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Abstract—With an increasing number of extreme events, grid
components and complexity, more alarms are being observed
in the power grid control centers. Operators in the control
center need to monitor and analyze these alarms to take suitable
control actions, if needed, to ensure the system’s reliability,
stability, security , and resiliency. Although existing alarm and
event processing tools help in monitoring and decision making,
synchrophasor data along with the topology and component
location information can be used in detecting, classifying and
locating the event, which is the focus of this work. Phasor
Measurement Unit’s (PMU’s) data quality issue is also addressed
before using data for event analysis. The developed algorithms
include statistic, clustering, and Maximum Likelihood Criterion
(MLE) based anomaly detection, Density-based spatial clustering
of applications with noise (DBSCAN) for event detection and
physics-based rule/ decision tree for event classification. Further,
topology information, statistical techniques, and graph search
algorithms are used for event localization. Developed algorithms
have been validated with satisfactory results for IEEE 14 bus
and 39 Bus as well as with real PMU data from the western US
interconnection (WECC).

Index Terms—PMU, Anomaly Detection, Event Detection,
DBSCAN, MLE, Graph Theory.

I. INTRODUCTION

THE power system can become more resilient and less

susceptible to large outages if the operators have a wide

area, real-time view of the system [1], [2]. The operators need

to take control actions based on several alarms that appear in

the Energy Management System (EMS). The motivation be-

hind this study is to develop a tool using PMU measurements,

which can help enhance the decision making capability of

operators in the control room supplementing EMS [3]. In this

work, goal is to detect, classify, and locate the physical power

system events occurring frequently in the system. Example

of these events include line faults, load changes, capacitor

bank switching, and generator outages. Proposed algorithm has

multiple steps: 1) detect anomalies, 2) classify anomalies into

an active power event, reactive power event or fault events and

3) locate event. It is proposed to first detect and then classify

events into an active power event, reactive power event or
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fault events. A generator drop is an example of active power

event, whereas switching of a capacitor bank is a reactive

power event. Short circuits are classified as faults. In an active

power event, the active power flow between the buses changes.

A reactive power event affects the reactive power flowing in

the line and the voltage of the buses. In case of faults, the

current dramatically increases and the voltage can drop down

invariably. There will be large frequency variation and the rate

of change of frequency increases to a very high value near

the fault location [4]. The first step of the event detection

algorithm is to detect these changes. Changes in the operating

conditions are an indicator of a power system event.

There have been several studies about event detection using

moving average value [5], linear principal component analysis

based approach to analyze dimensional reduction of syn-

chrophasor data [6], geographical visualization of PMU data

[7], wavelet-based event detection [8], dynamic programming

swinging door trending (SPSDT) [9], and [10] attempts to

classify events using energy similarities and a temporal local-

ization. Past work in literature has been reported to classify

limited number of events as faults [11], cascading events [12],

and cyber events [13]. Cyber event detection and classification

has been studied in [14], [15] , however, in this work, focus is

only to detect, classify and locate the physical power system

events.

Most of the existing work related to event detection and

classification methods do not classify events in a comprehen-

sive and automated manner, and hence do not provide the exact

location of events.

PMUs are known to have bad data present in the streaming

data due to several reasons such as time synchronization error,

communication problem sampling or simply due to error in

field measurements [16], [17]. There can be data loss or offset

in the measurements. Efforts have been made in the past to

curb the effect of data anomalies in the PMU measurements

[18], [19]. We have developed an ensemble technique that

uses statistical and clustering algorithms as base detectors and

unsupervised machine learning [20], [21]. Prony analysis [22]

has been used to differentiate between bad data and event data

to further enhance precision of the developed algorithm.

This paper is motivated to provide real-time event detection,

classification, and localization with root causes for decision

making by operators along with possible data anomalies in the

PMU data. Processed data has been used for event detection. It

is more than likely that multiple PMUs capture the same event

in the system. For example, if a capacitor bank is switched

on at a bus, it changes the steady-state voltage magnitude
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of that bus and can also change the voltages of neighboring

buses. A PMU placed at the neighboring bus will also detect

the capacitor bank switching. Based on this, we compute

scores for each event seen by each PMUs. This helps in the

formation of a sub-network in a large network and identifying

the location of the event. The key contributions are itemized

below:

• Synchrophasor anomaly detection (SyncAD) tool based

on statistical and ‘Maximum Likelihood Estimation

(MLE)’ technique aided with prony analysis to increase

precision of anomaly detection.

• Event detection based on the data-driven ‘cluster change’

technique and classification into active power, reactive

power and fault event types based on physics-based rule/

decision tree. In our understanding, this work is one of the

first to integrate physics and data analytics for anomaly

detection, event classification and localization.

• Real time event localization using graph theoretic ap-

proach and statistical score computation including Shan-

non entropy, standard deviation, range, mean difference,

crest factor.

Developed methodology for detecting anomalies in the

PMU data set are presented in section II and the proposed

event detection, classification and localization technique in

section III. Test cases are discussed in section IV and the

simulation and results are provided in section V. Finally,

conclusions are provided in section VI.

II. SYNCHROPHASOR DATA ANOMALY DETECTION

PMUs may have anomalies e.g. outliers or missing data.

Outliers may look like certain measurements being off by say,

10 % of the actual measurement whereas, the missing data

might just appear as ’0’. Synchrophasor Anomaly Detection

tool called SyncAD has been developed to address these as

shown in figure 1. The tool uses Linear regression [23], Cheby-

shev [24], and DBSCAN [25] as statistical and clustering-

based base detectors. These base detectors are independent

and make decisions on a data point being an anomaly or

good. Since they follow a different scale their outlier scores

are normalized, followed by an ensemble-based learning al-

gorithm. Once the model is learned the inference algorithm

helps in comparing new data with the learned data and decide

on anomaly data. Since the event data points can also be

detected as anomalous points, we use prony analysis to detect

the transient window and segregate event points form anomaly

point to obtain bad data. Once the transient window is detected

all the data points which were said to be bad, are unflagged and

considered as a normal data point, if they lie in this transient

window. Finally, depending upon the application the data can

either be flagged as bad data or can be replaced by imputing

as explained in [26].

A. Base Detectors

The base detectors used are Linear regression, Chebyshev,

and DBSCAN method. The DBSCAN method is discussed

later in this paper. The thresholds for DBSCAN, when used

as a base detector, is different as the idea is not to detect event

points as anomalies.

1) Linear regression-based detector: A regression line

model is obtained for the data selected in the window

(typically 1 second) by minimizing the sum of squared

residuals (i.e. the vertical distance between data points

of the window and the regression line). The regression

line is represented as below:

Regression Line = βx+ α (1)

where, β is the slope, α is the y-axis intercept of

the regression line, and x is the closest point on the

regression line from the actual data point. Based on this

regression line, data points lying outside the low or high

thresholds are considered as possible bad data. The high

and low thresholds are set based on (2) and (3) below:

High Threshold = βx+ α+ k ∗ dev (2)

Low Threshold = βx+ α− k ∗ dev (3)

where, parameter ‘k’ is the number of standard devi-

ations, a preset number that decides the high and low

thresholds and ‘dev’ is the root mean squared value of

y-distance from the regression line as given by (4).

dev =

√

√

√

√

1

N − 1

N
∑

i=1

[

x(i)− regression(i)

]2

(4)

where N is the number of points within the window, and

x(i) and regression(i) are the actual and regression line

data points respectively.

2) Chebyshev-based detector: This detector is often used

when the distribution of the data set is unknown. It is

a two-step process. A strict threshold is applied in the

first step. Data points crossing this threshold are omitted

for the next step. In the second step, the threshold is

again computed but ‘k’ is larger than the first step.

Now the omitted data points are checked to be within

this relaxed threshold. If they still fail to lie within this

wider threshold, it is considered to be an anomaly point.

Chebyshev’s inequality is shown in (5):

P (|X − µ| ≤ kσ) ≥ (1−
1

k2
) (5)

where ‘X’ represents the input PMU data, ‘µ’ is the

mean of data within a window, ‘σ’ is the standard devi-

ation of the data within the window, and ‘k’ represents

the number of standard deviations from the mean.

B. Ensemble Method

The architecture of the bad data detection algorithm is

shown in Fig-1, called as Synchrophasor Anomaly Detection

(SyncAD). The base detectors make anomaly detection as-

sessment independently on the PMU data and followed by the

normalization of the scores using expectation maximization

(EM) algorithm [27]. Once the outlier scores from the base

detectors are normalized, it is then used to determine the MLE-

ensemble model. The unsupervised learned MLE model is then
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TABLE IV: SIMULATION RESULT- CASE 1

S No. Time (s) Actual Event Actual Location Detection Bus Classified Event Normalized Score

PMU 1 PMU 2 PMU 1 PMU 2

1 109 Cap bank closed Bus 9 9 10 Reactive Power Event 0.22 0.14
2 119 Three phase fault Bus 10 10 9 Fault Event 37.25 23.54
3 132 Cap bank opened Bus 9 9 10 Reactive Power Event 0.23 0.13
4 148 P load decreased Bus 8 8 - Active Power Event 2.11 -
5 158 Cap bank closed Bus 9 9 10 Reactive Power Event 0.20 0.12
6 168 Three phase fault Bus 10 10 9 Fault Event 48.06 26.86
8 179 Cap bank opened Bus 9 9 10 Reactive Power Event 0.24 0.16
8 188 P load increased Bus 8 - - No Detection - -
9 198 Q load increased Bus 8 8 9 Reactive Power Event 0.90 0.36

10 209 P load decreased Bus 8 8 9 Active Power Event 2.07 0.72
11 219 Q load decreased Bus 8 8 9 Reactive Power Event 1.15 0.62
12 229 Gen drop Bus 2 2 - Active Power Event 2.73 -

TABLE V: SIMULATION RESULT- CASE 2

S No. Time (s) Actual Event Actual Location Detection Bus Classified Event Normalized Score

PMU 1 PMU 2 PMU 1 PMU 2

1 109 Cap bank closed Bus 9 9 7 Reactive Power Event 2.15 2.11
2 119 Three phase fault Bus 13 13 9 Fault Event 26.56 11.09
3 132 Cap bank opened Bus 9 9 7 Reactive Power Event 1.89 1.84
4 148 P load decreased Bus 8 7 - Active Power Event 2.61 -
5 158 Cap bank closed Bus 9 9 7 Reactive Power Event 2.26 2.25
6 168 Three Phase fault Bus 13 13 9 Fault Event 40.32 12.92
7 179 Cap bank opened Bus 9 9 7 Reactive Power Event 1.58 1.57
8 188 P load increased Bus 8 - - No Detection - -
9 198 Q load increased Bus 8 7 9 Reactive Power Event 0.74 0.67

10 209 P load decreased Bus 8 7 9 Active Power Event 2.71 0.68
11 219 Q load decreased Bus 8 7 9 Reactive Power Event 0.85 0.79
12 229 Tap down Bus 6 6 - Reactive Power Event 0.62 -
13 240 Three phase fault Bus 13 13 9 Fault Event 20.72 15.37
14 240 Cap bank closed Bus 3 - - No Detection - -
15 253 Tap up Bus 6 6 13 Reactive Power Event 0.68 0.51
16 263 Gen drop Bus 2 2 - Active Power Event 2.06 -

TABLE VI: SIMULATION RESULT- CASE 3

S No. Time (s) Actual Event Actual Location Detection Bus Classified Event Normalized Score

PMU 1 PMU 2 PMU 1 PMU 2

1 50 P load decrease Bus 18 17 4 Active Power Event 0.63 0.52
2 80 Cap bank closed Bus 4 4 17 Reactive Power Event 2.34 2.07
3 138 Q load decrease Bus 13 12 - Reactive Power Event 0.47 -
4 170 P load decreased Bus 39 39 - Active Power Event 1.53 -
5 200 Three phase fault Bus 8 39 4 Fault Event 39.32 24.86
6 235 Gen drop Bus 32 12 - Active Power Event 3.08 -
7 260 Cap bank Closed Bus 15 17 22 Reactive Power Event 1.68 1.43
8 270 P load increased Bus 18 17 4 Active Power Event 0.86 0.73
9 300 Q load increased Bus 13 12 - Reactive Power Event 0.74 -

10 325 Three phase fault Bus 19 17 22 Fault Event 34.59 29.65
11 325 P load increase Bus 18 - - No Detection - -
12 330 Cap bank opened Bus 4 4 17 Reactive Power Event 2.24 1.93

TABLE VII: EVENT DETECTION AND ANOMALY DETECTION ALGORITHM TIMELINES

Case PMUs Data Length(s) Anomaly Detect.(s) Event Detect.(s) Event Localiz.(s) Total Time(s) Total Time per Window(s)

Case-1 5 269 2.10 20.01 3.01 25.13 0.09
Case-2 5 300 2.42 22.65 3.2 28.27 0.09
Case-3 5 350 2.68 23.89 5.4 31.97 0.09
Industry 5 272 4.01 16.97 - 20.98 0.07
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