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Data-Driven Event Diagnosis in Transmission

Systems With Incomplete and Conflicting

Alarms Given Sensor Malfunctions
Yazhou Jiang , Member, IEEE, and Anurag K. Srivastava , Senior Member, IEEE

Abstract—Accurate fault event diagnosis with incomplete and
conflicting alarms given sensor malfunctions is a challenging prob-
lem for power system operators. To solve this problem, this study
proposes a data-driven approach based on Mixed Integer Linear
Programming (MILP) for fast determination of fault event sce-
narios with uncertainties. The uncertainties include failures and
malfunction of relays and circuit breakers (CBs) as well as incom-
plete/incorrect sensor alarms at the control center. To improve the
accuracy for fault event diagnosis, redundant alarms from multi-
ple sources, i.e., Phasor Measurement Units (PMUs), Supervisory
Control and Data Acquisition (SCADA), and Sequence of Events
Recorders (SERs) are jointly used in this study. The temporal
correlation of sensor alarms is incorporated in the constraints of the
MILP model. The resulting data-driven algorithm determines the
most credible fault scenario that is well supported by the available
sensor alarms at the control center. Simulation results of the IEEE
14-bus system, the synthetic South Carolina 500-bus system, and a
real-world complex event scenario demonstrate the effectiveness
of the proposed approach for accurate and efficient fault event
diagnosis.

Index Terms—Alarm message, analytical model, data-driven,
fault diagnosis, mixed integer linear programming, outage
management, power system protection.

NOMENCLATURE

MP Main protection

PBP Primary backup protection

SBP Secondary backup protection

BFP Breaker failure protection

M Large number

rMP
i , rPBP

i , MP, PBP, SBP, BFP of relay i

rSBP
i , rBFP

i

RMP
i , RPBP

i , MP, PBP, SBP, BFP alarm from relay i

RSBP
i , RBFP

i
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frMP

i

, frPBP

i

, Decision variables to indicate the failure of

MP, PBP, SBP, BFP of relay i, CBi and

PMU

frSBP

i

, frBFP

i

,

fCBi
, fPMU

CBi

mrMP

i

,mrPBP

i

, Decision variables to indicate malfunction

of MP, PBP, SBP, BFP of relay i, CBi and

PMU

mrSBP

i

, mrBFP

i

,

mCBi
,mPMU

CBi

t MP
Ri

, t PBP
Ri

, Time tags of MP, PBP, SBP, BFP and CBi

status alarmst SBP
Ri

, t BFP
Ri

,
tCBi

xMP
i , xPBP

i , Decision variables to denote incorrect time

tags of MP, PBP, SBP, BFP of relay i and

CBi alarm

xSBP
i , xBFP

i ,
xCBi

εMP , εPBP , Timing tolerance for MP, PBP, SBP, BFP

and CB alarmsεSBP , εBFP ,
εCB ,
NFail., NMalf., No. of alarm failures, malfunctions, and

incorrect time tagsNIncor.

ω1, ω2, ω3 Weighting factors for alarm failures, mal-

functions, and incorrect time tags

tftlk Inception time of event k

rpiloti Pilot protection signal of Lj

∆TPBP ,∆TSBP , Protection coordination time of PBP and

SBP, and breaker failure detection time of

BFP

∆tBFP

RCB
i Decision variable to denote the alarm that

trips CBi

CBPMU
i CBi status alarm from PMU

Ωs, ΩLine Set of sensors and transmission lines

yMP
CBi

, yPBP
CBi

, Statuses of CBi after MP and/or PBP acti-

vates, and the final status of CBiyCBi

I. INTRODUCTION

F
AULT event diagnosis has been widely recognized to be

critical for reliable operation of power systems [1], [2].

A fault and the resulting actions of protective relays and CBs

generally lead to a power outage. Over the last decades, signif-

icant efforts have been devoted to development of technologies

and tools for advanced fault event diagnosis for applications

in Energy Management Systems (EMS) at the control center.

As a result, considerate progresses have been made and the

engineering practice for fault diagnosis has gradually evolved

from the domain knowledge-based analysis to the most recent

analytical model-based techniques [3], [4].
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Fault diagnosis is a primary task for system operators and

protection engineers when a power outage occurs. System oper-

ators need to infer the faulted component and sequential actions

of protective relays from the available sensor alarms at the

control center. In an outage, failures or malfunctions of relays

and CBs may occur, and sensor alarms may be delayed or

missing due to communication issues. Accurate identification of

these complex fault scenarios with sensor malfunctions requires

extensive domain knowledge of power systems and its protection

configuration. To assist system operators with decision-making

of fault event diagnosis, various classifications of technologies,

i.e., Knowledge Based Systems (KBSs), Model Based Systems

(MBSs), and Artificial Intelligent Systems (AISs) have been de-

veloped. KBSs have been proposed in [5]–[7] for determination

of the fault scenario by comparing actual event messages with

simulated messages. MBSs have been elaborated in [8] to rep-

resent correlation between physical power system components

and event messages. However, a KBS or an MBS relies heavily

on the knowledge modules and the expertise of system models

for an accurate fault event diagnosis. AISs such as Petri Nets [9],

[10], Neural Network [11], and Bayesian networks [12] have also

been proposed for fault diagnosis. The recent study is focused on

analytical methodologies to diagnose the fault event of power

systems [3], [4]. The causality of a faulty component and the

resulting alarms is modeled in an analytical way to determine

the most credible fault scenario that is well supported by the

available sensor alarms at the control center. Tools based on

analytical methodologies have been developed to assist system

operators with decision-making. A tool named Generalized

Alarm Analysis Module (GAAM) has been integrated into EMS

at the control center in Italy [13], [14]. Note that Ref. [13]

is based on multiple hypothesis analysis by hypothesizing the

fault scenario and calculating its credibility. The hypothesis with

the highest credibility is deemed to be faulty. The drawback

of these methodologies is a large number of hypotheses and

the given hypotheses may not capture the true fault scenario.

Moreover, the temporal correlation of sensor alarms and the

multiple sources of alarms have not been considered. Other

tools have been developed and tested in the regional system of

China [4]. These tools use Sequential Event Recorders (SERs)

or SCADA alarms including CB statuses for fault diagnosis.

To improve the accuracy, methods incorporating the time tags

of alarms are developed in [4]. A five-digit algorithm based on

high fidelity data from newly installed PMUs is introduced in

[15] to determine the faulted transmission line.

While significant progress has been made in development of

advanced methodologies and tools for fault event diagnosis in

transmission systems, it is worth noting that power system is

highly nonlinear and fault diagnosis with uncertainty is a com-

plex problem. Indeed, the state-of-the-art analytical techniques

and tools are primarily based on multiple-hypotheses analysis

[4], [14], [16]. Each component in the outage area is hypothe-

sized to be faulty and the causality of the hypothesized faulty

component and activated relays is modeled for determination of

the most credible fault event. For example, a methodology based

on multiple-hypothesis analysis is proposed in [16] for outage

management of distribution systems incorporating information

from smart meters. Ref. [16] is used to identify the outage

area and the faulted line sections based on a radial structure

of distribution feeder circuits. The number of smart fault indi-

cators with a failure or malfunction and the pair number of a

missed protection coordination of recloser-fuse or fuse-fuse in

distribution systems are first hypothesized and the credibility

for each hypothesis is quantified by how well it is supported by

data from smart meters and smart fault indicators. The detailed

protection coordination has not been modeled and the temporal

correlations of sensor alarms have not been addressed. In the

analytical models for event diagnosis of transmission systems,

the constraints are nonlinear as reported in [4]. The nonlinearity

and the resulting complexity together with numerous hypotheses

make it hard to be solved in an efficient manner. Heuristic

such as Tabu Search [4], particle swarm optimization [17] or

Generic algorithm (GA) [18], has to be deployed as solution

methodologies for nonlinear analytical models. To the best of the

authors’ knowledge, the state-of-the-art research on analytical

models for fault event diagnosis, especially with incomplete and

conflicting alarms, is inadequate in the following aspects:
� A large number of hypotheses have to be generated to

capture the possible faulted component and the resulting

actions of protective relays and CBs. The number of hy-

potheses increases exponentially with regard to the number

of components involved in the outage area.
� For each hypothesis, nonlinear analytical techniques are

used to model the causality of the faulted component and

the resulting actions of protective relays and CBs with

uncertainties. Nonlinearity leads to additional complexity

and makes it hard for on-line applications.
� Heuristic is employed to solve the nonlinear analytical

models for determination of the most credible fault event

scenario that is well supported by the available sensor

alarms at the control center. The global optimality of the

optimization is not guaranteed, and the true fault scenario

may be missed due to suboptimality.
� Existing studies use alarms from SERs, SCADA alarms, or

PMUs to diagnose the fault. Technologies to incorporate

redundant alarms from multiple sources in an automatic

manner are not available.
� The available technology has not fully modeled the tempo-

ral correlation of sensor alarms for an accurate fault event

diagnosis.

Transmission utilities are faced with the challenge of how

to leverage sensor data available for system operators to better

support the grid operation with a better accuracy. To bridge

these gaps of the existing solutions, this study proposes a new

data-driven approach to leverage alarms from multiple sources

such as SCADA, PMU, SERs for event diagnosis considering

incorrect and incomplete sensor alarms as well as temporal

correlations of alarms given sensor malfunctions. Key contribu-

tions of the proposed approach are: 1) data-driven approach by

leveraging sensor alarms from multiple sources including SERs,

PMUs and SCADA data for accurate fault event diagnosis with

uncertainties; 2) integrating the data driven approach with an an-

alytical MILP model that considers the failures or malfunctions

of protective relays and CBs as well as incomplete/incorrect
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alarms. The most credible fault event scenario is determined

by minimizing the discrepancy of the determined scenario with

the available sensor alarms while respecting the principle of

protection systems. The temporal correlation of sensor alarms

is explicitly incorporated in the analytical model to capture

the temporal abnormality of actions of protective relays and/or

CBs; 3) testing and validation of the proposed approach using

the IEEE-14 bus system, the synthetic South Carolina 500-bus

system, and a real-world complex event scenario.

II. FAULT DIAGNOSIS WITH UNCERTAINTIES

When a permanent fault occurs in power systems, relays at

substations are configured to detect the fault in a timely manner

and trip open the CBs for fast fault isolation. In this process,

relays may be incorrectly configured, and CBs may fail to oper-

ate upon receiving a tripping signal. These uncertainties together

with missing sensor alarms and uncertainties of transmission line

parameters significantly complicate the process of fault event

diagnosis. To ensure a fault to be isolated in a timely manner,

redundant protection configurations such as pilot protection,

distance relays, and breaker failure relays, are widely deployed

in transmission systems. For instance, many utilities select pilot

protection as MP for transmission lines with a voltage level of

345 kV or above due to its fast response to isolate the fault while

distance relays are used as a backup. When the MP fails to isolate

the fault, the backup protection, i.e., PBP and SBP, is expected

to operate to open the CB. The statuses of CBs are sent back

to the control center through SCADA for system operators to

diagnose the fault event scenario. In the meanwhile, sequential

actions of relays and CBs with timing tags are recorded by SERs

at the substation, which can be acquired by EMS in an online

manner. Some newly installed PMUs at substations also monitor

and send CB statuses and estimated phasors to the control center

through Phasor Data Concentrators (PDCs). It is worth noting

that ‘M’ type measurement class PMU typically uses a longer

window to estimate phasors compared to ‘P’ type protection

class PMUs as part of relays or standalone PMUs following

IEEE C37.118 and IEEE Test Suite Specification (TSS). The

additional delay in ‘M’ type will not impact the performance

of the proposed algorithm as phasor will be still timestamped in

middle of the window and time synchronized in PDC. Moreover,

delay is typically in fraction of seconds for ‘M’ type of PMUs,

which will not impact the proposed applications with several

seconds/minutes timeline. PMU data is used after the event

to compute the fault status and information while transient

response is not required for this. Additionally, as discussed with

engineers from utility companies such as New York Independent

System Operator (NYISO) and American Electric Power (AEP),

PMUs can also be customized to monitor the status of circuit

breakers using user defined bits. Different from SERs which use

the local substation clock, PMUs data at different substations

are synchronized by using the Global Positioning System (GPS)

with an error less than one millisecond. Alarms from multiple

resources, i.e., SERs, SCADA, and PMUs, are jointly used in

this study for accurate fault event diagnosis with uncertainties.

Fig. 1. Simplified power grid with protection systems.

TABLE I
ALARMS AT THE CONTROL CENTER FOR FAULT DIAGNOSIS

A simplified power system as shown in Fig. 1 is used for

illustration of the protection system. Suppose a fault occurs

on line L2 and MPs of CB4 and CB3 are expected to trip

the CBs instantaneously without any intentional delays. If CB4

opens successfully while MP fails to trip open CB3 due to the

incorrect configuration, PBP of CB3 is configured to trip open

it with a given delay. If the tripping signal does not transmit

successfully to the CB due to an incorrect configuration or

others, SBPs of CB1 and CB6 are designed to trip CB1 and CB6

respectively to isolate the fault. The sequential actions of relays

and CBs are recorded by SERs. In Fig. 1, the PMU installed at

Sub3 monitors the status of CB4 and CB6. For the given fault

scenario, the alarms received from SERs, SCADA, and PMU(s)

are summarized in Table I for fault event diagnosis. Note that

the time tags of SCADA alarms are not considered since the

time tags are usually added on using the computer clock at the

control center when the alarms arrive.

III. FAULT DIAGNOSIS PROCESS

The framework of the proposed methodology for fault event

diagnosis is shown in Fig. 2. Collected sensor alarms from

SCADA, PMUs and SERs are first used to determine the outage

area by the proposed methodologies in [13] or [19]. Ref. [19] is

focused on the system topology determination for applications

of state estimation. The causality of a fault and the consequential

actions from relays and circuit breakers for event diagnosis has

not been addressed in [19]. The sensor data together with system

knowledge such as power network topology and protection con-

figuration serve as the input to the proposed MILP optimization
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Fig. 2 Fault diagnosis framework.

for fault event diagnosis. Included in the proposed approach is

also the temporal correlation of alarms while respecting protec-

tion operating logics for determination of the most credible fault

event scenario that is well supported by the available alarms. The

output is the event diagnosis report including faulted component,

failure or malfunction of CBs & relays.

IV. MILP MODEL FOR FAULT EVENT DIAGNOSIS

A. Assumptions

In North America, transmission networks are usually

equipped with distance relays with 3-zone protection configura-

tion, pilot protection, and breaker failure relays. Pilot protection

and Zone1 protection of distance relays are regarded as MP

of a transmission line while Zone2 and Zone3 protections are

regarded as the PBP and SBP, respectively. In this study, the

assumption is made as follows for the purpose of illustration:
� Faults are isolated by the redundant protection systems,

i.e., MP, PBP, SBP and BFP.

The redundant protection system is configured to isolate faults

while accommodating potential failures from relays or breakers.

In addition, the proposed models can be applied to diagnose

any electric assets such as transmission lines, bus bars, and

transformers with different protection configurations.

B. Objective Function

In this study, a sensor indicates a relay or a CB. If the alarm

from a sensor is not available but expected at the control center,

it will be defined as a failure of the sensor. As such, the sensor

failure includes physical device failures, missing or delayed

sensor alarms. On the other hand, if a sensor alarm is not

expected while it is available, it is defined as a malfunction of

the sensor. This study considers multiple failures and anomalies

for event diagnosis. The objective function is to minimize the

discrepancy between the estimated sensor alarms and available

ones at the control center for fault diagnosis. The discrepancy

is quantified by weighted summation of the total no. of sensor

failures, malfunction, and incorrect timing tags. That is

Min ω1 ∗NFail. + ω2 ∗NMalf. + ω3 ∗NIncor. (1)

For transmission utilities, the historical data can be used to

determine the weighting factors. For example, if n1 out of N1

sensor failures occur in history, ω1 is determined to be (N1-

n1)/N1. The same procedure can be applied to ω2, and ω3.

C. Constraints

The constraints are meant to model the causality of the

faulty component and the resulting actions of relays & CBs

with uncertainties while respecting the principles of configured

protection systems. The temporal correlation of time tags of

redundant sensor alarms is also incorporated in the constraints

of the proposed optimization.

1) Constraints of MP: Suppose that rMP
i is the MP of line

Lj . rMP
i is expected to operate when a fault occurs at Zone1

protection distance of Lj or at the Zone2 protection region and

a pilot protection signal rpiloti from the remote end of Lj is

also received. The alarm RMP
i should be received when rMP

i

operates properly without failures or rMP
i should not operate

while it malfunctions to trip. This logical relationship is modeled

in Eq. (2) as
{

rMP
i = LZ1

j ∨
(

LZ2
j ∧ rpiloti

)

RMP
i =

(

rMP
i ∧ ∼ frMP

i

)

∨
(

∼ rMP
i ∧mrMP

i

) (2)

Since MP protection is designed to operate instantaneously

without intentional delays upon occurrence of a fault, time tag

t MP
ri

is expected to be within the time interval given in (3) as

{

−xMP
i ∗M − εMP ≤ RMP

i ∗
(

t MP
Ri

− tftlk

)

RMP
i ∗

(

t MP
ri

− tftlk

)

≤ εMP + xMP
i ∗M

(3)

2) Constraints of PBP: Suppose that rPBP
i is the PBP of line

Lj and is associated with CBi. PBP is expected to trip when i)

rPBP
i detects a fault on Lj ; ii) its setting time for coordination

with MP is released; iii) CBi is not open by MP; iv) there

is no breaker failure. Alarm RPBP
i is available when rPBP

i

operates properly without failures or it should not operate while

it malfunctions to trip. That is
⎧

⎪

⎨

⎪

⎩

rPBP
i = Lj∧ ∼ yMP

CBi
∧ ∼ fMP

CBi

fMP
CBi

=∼ yMP
CBi

∧RMP
i

RPBP
i =

(

rPBP
i ∧ ∼ frPBP

i

)

∨
(

∼ rPBP
i ∧mrPBP

i

)

(4)

The time tag of alarm RPBP
i is expected to be within the

range from t0 +∆TPBP − εPBP to t0 +∆TPBP + εPBP as
{

−xPBP
i ∗M − εPBP ≤ RPBP

i ∗
(

t PBP
Ri

− tftlk −∆TPBP

)

RPBP
i ∗

(

t PBP
Ri

− tftlk −∆TPBP

)

≤ εPBP + xPBP
i ∗M

(5)

3) Constraints of SBP: Use rSBP
i to denote the SBP of line

Lj . CBk is associated with MP and PBP designed to isolate Lj

if it is faulted. SBP is expected to issue a tripping signal when

rSBP
i detects a fault and the time for coordination with PBP is

Authorized licensed use limited to: Washington State University. Downloaded on August 20,2020 at 00:04:28 UTC from IEEE Xplore.  Restrictions apply. 



218 IEEE TRANSACTIONS ON POWER DELIVERY, VOL. 35, NO. 1, FEBRUARY 2020

released. The underlying logic is that neither MP or PBP has

successfully tripped open CBk and there is no breaker failure

of CBk. In a similar fashion, the alarm RSBP
i from rSBP

i is

available under these two scenarios: a) rSBP
i operates properly

without failures; b) rSBP
i malfunctions to report a fault. That is

⎧

⎪

⎪

⎨

⎪

⎪

⎩

rSBP
i = Lj∧ ∼ yMP

CBk
∧ ∼ yPBP

CBk
∧ ∼ fMP

CBk
∧ ∼ fPBP

CBk

fPBP
CBk

=∼ yPBP
CBk

∧RPBP
k

RSBP
i =

(

rSBP
i ∧ ∼ frSBP

i

)

∨
(

∼ rSBP
i ∧mrSBP

i

)

(6)

The time of the tripping signal from SBP is expected to be in

the interval [t0 +∆TSBP − εSBP , t0 +∆TSBP + εSBP ] as
{

−xSBP
i ∗M − εSBP ≤ RSBP

i ∗
(

tSBP
Ri

−∆TSBP − tftlk

)

RSBP
i ∗

(

t SBP
Ri

−∆TSBP − tftlk

)

≤ εSBP + xSBP
i ∗M

(7)

4) Constraints of BFP: Let rBFP
i be the BFP of CBi. BFP

is expected to operate when CBi receives a tripping signal from

its associated relays such as MP, PBP, and SBP while it fails to

open its mechanical contact. If rBFP
i operates properly without

failures or it malfunctions to report a breaker failure, the alarm

RBFP
i will be available for fault diagnosis. The underlying logic

is
⎧

⎪

⎨

⎪

⎩

Ri = RMP
i ∨RPBP

i ∨RSBP
i

rBFP
i = Ri∧ ∼ yCBi

RBFP
i =

(

rBFP
i ∧ ∼ frBFP

i

)

∨
(

∼ rBFP
i ∧mrBFP

i

)

(8)

The tripping time of the BFR falls in the given range as
{

−xBFP
i ∗M − εBFP ≤ RBFP

i ∗
(

t BFP
Ri

−∆TBFP
i −tftlk

)

RBFP
i ∗

(

t BFP
Ri

−∆TBFP
i − tftlk

)

≤ εBFP + xSBP
i ∗M

(9)

where ∆TBFP
i = ∆tBFP +RMP

i ∗ (tMP
Ri

− tftlk ) +RPBP
i ∗

(tPBP
Ri

− tftlk ) +RSBP
i ∗ (tSBP

Ri
− tftlk ).

5) Constraints of CB: A CB is expected to open the mechani-

cal contact when a tripping signal is received from its relays, i.e.,

MP, PBP, SBP, and BFP. The underlying logic is that a tripping

signal is received, and the CB operates without failures; or no

tripping signal is received but the breaker malfunctions. Suppose

yCBi
indicates the availability of alarm from CBi. The logic is

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

RCB
i = Ri ∨

(

∑∨
j∈ΩCBi

RBFP
j

)

yCBi
=

(

RCB
i ∧ ∼ fCBi

)

∨
(

∼ RCB
i ∧mCBi

)

yCBi
≥ yMP

CBi

yCBi
≥ yPBP

CBi

(10)

The constraint of the opening time tCBi
of CBi is given as

{

−xCBi
∗M − εCB ≤ yCBi

∗
(

tCBi
−∆TCBi

− tftlk

)

yCBi
∗
(

tCBi
−∆TCBi

− tftlk

)

≤ εCB + xCBi
∗M

(11)

where ∆TCBi
=
∑

j∈ΩCBi

(RBFP
j ∗∆tBFP ) +RMP

i ∗ (tMP
Ri

− tftlk ) +RPBP
i ∗ (tPBP

Ri
− tftlk ) +RSBP

i ∗ (tSBP
Ri

− tftlk ) +
∆tCB .

6) Constraint of Event Inception Time: The fault inception

time tftlk of a component is correlated with the decision variable

of its status, which is modeled as:

tftlk = Lj ∗ t
ftl
j0 (12)

Since both Lj and tftlj0 are decision variables, (12) will be

nonlinear. Using Big-M theory, (12) is converted into a linear

constraint as

−1000 ∗ (1− Lj) ≤ tftlk − tftlj0 ≤ 1000 ∗ (1− Lj) (13)

7) Constraint to Incorporate PMU Data: When a PMU is

installed in the substation, the statuses of CBs are monitored by

the PMU. The logic is
{

yCBi
− CBPMU

i ≤ fPMU
CBi

CBPMU
i − yCBi

≤ mPMU
CBi

(14)

8) Constraints to Count Alarm Discrepancy: Sensor failures,

sensor malfunctions, and incorrect alarm timing tags are counted

as
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Nfail. =
∑

i∈Ωs
(frMP

i

+ frPBP

i

+ frSBP

i

+ frBFP

i

+NCBi
∗ fCBi

+ fPMU
CBi

)

NMalf. =
∑

i∈Ωs
(mrMP

i

+mrPBP

i

+mrSBP

i

+mrBFP

i

+NCBi
∗mCBi

+mPMU
CBi

)

NIncor. =
∑

i∈Ωs

(

xMP
i + xPBP

i + xSBP
i + xBFP

i + xCBi

)

(15)

where NCBi
is used to denote the number of available alarms

for each CB. For instance, if the open status alarm of CBi is

available from SERs as well as the SCADA, NCBi
= 2.

9) Constraints of the Decision Variables:

Li = LZ1

i + LZ2

i , ∀i ∈ ΩLine (16)

In this study, M is selected as 750 to impose constraints (3),

(5), (7), (9), and (11) in the optimization to determine if the

timing tag of an alarm is incorrect when the time tags use

millisecond as the unit. To strategically select M, the worst

scenario can be used. The worst fault scenario is that SBP acts

to trip open a CB while the CB fails and the BFP trips open

the CB instead. Given the protection coordination time of SBP,

say 0.5 second, and BFP to detect a CB failure as 0.2 second,

CB breaker opening time as two cycles, M can be any number

larger than 0.734 second, which is equal to {t for SBP to operate}

+{t to open CB contact}+{t for BFP to operate}+{t to open

CB contact}. εMP, εPBP, and εSBP, are selected to be 5 ms in

this study and εBFP & εCB are selected as 34 ms. Essentially

the error tolerant parameters are selected to account for clock

inaccuracy or any timing issues for MP, PBP, SBP, BFP, CB to

act when a fault occurs. A GPS can maintain a clock error to be

within 1 ms. A digital relay may have 16, 32, or 64 samples

each cycle depending on its configuration. To accommodate

these uncertainties, εMP, εPBP, and εSBP are selected to be

5 ms, which is slightly larger than 2.04 ms, a summation of

16.7/16 ms and 1 ms. εBFP & εCB need to be selected to further

accommodate the inaccuracy of breaker opening time. Since
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activation of a breaker is opening the physical contact, which

may take one to two cycles. Therefore, the thresholds can be

selected as 34 ms. In the meanwhile, system operators are also

provided with the flexibility of relaxing the temporal correlations

of alarms by setting εMP, εPBP, εSBP, εBFP and εCB to a large

number, such as 1000 second if desired.

D. Convert Nonlinear Logical Constraints Into a Linear

Combination of Decision Variables

Logical operation constraints can be converted into a linear

combination of decision variables with the principles given as

1) Conversion of logical “Or"constraints:

w = g1 ∨ g2 ∨ · · · ∨ gn−1 ∨ gn

⇔

{

w ≥ gi, ∀i ∈ {1, 2, 3, . . . , n}

w ≤ g1 + g2 + · · ·+ gn−1 + gn

2) Conversion of logical “And"constraints:

v = g1 ∧ g2 ∧ · · · ∧ gm−1 ∧ gm

⇔

{

v ≤ gi, ∀i ∈ {1, 2, 3, . . . ,m}

v ≥ g1 + g2 + · · ·+ gm−1 + gm − (m− 1)

where w, g1, . . . , gn, and v are binary decision variables.

Using these principles, the logical operation constraints (2),

(4), (6), (8), and (10) are converted into a linear combination of

decision variables. The details are given in the Appendix. It is

worth noting that decision variables hi1, . . . , hi11 add complex-

ity into the optimization with an increased number of decision

variables while assisting with the conversion into a MILP formu-

lation. The simulation results in Section V demonstrate that the

additional decision variables will not compromise the potential

of the proposed approach for online applications given its highly

computational performance and global optimality resulting from

the intrinsic linearity. It is also worth noting that even though

the principles have been proposed in [20], there are multiple

novel contributions of the proposed work. This study developed

a new algorithm by modeling the causality of the fault and

the observed alarms as well as considering temporal correla-

tions of alarms given sensor malfunctions for event diagnosis

in transmission systems. In contrast, Ref. [20] is dedicated to

modeling the spatial locations of smart fault indicators and line

sections and using received data from fault indicators to estimate

the faulty line sections without consideration of the protection

system in distribution systems. The problems addressed in this

study is different than the one addressed in authors’ previous

study [20]. To the best knowledge of the authors, this study

is the first to propose an analytical model based on MILP for

event diagnosis with incomplete and conflicting alarms given

sensor malfunctions. The causality and temporal connections

of observed alarms, while respecting the redundant protection

coordination and possible failure mechanism are first modeled

in the proposed optimization, which is novel compared to the

state-of-the-art. And problem formulation and preparing set of

equations to be solved by MILP is novel.

Fig. 3. Fault scenario for IEEE 14-bus system.

V. SIMULATION RESULTS

The proposed approach for fault event diagnosis is tested with

different cases, i.e., IEEE 14-bus system [21], synthetic South

Carolina 500-bus system [22], and real-world event scenario in

[4]. Fault events including relay failures, breaker failures, miss-

ing/incorrect alarms and multiple faults, are used to demonstrate

the effectiveness of the proposed approach for on-line applica-

tions. The IEEE 14-bus system and the synthetic South Carolina

500 bus system are modeled in Real-Time Digital Simulator

(RTDS) to simulate the fault scenario. The optimization model

is implemented in CPLEX 12.7.1 on a computer with i5-3340M

CPU and 4 GB memory.

A. IEEE 14-Bus System

Fault scenario:
� A fault occurs at L3 at time 11:12:1:189;
� The MP of CB9 at the substation of Bus3 operated correctly

and the CB tripped open instantaneously;
� The MP and PBP of CB8 at the substation of Bus2 did not

operate due to a wrong configuration;
� The SBP of CB1, CB2, CB12, and CB15 operated and

tripping signals were issued to open the CBs.
� CB1, CB2, CB12, and CB15 tripped open correctly while

the timing tag for CB12 status was incorrectly recorded.

The outage area is determined as shown in the dashed line

in Fig. 3. Eight transmission lines, sixteen CBs, and sixteen

sets of relays including MP, PBP, SBP, and BFP are involved

in the outage as given in Table II. Statuses of CBs 9, 10, 14,

15, and 16 are monitored by PMU1 and PMU2. SERs 1-5 at

substations record the sequential actions of relays and CBs. The

statuses of CBs are available at SCADA in the control center. The

alarms from PMUs, SERs, and SCADA are shown in Table III.

Note that the system operator determines the outage area based

on alarms and measurements as reported in [13]. The SCADA
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TABLE II
COMPONENTS IN OUTAGE AREA

TABLE III
ALARMS FROM MULTIPLE SOURCES

alarms indicate that CB1, CB2, CB9, CB12, and CB15 are open;

and the MP of CB9 as well as the SBPs of CB1, CB2, CB12,

and CB15 operated to open the CBs; From PMU1 and PMU2,

CB9 and CB15 are open. The SERs recorded the sequential

actions of CBs and relays. In the meanwhile, the timing tags

from SER logs are leveraged in the optimization model. Use

11:12:1:200 as the reference time and the timing tags of alarms is

given as

t MP
R = [∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅, 0, ∅, ∅, ∅, ∅, ∅, ∅, ∅]

t SBP
R = [0.501, 0.501, ∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅, 0.5, ∅, ∅, 0.502, ∅]

tCB = [0.534, 0.534, ∅, ∅, ∅, ∅, ∅, ∅, 0.033, ∅, ∅, 0.635,

∅, ∅, 0.535, ∅]

The received alarms are input into optimization as

RMP = [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0]

yCB = [1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0]

RSBP = [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0]

NCB = [2, 2, 0, 0, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 2, 0]

∅ is used to denote the unavailability of information. The

weighting factors of ω1, ω2, and ω3 are set to be 1. Put

the alarms and their timing tags together with the parameters

as the input to the model. The optimization is executed, and it

takes around 5 ms to solve the optimization and the decision

variables are determined to be

L = [0, 0, 1, 0, 0, 0, 0, 0]

rMP = [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0]

rSBP = [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0]

TABLE IV
FAULT DIAGNOSIS REPORT

Fig. 4. South Carolina 500-bus system.

frMP = [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0]

frPBP = [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0]

xCB = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0]

From the simulation results, the 3rd item of L is “1”, which

indicates that L3 is the faulty transmission line and there is an

MP failure and PBP failure of CB8 since the 8th items of frMP

and frPBP are equal to “1”. The timing tag of CB12 from SERs

is incorrect and CB1, CB2, CB9, CB12, and CB15 operated

correctly to open. The fault diagnosis report is given in Table

IV. It is demonstrated that the proposed algorithm can handle

relay failures and incorrect time tags from the alarms. The linear

optimization model is solved in 5 ms. The high computational

performance and optimality of the proposed approach makes it

potential for online applications for fault event diagnosis. Note

that this study does not take the time for MP to trigger open

CB into account. The fault inception time is determined to be

11:12:1:200 instead of the true fault inception time 11:12:1:189.

B. Synthetic South Carolina 500-Bus System

The synthetic South Carolina 500-bus system is a represen-

tative power grid model derived from the public information

with no confidential critical energy infrastructure information

as described in [23], [24]. To validate the proposed approach in

this study, a fault occurred on the transmission line L1 between

the substations of “BLYTHEWOOD 0” and “WINNSBORO 0”

at 8:32:11:348 and CBs 1, 3, 4, 5 opened to isolate the fault.

No substations involved in the outage are installed with

PMUs. The alarms from SERs and SCADA are given in Table V.

Using these alarms as input, the optimization model is solved in

11 ms and some key decision variables are given as

L = [1, 0, 0]

R = [1, 1, 0, 0, 0, 0]

RCB = [1, 1, 1, 0, 1, 0]
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TABLE V
ALARMS FROM MULTIPLE SOURCES

Fig. 5. Real-world fault scenario [4].

fCB = [0, 1, 0, 0, 0, 0]

mCB = [0, 0, 0, 1, 0, 0]

tftl = [0.5, 0, 0]

Since the reference time is 8:32:11:351, the fault occurrence

time is inferred to be 8:32:11:351:5 from tftl and the faulty line

is L1 as inferred from the decision variable L. From the decision

variable fCB , there is a breaker failure of CB2. Since there is no

evidence to indicate the action of the protection of CB4 while

CB4 is reported to be open from SCADA, it is determined that

CB4 malfunctioned to report the open status. From this scenario,

the approach is demonstrated to handle breaker failures and

incorrect alarms.

C. Performance of the Algorithm Using Real-World Scenario

The real-world scenario from [4] is tested using the proposed

algorithm. The true fault scenario is shown in Fig. 5. The fault

scenario is briefly summarized as: faults occurred on L4335 first,

L4336 30 ms later, and B2-I 340 ms later; the C10 was stuck to

open and MP of L4336 at Tangling Substation was missing. The

TABLE VI
COMPONENTS IN OUTAGE AREA

sequential actions of fault scenario have been discussed in detail

in [4]. The components in the outage area is given in Table VI

and the received alarms are shown in Table IX.

To accommodate the complex scenarios, up to 4 faults are

hypothesized to be in the outage area and the optimization is

solved for each assumed scenario. The computational times for

one-fault scenario, two-fault scenario, three-fault scenario, and

four-fault scenario are 570 ms, 740 ms, 510 ms, 590 ms, respec-

tively. The results are shown in Table X. From the simulation

results, for the hypothetical scenario with one fault, the no. of dis-

crepancyNDisc., which is the summation ofNFail., NMalf. and

NIncor., is calculated to be 32.NDisc. for the two-fault scenario,

three-fault scenario, and four-fault scenario is calculated to be

10, 6, 6, respectively. From the simulation results, it is inferred

that when three sequential faults, which are L4335@3.25 ms,

L4336@30 ms, B2-I@340.5 ms, occur, the discrepancy between

the expected and received alarms is at the minimum value.

Therefore, the three-fault scenario is the most credible to be the

true scenario. It is also deduced that MP of L4336@Tangling

failed since the alarm is determined to be missing, and there is

a breaker failure of C10. Confidence on the result can be further

computed by fit between hypothesis and converged optimization

scenarios by following equations:

Trust Score = 1−NDiscp./NAlarm

where NDiscp. is the number of discrepancies in each hypothe-

sized scenario from the converged optimization and NAlarm is

the number of total alarms available for fault diagnosis.

For a scenario with a complete alarm set without failures or

malfunction, Trust Score will be 1. The score represents the

confidence level of the determined scenario to the ground truth.

By applying the confidence level, the event diagnosis results

for the real-world scenario are updated for each hypothesized

number of faults in the scenario. It clearly shows that for the

hypothesis with a single fault in the system, the score value is

0.47, which indicates a low credibility of the determined scenario

to be the ground truth. In the meanwhile, the credibility for the

scenarios with three and four faults is the same while it is less

likely for more faults occurred in the scenario what led to the

same observed alarms and measurement sets. It can be concluded

that the trust score value can effectively reflect the confidence

of the fault diagnosis results by reflecting the incorrect and

incomplete alarms and measurement in the collected data set. As

a result, the proposed approach provides the decision-making of

event diagnosis for transmission utilities.
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D. Comparison of the Analytical Model-Based Event

Diagnosis Methodologies

Analytical model-based event diagnosis methodologies in [4]

and [14] have been implemented at EMS. From the simulation

results claimed in the literature, both algorithms can support the

system operators and protection engineers to diagnose the event.

The pros and cons of the proposed approach compared to the two

algorithms are summarized in Table XI. Assume there are n com-

ponents, m relays, k CBs in the outage region. In the meanwhile,

the maximum no. of faults in the outage region is assumed to

be f. m, n and f are not directly correlated while their values

are dependent upon the outage area and the system protection

configurations. In this study, f is assumed to be limited to 4 for

the real-world scenario as indicated in Table X. The proposed ap-

proach outperforms the state-of-the-art by significantly reducing

the hypotheses, handling complex fault scenarios, the linearity

of the proposed model for event diagnosis, global optimality and

incorporation of the temporal correlation of alarms. The result

is a highly computational methodology for accurate fault event

diagnosis in an online application. It is worthy to further clarify

the comparison of the proposed approach to References [4] and

[14] as:
� the proposed methodology is essentially a MILP model

and the linearity of the approach ensures the “Global opti-

mality”. Indeed, the proposed technology is a data driven

approach and the effectiveness and accuracy of the pro-

posed approach is based on the completeness and quality

of the data. As demonstrated in the study, the proposed

methodology already has the capability to handle incom-

plete or incorrect alarms to some extent which indicates that

not all components are required to be measured by devices

such as PMUs, SERs, or SCADA. If too many alarms and

measurements data are missing, results will not converge

or will converge with less confidence as indicated by trust

score.
� the fewer hypotheses will enhance the computational per-

formance of the proposed approach targeted for online

applications and reduce the efforts from system operators

in decision-making. Ideal will be considering all possible

hypotheses and intelligent pruning for computationally

efficient performance for online applications. If intelligent

pruning or analysis is not done, more hypotheses will result

in longer computational time.
� the proposed methodology is a MILP model while Refer-

ence [4] is based on nonlinear analytical models and heuris-

tic techniques such as Tabu searching have to be employed

as solution methodologies. Essentially, all the constraints

from Reference [4] have been or can be included in the

proposed MILP methodology while developing a linear

formulation and the optimization can be directly solved

by commercial MILP solvers. Therefore, the proposed

MILP approach offers clear differences for better compu-

tational performance and higher chances of convergence

and robustness even with increasing problem complex-

ity while not compromising the accuracy than that in

Reference [4].

TABLE VII
ALARMS RECEIVED FOR FAULT DIAGNOSIS

TABLE VIII
IMPACT OF WEIGHTING FACTORS ON FAULT DIAGNOSIS RESULTS

E. Impact of Weighting Factors in the Objective Function on

the Fault Diagnosis Results

The selection of weighting factors of the objective function

in (1) will impact the fault diagnosis results from the proposed

optimization. When ω1 is selected to be high while ω2 & ω3

are selected as a low value, the proposed optimization will

identify the fault scenario with the minimum sensor failures as

the diagnosis results. In contrast, if ω3 is selected high while

ω1 & ω2 are low, the proposed optimization will identify the

fault scenario with the fewest incorrect timing tags. To further

evaluate the effect of weighting factors on the result of event

diagnosis, a combination of ω1, ω2 and ω3 is selected and the

optimization is solved for a fault scenario using Synthetic South

Carolina 500-Bus System in Fig. 4.

The fault scenario is that a fault occurred at L1 at

10:12:21:120 and MP tripped open CB1 and CB2 while the

protection alarm MP for CB2 was missing. And SBP of CB4

triggered open CB4 incorrectly. The alarms received at the

control center is summarized in Table VII. For a combination

of the weighting factors in (1), the corresponding results are

summarized in Table VIII. It is shown that when ω2 is high,

the proposed optimization is aimed to minimize the number of

sensor malfunctions, which leads to the incorrect determination

of the fault scenario. While ω1 is high, the true fault scenario

is identified. The results show that the weighting factors may

have an impact on the fault diagnosis result from the proposed

optimization. One potential technology to eliminate the effect

of weighting factors on the result of event diagnosis is to hy-

pothesize the number of incomplete alarms, incorrect alarms,

and malfunctioning alarms directly in each scenario and carry

out the proposed analytical model for each hypothesis. This

approach based on multiple-hypothesis analysis can explicitly

consider all combinations of issues in event diagnosis while

the computational complexity will be exponentially increasing

with regard to the potential abnormalities in the event. While

it is worth to investigate and to implement this approach, given

the scope of work, the authors will elaborate it in the future
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TABLE IX
ALARMS FROM THE EVENT

TABLE X
EVENT DIAGNOSIS RESULTS

TABLE XI
COMPARISON OF ALGORITHMS FOR EVENT DIAGNOSIS

study. Nevertheless, presented approach study will have same

formulation and framework but a greater number of hypotheses.

Note that, our assumptions in this study is utilizing best possi-

ble way to judge weighting factors similar to the one already

existing in multiple power system operational practices such as

weighting factor in state estimation for sensor data and failure

rate assumptions in reliability analysis.

F. Discussion of the Proposed Methodology

The proposed event diagnosis technology is aimed for ap-

plication in a wide area system. The sampling, filtering and

estimation algorithms impact the phasor estimation algorithm.

But not all applications will be impacted by these differences

assuming that PMUs meet the performance requirement of IEEE

C37.118 and tested following IEEE TSS. As demonstrated in

study using PMU Application Requirements Test Framework

and related papers, some applications are sensitive, and some

applications are not sensitive to the observed error caused by

different types of PMUs. Applications addressed in this study

will be least sensitive to PMU errors as it is based on a large

threshold for fault currents and circuit breaker status. Hence

data synchronization and sampling rates even being important

for some other applications will be less important for the one

addressed here. In the meanwhile, the proposed algorithm is

able to determine the event inception time and handle missing

time tags for event diagnosis. If GPS signal is not available,

the proposed approach can still diagnose the event while the

accuracy for event diagnosis may be affected since the temporal
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correlation of alarms is not fully utilized. As demonstrated in the

real-world case in Section V-C, the proposed approach shows a

good performance to handle real-world complex event scenario

with multiple faults, missing alarm, and breaker failure. Note

that missing alarms can be due to communication delay, device

failure, or other reasons. However, the proposed approach needs

to be further explored to handle problems such as cascading line

trips. This point is discussed for potential applications of fault

event diagnosis

VI. CONCLUSION AND FUTURE WORK

This study presents a data driven approach based on MILP

for fault event diagnosis of transmission systems considering

the incomplete and incorrect alarms with sensor malfunctions.

The proposed approach is demonstrated to be capable to handle

complex fault events including multiple faults, missing fault

inception time, failures and malfunctions of protective relays or

CBs as well as incorrect alarm time tags. Alarms from multiple

sensor sources such as PMUs, SERs, and SCADA data are jointly

(2) ⇔

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

hi1 ≤ LZ2
j

hi1 ≤ rpiloti

hi1 ≥ LZ2
j + rpiloti − 1

rMP
i ≥ LZ1

j

rMP
i ≥ hi1

rMP
i ≤ hi1 + LZ1

j

hi2 ≤ rMP
i

hi2 ≤ 1− frMP

i

hi2 ≥ rMP
i − frMP

i

hi3 ≤ 1− rMP
i

hi3 ≤ mrMP

i

hi3 ≥ mrMP

i

− rMP
i

RMP
i ≥ hi2

RMP
i ≥ hi3

RMP
i ≤ hi2 + hi3

(4) ⇔

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

rPBP
i ≤ Lj

rPBP
i ≤ 1− yMP

CBi

rPBP
i ≤ 1− fMP

CBi

rPBP
i ≥ Lj − yMP

CBi
− fMP

CBi

fMP
CBi

≤ 1− yMP
CBi

fMP
CBi

≤ RMP
i

fMP
CBi

≥ RMP
i − yMP

CBi

hi4 ≤ rPBP
i

hi4 ≤ 1− frPBP

i

hi4 ≥ rPBP
i − frPBP

i

hi5 ≤ 1− rPBP
i

hi5 ≤ mrPBP

i

hi5 ≥ mrPBP

i

− frPBP

i

RPBP
i ≥ hi4

RPBP
i ≥ hi5

RPBP
i ≤ hi4 + hi5

(6) ⇔

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

rSBP
i ≤ Lj

rSBP
i ≤ 1− yMP

CBk

rSBP
i ≤ 1− yPBP

CBk

rSBP
i ≤ 1− fMP

CBk

rSBP
i ≤ 1− fPBP

CBk

rSBP
i ≥ Lj − yMP

CBk
− yPBP

CBk

−fMP
CBk

− fPBP
CBk

fPBP
CBk

≤ 1− yPBP
CBk

fPBP
CBk

≤ RPBP
k

fPBP
CBk

≥ RPBP
k − yPBP

CBk

hi6 ≤ rSBP
i

hi6 ≤ 1− frSBP

i

hi6 ≥ rSBP
i − frSBP

i

hi7 ≤ 1− rSBP
i

hi7 ≤ mrSBP

i

hi7 ≥ mrSBP

i

− frSBP

i

RSBP
i ≥ hi6

RSBP
i ≥ hi7

RSBP
i ≤ hi6 + hi7

(8) ⇔

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Ri ≥ RMP
i

Ri ≥ RPBP
i

Ri ≥ RSBP
i

Ri ≤ RMP
i +RPBP

i +RSBP
i

rBFP
i ≤ 1− yCBi

rBFP
i ≤ Ri

rBFP
i ≥ Ri − yCBi

hi8 ≤ rBFP
i

hi8 ≤ 1− frBFP

i

hi8 ≥ rBFP
i − frBFP

i

hi9 ≤ 1− rBFP
i

hi9 ≤ mrBFP

i

hi9 ≥ mrBFP

i

− rBFP
i

RBFP
i ≥ hi8

RBFP
i ≥ hi9

RBFP
i ≤ hi8 + hi9

(10) ⇔

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

RCB
i ≥ Ri

RCB
i ≥

∑

j∈ΩCBi

RBFP
j

RCB
i ≤ Ri +

∑

j∈ΩCBi

RBFP
j

hi10 ≤ RCB
i

hi10 ≤ 1− fCBi

hi10 ≥ RCB
i − fCBi

hi11 ≤ 1−RCB
i

hi11 ≤ mCBi

hi11 ≥ mCBi
−RCB

i

yCBi
≥ hi10

yCBi
≥ hi11

yCBi
≤ hi10 + hi11

yCBi
≥ yMP

CBi

yCBi
≥ yPBP

CBi

Authorized licensed use limited to: Washington State University. Downloaded on August 20,2020 at 00:04:28 UTC from IEEE Xplore.  Restrictions apply. 



JIANG AND SRIVASTAVA: DATA-DRIVEN EVENT DIAGNOSIS IN TRANSMISSION SYSTEMS 225

used for accurate fault event diagnosis in an automatic manner.

The temporal correlation of alarms is explicitly modeled in the

constraints for improved fault diagnosis. The high computational

performance of the proposed algorithm is demonstrated by the

testing cases and the proposed methodology is potential for

on-line applications for fault diagnosis at the control center.

Future study needs to further validate the algorithm with more

scenarios and hypothesize explicitly all combinations of issues

in the outage for fault event diagnosis.

APPENDIX

See the equation shown on the previous page, where hi1,

hi2, . . . , hi10 and hi11 are additional decision variables to assist

the conversion of logical nonlinear constraints into a linear

combination of decision variables.
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