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Data-Driven Event Diagnosis in Transmission
Systems With Incomplete and Conflicting
Alarms Given Sensor Malfunctions

Yazhou Jiang

Abstract—Accurate fault event diagnosis with incomplete and
conflicting alarms given sensor malfunctions is a challenging prob-
lem for power system operators. To solve this problem, this study
proposes a data-driven approach based on Mixed Integer Linear
Programming (MILP) for fast determination of fault event sce-
narios with uncertainties. The uncertainties include failures and
malfunction of relays and circuit breakers (CBs) as well as incom-
plete/incorrect sensor alarms at the control center. To improve the
accuracy for fault event diagnosis, redundant alarms from multi-
ple sources, i.e., Phasor Measurement Units (PMUs), Supervisory
Control and Data Acquisition (SCADA), and Sequence of Events
Recorders (SERs) are jointly used in this study. The temporal
correlation of sensor alarms is incorporated in the constraints of the
MILP model. The resulting data-driven algorithm determines the
most credible fault scenario that is well supported by the available
sensor alarms at the control center. Simulation results of the IEEE
14-bus system, the synthetic South Carolina 500-bus system, and a
real-world complex event scenario demonstrate the effectiveness
of the proposed approach for accurate and efficient fault event
diagnosis.

Index Terms—Alarm message, analytical model, data-driven,
fault diagnosis, mixed integer linear programming, outage
management, power system protection.

NOMENCLATURE
MP Main protection
PBP Primary backup protection
SBP Secondary backup protection
BFP Breaker failure protection
M Large number
rMP - PBE MP, PBP, SBP, BFP of relay i
pSBP BFP

R, RO
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MP, PBP, SBP, BFP alarm from relay i
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Decision variables to indicate the failure of
MP, PBP, SBP, BFP of relay i, C'B; and
PMU

Decision variables to indicate malfunction
of MP, PBP, SBP, BFP of relay i, CB; and
PMU

Time tags of MP, PBP, SBP, BFP and C'B;
status alarms

Decision variables to denote incorrect time
tags of MP, PBP, SBP, BFP of relay i and
C'B; alarm

Timing tolerance for MP, PBP, SBP, BFP
and CB alarms

No. of alarm failures, malfunctions, and
incorrect time tags

Weighting factors for alarm failures, mal-
functions, and incorrect time tags
Inception time of event k

Pilot protection signal of L;

Protection coordination time of PBP and
SBP, and breaker failure detection time of
BFP

Decision variable to denote the alarm that
trips C'B;

C'B; status alarm from PMU

Set of sensors and transmission lines
Statuses of C'B; after MP and/or PBP acti-
vates, and the final status of C'B;

I. INTRODUCTION

AULT event diagnosis has been widely recognized to be
I l critical for reliable operation of power systems [1], [2].

A fault and the resulting actions of protective relays and CBs
generally lead to a power outage. Over the last decades, signif-
icant efforts have been devoted to development of technologies
and tools for advanced fault event diagnosis for applications
in Energy Management Systems (EMS) at the control center.
As a result, considerate progresses have been made and the
engineering practice for fault diagnosis has gradually evolved
from the domain knowledge-based analysis to the most recent
analytical model-based techniques [3], [4].
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Fault diagnosis is a primary task for system operators and
protection engineers when a power outage occurs. System oper-
ators need to infer the faulted component and sequential actions
of protective relays from the available sensor alarms at the
control center. In an outage, failures or malfunctions of relays
and CBs may occur, and sensor alarms may be delayed or
missing due to communication issues. Accurate identification of
these complex fault scenarios with sensor malfunctions requires
extensive domain knowledge of power systems and its protection
configuration. To assist system operators with decision-making
of fault event diagnosis, various classifications of technologies,
i.e., Knowledge Based Systems (KBSs), Model Based Systems
(MBSs), and Atrtificial Intelligent Systems (AISs) have been de-
veloped. KBSs have been proposed in [5]-[7] for determination
of the fault scenario by comparing actual event messages with
simulated messages. MBSs have been elaborated in [8] to rep-
resent correlation between physical power system components
and event messages. However, a KBS or an MBS relies heavily
on the knowledge modules and the expertise of system models
for an accurate fault event diagnosis. AISs such as Petri Nets [9],
[10], Neural Network [11], and Bayesian networks [12] have also
been proposed for fault diagnosis. The recent study is focused on
analytical methodologies to diagnose the fault event of power
systems [3], [4]. The causality of a faulty component and the
resulting alarms is modeled in an analytical way to determine
the most credible fault scenario that is well supported by the
available sensor alarms at the control center. Tools based on
analytical methodologies have been developed to assist system
operators with decision-making. A tool named Generalized
Alarm Analysis Module (GAAM) has been integrated into EMS
at the control center in Italy [13], [14]. Note that Ref. [13]
is based on multiple hypothesis analysis by hypothesizing the
fault scenario and calculating its credibility. The hypothesis with
the highest credibility is deemed to be faulty. The drawback
of these methodologies is a large number of hypotheses and
the given hypotheses may not capture the true fault scenario.
Moreover, the temporal correlation of sensor alarms and the
multiple sources of alarms have not been considered. Other
tools have been developed and tested in the regional system of
China [4]. These tools use Sequential Event Recorders (SERs)
or SCADA alarms including CB statuses for fault diagnosis.
To improve the accuracy, methods incorporating the time tags
of alarms are developed in [4]. A five-digit algorithm based on
high fidelity data from newly installed PMUs is introduced in
[15] to determine the faulted transmission line.

While significant progress has been made in development of
advanced methodologies and tools for fault event diagnosis in
transmission systems, it is worth noting that power system is
highly nonlinear and fault diagnosis with uncertainty is a com-
plex problem. Indeed, the state-of-the-art analytical techniques
and tools are primarily based on multiple-hypotheses analysis
[4], [14], [16]. Each component in the outage area is hypothe-
sized to be faulty and the causality of the hypothesized faulty
component and activated relays is modeled for determination of
the most credible fault event. For example, a methodology based
on multiple-hypothesis analysis is proposed in [16] for outage
management of distribution systems incorporating information

from smart meters. Ref. [16] is used to identify the outage
area and the faulted line sections based on a radial structure
of distribution feeder circuits. The number of smart fault indi-
cators with a failure or malfunction and the pair number of a
missed protection coordination of recloser-fuse or fuse-fuse in
distribution systems are first hypothesized and the credibility
for each hypothesis is quantified by how well it is supported by
data from smart meters and smart fault indicators. The detailed
protection coordination has not been modeled and the temporal
correlations of sensor alarms have not been addressed. In the
analytical models for event diagnosis of transmission systems,
the constraints are nonlinear as reported in [4]. The nonlinearity
and the resulting complexity together with numerous hypotheses
make it hard to be solved in an efficient manner. Heuristic
such as Tabu Search [4], particle swarm optimization [17] or
Generic algorithm (GA) [18], has to be deployed as solution
methodologies for nonlinear analytical models. To the best of the
authors’ knowledge, the state-of-the-art research on analytical
models for fault event diagnosis, especially with incomplete and
conflicting alarms, is inadequate in the following aspects:

e A large number of hypotheses have to be generated to
capture the possible faulted component and the resulting
actions of protective relays and CBs. The number of hy-
potheses increases exponentially with regard to the number
of components involved in the outage area.

e For each hypothesis, nonlinear analytical techniques are
used to model the causality of the faulted component and
the resulting actions of protective relays and CBs with
uncertainties. Nonlinearity leads to additional complexity
and makes it hard for on-line applications.

e Heuristic is employed to solve the nonlinear analytical
models for determination of the most credible fault event
scenario that is well supported by the available sensor
alarms at the control center. The global optimality of the
optimization is not guaranteed, and the true fault scenario
may be missed due to suboptimality.

¢ Existing studies use alarms from SERs, SCADA alarms, or
PMUs to diagnose the fault. Technologies to incorporate
redundant alarms from multiple sources in an automatic
manner are not available.

¢ The available technology has not fully modeled the tempo-
ral correlation of sensor alarms for an accurate fault event
diagnosis.

Transmission utilities are faced with the challenge of how
to leverage sensor data available for system operators to better
support the grid operation with a better accuracy. To bridge
these gaps of the existing solutions, this study proposes a new
data-driven approach to leverage alarms from multiple sources
such as SCADA, PMU, SERs for event diagnosis considering
incorrect and incomplete sensor alarms as well as temporal
correlations of alarms given sensor malfunctions. Key contribu-
tions of the proposed approach are: 1) data-driven approach by
leveraging sensor alarms from multiple sources including SERs,
PMUs and SCADA data for accurate fault event diagnosis with
uncertainties; 2) integrating the data driven approach with an an-
alytical MILP model that considers the failures or malfunctions
of protective relays and CBs as well as incomplete/incorrect
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alarms. The most credible fault event scenario is determined
by minimizing the discrepancy of the determined scenario with
the available sensor alarms while respecting the principle of
protection systems. The temporal correlation of sensor alarms
is explicitly incorporated in the analytical model to capture
the temporal abnormality of actions of protective relays and/or
CBs; 3) testing and validation of the proposed approach using
the IEEE-14 bus system, the synthetic South Carolina 500-bus
system, and a real-world complex event scenario.

II. FAULT DIAGNOSIS WITH UNCERTAINTIES

When a permanent fault occurs in power systems, relays at
substations are configured to detect the fault in a timely manner
and trip open the CBs for fast fault isolation. In this process,
relays may be incorrectly configured, and CBs may fail to oper-
ate upon receiving a tripping signal. These uncertainties together
with missing sensor alarms and uncertainties of transmission line
parameters significantly complicate the process of fault event
diagnosis. To ensure a fault to be isolated in a timely manner,
redundant protection configurations such as pilot protection,
distance relays, and breaker failure relays, are widely deployed
in transmission systems. For instance, many utilities select pilot
protection as MP for transmission lines with a voltage level of
345 kV or above due to its fast response to isolate the fault while
distance relays are used as a backup. When the MP fails to isolate
the fault, the backup protection, i.e., PBP and SBP, is expected
to operate to open the CB. The statuses of CBs are sent back
to the control center through SCADA for system operators to
diagnose the fault event scenario. In the meanwhile, sequential
actions of relays and CBs with timing tags are recorded by SERs
at the substation, which can be acquired by EMS in an online
manner. Some newly installed PMUs at substations also monitor
and send CB statuses and estimated phasors to the control center
through Phasor Data Concentrators (PDCs). It is worth noting
that ‘M’ type measurement class PMU typically uses a longer
window to estimate phasors compared to ‘P’ type protection
class PMUs as part of relays or standalone PMUs following
IEEE C37.118 and IEEE Test Suite Specification (TSS). The
additional delay in ‘M’ type will not impact the performance
of the proposed algorithm as phasor will be still timestamped in
middle of the window and time synchronized in PDC. Moreover,
delay is typically in fraction of seconds for ‘M’ type of PMUs,
which will not impact the proposed applications with several
seconds/minutes timeline. PMU data is used after the event
to compute the fault status and information while transient
response is not required for this. Additionally, as discussed with
engineers from utility companies such as New York Independent
System Operator (NYISO) and American Electric Power (AEP),
PMUs can also be customized to monitor the status of circuit
breakers using user defined bits. Different from SERs which use
the local substation clock, PMUs data at different substations
are synchronized by using the Global Positioning System (GPS)
with an error less than one millisecond. Alarms from multiple
resources, i.e., SERs, SCADA, and PMUs, are jointly used in
this study for accurate fault event diagnosis with uncertainties.
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Fig. 1. Simplified power grid with protection systems.

TABLE I
ALARMS AT THE CONTROL CENTER FOR FAULT DIAGNOSIS

Alarm Source Time tags Received alarms
14:2:21:100 MP of CB4 operates
14:2:21:134 CB4 trips

SERs 14:2:21:601 SBP of CB1 operates
14:2:21:602 SBP of CB6 operates
14:2:21:635 CB1 and CB6 trip
14:2:21:134 CB4 trips

PMU 14:2:21:635 CBG6 trips

SCADA CB1, CB4, and CB6 open

A simplified power system as shown in Fig. 1 is used for
illustration of the protection system. Suppose a fault occurs
on line L2 and MPs of CB4 and CB3 are expected to trip
the CBs instantaneously without any intentional delays. If CB4
opens successfully while MP fails to trip open CB3 due to the
incorrect configuration, PBP of CB3 is configured to trip open
it with a given delay. If the tripping signal does not transmit
successfully to the CB due to an incorrect configuration or
others, SBPs of CB1 and CB6 are designed to trip CB1 and CB6
respectively to isolate the fault. The sequential actions of relays
and CBs are recorded by SERs. In Fig. 1, the PMU installed at
Sub3 monitors the status of CB4 and CB6. For the given fault
scenario, the alarms received from SERs, SCADA, and PMU(s)
are summarized in Table I for fault event diagnosis. Note that
the time tags of SCADA alarms are not considered since the
time tags are usually added on using the computer clock at the
control center when the alarms arrive.

III. FAULT DIAGNOSIS PROCESS

The framework of the proposed methodology for fault event
diagnosis is shown in Fig. 2. Collected sensor alarms from
SCADA, PMUs and SERs are first used to determine the outage
area by the proposed methodologies in [13] or [19]. Ref. [19] is
focused on the system topology determination for applications
of state estimation. The causality of a fault and the consequential
actions from relays and circuit breakers for event diagnosis has
not been addressed in [19]. The sensor data together with system
knowledge such as power network topology and protection con-
figuration serve as the input to the proposed MILP optimization
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Fig.2  Fault diagnosis framework.

for fault event diagnosis. Included in the proposed approach is
also the temporal correlation of alarms while respecting protec-
tion operating logics for determination of the most credible fault
event scenario that is well supported by the available alarms. The
output is the event diagnosis report including faulted component,
failure or malfunction of CBs & relays.

IV. MILP MODEL FOR FAULT EVENT DIAGNOSIS
A. Assumptions

In North America, transmission networks are usually
equipped with distance relays with 3-zone protection configura-
tion, pilot protection, and breaker failure relays. Pilot protection
and Zonel protection of distance relays are regarded as MP
of a transmission line while Zone2 and Zone3 protections are
regarded as the PBP and SBP, respectively. In this study, the
assumption is made as follows for the purpose of illustration:

e Faults are isolated by the redundant protection systems,

i.e., MP, PBP, SBP and BFP.

The redundant protection system is configured to isolate faults
while accommodating potential failures from relays or breakers.
In addition, the proposed models can be applied to diagnose
any electric assets such as transmission lines, bus bars, and
transformers with different protection configurations.

B. Objective Function

In this study, a sensor indicates a relay or a CB. If the alarm
from a sensor is not available but expected at the control center,
it will be defined as a failure of the sensor. As such, the sensor
failure includes physical device failures, missing or delayed
sensor alarms. On the other hand, if a sensor alarm is not
expected while it is available, it is defined as a malfunction of
the sensor. This study considers multiple failures and anomalies
for event diagnosis. The objective function is to minimize the
discrepancy between the estimated sensor alarms and available
ones at the control center for fault diagnosis. The discrepancy

is quantified by weighted summation of the total no. of sensor
failures, malfunction, and incorrect timing tags. That is

Min wl*NFail.+w2*NMalf.+w3*NIncor. (1)

For transmission utilities, the historical data can be used to
determine the weighting factors. For example, if nl out of N1
sensor failures occur in history, w; is determined to be (N1-
nl)/N1. The same procedure can be applied to wo, and ws.

C. Constraints

The constraints are meant to model the causality of the
faulty component and the resulting actions of relays & CBs
with uncertainties while respecting the principles of configured
protection systems. The temporal correlation of time tags of
redundant sensor alarms is also incorporated in the constraints
of the proposed optimization.

1) Constraints of MP: Suppose that 7 ¥ is the MP of line
L;. rMP is expected to operate when a fault occurs at Zonel
protection distance of L; or at the Zone2 protection region and

pilot

a pilot protection signal 7; from the remote end of L; is

also received. The alarm R should be received when M
operates properly without failures or ¥ should not operate
while it malfunctions to trip. This logical relationship is modeled

in Eq. (2) as
Tzz\/[P _ L]Zl vV (LJZ2 A Tl_pilot)

Rf\/[P = (Tiwp/\ ~ frf\/rp) V (N lewP A mnMP)

@)

Since MP protection is designed to operate instantaneously
without intentional delays upon occurrence of a fault, time tag
trzy P is expected to be within the time interval given in (3) as

—aMP o« M — eprp < RMP s (¢ 217 — ')

RMP s (¢ MP /") < epyp 4+ aMP s« M

3

2) Constraints of PBP: Suppose that 72T is the PBP of line
L; and is associated with C'B;. PBP is expected to trip when i)
rPBP detects a fault on L;; ii) its setting time for coordination
with MP is released; iii) C'B; is not open by MP; iv) there
is no breaker failure. Alarm RPB” is available when r/B¥
operates properly without failures or it should not operate while
it malfunctions to trip. That is

PBP _ 1 MP MP
T =LA ~ycp N~ fcB,

A A @
RZPBP = (T’ZPBP/\ ~ fT,PBP) V (N T‘lPBP A mTPBP)
The time tag of alarm RPP¥ is expected to be within the

range from tqg + ATppp —eppptoty + ATppp + cppp as
—:EZPBP x* M —eppp < RfBP * (tlgBP — t{tl — ATPBP)

RPBP s« (tfBP — /" — ATppp) <eppp +alPP x M
(&)
3) Constraints of SBP: Use 77 B” to denote the SBP of line
L;. CBy, is associated with MP and PBP designed to isolate L;
if it is faulted. SBP is expected to issue a tripping signal when
77 BT detects a fault and the time for coordination with PBP is
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released. The underlying logic is that neither MP or PBP has
successfully tripped open C' By, and there is no breaker failure
of CBy,. In a similar fashion, the alarm RfBP from rfBP is
available under these two scenarios: a) 77 2% operates properly
without failures; b) 25" malfunctions to report a fault. That is
SBP _ MP PBP MP PBP
ri70 = LiN~ Yo, N~ Yop, N~ fos N~ ToB,
FEB =~ yoB, NRYPT
R;SBP = (T;SBP/\ ~ fTSBP) V (N T?BP A\ mTSBP)
(6)
The time of the tripping signal from SBP is expected to be in
the interval [tg + ATspp — espp,to + ATspp +cspp) as

{ —LL‘;SBP * M —egpp < R;SBP * (t}%?P — ATspp —titl)

R?BP * (tRSiBP — ATspp — titl) <egspp + .T;SBP * M
(N
4) Constraints of BFP: Let rfFP be the BFP of C'B;. BFP
is expected to operate when C'B; receives a tripping signal from
its associated relays such as MP, PBP, and SBP while it fails to
open its mechanical contact. If r2¥'F" operates properly without
failures or it malfunctions to report a breaker failure, the alarm
REFP will be available for fault diagnosis. The underlying logic
is
R; = RMP v RPBP  RFBP
rPTP = RN ~ yes,
RBFP = (1BEPN ~ foorr) V (~ rBFP Ay pree)
®)
The tripping time of the BFR falls in the given range as

{ —aBFP « M —cppp < RBFP & (¢ PTP — ATBIP ")

RBFFP & (tBFP — ATPFP —t{") < cppp + 2§BF « M
C))
where ATPFP = Atppp + RMP « (t 7 — t{:”) + RPBE «
(tRPF =) + REPP w1552 —4[").

5 ) Constraints of CB: A CBis expected to open the mechani-
cal contact when a tripping signal is received from its relays, i.e.,
MP, PBP, SBP, and BFP. The underlying logic is that a tripping
signal is received, and the CB operates without failures; or no
tripping signal is received but the breaker malfunctions. Suppose
Yo B, indicates the availability of alarm from C'B;. The logic is

CB _ v BFP
Ry =RV (ZJGQCBi i )

YycB; = (RzCB/\ ~ fCBi) N (N RZ'CB /\mCBi) (10)

MP
YyoB; = Ye,

PBP
YcB; = YoB,

The constraint of the opening time ¢~ p, of CB; is given as
l
{ —zcp, * M —ecp < yoB, * (tep, — Alcp, — tﬁt )

yep, * (tes, — ATep, — tﬁ“) <ecptacp, x M
(11)
where ATcp, = ca,, (RPFY + Atprp) + RMP « (137
— ")+ REPP « (PP —t[") + REPP + (1357 —t]") +
Atcp.
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6) Constraint of Event Inception Time: The fault inception
time t{” of a component is correlated with the decision variable
of its status, which is modeled as:

t" = L« ]! (12)

Since both L; and t%l are decision variables, (12) will be
nonlinear. Using Big-M theory, (12) is converted into a linear
constraint as

—1000 # (1 — Lj) < t{" — /i <1000« (1 —L;) (13)

7) Constraint to Incorporate PMU Data: When a PMU is
installed in the substation, the statuses of CBs are monitored by

the PMU. The logic is
{ e fgé{U (14)
CBIMYU —yep, <mEyY

8) Constraints to Count Alarm Discrepancy: Sensor failures,
sensor malfunctions, and incorrect alarm timing tags are counted
as

Nfa'il. = ZieQS (fr,pr + frfBP + frfBP + frfFP
+Nep, * fe, + FEBY)
NMalf. = ZiEQS (mTMP +m,peP + M,.sBp + M, BFP
+NCBi *mep, + mg]];{U)
Nincor. = 3 (@MP +a7PP + 2P + aPFP + 2cp,)
1€Qg
(15)
where N¢p, is used to denote the number of available alarms
for each CB. For instance, if the open status alarm of C'B; is

available from SERs as well as the SCADA, N¢p, = 2.
9) Constraints of the Decision Variables:

Li = L7 + L72 Vi € Qrine

(16)

In this study, M is selected as 750 to impose constraints (3),
%), (7), (9), and (11) in the optimization to determine if the
timing tag of an alarm is incorrect when the time tags use
millisecond as the unit. To strategically select M, the worst
scenario can be used. The worst fault scenario is that SBP acts
to trip open a CB while the CB fails and the BFP trips open
the CB instead. Given the protection coordination time of SBP,
say 0.5 second, and BFP to detect a CB failure as 0.2 second,
CB breaker opening time as two cycles, M can be any number
larger than 0.734 second, which is equal to {t for SBP to operate }
+{t to open CB contact}+{t for BFP to operate}+{t to open
CB contact}. enip, €pgp, and esgp, are selected to be 5 ms in
this study and eppp & ecp are selected as 34 ms. Essentially
the error tolerant parameters are selected to account for clock
inaccuracy or any timing issues for MP, PBP, SBP, BFP, CB to
act when a fault occurs. A GPS can maintain a clock error to be
within 1 ms. A digital relay may have 16, 32, or 64 samples
each cycle depending on its configuration. To accommodate
these uncertainties, eyip, €pp, and eggp are selected to be
5 ms, which is slightly larger than 2.04 ms, a summation of
16.7/16 ms and 1 ms. egpp & £cg need to be selected to further
accommodate the inaccuracy of breaker opening time. Since
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activation of a breaker is opening the physical contact, which
may take one to two cycles. Therefore, the thresholds can be
selected as 34 ms. In the meanwhile, system operators are also
provided with the flexibility of relaxing the temporal correlations
of alarms by setting envip, €pBP, €SBP, €BFP and ecp to a large
number, such as 1000 second if desired.

D. Convert Nonlinear Logical Constraints Into a Linear
Combination of Decision Variables

Logical operation constraints can be converted into a linear
combination of decision variables with the principles given as
1) Conversion of logical “Or"constraints:

’w:gl\/gQ\/"'\/‘gnfl\/gn

N w > g, Vi€ {1,2,3,...,n}
w<gr+go+- -+ Gn-1+gn

2) Conversion of logical “And"constraints:
vV=g1Ng2 N NGgm-1N\Gm

N v<g;,Vie{l,2,3,...,m}
v>g1+get ot gmo1t gm — (m—1)

where w, g1, ..., gn, and v are binary decision variables.

Using these principles, the logical operation constraints (2),
4), (6), (8), and (10) are converted into a linear combination of
decision variables. The details are given in the Appendix. It is
worth noting that decision variables h;1, . . ., h;11 add complex-
ity into the optimization with an increased number of decision
variables while assisting with the conversion into a MILP formu-
lation. The simulation results in Section V demonstrate that the
additional decision variables will not compromise the potential
of the proposed approach for online applications given its highly
computational performance and global optimality resulting from
the intrinsic linearity. It is also worth noting that even though
the principles have been proposed in [20], there are multiple
novel contributions of the proposed work. This study developed
a new algorithm by modeling the causality of the fault and
the observed alarms as well as considering temporal correla-
tions of alarms given sensor malfunctions for event diagnosis
in transmission systems. In contrast, Ref. [20] is dedicated to
modeling the spatial locations of smart fault indicators and line
sections and using received data from fault indicators to estimate
the faulty line sections without consideration of the protection
system in distribution systems. The problems addressed in this
study is different than the one addressed in authors’ previous
study [20]. To the best knowledge of the authors, this study
is the first to propose an analytical model based on MILP for
event diagnosis with incomplete and conflicting alarms given
sensor malfunctions. The causality and temporal connections
of observed alarms, while respecting the redundant protection
coordination and possible failure mechanism are first modeled
in the proposed optimization, which is novel compared to the
state-of-the-art. And problem formulation and preparing set of
equations to be solved by MILP is novel.

Bus 13

Bus9 Bus8

Bus7

JEN Bus 4

B Close breaker I Failed breaker
[J Open breaker ; Fault

Fig. 3. Fault scenario for IEEE 14-bus system.

V. SIMULATION RESULTS

The proposed approach for fault event diagnosis is tested with
different cases, i.e., IEEE 14-bus system [21], synthetic South
Carolina 500-bus system [22], and real-world event scenario in
[4]. Fault events including relay failures, breaker failures, miss-
ing/incorrect alarms and multiple faults, are used to demonstrate
the effectiveness of the proposed approach for on-line applica-
tions. The IEEE 14-bus system and the synthetic South Carolina
500 bus system are modeled in Real-Time Digital Simulator
(RTDS) to simulate the fault scenario. The optimization model
is implemented in CPLEX 12.7.1 on a computer with i5-3340M
CPU and 4 GB memory.

A. IEEFE 14-Bus System

Fault scenario:
e A fault occurs at L3 at time 11:12:1:189;
e The MP of CB9Y at the substation of Bus3 operated correctly
and the CB tripped open instantaneously;
e The MP and PBP of CB8 at the substation of Bus2 did not
operate due to a wrong configuration;
e The SBP of CB1, CB2, CB12, and CB15 operated and
tripping signals were issued to open the CBs.
e CBI1, CB2, CB12, and CB15 tripped open correctly while
the timing tag for CB12 status was incorrectly recorded.
The outage area is determined as shown in the dashed line
in Fig. 3. Eight transmission lines, sixteen CBs, and sixteen
sets of relays including MP, PBP, SBP, and BFP are involved
in the outage as given in Table II. Statuses of CBs 9, 10, 14,
15, and 16 are monitored by PMUI and PMU2. SERs 1-5 at
substations record the sequential actions of relays and CBs. The
statuses of CBs are available at SCADA in the control center. The
alarms from PMUs, SERs, and SCADA are shown in Table III.
Note that the system operator determines the outage area based
on alarms and measurements as reported in [13]. The SCADA
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TABLE IT
COMPONENTS IN OUTAGE AREA
8 Transmission Lines Ly, ..., Lg
16 CBs YCBl» YcBy -+ YcBy o YCByg

MP of CBs rMP e MP L rMP

PBP of CBs rPBP rPBP . r[BP

SBP of CBs rs P orsBP L rSBP

BFP of CBs r2FP rBFP . rBFP
TABLE III

ALARMS FROM MULTIPLE SOURCES

Alarm Source | Time Tags Alarms at Control Center
11:12:1:200 MP of CB9 operated
11:12:1:233 CB9 operated to open
11:12:1:700 SBP of CB12 operated

SERs 11:12:1:701 SBP of CB1 and CB2 operated
11:12:1:702 SBP of CB15 operated
11:12:1:734 CBI and CB2 open
11:12:1:735 CB15 operated to open
11:12:1:835 CB12 open

PMU 11:12:1:233 CB9 tripped open from PMU1
11:12:1:735 CBI15 tripped open from PMU2

SCADA CB1, CB2, CB9, CB12, CBI15 open

alarms indicate that CB1, CB2, CB9, CB12, and CB15 are open;
and the MP of CB9 as well as the SBPs of CB1, CB2, CB12,
and CB15 operated to open the CBs; From PMU1 and PMU2,
CB9 and CB15 are open. The SERs recorded the sequential
actions of CBs and relays. In the meanwhile, the timing tags
from SER logs are leveraged in the optimization model. Use
11:12:1:200 as the reference time and the timing tags of alarms is
given as

tMP =10,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0]
tpBP = [0.501,0.501,0,0,0,0,0,0,0,0,0,0.5,0,0,0.502, 0]
tep = [0.534,0.534,0,0,0,0,0,0,0.033,0,0,0.635,

0,0,0.535, 0]
The received alarms are input into optimization as
=[0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0]
yes = [1,1,0,0,0,0,0,0,1,0,0,1,0,0,1,0]
RSBP —1[1,1,0,0,0,0,0,0,0,0,0,1,0,0,1,0]
Nep =1[2,2,0,0,0,0,0,0,2,0,0,2,0,0,2,0]

() is used to denote the unavailability of information. The
weighting factors of wp, ws, and w3 are set to be 1. Put
the alarms and their timing tags together with the parameters
as the input to the model. The optimization is executed, and it
takes around 5 ms to solve the optimization and the decision
variables are determined to be

L =10,0,1,0,0,0,0,0]
rMP —10,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0]
B8P —=11,1,0,0,0,0,0,0,0,0,0,1,0,0,1,0]

IEEE TRANSACTIONS ON POWER DELIVERY, VOL. 35, NO. 1, FEBRUARY 2020

TABLE IV
FAULT DIAGNOSIS REPORT

Fault occurrence t 11:12:1:200 Failed CB None
Faulty Component L3 Malfunctioned CB | None
Failed Relay rMP &rPBP Missing alarm None
Malfunctioned relay None Incorrect time tag | CB12
! ' 'WINNSBORO 1'
SER1 . WINNSBORO O
A2
V4 SER3
'BLYTHEWOOD 0'

'JENKINSVILLE 0'

Fig. 4. South Carolina 500-bus system.

frarr =1[0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0]
frer =0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0]
zcop = [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0]

From the simulation results, the 3™ item of L is “1”, which
indicates that L3 is the faulty transmission line and there is an
MP failure and PBP failure of CBS since the 8" items of f,ap
and f,rer are equal to “1”. The timing tag of C'B5 from SERs
is incorrect and CB1, CB2, CB9, CB12, and CB15 operated
correctly to open. The fault diagnosis report is given in Table
IV. It is demonstrated that the proposed algorithm can handle
relay failures and incorrect time tags from the alarms. The linear
optimization model is solved in 5 ms. The high computational
performance and optimality of the proposed approach makes it
potential for online applications for fault event diagnosis. Note
that this study does not take the time for MP to trigger open
CB into account. The fault inception time is determined to be
11:12:1:200 instead of the true fault inception time 11:12:1:189.

B. Synthetic South Carolina 500-Bus System

The synthetic South Carolina 500-bus system is a represen-
tative power grid model derived from the public information
with no confidential critical energy infrastructure information
as described in [23], [24]. To validate the proposed approach in
this study, a fault occurred on the transmission line L1 between
the substations of “BLYTHEWOOD 0” and “WINNSBORO 0~
at 8:32:11:348 and CBs 1, 3, 4, 5 opened to isolate the fault.

No substations involved in the outage are installed with
PMUs. The alarms from SERs and SCADA are given in Table V.
Using these alarms as input, the optimization model is solved in
11 ms and some key decision variables are given as

L=11,0,0]
R =11,1,0,0,0,0]
RYB =11,1,1,0,1,0]
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TABLE V
ALARMS FROM MULTIPLE SOURCES
Source Time Tags Received Alarms
8:32:11:351 MP of CB1 operated
8:32:11:352 MP of CB2 operated
SERs 8:32:11:383 CBI1 tripped to open
8:32:11:551 BFP of CB2 tripped
8:32:11:583 CB3 and CBS tripped open
SCADA Open CB1, CB3, CB4 and CB5;
Ci8 14 Tangling
‘ l Substation
Yangwan €15
Substation 2 (D C19
B1-11 CY’ T2
C16
B2-11 73
6 7
(YT I AT b s 0 -
BS y ,
8
4 c5
| SY vz 05
B6
ci B4
Wenzhou Shenggu
Substation Substation
14335 14336
Tripped CB ci 13
Bl Closed CB
Bl Stuck CB

Jianshan

Outage Range Substation

C17

Fig. 5. Real-world fault scenario [4].

fCB = [07 ]-7 07 Oa 07 0]
mep = [0,0,0,1,0,0]
t =10.5, 0, 0]

Since the reference time is 8:32:11:351, the fault occurrence
time is inferred to be 8:32:11:351:5 from ¢/* and the faulty line
is L1 as inferred from the decision variable L. From the decision
variable fcp, there is a breaker failure of CB2. Since there is no
evidence to indicate the action of the protection of CB4 while
CB4 is reported to be open from SCADA, it is determined that
CB4 malfunctioned to report the open status. From this scenario,
the approach is demonstrated to handle breaker failures and
incorrect alarms.

C. Performance of the Algorithm Using Real-World Scenario

The real-world scenario from [4] is tested using the proposed
algorithm. The true fault scenario is shown in Fig. 5. The fault
scenario is briefly summarized as: faults occurred on L4335 first,
14336 30 ms later, and B2-I 340 ms later; the C10 was stuck to
open and MP of L4336 at Tangling Substation was missing. The

TABLE VI

COMPONENTS IN OUTAGE AREA
14333, L4334, L4335, L4336, L Lo Lo L
14339, L4340, B1-I, B2-1 Lo 260 BT 78
Cl,C2,...,Cl6 YcBy» - YcByor YCByo
MP of CBs rlMp,rZMP, ...,r{‘gp
PBP of CBs rPBP yPBP . rPBP
SBP of CBs rBP rSBP B
BFP of CBs rBFP pBEP L rfFP

sequential actions of fault scenario have been discussed in detail
in [4]. The components in the outage area is given in Table VI
and the received alarms are shown in Table IX.

To accommodate the complex scenarios, up to 4 faults are
hypothesized to be in the outage area and the optimization is
solved for each assumed scenario. The computational times for
one-fault scenario, two-fault scenario, three-fault scenario, and
four-fault scenario are 570 ms, 740 ms, 510 ms, 590 ms, respec-
tively. The results are shown in Table X. From the simulation
results, for the hypothetical scenario with one fault, the no. of dis-
crepancy Npjsc., whichis the summation of Nrgs1., Narary. and
Nincor.»1s calculated to be 32. N ;.. for the two-fault scenario,
three-fault scenario, and four-fault scenario is calculated to be
10, 6, 6, respectively. From the simulation results, it is inferred
that when three sequential faults, which are L4335@3.25 ms,
L4336@30 ms, B2-1@340.5 ms, occur, the discrepancy between
the expected and received alarms is at the minimum value.
Therefore, the three-fault scenario is the most credible to be the
true scenario. It is also deduced that MP of L4336 @Tangling
failed since the alarm is determined to be missing, and there is
a breaker failure of C10. Confidence on the result can be further
computed by fit between hypothesis and converged optimization
scenarios by following equations:

Trust Score = 1 — Npisep./Naiarm

where Npj,cp. is the number of discrepancies in each hypothe-
sized scenario from the converged optimization and N g, 18
the number of total alarms available for fault diagnosis.

For a scenario with a complete alarm set without failures or
malfunction, Trust Score will be 1. The score represents the
confidence level of the determined scenario to the ground truth.
By applying the confidence level, the event diagnosis results
for the real-world scenario are updated for each hypothesized
number of faults in the scenario. It clearly shows that for the
hypothesis with a single fault in the system, the score value is
0.47, which indicates alow credibility of the determined scenario
to be the ground truth. In the meanwhile, the credibility for the
scenarios with three and four faults is the same while it is less
likely for more faults occurred in the scenario what led to the
same observed alarms and measurement sets. It can be concluded
that the trust score value can effectively reflect the confidence
of the fault diagnosis results by reflecting the incorrect and
incomplete alarms and measurement in the collected data set. As
aresult, the proposed approach provides the decision-making of
event diagnosis for transmission utilities.
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D. Comparison of the Analytical Model-Based Event
Diagnosis Methodologies

Analytical model-based event diagnosis methodologies in [4]
and [14] have been implemented at EMS. From the simulation
results claimed in the literature, both algorithms can support the
system operators and protection engineers to diagnose the event.
The pros and cons of the proposed approach compared to the two
algorithms are summarized in Table XI. Assume there are n com-
ponents, m relays, kK CBs in the outage region. In the meanwhile,
the maximum no. of faults in the outage region is assumed to
be f. m, n and f are not directly correlated while their values
are dependent upon the outage area and the system protection
configurations. In this study, fis assumed to be limited to 4 for
the real-world scenario as indicated in Table X. The proposed ap-
proach outperforms the state-of-the-art by significantly reducing
the hypotheses, handling complex fault scenarios, the linearity
of the proposed model for event diagnosis, global optimality and
incorporation of the temporal correlation of alarms. The result
is a highly computational methodology for accurate fault event
diagnosis in an online application. It is worthy to further clarify
the comparison of the proposed approach to References [4] and
[14] as:

® the proposed methodology is essentially a MILP model
and the linearity of the approach ensures the “Global opti-
mality”. Indeed, the proposed technology is a data driven
approach and the effectiveness and accuracy of the pro-
posed approach is based on the completeness and quality
of the data. As demonstrated in the study, the proposed
methodology already has the capability to handle incom-
plete or incorrect alarms to some extent which indicates that
not all components are required to be measured by devices
such as PMUs, SERs, or SCADA. If too many alarms and
measurements data are missing, results will not converge
or will converge with less confidence as indicated by trust
score.

e the fewer hypotheses will enhance the computational per-
formance of the proposed approach targeted for online
applications and reduce the efforts from system operators
in decision-making. Ideal will be considering all possible
hypotheses and intelligent pruning for computationally
efficient performance for online applications. If intelligent
pruning or analysis is not done, more hypotheses will result
in longer computational time.

e the proposed methodology is a MILP model while Refer-
ence [4] is based on nonlinear analytical models and heuris-
tic techniques such as Tabu searching have to be employed
as solution methodologies. Essentially, all the constraints
from Reference [4] have been or can be included in the
proposed MILP methodology while developing a linear
formulation and the optimization can be directly solved
by commercial MILP solvers. Therefore, the proposed
MILP approach offers clear differences for better compu-
tational performance and higher chances of convergence
and robustness even with increasing problem complex-
ity while not compromising the accuracy than that in
Reference [4].
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TABLE VII
ALARMS RECEIVED FOR FAULT DIAGNOSIS
Source Time Tags Received Alarms
SERs 10:12:21:121 MP of CB1 operated
10:12:21:153 CB1 tripped open
10:12:21:624 SBP of CB4 operated
10:12:21:657 CB4 tripped open
SCADA CB1, CB2, CB4 are open
TABLE VIII
IMPACT OF WEIGHTING FACTORS ON FAULT DIAGNOSIS RESULTS
Weighting Factors ail S)i (‘)Ui 8)1 U;Z 8)2
Fault occurrence t 10:12:21:121 10:12:21:121
Faulty Component L1 L1
Failed Relay rMP 1P &rPBP & BFP &y SEP
Malfunctioned relay 8P [0
Failed CB 4] [}
Malfunctioned CB CB4 [0)
Incorrect time tag (9] ()

E. Impact of Weighting Factors in the Objective Function on
the Fault Diagnosis Results

The selection of weighting factors of the objective function
in (1) will impact the fault diagnosis results from the proposed
optimization. When w; is selected to be high while ws & w3
are selected as a low value, the proposed optimization will
identify the fault scenario with the minimum sensor failures as
the diagnosis results. In contrast, if w3 is selected high while
w1 & wy are low, the proposed optimization will identify the
fault scenario with the fewest incorrect timing tags. To further
evaluate the effect of weighting factors on the result of event
diagnosis, a combination of wy, wo and ws is selected and the
optimization is solved for a fault scenario using Synthetic South
Carolina 500-Bus System in Fig. 4.

The fault scenario is that a fault occurred at L1 at
10:12:21:120 and MP tripped open CB1 and CB2 while the
protection alarm MP for CB2 was missing. And SBP of CB4
triggered open CB4 incorrectly. The alarms received at the
control center is summarized in Table VII. For a combination
of the weighting factors in (1), the corresponding results are
summarized in Table VIIL. It is shown that when wy is high,
the proposed optimization is aimed to minimize the number of
sensor malfunctions, which leads to the incorrect determination
of the fault scenario. While w; is high, the true fault scenario
is identified. The results show that the weighting factors may
have an impact on the fault diagnosis result from the proposed
optimization. One potential technology to eliminate the effect
of weighting factors on the result of event diagnosis is to hy-
pothesize the number of incomplete alarms, incorrect alarms,
and malfunctioning alarms directly in each scenario and carry
out the proposed analytical model for each hypothesis. This
approach based on multiple-hypothesis analysis can explicitly
consider all combinations of issues in event diagnosis while
the computational complexity will be exponentially increasing
with regard to the potential abnormalities in the event. While
it is worth to investigate and to implement this approach, given
the scope of work, the authors will elaborate it in the future
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TABLE IX
ALARMS FROM THE EVENT

Time (ms) | Substation Alarm Time (ms) | Substation Alarm
0 Tangling | MP of L4335 in relay set I operates 250 Tangling | C6 is tripped
2 Tangling | MP of L4335 in relay set II operates 253 Tangling | C15 is tripped
5 Jianshan | MP of L4335 in relay set I operates 261 Yangwan | C2 is tripped
6 Jianshan | MP of L4335 in relay set II operates 265 Shenggu | C7 is tripped
30 Jianshan | MP of L4336 in relay set I operates 340 Tangling | MP of B2-1 in relay set I operates
30 Jianshan | MP of L4336 in relay set II operates 341 Tangling | MP of B2-I in relay set II operates
52 Jianshan | Cl11 is tripped 350 Wenzhou | MP of L4334 in relay set I operates
78 Tangling | C12 is tripped 350 Wenzhou | MP of L4334 in relay set II operates
81 Jianshan | C13 is tripped 351 Shenggu | MP of L4340 in relay set I operates
160 Tangling | C10 is tripped but failed to open 389 Tangling | Cl is tripped
203 Tangling | BFP of C10 operates 390 Tangling | C5 is tripped
211 Yangwan | MP of L4333 in relay set [ operates 390 Tangling | C8 is tripped
212 Shenggu | MP of L4339 in relay set I operates 390 Tangling | C16 is tripped
249 Tangling | C3 is tripped 395 Shenggu | C9 is tripped
249 Tangling | C14 is tripped 399 Wenzhou | C4 is tripped
TABLE X
EVENT DIAGNOSIS RESULTS
No. of . . Fail. Di . Trust
F(;u?t Fault Loc. & Time Fail. Relay Mal. Relay Ca]13 Mal. CB 1Is\lc:.3p Scr(l)lrse
MP of L4336@Jianshan, MP of B2- ¢ 1cgc4c9cs ;
1 L4335@3.25ms (0] I@Tangling, MP of L4334@Wenzhou, Cl10 C12, C173 32 0.47
MP of L4340@Shenggu C’l 6 ’
L4335@3.25ms, .
2 B2-1@340.5ms 0 MP of L4336(@Tangling C10 Cl12,C13 10 0.83
L4335@3.25ms
’ MP of
3 L4336@30ms, . (0] C10 (0] 6 0.9
B2-1@340.5ms L4336@Tangling
L4335@3.25ms,
L4336@30ms, MP of
4 B2-1@340.5ms, | L4336@Tangling 4 €10 e 6 0.9
L4334@350ms
TABLE XI
COMPARISON OF ALGORITHMS FOR EVENT DIAGNOSIS
. . Handling Solving
Temporal Linearity of . Global
Methodology No. of Hypotheses Correlation Methodology N}I;;lltllllssle Optimality Methodology
Algorithms in [4] Up to 2m+n+k v X v X Heuristic
Algorithm in [14] n X v X [0) Logic Reasoning
MILP algorithm in this study f N v v v MILP solver

study. Nevertheless, presented approach study will have same
formulation and framework but a greater number of hypotheses.
Note that, our assumptions in this study is utilizing best possi-
ble way to judge weighting factors similar to the one already
existing in multiple power system operational practices such as
weighting factor in state estimation for sensor data and failure
rate assumptions in reliability analysis.

FE. Discussion of the Proposed Methodology

The proposed event diagnosis technology is aimed for ap-
plication in a wide area system. The sampling, filtering and
estimation algorithms impact the phasor estimation algorithm.
But not all applications will be impacted by these differences
assuming that PMUs meet the performance requirement of IEEE

C37.118 and tested following IEEE TSS. As demonstrated in
study using PMU Application Requirements Test Framework
and related papers, some applications are sensitive, and some
applications are not sensitive to the observed error caused by
different types of PMUs. Applications addressed in this study
will be least sensitive to PMU errors as it is based on a large
threshold for fault currents and circuit breaker status. Hence
data synchronization and sampling rates even being important
for some other applications will be less important for the one
addressed here. In the meanwhile, the proposed algorithm is
able to determine the event inception time and handle missing
time tags for event diagnosis. If GPS signal is not available,
the proposed approach can still diagnose the event while the
accuracy for event diagnosis may be affected since the temporal
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correlation of alarms is not fully utilized. As demonstrated in the
real-world case in Section V-C, the proposed approach shows a
good performance to handle real-world complex event scenario
with multiple faults, missing alarm, and breaker failure. Note
that missing alarms can be due to communication delay, device
failure, or other reasons. However, the proposed approach needs
to be further explored to handle problems such as cascading line
trips. This point is discussed for potential applications of fault

event diagnosis
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VI. CONCLUSION AND FUTURE WORK

This study presents a data driven approach based on MILP
for fault event diagnosis of transmission systems considering
the incomplete and incorrect alarms with sensor malfunctions.
The proposed approach is demonstrated to be capable to handle
complex fault events including multiple faults, missing fault
inception time, failures and malfunctions of protective relays or
CBs as well as incorrect alarm time tags. Alarms from multiple
sensor sources such as PMUs, SERs, and SCADA data are jointly

i
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used for accurate fault event diagnosis in an automatic manner.
The temporal correlation of alarms is explicitly modeled in the
constraints for improved fault diagnosis. The high computational
performance of the proposed algorithm is demonstrated by the
testing cases and the proposed methodology is potential for
on-line applications for fault diagnosis at the control center.
Future study needs to further validate the algorithm with more
scenarios and hypothesize explicitly all combinations of issues
in the outage for fault event diagnosis.

APPENDIX

See the equation shown on the previous page, where h;q,
hio, ..., h;10 and h;11 are additional decision variables to assist
the conversion of logical nonlinear constraints into a linear
combination of decision variables.
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