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Abstract—With an increasing number of extreme events, grid
components and complexity, more alarms are being observed
in the power grid control centers. Operators in the control
center need to monitor and analyze these alarms to take suitable
control actions, if needed, to ensure the system’s reliability,
stability, security , and resiliency. Although existing alarm and
event processing tools help in monitoring and decision making,
synchrophasor data along with the topology and component
location information can be used in detecting, classifying and
locating the event, which is the focus of this work. Phasor
Measurement Unit’s (PMU’s) data quality issue is also addressed
before using data for event analysis. The developed algorithms
include statistic, clustering, and Maximum Likelihood Criterion
(MLE) based anomaly detection, Density-based spatial clustering
of applications with noise (DBSCAN) for event detection and
physics-based rule/ decision tree for event classification. Further,
topology information, statistical techniques, and graph search
algorithms are used for event localization. Developed algorithms
have been validated with satisfactory results for IEEE 14 bus
and 39 Bus as well as with real PMU data from the western US
interconnection (WECC).

Index Terms—PMU, Anomaly Detection, Event Detection,
DBSCAN, MLE, Graph Theory.

I. INTRODUCTION

HE power system can become more resilient and less

susceptible to large outages if the operators have a wide
area, real-time view of the system [1], [2]. The operators need
to take control actions based on several alarms that appear in
the Energy Management System (EMS). The motivation be-
hind this study is to develop a tool using PMU measurements,
which can help enhance the decision making capability of
operators in the control room supplementing EMS [3]. In this
work, goal is to detect, classify, and locate the physical power
system events occurring frequently in the system. Example
of these events include line faults, load changes, capacitor
bank switching, and generator outages. Proposed algorithm has
multiple steps: 1) detect anomalies, 2) classify anomalies into
an active power event, reactive power event or fault events and
3) locate event. It is proposed to first detect and then classify
events into an active power event, reactive power event or
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fault events. A generator drop is an example of active power
event, whereas switching of a capacitor bank is a reactive
power event. Short circuits are classified as faults. In an active
power event, the active power flow between the buses changes.
A reactive power event affects the reactive power flowing in
the line and the voltage of the buses. In case of faults, the
current dramatically increases and the voltage can drop down
invariably. There will be large frequency variation and the rate
of change of frequency increases to a very high value near
the fault location [4]. The first step of the event detection
algorithm is to detect these changes. Changes in the operating
conditions are an indicator of a power system event.

There have been several studies about event detection using
moving average value [5], linear principal component analysis
based approach to analyze dimensional reduction of syn-
chrophasor data [6], geographical visualization of PMU data
[7], wavelet-based event detection [8], dynamic programming
swinging door trending (SPSDT) [9], and [10] attempts to
classify events using energy similarities and a temporal local-
ization. Past work in literature has been reported to classify
limited number of events as faults [11], cascading events [12],
and cyber events [13]. Cyber event detection and classification
has been studied in [14], [15] , however, in this work, focus is
only to detect, classify and locate the physical power system
events.

Most of the existing work related to event detection and
classification methods do not classify events in a comprehen-
sive and automated manner, and hence do not provide the exact
location of events.

PMUs are known to have bad data present in the streaming
data due to several reasons such as time synchronization error,
communication problem sampling or simply due to error in
field measurements [16], [17]. There can be data loss or offset
in the measurements. Efforts have been made in the past to
curb the effect of data anomalies in the PMU measurements
[18], [19]. We have developed an ensemble technique that
uses statistical and clustering algorithms as base detectors and
unsupervised machine learning [20], [21]. Prony analysis [22]
has been used to differentiate between bad data and event data
to further enhance precision of the developed algorithm.

This paper is motivated to provide real-time event detection,
classification, and localization with root causes for decision
making by operators along with possible data anomalies in the
PMU data. Processed data has been used for event detection. It
is more than likely that multiple PMUs capture the same event
in the system. For example, if a capacitor bank is switched
on at a bus, it changes the steady-state voltage magnitude
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of that bus and can also change the voltages of neighboring
buses. A PMU placed at the neighboring bus will also detect
the capacitor bank switching. Based on this, we compute
scores for each event seen by each PMUs. This helps in the
formation of a sub-network in a large network and identifying
the location of the event. The key contributions are itemized
below:

e Synchrophasor anomaly detection (SyncAD) tool based
on statistical and ‘Maximum Likelihood Estimation
(MLE)’ technique aided with prony analysis to increase
precision of anomaly detection.

« Event detection based on the data-driven ‘cluster change’
technique and classification into active power, reactive
power and fault event types based on physics-based rule/
decision tree. In our understanding, this work is one of the
first to integrate physics and data analytics for anomaly
detection, event classification and localization.

o Real time event localization using graph theoretic ap-
proach and statistical score computation including Shan-
non entropy, standard deviation, range, mean difference,
crest factor.

Developed methodology for detecting anomalies in the
PMU data set are presented in section II and the proposed
event detection, classification and localization technique in
section III. Test cases are discussed in section IV and the
simulation and results are provided in section V. Finally,
conclusions are provided in section VI.

II. SYNCHROPHASOR DATA ANOMALY DETECTION

PMUs may have anomalies e.g. outliers or missing data.
Outliers may look like certain measurements being off by say,
10 % of the actual measurement whereas, the missing data
might just appear as ’0’. Synchrophasor Anomaly Detection
tool called SyncAD has been developed to address these as
shown in figure 1. The tool uses Linear regression [23], Cheby-
shev [24], and DBSCAN [25] as statistical and clustering-
based base detectors. These base detectors are independent
and make decisions on a data point being an anomaly or
good. Since they follow a different scale their outlier scores
are normalized, followed by an ensemble-based learning al-
gorithm. Once the model is learned the inference algorithm
helps in comparing new data with the learned data and decide
on anomaly data. Since the event data points can also be
detected as anomalous points, we use prony analysis to detect
the transient window and segregate event points form anomaly
point to obtain bad data. Once the transient window is detected
all the data points which were said to be bad, are unflagged and
considered as a normal data point, if they lie in this transient
window. Finally, depending upon the application the data can
either be flagged as bad data or can be replaced by imputing
as explained in [26].

A. Base Detectors

The base detectors used are Linear regression, Chebyshev,
and DBSCAN method. The DBSCAN method is discussed
later in this paper. The thresholds for DBSCAN, when used

as a base detector, is different as the idea is not to detect event
points as anomalies.

1) Linear regression-based detector: A regression line
model is obtained for the data selected in the window
(typically 1 second) by minimizing the sum of squared
residuals (i.e. the vertical distance between data points
of the window and the regression line). The regression
line is represented as below:

Regression Line = Sz + « (1)

where, $ is the slope, « is the y-axis intercept of
the regression line, and x is the closest point on the
regression line from the actual data point. Based on this
regression line, data points lying outside the low or high
thresholds are considered as possible bad data. The high
and low thresholds are set based on (2) and (3) below:

High Threshold = Sx + o + k * dev 2)
Low Threshold = Sx + a — k * dev 3)

where, parameter ‘k’ is the number of standard devi-
ations, a preset number that decides the high and low
thresholds and ‘dev’ is the root mean squared value of
y-distance from the regression line as given by (4).

1 N 2

- x(i) — regression(4) 4)
i

dev =

where N is the number of points within the window, and
x(i) and regression(i) are the actual and regression line
data points respectively.

2) Chebyshev-based detector: This detector is often used
when the distribution of the data set is unknown. It is
a two-step process. A strict threshold is applied in the
first step. Data points crossing this threshold are omitted
for the next step. In the second step, the threshold is
again computed but ‘k’ is larger than the first step.
Now the omitted data points are checked to be within
this relaxed threshold. If they still fail to lie within this
wider threshold, it is considered to be an anomaly point.
Chebyshev’s inequality is shown in (5):

PX —pl < ko) > (1 - ) ©
where ‘X’ represents the input PMU data, ‘u’ is the
mean of data within a window, ‘o’ is the standard devi-
ation of the data within the window, and ‘k’ represents
the number of standard deviations from the mean.

B. Ensemble Method

The architecture of the bad data detection algorithm is
shown in Fig-1, called as Synchrophasor Anomaly Detection
(SyncAD). The base detectors make anomaly detection as-
sessment independently on the PMU data and followed by the
normalization of the scores using expectation maximization
(EM) algorithm [27]. Once the outlier scores from the base
detectors are normalized, it is then used to determine the MLE-
ensemble model. The unsupervised learned MLE model is then
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Fig. 1: Developed Data Flow Architecture for Anomaly Detection and Event Detection
fed to an inference algorithm which also takes as input the new The logarithm of the singular values ds,ds,--- ,ds are

set of normalized scores and makes an assessment on points
to be an anomaly.

C. Prony-based transient window estimation

The Prony analysis [22] is used to determine the transient
window, which is usually a result of an event in the system.
Here the Prony analysis is used to determine the steady-state
window. A steady-state window of voltage magnitude might
have small oscillations due to PMU measurement uncertainty.
These small oscillations are modeled as noise by the window
selection filter. The window selection filter is designed by
arranging the sampled values of the voltage magnitude mea-
surements in the Hankel matrix Y as shown in (6). The method
is rigorously tuned on simulated data as well as industry data
(PMU) to obtain the transient window. A 2.5-second window
(this size window selection provides a trade-off between speed
and accuracy) of voltage measurement data is used, the total
number of samples for a 2.5-second window having a PMU
reporting rate of 120 frames per second is J=300.

g0 (1) ..y -1
y(1) () u(d)
Y = (6)
(-1 y&) . yT-1)

The rank of the Hankel matrix where the elements of
the matrix such as y(0), is the first element of the mea-
surement window of 2.5 seconds, is estimated by the eigen-
decomposition of the sample correlation matrix as follows:

QSQ' =YY = Ryy N

where () is an orthogonal matrix whose columns are the
eigenvectors of Ryy; and S is the diagonal matrix, which
has the singular values of the sample correlation matrix in
descending order of magnitude, and can be expressed as:

S =diag(d; > dy > ... > dx > ...>d%) (8)

divided by the logarithm of the first singular value, which
is denoted by:

(©))

The p singular values from d; to d, corresponds to the
complex sinusoidal presented in the signal. The remaining ‘2’ -
p singular values from dp; to d 4 corresponds to noise. The
values of oy for & = 2,3,--- p depend on the amplitude
frequency and damping of each component.

The singular values of the matrix Y consist of signal sin-
gular values and noise singular values. For a perfect noiseless
signal, the noise singular values are zero. Hence, even a DC
signal will have one singular value with a finite real part and
zero imaginary part. A signal with more variation will have
many significant singular values. We have analyzed offline
by randomly generating the matrix from continuous voltage
measurements, whether the matrix is singular. We could never
find a case when the determinant of the matrix was zero and
the matrix to be singular for continuous PMU measurements.
However, as an extra step, the algorithm could be updated
to check for the singularity and if found to be singular the
matrix could be formed by shifting the measurements by say
10 measurement points. This will not affect the performance
of the algorithm as we are only interested in the dominant
modes and we want to determine if the given window is a
transient or a quasi-steady state window. Here we are only
interested in the dominant modes (one or two modes) which
are less than the dimension of the matrix.

A transient window has more frequency modes due to
transients and oscillations. The threshold for o is set as -
4.27 by tuning it using the known events obtained from real-
time digital simulator (RTDS) simulation and industry data for
transmission PMUs but it works well for D-PMUs [28]. Data
points lying in the transient window if flagged as bad data by
the ensemble method are unflagged as normal data resulting
in higher precision.
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III. EVENT DETECTION, CLASSIFICATION AND
LOCALIZATION

The operating point changes in voltages, currents, active
power flow, reactive power flow, and frequency are detected.
Once the events are classified the top PMUs are chosen based
on statistical parameters and normalized scores. Using the top
PMUs a sub-Graph is formed and a graph sweep algorithm is
used to detect the location of the event. The event detection
algorithm architecture is shown in Fig 1.

PMU data is first checked for data anomalies or missing
data using the anomaly detection algorithm and the detected
anomalies are then imputed using the average of the following
and preceding data points. After the clean data is obtained,
active and reactive power flows are computed using the PMU
data given by equations 10 and 11, before feeding all the

operating condition parameters to DBSCAN algorithm.
Pij = 3% [V | * [Lij] * cos(Vangte — (10)

(11)

Iangle)

Qij =3 |V£L| * |Iij| * Sin(Vanglc - Ianglc)

Where,

P;; and Q;; are three phase active and reactive power
injection (p.u) in line i & j

1;; is the line i & j current (pu)

VE, is the line to line voltage in (pu)

Vangle and Igpq1. are voltage and current angles.

A. Event Detection using DBSCAN

Voltage (V), current (I), active power flow (P), reactive
power flow (Q) and frequency (Fz), from all the PMUs, are
fed to the DBSCAN algorithm.

The DBSCAN algorithm [29] uses two parameters € and the
minimum number of points (MinPts). Data points lying within
the € radius of a cluster becomes the part of the Cluster-1. Once
an event occurs, the operating points change and the next point
in the time series data is out of reach of the first cluster as
shown in Fig 2. As the next steady state is reached, a new
cluster with a new operating point is formed. Our interest is
to detect the boundary point instance of the first cluster, i.e.
cluster change point.
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Fig. 2: DBSCAN

B. Event Classification

These instances are then fed to a physics based rule/
decision tree for event classification as explained below:

1) Active Power Event: If there are cluster change in
current measurement and calculated active power, flow
whereas no changes in cluster of voltage measurement
and calculated reactive power.

2) Reactive Power Event: If there are cluster change in
voltage measurement and calculated reactive power mea-
surement whereas no changes in cluster of current mea-
surement, calculated active power and frequency.

3) Fault Event: If cluster changes in voltage, current, active
power, reactive power, and in frequency is observed,
then it is a fault event.

This active, reactive and fault event classification is done as
shown in Fig 1.

C. Event Localization

The location of PMU’s placement plays an important role
in better observability [30] and localization of events. When a
power system event occurs it causes ripples across the system
just like when a stone is thrown in calm water. The disturbance
at the point of impact of stone is more, but, it dies out soon and
at the other end of the lake, no such disturbance can be visibly
detected. Similarly, the PMUs can detect the events if they are
near the event location and in some cases, multiple PMUs can
detect the events. Fault events have a larger impact and their
signature can be detected in multiple PMUs, however an event
such as a load change, transformer tab change are local events
and their signature is not strong enough to be picked up by
PMUs far in the electrical distance in the network. Therefore,
we compute statistical parameters and get a combined score to
decide the PMUs that have the strongest signal for a particular
event. This method is useful in extracting information based
on PMU data.

1) Scores of PMUs: Once the event point instance is
detected we compute five statistical parameters that define the
event signatures.

o Shannon Entropy: An event changes the quasi steady-
state nature of the power system. The PMUs capture
these events and they contain information regarding the
magnitude and nature of the event. In information theory,
Shannon entropy is defined as a metric that can capture
the information [31]. A window of 30 samples is formed
around the event instances taking 15 points before the
event and 15 points after the event instance. Shannon
Entropy is computed as per equation 12.

N
SE=-) X?log(X}) (12)

i=1
where ‘X’ is the data stream and ‘i’ is the point in the
window of length ‘N’.

« Standard Deviation: One of the best measures that define
the data distribution and in our case the magnitude of the
disturbance caused by the event in PMU data. Standard
Deviation is computed as per equation 13.
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T
o= NZ(Xi_”)Q (13)
i=1

where ‘X’ is the data stream, ‘i’ is the point in the window
of length ‘N’ and p is the mean of data window ‘N’.

o Range : This is an important measure that contains the
variation in the PMU data during the event. It is computed
using equation 14.

Range = |max(X;) — min(X;)] (14)

where the data X ranges from ‘i=1" to ‘i=N" and ‘N’ is
the window length.

« Mean difference: A mean difference is computed using
data points which are before and after the event instance.
Once the transient settles and steady-state is reached the
mean difference of the two steady-state has information
on the magnitude of the operating point shift. It is
computed using equation 15

MD = ‘/‘Clusterl - ,UfCluster2| (15)

where Cluster 1 is the data window before the event
and Cluster 2 is the data window after the event with
15 samples each.

o Crest Factor: It is a measure that defines how severe is a
peak during events. A PMU close to the event will have a
higher crest factor than a PMU which is farther from the
event location. Crest factor is computed using equation
16.

o - max()

N Zi:l (X;)?
where the data length is the same as used to compute all
the other factors except MD.

(16)

The nearest PMU from event location in terms of electrical
distance will see more prominent event signatures. The respec-
tive values of the above discussed statistical measures would
be higher.

It is hard to compare the scores of each measure computed
above across PMUs, so it is useful to normalize the score.
Normalization helps in the identification of prominent PMUs
for a particular event by comparing the single point scores. In
our case, the normalized score is computed as per equation
17.

NS = (SE+ CF) * (0 + Range + MD) (17

To understand better, the statistics based score comparison
for a transformer tap change event that occurred at 253 seconds
of the simulation are plotted in Fig 3. Voltages and reactive
power flow for bus 6 and bus 13 are plotted on the primary
axis and secondary axis respectively.

It can be seen that the nature of the graphs look similar but
there operating points are different and so are the statistical
factors. These factors are presented in Table I. The normalized
score for this case points that bus 6 PMU has a higher score
as compared to the PMU placed on bus 13. Therefore it can
be concluded that the PMU on bus 6 is closer to the event as
compared to bus 13 PMU.
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Fig. 3: Transformer Tap Change Event

TABLE I: SCORE COMPARISON FOR EVENT

Bus SE m Range MD CF NS
6 1.15  0.042 0.08 0.083 2.16 0.68
13 1.15  0.031 0.061 0.062 2.12 0.51

2) Forming Sub Graph and Graph Sweep: The next step
after event classification and normalized score computation is
to select the top PMUs based on the scores. Certain events
are detected by several PMUs as their system-level impact is
higher. A fault event would be seen by multiple PMUs and
a transformer tap change or a load change would be sensed
locally by PMUs at those buses, at adjacent buses or PMUs
placed close to the event bus in terms of electrical distance.
We use Dijkstra’s Algorithm [32] to find the shortest path
and store it offline for a particular system. The process of the
selection of a subgraph is explained in Algorithm 1. It has
to be noted here that a subgraph formation can be an offline
process. Based on the PMUs of interetst the subgraph can
be chosen for graph sweep analysis and updated only when
network changes.

IV. TEST-BED AND TEST CASES

A. Test-bed architecture

Fig. 4 shows the architecture of the test bed setup created
using Real Time Digital Simulator (RTDS) [33] to test the
algorithm. The setup is comprised of four layers. The first
layer is the physical layer which is the first stage in the setup
to model the power grid. The second layer is the sensor layer
that includes all the measurement devices (PMUs). The third
layer, real-time data archival layer, collects all the data from
each substation and is located centrally in the control center.
OpenPDC software has been used to archive the data for test
cases in the lab. The final layer is the application layer where
PMU data cleaning, and event detection algorithm is run. It
delivers the output to an action layer which is not part of
the test setup. However, during the field implementation the
operator can have a better situational awareness or take control
actions to operate the power system in a resilient and reliable
manner.
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Algorithm 1 Sub Graph and Graph Sweep

Input: Shortest Path Graph : Sq; FEvent Type
Output: Sub Graph, Event Location
1: Compute Normalized Score [eq.17] for each PMUs
Form Sub Graph
2: if Number of PMU > 1 then
3:  Select top 2 PMUs based on NS
4 Radius= Shortest Distance(PMUPB PMUBu?)
s Sub Graph= Buses from PMUBusl PMUBus?
within Radius
else
Number of PMU = 1
Sub Graph= Adjacent Buses from PMUPBus!
end if
Graph Sweep
10: Total Bus= Buses(Sub Graph)
11: for each bus n € T'otal Bus do
12: if Fvent Type = Reactive then

0 ° 3D

13: Location = Reactive Power Capability Bus
14:  else if Event Type = Active then

15: Location = Active Power Capability Bus
16:  else if Fvent Type = Fault then

17: Location = PMUPB" with highest NS

18:  end if

19:  FEwvent Location = Location

20: end for

21: return Sub Graph, Event Location

Situational Awareness &
Control Actions

* Operators
Action Layer * Situational Awareness
* Control Actions
* PMU Anomaly Detection
o b * Event Detection and
‘ Fpltetiterm [y Classification
‘ Data Archival Layer

* Event Localization
e —
Sensor, Control and
Database Layer |

£ .;_-. ta'n =0
Power System Layer r £ Vase "l

Situational Awareness
Applications

Communication System,
Data transfer

-

DNP-3, €37.118, IEC61850
N
o= -

Bl =5 e

Relays Sensors

»

O

PMU, SCADA
Measurements

»

Field System

Power System Modeling
RSCAD/HYPERSIM RTDS

Testbed Layers Field Implementation

Fig. 4: Test-bed architecture and Field Implementation

B. Test Cases

IEEE 14-bus and IEEE 39-bus system were modeled in
RTDS and different events were simulated. 5 PMUs were
placed on different buses. The sampling rate of 30 samples/
sec was set for each PMUs. Three cases were modeled with
different events and PMU placement as discussed in the test
cases below:

1) Case 1: As seen in Fig 5 the IEEE 14 bus system, 5
PMUs on buses 2,6,8,9 and 10 were placed which monitored
the currents flowing in lines 2-Gen, 6-11, 8-Load, 9-7 and 10-9

6

respectively.

Three Winding Transformer
13 Equivalent
9

14
8
7
— 4

e

Fig. 5: Generating Test Cases using RTDS-Casel
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A cap bank was placed on bus 9 which was operated at
different time instances whereas a load was placed on bus 8
and the 3-phase fault was modeled on bus 10.

2) Case 2: The location of PMUs and events were changed
for this case. In IEEE 14 bus system, PMUs were placed on
buses 2, 6, 7, 9 and 13, which monitored the currents flowing
in lines 2-Gen, 6-11, 7-4, 9-7 and 13-14 respectively. Capacitor
banks were placed on bus 9 and 3, the fault was modeled
on bus 13, the tap of the transformer between 6 and 5 was
operated and the load was placed on bus 8.

3) Case 3: As seen in Fig. 6 the IEEE 39 bus system,
5 PMUs on buses 4,12,17,22 and 39 were placed which
monitored the currents flowing in lines 4-3, 12-11, 17-16, 22-
21 and 39-9 respectively.

@ Generators
@ Cap Banks

P-Q Load

Fig. 6: Generating Test Cases using RTDS-Case3

Capacitor banks were placed on bus 4 and bus 15. Ad-
justable loads were placed on bus 13, 18 and 39. Faults were
modeled on bus 8 and bus 19. The generators on Bus 38 and
bus 32 were dropped during the simulation at different time
instances.

4) Real Data from Industry Partners: A 10-month PMU
data from different PMUs provided by Bonneville Power
Administration (BPA) was analyzed. An event list of frequency
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TABLE II: PERFORMANCE OF ANOMALY DETECTOR

lists was recorded by BPA and the data were analyzed using
the developed techniques at Pacific Northwest National Labs

S. No.  Precision Recall

(PNNL). The Field Plot of a PMU data with calculated active
. . . . 1 0.9560 0.9842
and reactive power flow is shown in Fig 7. The topology and 5 0.9478 0.9842
location of the PMU are not presented due to confidentiality. 3 0.9436 0.9836
4 0.9468 0.9864
— 5 09688 09842
102 Yo ' 6 0.9280 0.9948
ol f - 7 09764 09640
B 8 0.9834 0.9860
o8 9 0.9356 0.9836
00 o ) 10 0.9815 0.9932

time (s)

Frequency

sssss

300 400

Fig. 7: Field Data Plot showing step changes in parameters

V. SIMULATION AND RESULTS
A. Anomaly Detection

Anomalies were manually inserted in the two test cases
and the anomaly detection algorithm was applied. The results
are presented in terms of precision and recall. Recall or true
positive, given by equation 18, is the proportion of inserted bad
data that were correctly identified by the algorithm. Precision
is the proportion of inserted bad data that were correctly
identified over the total number of times data were identified
as bad data by the algorithm computed using equation 19.

Recall — Detected Bad Data N Actual Bad Data (18)
coat = Actual Bad Data

Detected Bad Data N Actual Bad Data
Detected Bad Data

Precision =
(19)

First 5 values are for 5 PMUs of case-1 and next 5 are
for 5 PMUs of case 2. In table II, it can be seen that the
ability to detect the inserted bad data given by recall is above
98 % in most cases and to precisely detect it, i.e. without false
detection is around 95 %.

In table III, a comparison of SyncAD vs other methods is
presented. A case 3 data set for PMU on bus 4, with 10% bad
data was analyzed for bad data by different methods. The recall
for MLE Ensemble and SyncAD is similar and better than
all the other methods, however, SyncAD has better precision

compared to other methods as SyncAD uses Prony analysis to
differentiate between event points and bad data points.

TABLE III: COMPARISION OF SYNCAD VS OTHER

ANOMALY DETECTION METHODS

m — L . = S. No. Precision Recall

Linear Regression [23]  0.8565 0.9021

T ( DBSCAN [34] 0.8821 0.8821

a x: 405 o Chebyshev [24] 0.8754 0.9154
! K Means [35] 0.8554 0.9298

e . . - — - MLE Ensemble [21] 0.8913 0.9351

SyncAD 0.9648 0.9351

B. Detection and Characterization of Events

The simulation results for case 1 and case 2 can be seen
from table IV and VL It is clear from Table IV that all the
events were detected successfully, except for an active load
change on bus 8 at 188 seconds in case 1. The reason for no
detection is that the load change was of a very low magnitude
i.e. less than 0.05 pu. In case 2 the same load change at the
instant of 188 sec was undetected and a cap bank operation
on bus 3 at the 240 seconds was undetected. The cap bank
operation was not detected by any of the PMU’s because in the
same instance there was a 3 phase fault on bus 13. Therefore
the fault signature dominated the cap bank operation signature.
In case 3, the number of buses increased whereas PMUs used
were only 5. The PMUs were placed at buses which were
closer to the modeled events to detect the signature of events.
It detected all the events except the P load increase at 325
seconds. This event’s signature was shadowed by the three-
phase fault event.

C. Score Computation, Sub-graph and Graph Sweep

Normalized scores for PMUs that detected a particular event
are computed and the top 2 PMUs are chosen and sub-graph is
formed. If only 1 PMU detects the event the sub-graph consists
of the PMU bus and adjacent buses, as shown in Fig 8. The
sub-graphs can also be computed and stored offline to make
the process fast. The formation of sub graphs can be changed
according to the power system model.

Once the sub graph is formed and the type of event is
known, a Graph Sweep algorithm is run which queries each
bus for the capability that they possess. In case 1, at 109 s,
PMUs at Bus 9 and 10 detected the events but the score of Bus
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TABLE IV: SIMULATION RESULT- CASE 1

S No. Time (s) Actual Event Actual Location Detection Bus Classified Event Normalized Score
PMU 1 PMU 2 PMU 1 PMU 2
1 109 Cap bank closed Bus 9 9 10 Reactive Power Event 0.22 0.14
2 119 Three phase fault Bus 10 10 9 Fault Event 37.25 23.54
3 132 Cap bank opened Bus 9 9 10 Reactive Power Event 0.23 0.13
4 148 P load decreased Bus 8 8 - Active Power Event 2.11 -
5 158 Cap bank closed Bus 9 9 10 Reactive Power Event 0.20 0.12
6 168 Three phase fault Bus 10 10 9 Fault Event 48.06 26.86
8 179 Cap bank opened Bus 9 9 10 Reactive Power Event 0.24 0.16
8 188 P load increased Bus 8 - - No Detection - -
9 198 Q load increased Bus 8 8 9 Reactive Power Event 0.90 0.36
10 209 P load decreased Bus 8 8 9 Active Power Event 2.07 0.72
11 219 Q load decreased Bus 8 8 9 Reactive Power Event 1.15 0.62
12 229 Gen drop Bus 2 2 - Active Power Event 2.73 -
TABLE V: SIMULATION RESULT- CASE 2
S No. Time (s) Actual Event Actual Location Detection Bus Classified Event Normalized Score
PMU1 PMU 2 PMU1 PMU 2
1 109 Cap bank closed Bus 9 9 7 Reactive Power Event 2.15 2.11
2 119 Three phase fault Bus 13 13 9 Fault Event 26.56 11.09
3 132 Cap bank opened Bus 9 9 7 Reactive Power Event 1.89 1.84
4 148 P load decreased Bus 8 7 - Active Power Event 2.61 -
5 158 Cap bank closed Bus 9 9 7 Reactive Power Event 2.26 2.25
6 168 Three Phase fault Bus 13 13 9 Fault Event 40.32 12.92
7 179 Cap bank opened Bus 9 9 7 Reactive Power Event 1.58 1.57
8 188 P load increased Bus 8 - - No Detection - -
9 198 Q load increased Bus 8 7 9 Reactive Power Event 0.74 0.67
10 209 P load decreased Bus 8 7 9 Active Power Event 2.71 0.68
11 219 Q load decreased Bus 8 7 9 Reactive Power Event 0.85 0.79
12 229 Tap down Bus 6 6 - Reactive Power Event 0.62 -
13 240 Three phase fault Bus 13 13 9 Fault Event 20.72 15.37
14 240 Cap bank closed Bus 3 - - No Detection - -
15 253 Tap up Bus 6 6 13 Reactive Power Event 0.68 0.51
16 263 Gen drop Bus 2 2 - Active Power Event 2.06 -
TABLE VI: SIMULATION RESULT- CASE 3
S No. Time (s) Actual Event Actual Location Detection Bus Classified Event Normalized Score
PMU1 PMU 2 PMU1 PMU 2
1 50 P load decrease Bus 18 17 4 Active Power Event 0.63 0.52
2 80 Cap bank closed Bus 4 4 17 Reactive Power Event 2.34 2.07
3 138 Q load decrease Bus 13 12 - Reactive Power Event 0.47 -
4 170 P load decreased Bus 39 39 - Active Power Event 1.53 -
5 200 Three phase fault Bus 8 39 4 Fault Event 39.32 24.86
6 235 Gen drop Bus 32 12 - Active Power Event 3.08 -
7 260 Cap bank Closed Bus 15 17 22 Reactive Power Event 1.68 1.43
8 270 P load increased Bus 18 17 4 Active Power Event 0.86 0.73
9 300 Q load increased Bus 13 12 - Reactive Power Event 0.74 -
10 325 Three phase fault Bus 19 17 22 Fault Event 34.59 29.65
11 325 P load increase Bus 18 - - No Detection - -
12 330 Cap bank opened Bus 4 4 17 Reactive Power Event 2.24 1.93
TABLE VII: EVENT DETECTION AND ANOMALY DETECTION ALGORITHM TIMELINES
Case PMUs  Data Length(s)  Anomaly Detect.(s)  Event Detect.(s)  Event Localiz.(s)  Total Time(s)  Total Time per Window(s)
Case-1 5 269 2.10 20.01 3.01 25.13 0.09
Case-2 5 300 242 22.65 32 28.27 0.09
Case-3 5 350 2.68 23.89 54 31.97 0.09
Industry 5 272 4.01 16.97 - 20.98 0.07
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9 was higher and only Bus 9 has the capability of causing a
reactive power event. Therefore, it can be easily concluded that
the cap bank at bus 9 was operated. In case 3, the generator
drop event at 235 seconds was detected and classified as an
active power event, but it could not be located. Bus 32 was
not adjacent to bus 12 and it did not lie in the current sub-
graph formation scheme, that was formed around bus 12. The
solution for this case would be to either increase the number
of PMUs so that more bus is covered by a PMU adjacent to it
or the sub-graphs be expanded to more than only one adjacent
bus. In this scenario, the generator drop event could have been
located if 3 adjacent buses were chosen to form a sub-graph.

The computational cost for graph sweep with P vertices
and complexity K measured as the number of segments of the
embedding, the running time of the algorithm is ©(K+PM),
where M is the maximum number of edges cut by any vertical
line. The DBSCAN algorithm has a computation complexity of
Oog(N)), linear regression and Chebyshev have ©(2(N+1)),
where N is the number of points. As shown in Table VII,
the algorithm requires less time to run as compared to the
data length time using an Intel i7 computer. The total run-
time for the algorithm is approximately 1/10 of data length.
It must be noted that the 5 PMUs were chosen for the analysis
and no parallelism was used. The average time taken for the
algorithm to run on a typical window size of 30 samples data,
i.e. 1 second data window for 5 PMUs is around 0.09 seconds.
There are limited number of existing works addressing all
three aspects of anomaly detection, event classification and
localization. The work in [36], attempts to determine the
location of events in real time, however the computational
complexity and time taken for the algorithm to run is not
discussed in the paper.
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Fig. 8: Sub Graphs

D. Event Detection using Industry Data

From Fig 9, a field voltage plot, it can be seen that there
are some missing data and outliers. The data that seem to be
outliers are missing data. The graph is plotted on this scale to
compare it with the clean data plot obtained by the anomaly
detection algorithm. The clean data plot is shifted in axis and
is plotted on secondary axis.

This proves the necessity of PMU data cleaning before using
it for any further processing. Event Detection algorithm was
applied and it was observed that the frequency events were

TABLE VIII: FIELD DATA RESULT

S No. Time Active Reactive Fault

(s) Event Event Event
(PMU No.) (PMU No.) (PMU No.)

1 44 - 5 -

2 111 - 1 -

3 385 - - 1,2,3,4,5

4 465 2,5 - -

5 471 2,5 - -

6 477 2,5 - -

7 558 - 3 -

8 638 - 2,5 -

detected as active events or fault events. several reactive events
were detected but these events were not labeled by BPA even
with engineering analysis. It can be seen from Table VIII and
Fig 7 that the detection results corresponds to the step changes
in the parameters.

Industry Data - Voltage Plot

Raw Voltage Data ——Clean Voltage Data

Voltage (kV)

0 50 100 150 200 250 300

Time(s)

Fig. 9: Voltage Plot of Field Data

The topology for the industrial system is not presented due
to confidentiality therefore, the exact location and cause of the
events were not determined and presented.

VI. CONCLUSIONS

New computationally efficient algorithms have been de-
veloped for anomaly and event detection, classification and
localization using PMU data and utilizing a suite of mathemat-
ical and statistical techniques include Maximum Likelihood
Estimation (MLE), DBSCAN based cluster change, physics-
based rule and decision tree, Shannon entropy, crest factor and
graph theory. The simulation results prove the effectiveness
of the algorithm to detect, classify and locate the events.
Results on industrial data prove the necessity of anomaly
detection along with the effectiveness of the event detection
algorithm. The event detection tool can prove to be a very
effective real-time PMU based enhancement for the power
system operators and efficient decision making. The tool will
be most effective if it can be integrated with the existing EMS
and synchrophasor analysis tools so that the topology and
PMU location information is available. Future work will be
including machine learning-based detectors and analysis for
faster results and real-time implementation tool development.
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