divides n + 1 − an. Since n is squarefree, api
�≡ 1

(mod pi) trivially implies the third condition of the elliptic Korselt criterion is satisfied 
for pi.

If api
≡ 1 (mod pi) for some pi, then ap = 1 since |api

| ≤ 2√pi and pi ≥ 7. By 
assumption, pi divides n + 1 − an, and so pi | 1 − an. Thus,

ordpi
(an − 1) ≥ 1 = ordpi

(n),

so pi satisfies the third condition of the elliptic Korselt criterion. �
Lemma 3.4. For N ≥ 7, let 5 ≤ p, q ≤ N be uniformly chosen distinct primes, and let 
n = pq. Let E(Z/nZ) be an elliptic curve chosen uniformly among those for which n is 
an elliptic Korselt number of Type I. Then

lim
N→∞

Pr[p and q are not anomalous for E and

(p + 1 − ap)(q + 1 − aq) �= n + 1 − an] = 0.

Proof. Let N , p, q, and E be as in the lemma statement. By Proposition 3.3, this is 
equivalent to the statement that p, q and E are selected in such a way that E(Z/nZ)
has good reduction over Fp and Fq, and #E(Fp) and #E(Fq) divide n + 1 − an.1 By 
Proposition 3.1, the probability that

1 If p = 5 or q = 5, this does not follow from Proposition 3.3, but the probability of this happening 
approaches zero as N → ∞, so we can ignore this case.
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#E(Z/nZ) = #E(Fp)#E(Fq) = (p + 1 − ap)(q + 1 − aq) �= n + 1 − an

approaches zero as N → ∞. Thus, the probability that this condition is satisfied and p

and q are not anomalous for E also approaches zero, as desired. �
Proposition 3.5. Let n be a positive integer and let S be a finite multiset of factors of n. 
For each d | n, let md(S) be the number of multiples of d in S. Then

∑
k∈S

k =
∑
d|n

md(S)φ(d).

Proof. This is an induction on the number of elements of S. The theorem is clear for 
|S| = 0; suppose it holds for |S| = r. Now let S have r+1 elements and choose k ∈ S. Let 
S′ be S with one fewer copy of k; the theorem holds for S′. Adding k to S′ increments 
the left-hand sum by k and the right-hand sum by 

∑
d|k φ(d), since md(S) = md(S′) + 1

for d | k and md(S) = md(S′) for all other d. But 
∑

d|k φ(d) = k [7, Proposition 2.2.4], 
so the statement holds for S. �
Lemma 3.6. For N ≥ 7, let 5 ≤ p, q ≤ N be distinct primes chosen uniformly, and let 
n = pq. Let E(Z/nZ) be an elliptic curve chosen uniformly among those for which n is 
an elliptic Korselt number of Type I. Then

lim
N→∞

Pr[p and q are not anomalous for E and (p+1−ap)(q+1−aq) = n+1−an] = 0.

Proof. Let N , p, q, and E be as in the lemma statement. We impose the additional 
restriction that q ≥ 67; this assumption is harmless as the probability of a randomly 
selected prime below N being less than 67 approaches 0 as N approaches ∞. Assume 
that ap �= 1, aq �= 1, and (p + 1 − ap)(q + 1 − aq) = n + 1 − an. Hence

ap = p + q − (p + 1)aq
q + 1 − 2aq

.

Thus, q+1 − 2aq divides p + q− (p +1)aq. Subtracting q+1 − 2aq from the dividend, 
we have

q + 1 − 2aq | p− paq + aq − 1 = (p− 1)(1 − aq).

Letting x = aq − 1, p′ = p − 1, and q′ = q− 1, we find that q′ − 2x divides p′x. It follows 
that

q′ − 2x
′ = q′ − 2x

′ | p′. (6)
gcd(q − 2x, x) gcd(q , x)
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We claim that the probability for randomly chosen 5 ≤ p, q ≤ N that there exists 
x ∈ [−2√q− 1, 2√q− 1] such that (6) holds is satisfied approaches zero as N → ∞; this 
is sufficient to prove our lemma.

To prove this claim, fix q (and thus q′) and examine how many values of p′ < N (and 
thus p ≤ N) satisfy the condition in (6) for some x in the interval.

For a fixed x, the number of values of p′ divisible by q′−2x
gcd(q′,x) is bounded above by

N
q′−2x

gcd(q′,x)
= N gcd(q′, x)

q′ − 2x ≤ 2N gcd(q′, x)
q′

.

(The last step is justified by the fact that q ≥ 67.) Thus, the total number of values of 
p′ that are divisible by q′−2x

gcd(q′,x) for some x ∈ [−2√q − 1, 2√q − 1] is at most

∑
x∈[−2√q−1,2√q−1]

x�=0

2N gcd(q′, x)
q′

≤ 2

⌊
2√q+1

⌋∑
x=1

2N gcd(q′, x)
q′

= 4N
q′

⌊
2√q+1

⌋∑
x=1

gcd(q′, x). (7)

Now, let g(k) =
∑k

x=1 gcd(x, k). We claim that

⌊
2√q+1

⌋∑
x=1

gcd(q′, x) ≤ g(q′) · 2√q + 1
q′

.

For n implicit, define the multiset Sa,k = {gcd(x, n) | x ∈ {a, a + 1, . . . , a + k − 1}}. 
Observe that for all d | n, holding k constant, md(Sa,k) is minimal for a = 1. It follows 
from Proposition 3.5 that

a+k−1∑
x=a

gcd(x, n) (8)

is minimized for a = 1. In particular, let h(a) be (8) with n = q′ and k =
⌊
2√q + 1

⌋
. 

Note that

h(1) + h(2) + · · · + h(q′) = g(q′) · 
2√q + 1� , (9)

since the fact that gcd(q′, q′ + x) = gcd(q′, x) means that for every x ∈ {1, 2, . . . , q′}, x
appears 

⌊
2√q + 1

⌋
times in (9). Since h(1) is the smallest value among the q′ values in 

(9), we obtain
⌊
2√q+1

⌋∑
x=1

gcd(q′, x) ≤ g(q′) · 2√q + 1
q′

, (10)

as desired. Combining (7) and (10), we obtain
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∑
x∈[−2√q−1,2√q−1]

x�=0

2N gcd(q′, x)
q′

≤ 4N
q′

⌊
2√q+1

⌋∑
x=1

gcd(q′, x) ≤ 4N
q′

g(q′) · 2√q + 1
q′

.

Now, the number of primes p ≤ N is on the order of N
log N . Thus, the probability that 

p is chosen so that (6) holds for some x is

O

(
4 logN

q′
g(q′) · 2√q + 1

q′

)
= O

(
logN · g(q′)q−3

2

)
. (11)

It is known that g(k) = O(k1+ε) for every positive ε [2, Theorem 3.2]. Combining this 
with the bound (11), we see that the probability of (6) holding is O

(
logN · q−1

2 +ε
)

for 
every positive ε, as a function of q and N .

Now we express the probability that (6) holds as a function of just N , randomly 
choosing q to be a prime below N . The probability that q ≤ N

1
2 is on the order of

N1/2/logN1/2

N/logN = 2N 1
2

N
,

which is on the order of N −1
2 . If q > N

1
2 , then the probability that (6) holds is 

O
(
logN ·N −1

4 +ε
)

for all ε. Thus, the total probability is at most on the order of 

N
−1
2 + logN ·N −1

4 +ε, which approaches zero as N → ∞, and so we are done. �
Theorem 3.7. For N ≥ 7, let 5 ≤ p, q ≤ N be uniformly chosen distinct primes, and let 
n = pq. Let E(Z/nZ) be an elliptic curve chosen uniformly among those for which n is 
an elliptic Korselt number of Type I. We have

lim
N→∞

Pr[p and q are anomalous primes for E] = 1.

Proof. A result of Deuring [4] states that for all primes p, for every integer −2√p ≤ t ≤
2√p, there is an elliptic curve over Fp with order p + 1 − t. In particular, for every p
there is an elliptic curve that is anomalous over Fp. Thus, for any two primes p and q, we 
may use the Chinese Remainder Theorem to construct a curve over Q that is anomalous 
both when reduced over Fp and over Fq. It follows by Proposition 2.3 that for all (p, q)
there is a curve E that makes p and q anomalous and therefore makes n = pq elliptic 
Korselt number of Type I.

Suppose now that n = pq is an elliptic Korselt number of Type I for some elliptic 
curve E. Then the cases in which p and q are not both anomalous primes for E are as 
follows:

(1) Exactly one of p and q is anomalous for E.
(2) Neither p nor q is anomalous for E, and (p + 1 − ap)(q + 1 − aq) �= n + 1 − an.
(3) Neither p nor q is anomalous for E, and (p + 1 − ap)(q + 1 − aq) = n + 1 − an.
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Lemmas 3.2, 3.4, and 3.6 show that the probability that p, q, and E satisfy cases (1), 
(2), (3), respectively, goes to zero as N → ∞. Therefore, as N → ∞, the probability 
that p and q are both anomalous for E approaches 1. This completes the proof. �

A natural follow-up question to ask is whether Theorem 3.7 holds not just for products 
of two primes, but in general. In other words, we may ask whether the following conjecture 
holds.

Conjecture 3.8. Let N ≥ 35 and let n be a random positive integer less than or equal to 
N with the property that n is a product of distinct primes p1, . . . , pk (with k ≥ 2) that 
are all greater than 3. Let E(Z/nZ) be an elliptic curve chosen uniformly among those 
for which n is an elliptic Korselt number of Type I. Then

lim
N→∞

Pr[p1, . . . , pk are anomalous primes for E] = 1.

We have experimental evidence in favor of this conjecture; see the appendix for details.

4. Conclusions

Fix an elliptic curve E. Then Proposition 2.3 and Proposition 11 from [10] give the 
following implications.

product of anomalous primes Prop. 2.3−−−−−−→ elliptic Korselt Type I Prop. 11−−−−−−→ elliptic Carmichael

These implications, together with Theorem 1.2 from [8], imply the following result.

Corollary 4.1. Assuming the Hardy-Littlewood Conjecture, there are infinitely many el-
liptic Korselt numbers of Type I for the curve E : y2 = x3 + D, where D ∈ Z is neither 
a square nor a cube in Q(

√
−3) and D �= 80d6 for any d ∈ Z[(1 +

√
−3)/2].

In section 2, we explore the strictness of the left-most inclusion in the above diagram. 
Theorem 2.5 establishes deterministic conditions under which an elliptic Korselt number 
of Type I can be a product of anomalous primes. Furthermore, for n = pq a product 
of two distinct primes, Theorem 3.7 states that nearly all the elliptic curves that make 
n an elliptic Korselt number of Type I also have n a product of anomalous primes. If 
Conjecture 3.8 holds, then in fact anomalous primes form the building blocks of nearly 
all squarefree elliptic Korselt numbers of Type I — not just those that are products of 
two primes. Because the Lang-Trotter conjecture has been proven “on average” in [3], 
we can say more.

Corollary 4.2 ([3]). Let E(a, b) denote the elliptic curve y2 = x3+ax +b, and let π1
E(a,b)(x)

denote the number of anomalous primes of E(a, b) less than or equal to x. Take A, B >

x2+ε for some ε > 0 and fix c > 0. Then for all d > 2c, and for all elliptic curves E(a, b)
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with |a| ≤ A and |b| ≤ B, there exists a constant C > 0 such that the following inequality 

holds with O
(

1
logd x

AB
)

many exceptions:

π1
E(a,b)(x) ≥ Crπ1/2(x) − C

√
x

logc x, (12)

where we define

π1/2(x) :=
x∫

2

dt

2
√
t log t

∼
√
x

log x, and

C1 := 2
π

∏
l

l(l2 − l − 1)
(l − 1)(l2 − 1) .

Since C1 > 0, the right-hand side of (12) goes to infinity as x → ∞. In particular, 
Corollary 4.2 gives the following.

Corollary 4.3. All but a density zero set of elliptic curves have infinitely many anomalous 
primes, and thus also have infinitely many elliptic Korselt numbers of Type I.
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Appendix A. Numerical evidence for Conjecture 3.8

We wrote a program that takes as input an integer N , randomly chooses a positive 
integer n between N and 2N with the property that n = p1 . . . pk for k ≥ 2 distinct primes 
that are greater than 3. For each pi, we select api

from a semicircular distribution of 
radius 2√pi (since this is how traces are distributed).2 If the resulting traces describe a 
curve E with the property that n is an elliptic Korselt number of Type I for E, we check 
whether every api

is 1. We do this until we have a sample size of 1000 (i.e. have found a 
thousand random values of n and curves E such that n is an elliptic Korselt number of 
Type I for E). Below is our experimental data for Pr(N), which is the fraction of these 
1000 curves whose values of api

were all 1 (Fig. 1).

2 This is in effect the same as picking an elliptic curve with random coefficients, since n is square-free and 
by the Chinese remainder theorem picking random coefficients and reducing modulo each prime is the same 
as picking random coefficients modulo each prime (and so the traces of an elliptic curve modulo different 
primes are independent random variables).



122 L. Babinkostova et al. / Journal of Number Theory 201 (2019) 108–123
N Pr(N)
26 0.194
27 0.280
28 0.317
29 0.300
210 0.356
211 0.404
212 0.436
213 0.455
214 0.467
215 0.547
216 0.572
217 0.586
218 0.600
219 0.670
220 0.651
221 0.684
222 0.744
223 0.746
224 0.785
225 0.788

Fig. 1. Pr(N) vs. log2(N).
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