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Anomalous primes
Elliptic Korselt numbers

1. Introduction

In 1989, Gordon [5,6] defined elliptic pseudoprimes for CM elliptic curves, the first
to do so according to Silverman [10]. For a full discussion of Gordon’s approach, see
[10, Remark 4] and the works cited there. In this paper, we work with the definition
introduced by Silverman [10] which is well-defined for arbitrary elliptic curves.

Namely, for a given elliptic curve E/Q and point P € E(Z/nZ) a natural number n is
an elliptic pseudoprime with respect to P € E if n has at least two distinct prime factors,
E has good reduction at every prime p dividing n, and (n + 1 — a,)P = 0 (mod n)
where a,, denotes the nth coefficient of the L-series of E/Q. When we write E(Z/nZ),
we follow the convention of [10, Remark 2] by assuming that E has good reduction at
all primes p dividing n. In this case, a minimal Weierstrauss equation defines a smooth
group scheme E — Spec(Z/nZ) (see [9, Section IV.5] for details of the construction).
Then the Z /nZ-points of this group scheme form an abelian group, which we denote by
E(Z/nZ).

A composite integer n is an elliptic Carmichael number for a given elliptic curve F/Q
if n is an elliptic pseudoprime for every point P € F(Z/nZ) (note that by our convention,
E must have good reduction at the primes dividing n). In analogy with classical case
of the Korselt criterion for Carmichael numbers, Silverman [10] gives two Korselt-type
criteria for elliptic Carmichael numbers, introducing the notion of an elliptic Korselt
number of Type I and of Type II. The elliptic Korselt criterion of Type I is a practical
sufficient condition for elliptic Carmichael numbers, given the prime factorization of the
number.

For a given elliptic curve F/Q, a prime p is anomalous if E has good reduction at
p and #E(F,) = p. In [10, Proposition 17], Silverman proves that if n = pg is a Type
I elliptic Korselt number for E and p is not too small with respect to ¢, then p and ¢
are anomalous primes for E. Silverman notes that Type I elliptic Korselt numbers of the
form pq are interesting since there are no classical Carmichael numbers of this form. In
this paper, we further explore the connection between squarefree elliptic Korselt numbers
and anomalous primes.

In Section 2, we prove a generalization of [10, Proposition 17]. We show that if n =

p1 - pm is a squarefree Type I elliptic Korselt number with p; < --- < p,, and ‘{f? <
P1: o Pm—1 < 4™, then p,, is anomalous and a,, = 1. Hence all but an even number of
the primes p; are anomalous, and if p; is not anomalous, then a,, = —1. Furthermore,
we note an error in the proof of [10, Proposition 17], providing a counterexample and the
corrected statement. In particular, we show that if n = pq is an elliptic Korselt number
of Type I with p < ¢ for E/Q and 13 < p < ,/q/16, then p and ¢ are anomalous for E.
In Section 3, we prove that for an elliptic Korselt number of Type I for E/Q of the form

n = pq where p < ¢ are prime, the probability that p and ¢ are anomalous approaches
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1 as p,q — oo. Our result relies on a result proven in the preprint [1, Section 6] which
appeared as a conjecture in an early draft of this paper. Computational evidence for our
original conjecture is collected in an appendix.

Finally, we combine our results with a result from [8] to show that (assuming the
Hardy-Littlewood Conjecture) there are infinitely many Type I elliptic Korselt numbers
for any curve E : y? = 23 + D, where D € Z is neither a square nor a cube in Q(y/—3)
and D # 80d° for any d € Z[(1 ++/—3)/2].

2. Squarefree elliptic Korselt numbers of Type I

The classical notions of pseudoprimes and Carmichael numbers are related to the or-
ders of numbers in the multiplicative group (Z/nZ)*. These concepts can be generalized
to other algebraic groups, such as elliptic curves. The notions of elliptic pseudoprimes
and elliptic Carmichael numbers were introduced in [6] for curves with complex multi-
plication.

In [10] these notions were extended to arbitrary elliptic curves E/Q. The definition
of an elliptic pseudoprime for an arbitrary elliptic curve is as follows: let n be a positive
integer greater than 1, let £/Q be an elliptic curve given by a minimal Weierstrass
equation, and let P € E(Z/nZ). Write the L-series of E/Q as L(E/Q,s) = > a,/n®.
Then n is an elliptic pseudoprime for (E, P) if n has at least two distinct prime factors, E
has good reduction at every prime dividing n, and P is (n+1— a,)-torsion in E(Z/nZ).
Following the analogy with classical pseudoprimes, if n = p is a prime of good reduction,
the last condition holds trivially. Indeed, E(Z/pZ) is an elliptic curve over F,, of order
p+1—ap, so every point is (p + 1 — a,)-torsion.

The definition of an elliptic Carmichael number for an arbitrary elliptic curve is as
follows: let n be a positive integer greater than 1 and let £/Q be an elliptic curve. Then
n is an elliptic Carmichael number for E if n is an elliptic pseudoprime for (E, P) for
every point P € E(Z/nZ). In this section, we only consider integers n that are coprime
with 2 and 3. In classical number theory, Korselt’s criterion—which is satisfied by a
composite number n if (p—1) | (n — 1) for every prime p dividing n—can be used to test
for Carmichael numbers. In [10], Silverman introduces an analogous criterion for elliptic

curves.

Definition 2.1. Fix an elliptic curve E/Q. A positive integer n is called an elliptic Korselt
number of Type I for E if it has at least two distinct prime factors, such that for every
prime p dividing n, the following hold:

(1) E has good reduction at p
(2) p+l—ap|n+1—a,

(3) ordy(an — 1) > ord,(n) — {1 ap #1 (mod p)

0 a=1 (mod p)
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Here, a, is the Frobenius trace of F(F,) as usual, and a, is the n'* coefficient of
the L-series of E/Q; for how to compute this coefficient, see [12]. In particular, a,, is a
multiplicative function when n is square-free, in the sense that if n =[], p; for distinct
i, then a, =[], ap,. Finally, ord,(n) denotes the highest power of p that appears in the
prime factorization of n, with ord,(0) = co. In [10] it has been shown that any number
satisfying this elliptic Korselt criterion is an elliptic Carmichael number, but the converse
need not be true.

Proposition 2.2. If n is an elliptic Korselt number of Type I for an elliptic curve E, then
n is an elliptic Carmichael number for E.

Proof. See [10, Proposition 11]. O

Recall that an anomalous prime for an elliptic curve E/Q is a prime such that E has
good reduction at p and #E(F,) = p (or equivalently, a, = 1).

Proposition 2.3. Let EE be an elliptic curve and let pi,pa,...,pm be distinct anomalous
primes for E. Then n = [[;~, p; is an elliptic Korselt number of Type I for E.

Proof. The first condition of Definition 2.1 is satisfied since elliptic curves have good
reduction at anomalous primes. The second condition is satisfied since a,, = [[\~; ap, =
1, and each p; divides n. The third condition is satisfied because for each ¢, ordy, (a,—1) =
ordy, (0) =0c0. O

The converse of Proposition 2.3 is not true: not all elliptic Korselt numbers of Type
I for an elliptic curve E are products of distinct primes which are anomalous for FE.
However, for a product of two distinct primes n = pq there are conditions on p and q
under which both p and ¢ must be anomalous. A result of this form was obtained in [10,
Proposition 17]. This proposition states if n = pq is Type I elliptic Korselt for E with
17 < p < ,/q, then a;, = a4 = 1 i.e. p and g are anomalous for £. However, there is a
mistake in the proof, resulting in incorrect bounds. A counterexample is included below.

Counterexample 2.4. Let E : y> = 23+ 1, p = 53 and q = 2971. We have a, = 0 and
aq = 56, and pq an elliptic Korselt number of Type I for E. However, 17 < p < ./q is
satisfied.

The remainder of this section is devoted to proving a generalization of [10, Proposition
17] to squarefree Type I elliptic Korselt numbers. In particular, we include conditions
on distinct primes p, g so that if pq is Type I elliptic Korselt for a curve E, then p and
q are anomalous for E.
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Theorem 2.5. Let E/Q be an elliptic curve and let n = p1ps ... pm be an elliptic Korselt
number of Type I for E such that 5 < p1 < py < -+ < P, where m > 2. Then one of
the following conditions is satisfied:

(1) py----- Pm—1 <47

(2) ap, =1, and for1 <i<m-—1, a,, = —1 for an even number of values of i and the
remaining traces are equal to 1

(3) pP1- Pm—1 Z %

Proof. Assume py-- pp_1 = pi > 4™, We show that one of the two remaining condi-

tions of the theorem are satisfied. We have

n n n
n+1fan:p—(perlfapm)f—+apmy—+lfan. (1)

m m m

The divisibility criterion of Type I elliptic Korselt numbers with (1) implies

m m

n n
(Pm +1—ap,,) | <_p_+apmp_+1_an>~
We now consider two cases: —-* +ap,, - +1—a, =0and - +ap,, = +1—a, #0.
Case 1 —-*+ap, =~ +1—a,=0.

In this case, we have

n
])_(ap'm - 1) = 0an — L. (2)
m

Suppose for sake of contradiction that aj,, 7 1. We will show that this leads to - < 4™.
We have

n an —1 (ap, -+ ap,, 1)ap,, —1

Pm apvn -1 a’pm, -1

For simplicity of notation, let » denote ay, - --ay,, ,. Since a,,, # 1 is an integer, the
possible values of pl in terms of r are

o+ 1 _ _
Jlraly g drotAr-l
3 2 2 3

where a,,, € Z — {1}, respectively. If » < 0 then the maximum of these values is 1, so
the desired inequality is clear. Assume instead that r is positive. Then pi is maximized
when ap,, = 2, in which case -~ = 2r — 1. Now by Hasse’s theorem, r < om—1, /o=, and
SO
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£§2.2m71 /£f1<2m /ﬁ’
Pm Pm Pm

SO pl < 4™ as desired. However, by assumption, pi > 4™, Thus, we have a contra-
m m

diction: if ap,, — p1-* Pm—1 — Gp, -~ ap,, + 1 = 0, then a, , must be 1. We can say
more: if a, =1, then by (2), ap, - - ap,, , = 1. Thus, an even number of traces a,, for
1 <i<m — 1 must be equal to —1, while the rest of these traces must be equal to 1.

Case 2 —+ap, -+ 1—a, #0.

3 n n
Since pm + 1 = ap,, | —5= + ap,, 5= + 1 = an, we have

n n n
Pm +1-— 2\/pm < |pm +1- a'pm,‘ < 2p_\/pm + p_ + 2m\/pm“p_ -1 (3)

Subtracting the left-most quantity from the right-most in (3) gives:

n n
(2\/pm + l)p_ + 2m\/pnﬂ / p_ —Pm — 2+ 2\/pm > 0.

Solving the quadratic equation for , /pi yields:

\/Z o =2"/Pm VAP = A2yPm + D) (=pm — 2+ 2/Pm) (@)
P 2(2/Pm + 1) '

Using the following claim, we will show the right-hand side of (4) is at least 2}n p},{4.

Claim.
16 16 4
(8— 4_m>p§r{2_8p?7{4_ <12+ 4—m>pm—4p%4+ <8— 4—m>1071n/2+820- (5)

For m = 2 it can be verified with a computer algebra system (e.g. [11]) that (5) is true
when py > 19. By assumption, p; > 16, so this is always the case. Specifically, note that
for fixed m, the left-hand side of (5) is a polynomial in v/4p,,. One may find the roots
numerically and determine the asymptotic behavior. For m = 3 it can be verified with a
computer algebra system that (5) is true when p3 > 13 (using the same process described
above). Note that p3 > 11 because otherwise we have p1ps < 5-7 = 35, contradicting
our assumption. Thus, the claim holds for m = 3.

Now, let f(m, p.,) be the left-hand side of (5). Observe that if p,,, > 0 is held constant
and m is increased, then f(m, p,,) increases. This is because we may write

16 5/, 16 4 12

Fm,pm) = 9(pm) = mPm” = guPm = P s
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where

9(pm) = 8p = 8py* = 12py, — dpj* +8p'/% +8,

16

and as m increases, — g and increase. Thus, since f(3,p,) > 0 for p,, > 13,

4
—m
flm,pm) > 0 for p,, > 13 for all m > 3. Since 13 is the fourth prime greater than or

equal to 5, p,, > 13 for all m > 3. This completes the proof of the claim.
Thus, we have

16 3/2 5/4 16 3/4 4 1/2
(8—4—m>pw{ =8t = (124 o ) — 403+ (8- 4 | pl® 48>0,

which implies
9 2
4" D + 8Pmn/DPm — 120, + 8P + 8 > <2—m(2\/pm + l)p,ln/4 + Qm\/pm> )

The right-hand side above is positive and smaller than the left-hand side, so the left-hand
side is also positive. Taking square roots and rearranging yields

=2 /Dm + /4D — 42\/Dm + 1) (=P — 2+ 24/Dm) > ip1/4

VPm
am

Thus, 2 =p1 - pm_1 > concluding the proof of Theorem 2.5. O

? Pm
Note that for m > 4 the inequality py - - pm_1 < 4™, i.e. the first condition of Theo-
rem 2.5, is never satisfied.

Remark 2.6. Theorem 2.5 can be restated as follows. Let E be an elliptic curve and let
n = p1pa - -+ Pm be an elliptic Korselt number of Type I for F such that 5 < p; < ps <

s < P, form > 2. A < p1-coppo1 < v45,1",thenapm =land for1 <i<m-—1,

ap, = —1 for an even number of values of ¢ and ap, = 1 for the remaining values.

7

The following corollary of Theorem 2.5 corrects the claim of Proposition 17 in [10].

Corollary 2.7. Let E be an elliptic curve and let n = pq be an elliptic Korselt number of
Type I for E such that p < q. Then one of the following conditions holds:

¢« p<13

e p and q are anomalous for E.

Va
. pZTﬁ
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3. Elliptic Korselt numbers of Type I of the form pq

In Proposition 2.3, we showed that any product of distinct anomalous primes of an
elliptic curve is an elliptic Korselt number of Type I. Corollary 2.7 gives sufficient con-
ditions for when an elliptic Korselt number of Type I of the form n = pq is a product of
anomalous primes. In this section, we show that the probability that an elliptic Korselt
number of Type I of the form n = pq is a product of anomalous primes goes to 1 as
n — 0.

Part of our proof relies on the following proposition which is proven in the preprint
[1, Corollary 6.18]. This particular statement appeared as a conjecture in an early draft
of this paper which included numerical evidence to support the conjecture. We have
relegated that numerical evidence to an appendix.

Proposition 3.1. [1] For N > 7, let 5 < p,q < N be distinct primes chosen uniformly,
and let n = pq. Let E(Z/nZ) be an elliptic curve chosen uniformly from the set of
elliptic curves defined over Z/nZ with good reduction over I, and F, such that #E(F),)
and #E(F,) divide n+ 1 — a,,. Then

lim Pr[#E(Z/nZ)=n+1-a,]=1.
N—o0

Note that #E(Z/nZ) = (p+1—ap)(¢+1—aq) and n+1—a, = pg+1 — apa,. We
have the following heuristic justification for the conjecture. Note that by Hasse’s bound,
p+1—a,and ¢+ 1— a4 are close in value to p and g, respectively, and pqg+ 1 — apaq is
close in value to pq. Thus, if p+1—a, and ¢+ 1 — a4 divide n+ 1 —a,, and their product
is not equal to n +1 — ay,, then p +1 —a, and ¢+ 1 — a, must share many factors; this
should happen rarely.

From the conditions listed in Proposition 3.1, it is clear that n satisfies the first two
conditions of the elliptic Korselt of Type I criterion for E. In other words, n is “nearly;;
elliptic Korselt number of Type I. The lemma below states that when p,q > 7, the third
elliptic Korselt condition is a redundancy given the first and second. We will need this
and the following results to prove the Theorem 3.7 of this section.

Lemma 3.2. For N > 7, let 5 < p,q < N be uniformly chosen distinct primes, and let
n = pq. Let E(Z/nZ) be an elliptic curve chosen uniformly among those for which n is
an elliptic Korselt number of Type I. Then

lim Pr[p is anomalous for E and q is not] = 0.
—00

In this statement, we do not fix a particular curve E. Instead, for a given N, we pick
random values of p and ¢ and then pick a random F with the stated property. Lemma 3.2
states that as NV approaches infinity, the probability that for these random p, q, E, p is
anomalous for F and ¢ is not approaches zero.
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Proof. Let IV, p, ¢, and E be as in the statement. Assume that a, = 1 and a4 # 1. By
the Korselt divisibility condition, we have that p and g+ 1 — a4 divide pg + 1 — a,. Since
p|pg+1—ag, we have p |1 —a,. Since 1 —aq # 0,

p<|l—ay <lagl +1<2/g+1<2VN+1.

The probability that a randomly chosen prime below N is at most 2v/N + 1 goes to zero
as N — oo. Since p < 2v/N + 1 is a necessary condition for ap =1and aq # 1 for E, it
follows that the desired probability approaches zero. 0O

Although the proposition below holds for any squarefree integer, we will only use the
case n = pq.

Proposition 3.3. If n = py -+ - pi is squarefree with p; > 7 for all i and E is an elliptic
curve with good reduction over each IF,,, then n is an elliptic Korselt number of Type I
for E if and only if p; + 1 — ap, divides n+ 1 — ay, for all .

Proof. The “only if” direction holds by definition. Suppose that E has good reduction
at each p; and that each p; +1 — a,, divides n 4+ 1 — a,. Since n is squarefree, a,, # 1
(mod p;) trivially implies the third condition of the elliptic Korselt criterion is satisfied
for p;.

If ap, = 1 (mod p;) for some p;, then a, = 1 since |a,,| < 2/p; and p; > 7. By
assumption, p; divides n + 1 — a,, and so p; | 1 — a,,. Thus,

ordy, (a, —1) > 1 = ord,, (n),
so p; satisfies the third condition of the elliptic Korselt criterion. 0O

Lemma 3.4. For N > 7, let 5 < p,q < N be uniformly chosen distinct primes, and let
n =pq. Let E(Z/nZ) be an elliptic curve chosen uniformly among those for which n is
an elliptic Korselt number of Type 1. Then

J\}im Pr[p and q are not anomalous for E and
—00
(p+1—ap)(g+1l—ay) #n+1—a,]=0.

Proof. Let N, p, ¢, and E be as in the lemma statement. By Proposition 3.3, this is
equivalent to the statement that p, ¢ and F are selected in such a way that E(Z/nZ)
has good reduction over F, and F,, and #E(F,) and #F(F,) divide n + 1 — a,." By
Proposition 3.1, the probability that

L'If p = 5 or ¢ = 5, this does not follow from Proposition 3.3, but the probability of this happening
approaches zero as N — 00, so we can ignore this case.
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#E(Z/nZ) = #EFp)#E[F,) = (p+1—-ap)(g+1—ag) #n+1-an

approaches zero as N — oo. Thus, the probability that this condition is satisfied and p
and ¢ are not anomalous for F also approaches zero, as desired. O

Proposition 3.5. Let n be a positive integer and let S be a finite multiset of factors of n.
For each d | n, let mq(S) be the number of multiples of d in S. Then

S k=Y ma(S)o(d).

keS d|n

Proof. This is an induction on the number of elements of S. The theorem is clear for
|S| = 0; suppose it holds for |S| = r. Now let S have r+1 elements and choose k € S. Let
S’ be S with one fewer copy of k; the theorem holds for S’. Adding k to S’ increments
the left-hand sum by k and the right-hand sum by >°;, ¢(d), since mq(S) = ma(S’) +1
for d | k and mq(S) = mq(S’) for all other d. But 3_,;, ¢(d) = k [7, Proposition 2.2.4],
so the statement holds for S. 0O

Lemma 3.6. For N > 7, let 5 < p,q < N be distinct primes chosen uniformly, and let
n =pq. Let E(Z/nZ) be an elliptic curve chosen uniformly among those for which n is
an elliptic Korselt number of Type I. Then

J\;im Prlp and q are not anomalous for E and (p+1—ap)(g+1—ay) =n+1—a,] =0.
—00

Proof. Let N, p, g, and E be as in the lemma statement. We impose the additional
restriction that ¢ > 67; this assumption is harmless as the probability of a randomly
selected prime below N being less than 67 approaches 0 as N approaches co. Assume
that a, #1, ay # 1, and (p+1—ap)(¢+1—ay) =n+1—a,. Hence

0 = Pra—(p+1ag
P qg+1-—2a,

Thus, ¢+ 1 — 2a, divides p+ ¢ — (p+ 1)a,. Subtracting ¢+ 1 — 2a, from the dividend,
we have

q+1=2aq|p—pag+ag—1=(p—1)(1—aq).

Letting ¢ = ay— 1, p’ =p—1, and ¢’ = g — 1, we find that ¢’ — 2z divides p’z. It follows
that

q —2x q —2x

_ ’
ged(q/ — 2z,x)  ged(q, x) kS (6)
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We claim that the probability for randomly chosen 5 < p,q < N that there exists
x € [-2,/q —1,2,/q — 1] such that (6) holds is satisfied approaches zero as N — oo; this
is sufficient to prove our lemma.

To prove this claim, fix ¢ (and thus ¢’) and examine how many values of p’ < N (and
thus p < N) satisfy the condition in (6) for some z in the interval.

For a fixed x, the number of values of p’ divisible by gf(;(_q%“;) is bounded above by

N  Nged(d, ) < 2N ged(¢', )
q —2x ’_ — / '
ged(q’,x) ¢ =2 g

(The last step is justified by the fact that ¢ > 67.) Thus, the total number of values of
p’ that are divisible by —4—>% for some x € [-2,/g — 1,2,/ — 1] is at most

ged(g’,x)
[2va+1] [2va+1]
2N ged(¢', x) 2N ged(q',z) 4N
y o Wedl@e) 5 2WVedldhn) AN NS e, (1)
rxe[—-2,/q—1,2\/q—1] q =1 q =1
z#0
Now, let g(k) = 22:1 ged(x, k). We claim that
[2va+1]
2,/q+1
> ged(dx) < g(d) - fT-
=1

For n implicit, define the multiset S, = {ged(z,n) |z € {a,a+1,...,a +k —1}}.
Observe that for all d | n, holding k constant, mg (S, %) is minimal for ¢ = 1. It follows
from Proposition 3.5 that

a+k—1

Z ged(x,n) (8)

is minimized for a = 1. In particular, let h(a) be (8) with n = ¢’ and k = |2,/ +1].
Note that

h(1) +h(2) + -+ h(q") = g(d") - 12y + 1], (9)

since the fact that ged(q’, ¢’ + x) = ged(¢’, z) means that for every z € {1,2,...,4¢'}, =
appears |2,/ + 1| times in (9). Since h(1) is the smallest value among the ¢’ values in
(9), we obtain

|2va+1]

! / 2 +1
3 gcd(w)ﬁg(q)-—*/j , (10)
=1

as desired. Combining (7) and (10), we obtain
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[2va+1]
2N ged(q', 4N 4N 2,/q+1
> # <— Y gd(d 7)< —-g(d) \f—,
r€[~2/G—1,2/G—1] q A — q q
z#0

Now, the number of primes p < N is on the order of logL'N' Thus, the probability that
p is chosen so that (6) holds for some z is

0 (Axl(zzig’Ng(q’) : 2\/37+1> =0 (logN - gld)a ™). ()

It is known that g(k) = O(k'*€) for every positive € [2, Theorem 3.2]. Combining this
with the bound (11), we see that the probability of (6) holding is O <logN . q%l+€) for
every positive €, as a function of ¢ and N.

Now we express the probability that (6) holds as a function of just N, randomly
choosing ¢ to be a prime below N. The probability that ¢ < N 2 is on the order of

N'/2/log N'/2 2Nz
N/logN N’

which is on the order of Nz . If g > N2, then the probability that (6) holds is
O (logN -N 7T1“) for all e. Thus, the total probability is at most on the order of

N7 + log N - N%“, which approaches zero as N — co, and so we are done. 0O

Theorem 3.7. For N > 7, let 5 < p,q < N be uniformly chosen distinct primes, and let
n =pq. Let E(Z/nZ) be an elliptic curve chosen uniformly among those for which n is
an elliptic Korselt number of Type 1. We have

lim Pr[p and q are anomalous primes for E] = 1.
N—o0

Proof. A result of Deuring [4] states that for all primes p, for every integer —2,/p <t <
2,/p, there is an elliptic curve over I, with order p + 1 — ¢. In particular, for every p
there is an elliptic curve that is anomalous over IF,,. Thus, for any two primes p and ¢, we
may use the Chinese Remainder Theorem to construct a curve over Q that is anomalous
both when reduced over F, and over F,. It follows by Proposition 2.3 that for all (p, q)
there is a curve FE that makes p and ¢ anomalous and therefore makes n = pq elliptic
Korselt number of Type 1.

Suppose now that n = pq is an elliptic Korselt number of Type I for some elliptic
curve E. Then the cases in which p and ¢ are not both anomalous primes for E are as
follows:

(1) Exactly one of p and ¢ is anomalous for E.
(2) Neither p nor ¢ is anomalous for E, and (p+1—a,)(g+1—ay) #n+1— ay.
(3) Neither p nor ¢ is anomalous for E, and (p+1—a,)(g+1—aq) =n+1— ay,.
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Lemmas 3.2, 3.4, and 3.6 show that the probability that p, ¢, and E satisfy cases (1),
(2), (3), respectively, goes to zero as N — oo. Therefore, as N — oo, the probability
that p and ¢ are both anomalous for F approaches 1. This completes the proof. O

A natural follow-up question to ask is whether Theorem 3.7 holds not just for products
of two primes, but in general. In other words, we may ask whether the following conjecture
holds.

Conjecture 3.8. Let N > 35 and let n be a random positive integer less than or equal to
N with the property that n is a product of distinct primes pi,...,px (with k > 2) that
are all greater than 3. Let E(Z/nZ) be an elliptic curve chosen uniformly among those
for which n is an elliptic Korselt number of Type I. Then

lim Prpi,...,pr are anomalous primes for E] = 1.
N—oc0
We have experimental evidence in favor of this conjecture; see the appendix for details.
4. Conclusions

Fix an elliptic curve E. Then Proposition 2.3 and Proposition 11 from [10] give the
following implications.

Prop. 2.: Prop.
product of anomalous primes Prop. 2.3, elliptic Korselt Type pLrop- 1, elliptic Carmichael

These implications, together with Theorem 1.2 from [8], imply the following result.

Corollary 4.1. Assuming the Hardy-Littlewood Conjecture, there are infinitely many el-
liptic Korselt numbers of Type I for the curve E : y? = x> + D, where D € 7 is neither
a square nor a cube in Q(v/=3) and D # 80d° for any d € Z[(1 + /=3)/2].

In section 2, we explore the strictness of the left-most inclusion in the above diagram.
Theorem 2.5 establishes deterministic conditions under which an elliptic Korselt number
of Type I can be a product of anomalous primes. Furthermore, for n = pq a product
of two distinct primes, Theorem 3.7 states that nearly all the elliptic curves that make
n an elliptic Korselt number of Type I also have n a product of anomalous primes. If
Conjecture 3.8 holds, then in fact anomalous primes form the building blocks of nearly
all squarefree elliptic Korselt numbers of Type I — not just those that are products of
two primes. Because the Lang-Trotter conjecture has been proven “on average” in [3],
Wwe can say more.

Corollary 4.2 ([5]). Let E(a,b) denote the elliptic curve y*> = x3+azx+b, and let 77115((1717) (x)
denote the number of anomalous primes of E(a,b) less than or equal to x. Take A, B >
227 for some € > 0 and fix ¢ > 0. Then for all d > 2c, and for all elliptic curves E(a,b)
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with |a| < A and |b| < B, there ezists a constant C > 0 such that the following inequality
holds with O ( AB) many exceptions:

N3

Th(an) (@) = Cpmy o) — (12)

C

¢ )
log® x

where we define

mpe) = [ B X g
J 2Vtlogt logx
2 l2fl71)
1 '_%1:[ I—D@E-1)

Since C7 > 0, the right-hand side of (12) goes to infinity as x — co. In particular,
Corollary 4.2 gives the following.

Corollary 4.3. All but a density zero set of elliptic curves have infinitely many anomalous
primes, and thus also have infinitely many elliptic Korselt numbers of Type I.
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Appendix A. Numerical evidence for Conjecture 3.8

We wrote a program that takes as input an integer N, randomly chooses a positive
integer n between N and 2NN with the property that n = p; ... pg for k > 2 distinct primes
that are greater than 3. For each p;, we select a,, from a semicircular distribution of
radius 2,/p; (since this is how traces are distributed).” If the resulting traces describe a
curve ' with the property that n is an elliptic Korselt number of Type I for E, we check
whether every a,, is 1. We do this until we have a sample size of 1000 (i.e. have found a
thousand random values of n and curves F such that n is an elliptic Korselt number of
Type I for E). Below is our experimental data for Pr(/N), which is the fraction of these
1000 curves whose values of a,, were all 1 (Fig. 1).

2 This is in effect the same as picking an elliptic curve with random coefficients, since n is square-free and
by the Chinese remainder theorem picking random coefficients and reducing modulo each prime is the same
as picking random coefficients modulo each prime (and so the traces of an elliptic curve modulo different
primes are independent random variables).
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N  Pr(N)

26 0.194

27 0.280

28 0.317

29 0.300

210 0.356

21t 0.404

212 0.436

213 0.455

214 0.467

215 0.547

216 0.572

217 0.586

218 0.600

219 0.670

220 0.651

221 0.684

222 0.744

223 0.746

224 0.785

225 0.788
.8
6
Pr(N) 4
2

0 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25

log,(N)

Fig. 1. Pr(N) vs. log,(N).
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