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We present a quantum electronic embedding method derived from the exact factorization approach
to calculate static properties of a many-electron system. The method is exact in principle but the
practical power lies in utilizing input from a low-level calculation on the entire system in a high-level
method computed on a small fragment, as in other embedding methods. Here, the exact factorization
approach defines an embedding Hamiltonian on the fragment. Various Hubbard models demonstrate
that remarkably accurate ground-state energies are obtained over the full range of weak to strongly

correlated systems.

The computational challenge of performing a quantum
calculation of a complex many-body system remains a
primary research area in condensed matter physics and
quantum chemistry. Density functional theory (DFT) is
often turned to, due to its relatively favorable system-size
scaling, however limitations of available functional ap-
proximations deem it inaccurate for strongly correlated
systems. When even DF'T gets too expensive for a system
of more than a thousand atoms or so, a collection of DFT
calculations on subsystems with functionals modified by
couplings to the rest of the system can be used [1-4],
however such an approach remains inadequate for prob-
lems involving strong correlation. Instead, one approach
in recent years has been to use some kind of quantum
embedding method where the full system is described as
an ensemble of two or more fragments: On the one hand,
when the fragments are chosen to be weakly-interacting
with each other, the essential idea is that properties of
the total system can be obtained by a high level calcula-
tion on one modified by input from the other. This can
be particularly useful when only part of the system is ac-
tually of interest, or is strongly-correlated, but such that
its environment affects its behavior, and the idea is to
calculate accurately properties of the system of interest
without having to compute the full problem accurately.
On the other hand, when the entire system is of interest
and requires a better description of correlation than pro-
vided by density functional approximations, GW [5], and
the like, then the high-level calculation can be done suc-
cessively on different fragments in a self-consistent way,
to get a full description of the entire system from several
smaller calculations. Several different approaches have
been developed in recent decades; ranging from the ba-
sic embedding variable being the Green’s function [6, 7]
or directly the self-energy [8], to the density-matrix [9-
11] or density [12], as well as density-functional based
embeddings [13].

Here, we develop a novel embedding method based
on the exact factorization (EF) approach. EF sepa-
rates the wave function into a single correlated prod-
uct of a marginal and a conditional wave function [14-
19].  Most of the previous EF work focused on
separating the electronic from the nuclear part of
a molecular wave function, providing an “exactifica-

tion” of the Born-Oppenheimer (BO) approximation:
U(R1,Ro..511,1r2..) = Xx(Rq,..)®R,,.(r1,..) where the
marginal, x(Ryq,..), is the nuclear wave function and
®R, .. (r1,..) the electronic part parametrized by nuclear
coordinates. This approach has been successful for giving
insight into effects of electronic-nuclear coupling on dy-
namics (e.g. Refs. [19, 20]) as well as in deriving practical
non-adiabatic quantum-classical methods [21-27]. There
have been generalizations in several directions; most no-
tably for the present purposes are the exact single-active
electron approach arising from factorizing a purely elec-
tronic wave function into a one-electron marginal and
the rest [16, 28, 29], and the formal generalization to ar-
bitrary many-body non-real-space Hamiltonians [30].

The present work extends the EF approach to a com-
pletely new class of applications. In our embedding via
the exact factorization (EVEF) approach, we factorize
the full electronic wave function in Fock space. The idea
is to solve the full system with a low-level calculation (e.g.
Hartree-Fock (HF)), and use the solution to generate an
approximate Hamiltonian for the marginal correspond-
ing to a fragment which is then solved with a high-level
method (e.g. exact diagonalization). The fragment is a
chosen set of single-particle orbitals in the basis defining
the Fock space.; for example, these can be selected to be
the more strongly-correlated orbitals in the one-electron
Hilbert space. We present three levels of EVEF, each
increasingly refined, and the sensitivity to the choice of
fragment depends on which level is chosen. The results
on different Hubbard systems show that EVEF is able to
capture the range from weak to strong correlation in an
efficient and accurate way.

The Fock space electronic wave function in a space
of M single-particle orbitals, W(n...nys), is defined via
0) = >0y Y(n1.nar)|n..nar), where |ni..na)
represents a single Slater determinant with n; = 0 or 1
representing the occupation of spin-orbital . Choosing
the first K spin-orbitals to span the fragment space, the
factorization reads:

U(n1,n2,.nK, K41, -nm) = X(0)Pn(m) (1)

n m

where the marginal wave function x(n) is a function of
the fragment configuration and ®,,(m) is the conditional



part. The factorization is unique up to an n-dependent
phase,F'(n), provided the Partial Normalization Condi-
tion (PNC),

Y e (m) @y (m) =1 (2)

is satisfied, adapting the proof of Ref. [17, 19]. Then,
it follows that x(n) = \/ij:m |U(n,m)|? x (eF®@)

(with m; going over K + 1 to M spin-orbitals) where
the arbitrary phase factor ' () represents the so-called
gauge freedom of EF. The EF approach usually proceeds
by finding a coupled set of equations for the marginal
and conditional factors, which contain terms that exactly
account for coupling of the two subsystems. However,
at this point we deviate from what is usually done in
EF: here, we find an equation for y that emulates the
effect of ®,, without ever having to solve the numerically
challenging non-linear and non-Hermitian equation for
the conditional wave function [30, 31].

To obtain the equation for x(n), consider first the full
Schrédinger equation for W, which involves the full exact
Hamiltonian H:

Z Hymin/ o m' Vo' m = EWnm (3)
n',m’
where Hp mon/,m’ = (Q,m|f{|@’,m’). Inserting the fac-

torized form Eq. (1), multiplying on the left by ®}(m),

and summing over m gives our eigenproblem for x(n):

Z how X (') = Ex(n) (4)

where we have used the PNC Eq. (2) on the right-hand-
side, and identified the embedded Hamiltonian

P = Z @y, (m) Hy i’ ,m/ Py (m) (5)

n,mn

m’,m

So far, everything is exact, and E could be any eigen-
value of the full Hamiltonian; it need not be the ground-
state energy. If it was possible to somehow obtain this
embedded Hamiltonian exactly, then the exact ground-
state energy of the full system could be obtained by
solving the eigenproblem of Eq. (4) in the small Hilbert
space of just the fragment, regardless of how small it
is, even for a single-orbital fragment! Further, if we
could somehow obtain the embedded observable, 0y, =
>t m P (1) On i’y P (M), for any many-body op-
erator on the full system O, then the solution of Eq. (4)
yields the expectation value of O, through (¥|O|¥) =
Zﬂ;ﬂ/ X" (n)0pm X (1)

Finding the exact embedded Hamiltonian Eq. (5) is
of course as hard as solving the original problem. The
practical power of this set-up depends on making an ap-
proximation, so this enters in the first step in our EVEF

approach. We solve the HF Hamiltonian HMF for the
whole system first to obtain the HF state:

M) =11 ( Ci,jd;‘r> ) (6)
j i
where dj is the creation operator in a given single-
particle basis (e.g. the site-basis in lattice models),
and | ) is the vacuum state. In the second step,
the embedded Hamiltonian Eq. (5) is computed using
OMFE(m) = WMF(n m)/xMF(n). For configurations k
where xM¥ (k) = 0, ®M¥ (m) becomes ill-defined and is
set to zero. Using the resulting mean-field-derived em-
bedded Hamiltonian to solve Eq. (4) exactly (or with
a high-level method) gives us directly an approximation
for the total energy. In the Supplemental Material, we
rewrite the entire EVEF formalism in second quantiza-
tion which allows us to compute the embedded Hamilto-
nian using Wick’s theorem.

The two steps above describe the central approach of
this paper and it is what we call EVEF-1. It can be
recast as the minimization problem:

EF~ min
Xl x| =1

n’,m',n,m
(7)
with ®MF kept fixed. After this minimization the result-
ing wave function x(n)®M¥(m) is typically not a sin-
gle Slater determinant, that is, the procedure introduces
some correlation, and the resulting energy lies between
the mean-field result and the exact energy.

EVEF-1 is most effective in giving a significant en-
ergy correction when, for most fragment configurations,
XM¥(n) are non-zero. This can be understood from re-
alizing that configurations k for which y™¥(k) = 0 do
not contribute to the computation of the energy, since
the zeroing of the corresponding conditional part results
in hyp = hpr = 0. An extreme case would be if one
performs EF in the basis of HF orbitals. In this case
XMF (n) is zero for all n except for the one correspond-
ing to the configuration of occupied HF orbitals and the
matrix hy s reduces to a 1 x 1 matrix equal to the HF
energy. In contrast, EVEF-1 is very effective in a case
where XM F (n) has a similar amplitude for every n, and n
are chosen such that there is strong correlation between
the orbitals of the fragment while the environment reacts
to the fragment in a mean-field manner.

In rare cases, however, the choice of fragment leads
to xM¥(n) = 0 for a large fraction of configurations. It
could even be possible that if the full system is treated as
the fragment, the approximation will not reproduce the
exact energy, because of the zeroing of the conditional
wavefunction for configurations where WM ¥ (n) = 0. This
implies that |UMF) is a bad starting point and a higher-
level approach for the initial guess of the full wave func-
tion is needed. A pedagogical illustration of the choice
of the fragment, a half-filled two-site Hubbard model, is
given in the Supplemental Material. We expect this kind
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of situation to be less likely in the case of a bath large
compared to the fragment size.

EVEF-1 is expected to work well when only one sub-
system (chosen as the fragment) is strongly-correlated
while the rest is well-described by a mean-field. In the
case of strong correlation throughout, we instead parti-
tion the system as an ensemble of say Ny non-overlapping
fragments, each of which is computed with a high-level
method using an embedded Hamiltonian generated from
HF, and combine the results. We describe this method,
EVEF-2, next.

In an exact calculation, each and any fragment would
correspond to a different embedded Hamiltonian in
Eq. (4), denoted now h, where a labels the fragment,
yet each would yield the same eigenvalue E, the total
energy of the system. However, when an approximate
¥ is used, each fragment gives a different answer for the
energy. Moreover, in any fragment calculation, some con-
tributions to the matrix elements of hq yield no new cor-
relations beyond HF. To see this, consider a Hamiltonian
of the form

H= Zt”a a; + Z w”kla a Lapay (8)

1,5kl

where wijr = (i j|W|lk). If none of 4,4k, are con-
tained in fragment «, that term contributes only to the
diagonal of he and with no corrections to its HF value,
but it does yield non-trivial correlations in other frag-
ments. This suggests that a better approach would be to
extract, for each fragment, only the part of the energy
altered by the high-level method, and then sum this over
fragments. That is, we partition the full Hamiltonian
as a sum of fragment contributions H = Y H*° where

H°¢ is “local”, defined by

th]&Td]—F Z wijkld;r&;dkdl (9)

1EQ,] i€a,j,k,l

‘rloc
Ha

where only terms with the first index inside the fragment
are included. We then define a “local” embedded matrix
hl°c for a fragment « in an environment consisting of the
other (N; — 1) fragments:

>

my,,m,

hloc _

loc ( /)
asn, !, oJHoy, ot me, Pasny, (12,

(10)
(which is similar in spirit to the Density-Matrix Em-
bedding Theory (DMET) fragment energy defined in
Ref. [10]). The total energy is obtained by first com-
puting the energy of each fragment « using x., where
Xa 1s the solution of Eq. (4) with h, on the left, and
then summing over all the fragments that form the full
partition of the system:

E:ZEa

In the case no approximation is made for h,, or hl°¢, this
energy is exact and equal to the FE appearing in Eq. (4).

with B, = x| hl°°x,, (11)

One can partition any many-body observable O in the
same way as a sum of O°°, embedding it analogously to
Eq. (10), i.e. (W]O]®) =3, x}oloox

Of course, in practice, an approxnnation is used, and
the steps then for EVEF-2 are as follows: First, as in
EVEF-1, the HF problem for the whole system is solved
yielding Eq. (6), and for each fragment 2" is computed
in terms of C;; in the same way. In the second step,
for each fragment, the embedded Hamiltonian A, is com-
puted from Eq. (5) using ®¥ and the full H, and Eq. (4)
is solved for each fragment o: haXYa = EXa to find Ya.
Third, the local matrix hl°¢ is formed using |¥MF) in
Eq. (10), and the fragment energy E, and total energy
are computed from Eq. (11). Unlike EVEF-1 however,
EVEF-2 does not provide a wave function for the whole
system and is not variational, so, like in DMET and Dy-
namical Mean Field Theory (DMFT), the EVEF-2 en-
ergy may fall below the exact ground-state energy.

A refinement of EVEF-2 follows from introducing a
self-consistency criterium and modifying the mean field
with a local or a non-local potential to fit an observable in
each fragment. This is in a similar spirit to what is done
in DMET and DMFT. Here, in EVEF-3, we consider fit-
ting the orbital occupation. The procedure follows that
of EVEF-2, but at the end of the second step we include
a chemical potential on the fragment orbitals p;, j € o
to minimize ||n; — n}'7||* where n; is the average oc-
cupation of orbital j that can be directly obtained from
x(n) using n; = >, —10,13 [x()|>. We then iterate the

n;F£En;
first two steps until co;évérgence is obtained.

To test our approach, we computed the energy in dif-

ferent Hubbard systems, with a general Hamiltonian

Z tija zanU+ZU”zT”z¢ (12)

<13>,0

There is no local potential but the on-site repulsion may
vary from site to site. We set the gauge freedom F'(n) to
zero, but a few tests with a different choice showed that
it made no difference here. All units are arbitrary.

Our first system is a molecule represented by the Hub-
bard tetramer depicted in the inset in Fig. 1, with a
variable on-site repulsion U on two of the sites, while
the other two-sites are weakly-interacting with a fixed
U’ = 0.1. Results of EVEF-1 and EVEF-2 for the total
energy E as a function of U are shown in Fig. 1.

Consider first the left panel that corresponds to the
calculation using Unrestricted HF (UHF) for M. The
exact curve (black solid line) is indistinguishable from
HF at small U since the total correlation from U and U’
is small, and it saturates quickly for U = 5, becoming
nearly constant with £ = —1.5. UHF (blue dash-dotted)
follows the same trend but saturates a little later and at
higher energy, around E' = —1.38.

The green dashed curve is the result from EVEF-1 with
the natural choice of fragment being the two sites with lo-
cal repulsion U. This gives a dramatic improvement over
UHF for intermediate and strong correlations U. One can
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FIG. 1. Hubbard tetramer, sketched in the inset. We take

t =1/2, U' = 0.1 and U as variable. Total energy E as a

function of U, for a UHF full-system calculation (left) and

RHF (right), using EVEF-1 or EVEF-2 with fragments as

indicated in the legend.

also make the counterintuitive choice to treat the U’ part
at higher level in the bath of the U sites (orange dotted
line). Interestingly, this also considerably improves the
energy at large U even though the correlation is almost
entirely in the two sites that are not treated at the higher
level. The effect of U is partially contained in the defi-
nition of the embedded Hamiltonian A and the ensuing
diagonalization brings back some of the correlation.

The two previous fragment calculations can also be
used as partition for EVEF-2 (grey rectangles in the inset
of Fig. 1)). Doing so gives a remarkably accurate energy
(the violet solid curve), which is almost on top of the
exact result. Another possibility is to treat each site as
an independent fragment as a 4 x 1 partition for EVEF-
2. This is represented by the solid red curve, very close
to the violet and black ones (but slightly worse around
U =5).

The right panel of Fig. 1 instead takes as Re-
stricted HF (RHF). In this case all EVEF (1,2,3) ap-
proaches are equivalent and, although a significant im-
provement over RHF is obtained especially at large U,
they generate the same energy, lying between the exact
and RHF results. In the case of RHF, the HF determi-
nant provides a x?'(n) which is zero for too many con-
figurations n (see earlier discussion) that are significant
for the exact x. The Hilbert space in which h is actually
diagonalized is too small and is the limiting factor for
improvement of the energy.

Our next model system is the uniform 100-site Hub-
bard ring with t = 1/2 and the same U on each site. We
calculate the energy from EVEF as a function of filling
fraction n per site for different values of U = 1,4,8,20
and compare with the Bethe-Ansatz solution for an infi-
nite chain [32] as a reference.

The results shown in Fig. 2 are from EVEF-3 using
RHF as the mean-field; we found that without a chem-
ical potential (as in EVEF-2), the number of electrons
in the fragment turned out unphysical; for example, as
n — 0, the average number of electrons in the fragment
did not go to zero. The left panel takes the fragments
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FIG. 2. Energy per site as a function of the occupation per site
n in a Hubbard ring of 100 sites for U-values indicated. Left
panel shows exact (solid) and EVEF-3 using 1-site fragment
(dash-dotted), middle panel uses the 2-sites fragment (dash-
dotted). The right panel shows double occupation (747, ) as
a function of the ratio U/t for the three different n indicated;
exact (solid), EVEF-3 with 1-site fragment (dotted) and 2-
sites fragment (dash-dotted).

to have one site while the middle panel has two-site frag-
ments. Because of the homogeneity of the system, only
one fragment calculation (one h'°¢) needs to be done and
only one chemical potential p is needed.

In both cases, EVEF-3 produces very good results for
small and intermediate U, but is increasingly worse at
larger U for the 1-site fragment. On the other hand, the
2-site fragment calculation greatly improves the energy,
making the curve very close to the exact one even for
very strong interaction strengths U. The worst results
are obtained when approaching n = 1 where both the
derivative and the value of the energy are overestimated.

As another observable, we display, in the third panel,
the double occupation in the site-basis, (fi;4#7;,). This
is directly available from y, e.g. as (Rif;)) = |x(1,1)[?
when using a 1-site fragment. For intermediate filling
n, both 1-site and 2-sites fragments generate almost the
exact result; the 1-site fragment calculation is even better
for this observable than it is for the total energy. The
EVEF error is greater at half filling n = 1, consistent
with the larger energy error at this n.

In comparison with DMET calculations for this sys-
tem (Figs 1 and 2 of Ref. [9]), a similar deviation is seen.
In fact, while DMET performs better for the energy but
worse for double-occupation than 1-site fragment EVEF,
EVEF appears to outperform DMET for the 2-site frag-
ment at larger U. Since the n-site fragment calculation
in DMET requires the high-level calculation in a 2n-site
Hilbert space, then one could argue that the EVEF 2-
site fragment calculation should be compared against the
1-site DMET one, and in such a comparison the errors
in EVEF are much less. Calculations for a larger frag-
ment /system size will likely improve the results further
and are left for future work.

In summary, we have derived a practical embedding
method from the EF approach, establishing a new class
of applications for the EF idea. We proposed three lev-
els of refinement, EVEF-1, -2 and -3. The formalism
is general enough to be applied directly to any quan-
tum system; for example, to study molecular dissoci-



ation, metal-insulator transitions, transition metal ox-
ides, stripe/superconducting phases, and through pro-
jection, any fragment observable could in theory be ob-
tained. The method produces results that are quantita-
tively good when tested on different Hubbard systems:
a tetramer and a uniform ring, for the full range from
weak to strong correlation. The accuracy is comparable
to other embedding methods like DMET, and in some
cases better, but the Hilbert space of the fragment in
our approach is smaller. As in DMET, EVEF is based
on a wavefunction rather than the Green’s function that
DMFT and self-energy embedding theory are based on,
and this may have practical advantages due to using a
frequency-independent quantity. Unlike DMET, the sin-
gle product form of our wave function enables us to by-
pass the embedding basis which offers possible further
numerical advantage, and it can be straightforwardly ap-
plied with approximate wave functions beyond Slater-
determinants. One advantage of EVEF is its flexibility
as it can be used with any method that provides the
expectation values needed in the definition of A, and fur-
ther, it can be directly extended to excited states. One
question that needs to be addressed is whether the non-

variational aspect of EVEF-2 and -3 is serious enough in
practise to impede their use. A detailed comparison with
other methods and molecular or solid-state systems is
left for future work, as are improvements and extensions,
such as improving the stability of the self-consistency
loop in EVEF-3, choosing different observables to match
between the HF and fragment calculations, application
to excited states, and a real-time extension via a time-
dependent variational principle.

Note added: We recently became aware of work
by Requist and Gross [33] developing a similar exact
factorization-based embedding method.
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