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Node-to-Node and Node-to-Medium Synchronization in Quorum Sensing
Networks Affected by State-Dependent Noise*
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Abstract. A quorum sensing network is a form of communication system where nodes talk to each other through
a shared environment or medium. Such networks arise in many applications, such as bacterial quorum
sensing, where diffusing signaling molecules are exchanged with the extracellular environment, and
in social networks, where decisions might be influenced by social media. In this paper, we analyze
node-to-node and node-to-medium synchronization in these quorum sensing networks when nodes
are affected by relative-state-dependent noise and the medium has a different dynamics from the
nodes. By using stochastic Lyapunov arguments, we give a number of sufficient conditions for the
stability of the synchronization manifold and compare the synchronization dynamics induced by
common (extrinsic) noise and independent (intrinsic) noise. We also carry out a stochastic phase
plane analysis of the dynamics on the synchronization manifold by introducing the notion of a
stochastic invariant manifold.
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1. Introduction. Over the past few years, the study of noise-induced phenomena in com-
plex networks of diffusively coupled dynamical systems (see, e.g., [6, 4, 21]) has attracted much
attention. The study of collective opinion dynamics [1, 3], of coordination in biochemical sys-
tems [7], and of mean field dynamics [30] and memory effects in activity-driven networks [33]
are just a few examples of applications where noise plays a key role in determining the global
emerging behavior of the network (see also [27, 29]). Often, when studying noise-induced
phenomena, it is assumed that nodes directly communicate with each other via exchanging
information over a dedicated link. Unfortunately, this assumption is not satisfied for cer-
tain important applications. For example, in a biochemical context, it is often the case that
network nodes (e.g., bacteria or neurons) communicate via a shared environmental medium
[9, 20, 19, 14]. A classical example of these quorum sensing networks are bacteria, which com-
municate via signaling molecules (autoinducers) that diffuse in the extracellular environment
so that cells can react as a group to different conditions [22, 24, 8, 12]. Another important
example is opinion formation dynamics in networks under social media influence [32].
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Often, when studying quorum sensing, the network dynamics is assumed to be noise-free,
when in reality node-to-node or node-to-medium communication undergoes noise from differ-
ent sources. Noise in network dynamics can generally be characterized as two types. Intrinsic
noise is used to describe independent fluctuations caused by individual nodes or node-to-node
links. On the other hand, extrinsic noise is used to represent common environmental noise
that effects all nodes or node-to-node links in the network. A central question, which we
address in this paper, is determining conditions under which node synchronization is achieved
in the presence of either type of noise and how synchronization depends on the dynamics
of the medium and the nature of the node-to-medium coupling. In particular, we consider
the case where network nodes are affected by so-called relative-state-dependent (RSD) noise
diffusion processes, which naturally arise in networks affected by quantization and/or fading
communication channels (see, e.g., [31, 29]). Networks of N diffusively coupled nonlinear sys-
tems (without medium dynamics) affected by RSD noise diffusion process can be conveniently
modeled (see [29] for the derivations) via the following stochastic differential equation (SDE):

(1.1) d:ni = f(.TUZ',t) +o Z C- (xj —xi) dt—l—U* Z C -gij(xi —.Z‘j,t)dWZ'j, 1= 1, ce ,N,
JjEN; JEN;

where x; € R™, f(x;,t) denotes the internal node dynamics, C' € R™*" is a matrix specifying
the coupling between internal degrees of freedom, ¢ is the coupling strength of the deter-
ministic component of node-to-node links, and ¢* is the strength of the corresponding noisy
component. Summation is over all nodes connected to node 7, which are elements of the set N;.
Finally, in (1.1), g;j(x; —x;,t)dW;; represents the RSD noise diffusion process on the link (i, j)
with W;; denoting a Wiener process and with the functions g;; (-, -) being such that ¢;;(0,t) =
0 Vt. Recently, in [29] it has been shown that, for network (1.1), synchronization can be induced
by both extrinsic and intrinsic noise sources. This was done by studying the stability of the
so-called synchronization manifold, i.e., the subset of R™ such that z;(t) = --- = zn(t) = s(t).

In this context, after extending the SDE model developed in [29], we present a number of
sufficient conditions for synchronization of quorum sensing networks affected by noise. In our
model, nodes communicate indirectly via noisy node-to-medium links. In contrast to the SDE
model in [29], our model allows the medium to undergo different internal dynamics from the
nodes. Moreover, we formalize the notions of stochastic node-to-node and node-to-medium
synchronization and analyze the stability of the corresponding synchronization manifolds.
The proofs, which are obtained for both common and independent noise diffusion processes,
leverage the use of stochastic Lyapunov functions [16]. Beyond the classical stability analysis,
we also carry out a stochastic phase plane analysis of the dynamics on the synchronization
manifold by introducing the notion of a stochastic invariant manifold, which allows us to study
the path of convergence when synchronization conditions are satisfied.

The structure of this paper is as follows. In section 2, we set up the SDE that models the
dynamics of a quorum sensing network with RSD noise. We then give a formal mathematical
definition of synchronization and the various assumptions that are used in subsequent sections.
In section 3, we analyze the synchronization condition under common noise and carry out a
stochastic phase plane analysis. We illustrate our analysis using a model of opinion dynamics.
In section 4, we extend the analysis to independent noise. Finally, in section 5, we summarize
our results.
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2. Problem setup. Before formally introducing the network dynamics considered in this
paper, we give a number of results that will be used in our analysis.

2.1. Mathematical background. Consider an SDE (in the It0 sense) of the form [16, 23]
(2.1) dx = a(z,t)dt + b(x, t)dW, xo = z(to),

with z € RN, ¢ : RN x Rt — RN, and b : RV x Rt — RY¥*N and with W being an N-
dimensional Wiener process. Also, assume that a(0,t) = b(0,t) = 0 V¢t. We then have the
following definition, where a.s. stands for “almost surely.”

Definition 1. The trivial solution x(t) = 0 of (2.1) is said to be a.s. exponentially stable if
Vo € RY, limy—, o0 sup +log(|z(t)]) < 0, a.s.

Let V : RY x R — R be a smooth function and V € ¢>!, which means V(z,t) is twice
continuously differentiable in variable x and continuously differentiable in variable t. Let V.,
denote the Hessian matrix. Then, application of It6’s formula yields

(2.2) dV(z,t) = LV (z,t)dt + Vy(z,t)b(x, t)dW,
where
1 LV(m,t) = (x t) + Valz, t)a(z, t) + 5tr{b(z, )T Vou(z, t)b(z, t) };
= [Vayy--+, Va,], where V,. represents the gradient with respect to x;;

3. Vm is the Hesswm matrix with respect to x.
The following result from [16, Theorem 3.3, page 121] gives a sufficient condition for the
trivial solution of to be a.s. exponentially stable.

Lemma 2.1. Consider (2.1), and assume that there exists a nonnegative function V (z,t) €
> and constants p > 0,c; > 0,c2 € R, co > 0 such that Vr #0t € RY:
(H1) e1fa < V(z,1);
(H2) LV(‘/I"’ t) < CQV(xvt)a
(H3) |Va(x,t)b(z,t)|> > 3V (w,t)2.
Then, limg, o sup Hog(|z(t)]) < —@=2¢% g In particular, if c3 > 2co, then the trivial
solution of (2.1) is a.s. exponentially stable.

2.2. Network dynamics and synchronization. Consider a network consisting of N nodes
labeled ¢ = 1, ..., N, which communicate indirectly via links to a shared medium. Let z(t) €
RY and z(t) € R denote the node and medium variables, respectively. Assume that the node-
to-medium link is noisy and that the noise is RSD. Modifying the network model of [29], we
have the following system of SDEs:

(2.3a) dz; = [f(zi, t) + U(Z — x;)|dt + og(x; — 2)dW;(t), i=1,...,N,

(2.3b) dz = [h(z,1) 70’2 z—xj) dthZg ;— 2)dW;(t),

where x;(t) € R, f,h: R x Ry — R with f specifying the intrinsic node dynamics and h the
intrinsic medium dynamics. The functions f and h model the dynamics that the nodes and
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medium, respectively, would have if they were isolated, i.e., if there were no node-to-node or
node-to-medium coupling. Moreover, g : R — R is a state-dependent noise diffusion process,
and W;(t) is a Wiener process with noise intensity o. If W;(t) = W(t) for all j =1,..., N,
then we have common extrinsic noise, whereas if all the W;(t)’s are independent, then we have
independent intrinsic noise. We wish to remark here that the state-dependent noise diffusion
processes considered in the paper naturally arise when modeling network systems where the
communication undergoes quantization and/or when the channels experience fading [15, 31].
The functions f, g, h are taken to be smooth. Throughout the paper we will make the following
assumptions.

Assumption 1. There exists a constant Ky such that for all xz,y € R and t > 0, we have

The above condition is a global one-sided Lipschitz condition, also known as the QUAD
condition [5]. Such a condition is satisfied by many chaotic systems such as the Lorentz
system. Moreover, we assume the function ¢ satisfies the following.

Assumption 2. There exist constants Ky1, where Ky < K4y, such that for all x,y € R,
we have

(2.5) Ky |z —y| <|g(z) — 9(y)| < Kgylz —yl.

Here K, is the global Lipschitz constant for the function g, whereas K,_ provides a
lower bound for |g,(z)|. Such a lower bound exists for any function g since we can simply
pick K, = 0. In our later analysis, we will discuss if there exist a strictly positive constant
K,_ and how synchronization is affected by such a constant.

Let 1y be the N-dimensional column vector of ones and ® be the Kronecker (or di-
rect) product. Then, throughout this paper, we assume that a solution of the form S (t) :==
(ST, z(1))T, with S(t) := 1y ® s(t), exists for (2.3). We term S(t) as the synchronous
solution of (2.3).

Essentially, in a quorum sensing network there are two types of synchronization phenom-
ena: one where nodes synchronize regardless of the medium dynamics (node-to-node synchro-
nization) and the other where all nodes and the medium are synchronized (node-to-medium
synchronization). This leads to the following formal definition.

Definition 2. Let z; 0 := x;(to), i = 1,..., N and 2z := z(to) be the initial conditions of the
nodes and of the medium. System (2.3) achieves the following:
1. stochastic node-to-node synchronization if Vz;o € R,

. 1 :
(2.6) t_1}+moo Supglog(|xi(t) —st))) <0 as. Vi=1,...,N.

2. stochastic node-to-medium synchronization if, in addition, there exists some
5(t) such that, for all initial conditions,

: 1 .
t£+moo sup - log(|z(t) — 5(t)|) <0 a.s.
(2.7) 1
lim sup - log(|s(t) — §(t)]) <0 a.s.

t—-+o00
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In the rest of the paper, we simply say that a network achieves node-to-node (node-to-
medium) synchronization if Definition 2.1 (respectively, Definition 2.2) above is fulfilled. Note
that, by definition, node-to-medium synchronization implies node-to-node synchronization,
while the reverse is not true. Also, with Definition 2, we wish to point out that the node-
to-node synchronous solutions s(t) in Definition 2.1 and the node-to-medium synchronous
solutions §(¢) in Definition 2.2 can be, in general, different.

3. Network synchronization under common noise. We begin by considering the case
where all node-to-medium connections in network (2.3) are subject to some common white
noise, that is, W;(t) = W (t) for all j =1,..., N. We can write down the corresponding SDE
as

(3.1a) dr; = [f(xs, t) + o(z — x;)]dt +5g(x; — z)dW, i=1,...,N,

N N
(3.1b) dz = [h(z,t) =0 Y (z—a;)|dt -G Y g(x; — z)dW.
j=1 j=1

We first study node-to-node and node-to-medium synchronization using the classical a.s. sta-
bility approach of Mao [16]. We then study in more detail the stochastic dynamics on the
synchronization manifold and demonstrate the presence of a stochastic trapping region, an
invariant manifold, and bistability.

3.1. Node-to-node synchronization. First, we show that node-to-node synchronization
can be achieved under common noise without having node-to-medium synchronization.

Theorem 3.1. Consider (3.1) under Assumptions 1 and 2. The node dynamics, x(t) =
(z1(t),...,xN(t)), achieve node-to-node synchronization if the following condition holds:

(3.2) 20 > 2K+ (K,, — 2K, ).

Proof. To show that the nodes are synchronized, we write down the dynamics for the
displacement between any two nodes and show that the relative displacement eventually goes
to zero as t — oo. Without loss of generality, we study the relative displacements between
nodes z; with z for i =1,..., N — 1. That is, setting e;(t) = z;(t) — xn(t) we have

de; = [f(zn +eit) — f(an,t) — oeldt +5lg(zn — 2 + &) — g(zn — 2)]dW.

Note that, for the above system, the dynamics of e; and e; are decoupled from each other for
i #jandi,j€{l,...,N —1}. For notational simplicity, we can drop the index from the
above equation so that

de = [f(zny +e,t) — f(zn,t) —oe]dt + Tlg(xn — 2+ €) — gaxn — 2)]dW.

It is clear that e(t) € R and the trivial solution, e = 0, is an equilibrium solution. We want
to show that the trivial solution is a.s. exponentially stable. Following Lemma 2.1 and setting

Ve t) = %62, we need to show that there exists constant co € R, c3 > 0 with c3 > 2c¢o
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such that (H2) LV (e,t) < caV(e,t) and (H3) |V.B|? > c3V? for all (e, zy, ). First, applying
Assumptions 1 and 2, we have

1.
LV (e t) = e[f(zn +e,t) — flan,t)] — oe® + 502[9(331\; —z4e)—glany —2)]?
1.
< Kf€2 — e + 50’2K§+62

< (2Kp —20 4+ 07K, )V (e, t).
Hence, (H2) holds for c; = 2K — 20 + 32K§+. Second,
VeBP = |edlglan — 2+ ¢) — glax - 2))* 2 $°K2 ' = 452K2V (e,
so that (H3) holds for c3 = 462K 92_. Finally, the condition ¢3 > 2¢s requires
(3.4) 20 > 2Ky +5°(K;, — 2K, ). |

One implication of Theorem 3.1 is that increasing noise intensity can synchronize, in
certain conditions, a quorum sensing network. Indeed, when for K 92 . < 2K 37, large noise
intensities (¢) can guarantee the fulfillment of (3.2). Here 20 is nonnegative by definition, and
when KS L < 2K 927, the right-hand side of (3.2) becomes negative for sufficiently high values
of o. This phenomenon, where noise facilitates synchronization, has been also experimentally
observed in many applications [18, 13, 17]. Moreover, the condition given by Theorem 3.1
does not involve the size N, which indicates that node-to-node synchronization will not be
affected by the size of the system and can be easily satisfied.

3.2. Node-to-medium synchronization. Assuming the hypotheses of Theorem 3.1 are
satisfied as ¢ — oo, by the definition of node-to-node synchronization, the dynamics of (3.1)
converges to the reduced system

(3.5a) ds
(3.5b) dz

[f(s,t) +0(z—s)|dt +T9(s — z)dW,
[h(z,t) —oN(z — s)|dt —dNg(s — z)dW.

Note that s and z undergo different intrinsic dynamics for f # h. We need to discuss the
existence of node-to-medium synchronization before studying its stability. Assume there exists
a node-to-medium synchronous solution §(¢). By system (3.5), we know that §(¢) has to satisfy
the following condition:

ds
3.6 -~ =
(3.6) o
The trivial case of having the above condition satisfied is to set f = h. However, this is not a
necessary condition. Consider a constant function §(t) = s* with f(s*,t) = h(s*,t) = 0. That
is, common zeros of the functions f and h are potential candidates for network synchronization.
Assuming § exists, we give a sufficient condition for node-to-medium synchronization.
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Theorem 3.2. Assume that the hypotheses of Theorem 3.1 are satisfied and that there ex-
ists §(t) that f(3(t),t) = h(3(t),t), YVt € R*. Equation (3.1) then achieves node-to-medium
synchronization if there ewists a constant Ky € R such that

and
20(N +1) > 2Kp, + 0°(K;, — 2K, )(N +1)%.
Proof. The result can be proven by defining the error as e(t) = s(t) — z(t) and by showing
that the trivial solution of this error dynamics is a.s. exponentially stable. Then, from (3.5),
we have

(3.7) de = [f(s,t) —h(s+e,t) —o(N + 1)eldt + (N + 1)g(e)dW.

Now, by hypotheses, we have that e = 0 is a solution of (3.7) when s(t) = §(t). We study
stability of this solution by considering the Lyapunov function V., = %62 and apply Lemma

2.1 to give
LV (e,t) =e[f(e+ z,t) — h(z,t) — (N + 1)e] + %’0\2(]\7 + 1)2¢%(e) < oV,
where ¢y = 2K, —20(N +1) + K§+32(N +1)2. Moreover,
|:€0'<N + )g(e) ? > C3Ve2,

where c3 = 4K 3_82(N + 1)2. Therefore, e = 0 is exponentially stable a.s. if c3 > 2¢2, which

holds for
20(N +1) > 2Ky, + 0%(K}, —2K2 )(N + 1) m

Note that star networks are a special case of a quorum sensing network when f = h (in
this case we have Ky, = Ky). Comparing the result of Theorem 3.2 for node-to-medium syn-
chronization with Theorem 3.1 for node-to-node synchronization, we see that if K 3 1 < 2K§_,
then node-to-node synchronization guarantees node-to-medium synchronization because

20(N +1) > 20 > 2K; +02(K7, —2K. ) > 2K, +5°(K;, — 2K} )(N +1)%.

Moreover, in system (2.3) with N nodes and a shared medium, setting f = h implies that the
medium z acts like an additional node, undergoing the same intrinsic dynamics as all the other
nodes, ;. Then system (3.1) becomes a special case of network (1.1), where the underlying
graph is star-shaped with N + 1 nodes. By the result in [28], we find that all (N + 1) nodes
synchronize when

o> Kf+0°(N-NK,.
Comparing with our result, node-to-node and node-to-medium synchronization is achieved

when ) )
K G o
o> max{]\wfl + ?(N +1)(KZ, — 2K ), Ky + 7(Kj+ — Kg_)} .

Note that both are sufficient conditions for synchronization. In the case where K g2 L < 2K 37,
our result is less restrictive, while in the case K, = 0, the result from [28] can be less
restrictive.
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3.3. Application: Multiagent system with common noise. As an explicit illustration
of the above analysis, consider the following network, where each individual node dynamics
models a decision process [25]. That is, in the model, f(a,t) = ra — a®, and this models an
agent that needs to decide among two mutually exclusive opinions [10]:

(3.8a) da; = [ro; — a3 + o(z — x;)]dt + 5 (x; — 2)dW, i=1,...,N,
N N

(3.8b) dz = [W(z,t) =0 Y (z—a)ldt =5 Y _(z; — 2)dW,
7=1 7j=1

where o is the agent-station coupling strength and & is the noise level. In this example, we
have f(a,t) = f(a) = ra—a® and g(a) = a from (3.1). Note that the function f(z) = rx — 3
indicates that there are three fixed points of the uncoupled deterministic node dynamics:
x = 0, which is unstable, and x = +,/r, which are stable. Here h(z,t) describes the intrinsic
dynamics of a shared station. If the shared station only acts as an information sharing medium,
then h(z,t) = 0. Another possibility is that the shared station exhibits the same dynamics
as the nodes, which is equivalent to a star network with NV + 1 agents. A third alternative is
that the station dynamics can be totally different from the node dynamics. For the system
(3.8), we have K, = K, = 1 and Ky = r. Hence, from Theorem 3.1, we know that a
sufficient condition for node-to-node synchronization is 20 > 2r — 2. Once node-to-node
synchronization is achieved, (3.8) reduces to the following two-dimensional system:

(3.9a) ds = [rs — §° + o(z — 8)|dt + 5(s — 2)dW,
(3.9b) dz = [h(z,t) —oN(z — s)|dt — o N(s — z)dW.

In Figure 1, we show an example of noise-induced node-to-node synchronization without node-
to-medium synchronization. Note that the candidate for a full node-to-medium synchroniza-
tion 5(t) is §(t) = —1,0,1. However, at t &~ 6, all nodes synchronized to some function s(t)
that is not a constant. This is an example of node-to-node synchronization to some function
s(t), which is different than the node-to-medium synchronization function 5(t). In Figure 2,
we present an example of full node-to-medium synchronization.

Both Figures 1 and 2 present time evolution plots of a system for a single initial condition.
We can also run a set of initial conditions and track how the resulting cloud of points evolves
in time. This is shown in Figures 3 and 4 for N =1 and N = 20, respectively, where each dot
represents one initial condition. We use the FEuler-Maruyama method to simulate the time
evolution from each initial condition and track their spatial distribution in the s — z plane. At
every time step, each dot is updated with independent noise. Comparing the two figures we
see how increasing N results in the system converging to consensus, which is expected from
Theorem 3.2. In both plots, we have f(a) = a — a® and h(a) = —f(a). The reduced system
(3.9) thus has three different synchronization states (8, §), where § = —1,0,1. From Figure
4 (f), we see that all initial conditions converge to one of these states. Looking more closely
at Figure 4, there appear to be attracting regions at intermediate times, which ultimately
converge to the one-dimensional invariant manifold given by s = z. In the next section, we
explore further how the SDE system (3.9) exhibits characteristics similar to deterministic
dynamical systems.



1942 G. FAN, G. RUSSO, AND P. C. BRESSLOFF

1.5 Zero Noise

| @]

0 5 time t 10 15

15 RSD Common Noise

1o ‘ 10 15
0 time t

FIGURE 1. Time evolution of system (3.8) with nodes x;(colored), i =1,..., N, and the shared medium z
(black) for (a) zero noise (¢ = 0) and (b) nonzero common noise (6 > 0). In this example, h(a,t) = h(a) =
—2(a—a®) and N=3,0=0.1,5 =1, r=1. Here we used the Euler-Maruyama method [11] to simulate the
SDE with step size 6t = 0.0001. The initial conditions for x; are chosen randomly from a standard distribution
centered at 0 with standard deviation 1, and z(0) = 0. Common noise induces node-to-node synchronization
without node-to-medium synchronization.

3.4. Stochastic invariant manifolds. In this section, we demonstrate the existence of
both deterministic and stochastic invariant manifolds (defined below) in the stochastic system
(3.9). Similar ideas, which are omitted here for brevity, can be straightforwardly applied to
the more general system (3.5). First, we recall the definition of an invariant manifold for a
deterministic dynamical system. Consider the differential equation dx/dt = f(x), x € R",
with flow x(¢; 9, %) being the solution of the differential equation under the initial condition
x(to) = xo. A set S C R"™ is an invariant set for the differential equation if Vzy € S;
then x(¢;tg,x9) € S for all t > ty. Moreover, S is called an invariant manifold if S is a
manifold.

Example 1. The synchronization manifold s = z for system (3.9) is a deterministic in-
variant manifold if h(-) = f(-). The proof is fairly straightforward. First, note that the one-
dimensional subspace Sgy, = {(s,2) : s = 2z} C R? is a manifold. For the initial conditions on
the synchronization manifold, that is (s(0), 2(0)) € Sy, or equivalently s(0) = 2(0) = 5o € R.
Let 5(t) denote the unique solution of § = f(8) and 5(0) = 89. Then, given h = f and the fact
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Zero Noise

1.5 ' ‘

0 5 time t 10 15

RSD Common Noise

time t 10 15

FIGURE 2. Same as Figure 1 except that N = 10 and h(a) = 10(a — a®). Common noise now induces both
node-to-node and node-to-medium synchronization.

FIGURE 3. Time evolution of system (3.9) with different initial conditions (blue dots) sampled from a grid
[2:0.01: 2] x [-2:0.01:2]; (a) t = 0; (b) t = 1; (c) t = 20. Here h(a) = —(a —a®) = —f(a), N =1,
and all other parameters are the same as Figure 2. It can be seen that node-to-medium synchronization is not
achieved.

that the noise terms vanish on the manifold Sy, we see that if s(t) = z(t) at time ¢, then

(3.10a) ds = f(s(t)) = [s(t) — s(t)%]dt,
(3.10Db) dz = f(z(t))dt.
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[ 0 0
s(t) s(t) s(t)

(a) (b) ()

0 0
s(t) s(t)

(d) (e) (f)

FIGURE 4. Same as Figure 3 except that N = 10: (a) t = 0; (b) ¢t = 0.05; (¢) t = 1; (d) t = 5; (e)
t = 10; (f) t = 20. In contrast to the previous case, the system converges to one of the three synchronized
states, (1,1),(0,0), (—1,—1), as demonstrated in (f).

Hence, the initial condition (s, sg) yields s(t) = z(t) for all ¢ > 0, and Ssyy, is a deterministic
invariant manifold.

The above example demonstrates how a noise-free manifold can act as an invariant man-
ifold of an SDE. Naturally, with the existence of an invariant manifold, the state space of
the full stochastic system is divided into invariant subregions. This motivates us to define a
stochastic invariant manifold.

Definition 3. Consider the autonomous SDE
dx = F(x)dt + G(x)dW,

where x € RN and F,G € C?. A set S is stochastic invariant if for any initial condition
x(to) = %0 € S and any realization of the noise process W (t), its solution x(t;to,xo) € S Vt €
R*. In addition, such a set S is a stochastic invariant manifold if S is a manifold.

In Example 1, we showed that the one-dimensional manifold Sy, of the system (3.9)
is invariant when h = f. It follows that S, separates R? into a pair of two-dimensional
stochastic invariant manifolds,

Dl:{(svz)‘szz}v DQZ{(SVZ”SSZ}’



SYNCHRONIZATION IN QUORUM SENSING NETWORKS 1945

with Dy N Dy = Sgy,. This follows from the intermediate value theorem. Without loss of
generality, let xg € D1\Ssyn, and assume there exists a time ¢ > to, where x(t1;%0,%0) €
Do\ Ssyn- Since the given SDE has the integral form

t ¢

x(t) = xp +/ F(x(s))ds+ [ G(z(s))dW (s)

to to
and F, G, and W(s) are all continuous, we know that x(¢) is continuous. This implies that
there exists a time ¢*, where x(t*) € Syy,. By the definition of a deterministic invariant
manifold, we know that x(t) € Ssyp, Vt > t*, which contradicts x(t1) € D2\ Ssyn, where t; > t*.

The existence of stochastic invariant manifolds provides some information about how

stochastic trajectories depend on initial conditions, i.e., whether the initial conditions are in
D1 or Dy. However, it does not answer the question of what is the basin of attraction for
different consensus states, which in our example are (—1,—1), (0,0), and (1,1). In order to
address this question, we show in the next example that for a particular choice of h, there
exists another one-dimensional invariant manifold that is transversal to the synchronization
manifold Sgyy,.

Example 2. Let h(a) = —N f(—a/N) for system (3.9). In contrast to Example 1, there is
now only one candidate node-to-medium synchronization state when N > 1, namely, (0,0).
Set C' = Ns + z, where different C' values represent different level curves. Multiplying (3.9a)
by N and adding to (3.9b) yields the deterministic equation

(3.11) dC =d(Ns+z) =[Nf(s) + h(z)]dt
(312) O = INJ(s) + ha)L,

which describes how the dynamics between different level curves are defined. In particular,
when C' = 0, we have Ns+ z =0, or s = —z/N. Since for our choice of h, h(a) = —f(a/N),
for any point (s, z) on the manifold

M ={C =0} ={(s,2)|[Ns+ z = 0},

it follows that Nf(s) + h(z) = Nf(s) + h(—=Ns) = Nf(s) — Nf(s) = 0. Therefore, M is
a stochastic one-dimensional invariant manifold. (Although the dynamics is constrained to
remain on M, it is still stochastic.) Using similar arguments to the analysis of Example 1, we
know that the invariant manifold M separates R? into a pair of two-dimensional stochastic
invariant manifolds,

Dy ={(s,2)ls > =#/N}, Do ={(s,2)ls < —2/N},
with D1 N Dy = M. Moreover, by (3.12), the sign of N f(s) + h(z) determines whether C is

increasing or decreasing. Thus, yet another way to partition the phase plane is in terms of
the one-dimensional manifold

M ={C =0} ={(5,2)[Nf(s) + h(z) = 0}.

Although M C M , the total space M is not invariant. One can think of M as the nullcline
for the variable C.
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FIGURE 5. Phase plane diagram for the SDE system (3.9) with h(a) = f(a) = a —a® and N = 1. The
thick black line represents the invariant manifold M, and the green line represents the invariant manifold Ssyn .
The red arrows represent the possible directions along these manifolds. The two one-dimensional manifolds
divide the phase plane into four two-dimensional stochastic invariant manifolds. The manifold M is given by
the union of M and the closed dotted curve. The sign of f(s)+h(z) determines whether C = s+ z is increasing
or decreasing, as indicated by the shaded regions.

Example 3. In the special case of N = 1, conditions h(a) = f(a) and h(a) = =N f(—%)
are equivalent. Having both conditions satisfied (N = 1 and h = f) results in an SDE
system with two different invariant manifolds. We can then construct a stochastic phase
plane diagram, as shown in Figure 5. One major consequence of the existence of a stochastic
invariant manifold is that any initial condition in D (top right) cannot cross the manifold
M to approach the point (—1,—1), and any initial condition in Do (bottom left) cannot cross
M to approach the point (1,1). Moreover, the point (0,0) is not stochastically stable a.s.
since it is an unstable equilibrium of the noise-free synchronization manifold Ssy,.. Therefore,
the basin of attraction of the consensus state (1,1) is ﬁl, and the basin of attraction of the
consensus state (—1,—1) is Dy, whereas (0,0) effectively acts as a stochastic saddle node.
This is verified by the numerical simulations shown in Figures 6 and 7. In Figure 6, we
colored the different initial conditions based on the sign of C'(0) = s(0) + z(0), where the
yellow dots represent initial conditions started from Dy = {(s,2)|s > —z} and the blue dots
represent initial started from Dy = {(s, z)|s < —z}. Figure 6 shows the path of convergence
for different initial conditions, and from the plot we see that almost all initial conditions
eventually converge to (1,1) or (—1,—1). Figure 7 shows in detail the basins of attraction.
Here the invariant manifold M serves as a seperatrix such that initial conditions in Dy (yellow)
converge to (1,1), whereas initial conditions in Dy (blue) converge to (—1,—1); the subset
of initial conditions located on the stochastic invariant manifold M converge to (0,0). (Note
that the stochastic invariant manifold C' = 0 in Example 2 does not act as a stochastic
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FIGURE 6. Time evolution of system (3.9), where f(a,t) = h(a,t) = a—a®, g(a,t) =a, N=1,0 =0.1,5 =
1,dt = 0.0001, with different initial conditions (blue dots) sampled from grid [—2:0.01 : 2] x [-2: 0.01 : 2]: (a)
t=0;(b) t=1;(c) t=>5; (d) t =10; t = 30; t = 60. In this example, (0,0) is a stochastic saddle point.

FIGURE 7. Three-dimensional plot for Figure 6, where the x,y-axes represent the coordinates of the initial
conditions and the z-axis represent z(t) at (a) t = 0; (b) t = 2; (c) t = 40.

separatrix for N > 1 because the two states (1,1) and (—1, —1) are no longer node-to-medium
synchronization states.)

3.5. Increasing the number of nodes. Even when the SDE system does not support
any one-dimensional invariant manifolds, we can still use phase plane analysis in order to
understand particular features of the paths of convergence to synchronized states. Let’s revisit
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FIGURE 8. Phase plane diagram for the SDE system studied in Figure 4. The green line represents the
synchronization manifold Ssyn and the blue dotted line represents the level curve N f(s) 4+ h(z) = 0, for which
d(Ns+z)/dt =0. The red arrows represent the possible directions along these manifolds and are almost vertical
for large N.

our model system (3.9) with h(a) = —f(a). When the number of nodes is large, the system
will be dominated by the N-dependent terms. In particular, z will be a fast variable, where

dz~ —oN(z —s)dt —oN(s— z)dW.

Using a similar stability analysis to section 3, one can show that the synchronized state
z = s is a.s. exponentially stable. This implies that the fast variable z will quickly drive
the trajectory to a neighborhood of the synchronization manifold Sy, ultimately resulting
in synchronization, as seen in Figure 4. Moreover, by plotting the level curve C' = 0 in the
phase plane, as seen in Figure 8, we see that trajectories tend to approach this level curve
before ultimately converging to the synchronized states, which helps explain why we observe
sharp convergence to trapping-like regions around time ¢ = 1 in Figure 4(c).

4. Network synchronization under independent noise. We now turn to the case where
the noise associated with each node-to-medium link is independent rather than common to
all of the nodes. The corresponding stochastic differential equation is

(4.1a) dr; = [f(xs,t) + o(z — x;)|dt + 6g(x; — z)dW;, i=1,..., N,

N N
(4.1Db) dz = |h(z,t)— 0o Z(z —xj)|dt — 329(:@ — z)dWj,
j=1 j=1
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where the W;(t) are independent Wiener processes. It is straightforward to see that with in-
dependent noise, node-to-node synchronization is not possible without node-to-medium syn-
chronization. Therefore, we directly present the proof of node-to-medium synchronization.

Theorem 4.1. Consider the system (4.1), and let Assumptions 1 and 2 hold. Then the
network achieves node-to-medium synchronization if

(x = y)[f(t, ) = h(t,y)] < Kpn(z —y)?
and

20 > 2K 52
o fhto N

1
2 2
(N+1)KZ —2 Kg_] .

Proof. Following along similar lines to the previous proofs, we introduce the error dynamics
ase=[ep,...,en]T, where ¢; = x; — 2z for i = 1,..., N and

N
(4.2) de; = | f(t,z;) — h(t,z) — oe; — UZej dt +o

N
g(ei)db; + Zg(ej)de] :
j=1

j=1

Equivalently, we have
de = A(X)dt + B(e)dW,

where A=F —H —oLe, F = [f(t,z1),..., f(t,zx)]T, H=[h(t,2),..., h(t, 2)]T with

2 1 1
L=11 2 1
11 2

and B = 6LG, G = diag{g(t,e1),...,9(t,en)}, dW = [dW1,...,dWy]T. Similarly, e = 0 is
a solution only when there exists function s(t), where x;(t) = z(t) = s(t) such that f(¢,s) =
h(t,s) Vt € R*. Pick the Lyapunov function to be V(e) = e’e/2. Following Lemma 2.1, we
next find bounds for LV (e) and |VeB|?.

(H2) VeA = >, e;[f(t. 2 +¢€j) — h(t,z)] — oe’ Le. By some calculation, we know that
matrix L has eigenvalues A = 1,...,1, N + 1. Since L is a symmetric real matrix, we get
e’'Le € [\nine’e, \mare’ e] = [eTe, (N + 1)e’e]. Therefore, VoA < 2(Ksp —o)V(e).

Next, by algebraic calculation and Assumption 2, we get

N

1 N +1 .
5tr{BTveeB} =52 5 ;g%j) <5

Then we have
1
LV = VoA + 5tr{BTVeeB} < eVt e),

where ¢y = 2Ky, — 20 + (N + 1)32K§+, and
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(H3) |V.B|? = 5%e’ LG|? > 0, where
€"LG* =) gi[(Zex) +¢j)]* = Ki_ Y eF[(Sex) + ¢
1
> NKE_\eTe\Q.
Therefore,
|Vv6B|2 < 63V2(t7 6)

with c3 = 432%1( 3, Put everything together, we get that the synchronization state is expo-
nentially stable a.s. when cg > 2C5, that is, when

o 1 ~

26° K > 2K+ (N + 1)67 K, — 20

or

20 > 2Ky, + 62

N m

1
2 2
(N +1)K2 -2 Kg_].

Note that this result is broader than the one found in [29] because in that paper c3 = 0,
which eliminated the case of independent noise-derived synchronization.

Example 4. We illustrate the above result for the system (3.8) with independent noise,
that is,

(4.3a) dx; = [ro; — o3 + o(z — x)|dt + 0(x; — 2)db;, i=1,...,N,
N N

(4.3b) dz = [h(t, 2)—o> (2 a:j)] dt — G (x; — z)db;.
j=1 j=1

Using the same initial condition and parameters as Figure 2 we obtain the plots shown in
Figure 9. Note that we can apply a similar stochastic invariant manifold analysis to the
independent noise case, which we have omitted here for brevity.

5. Discussion. In this paper, we analyzed two synchronization phenomena (node-to-node
and node-to-medium synchronization) in quorum sensing networks, where nodes communicate
indirectly via a shared environmental variable (or medium) and where the communication
links are noisy. The noise diffusion processes considered in the paper were state dependent
(RSD noise diffusion processes). Also, the medium was characterized by its own intrinsic
dynamics, and this was, in general, different from the internal dynamics of the nodes. In this
context, we showed that, in case of common noise, the network can achieve both node-to-node
synchronization, i.e., a state where nodes are all synchronized with each other, and node-to-
medium synchronization, i.e., a state where the nodes are not only synchronized with each
other but also synchronized with the medium. On the other hand, in the case of independent
noise, node-to-medium synchronization is necessary for node-to-node synchronization. In
order to further characterize the onset of synchronization in these quorum sensing networks,
we also carried out a stochastic phase plane analysis of their dynamics on the synchronization
manifold. In particular, we constructed examples of one-dimensional stochastic invariant
manifolds and nullclines, which played a crucial role in organizing the flow of trajectories
toward node-to-medium synchronized states.
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FIGURE 9. Time evolution of system (4.3) with nodes x;(colored), i = 1,..., N, and the shared medium

z(black) for (a) zero noise (¢ = 0) and (b) nonzero independent noise (¢ > 0). It can be seen that independent
noise induces synchronization. All parameters and initial conditions are the same as Figure 2.

A necessary condition for node-to-medium synchronization is that the internal node dy-
namics f(z,t) and internal medium dynamics h(z,t) have the same zeros. In the case of
bacterial quorum sensing networks, cells are coupled with the extracelluar environment by
the diffusive exchange of autoinducers. In this case, the medium z is the signal concentration
in the extracelluar environment, and the node x; is the intracellular signal concentration in cell
i. In [2], the internal medium dynamics h(z,t) = —vz represents the decay of the extracellular
autoinducer z with decay rate . Here h(z,t) = 0 only when z = 0. However, the internal node
dynamics f(x,t) is determined by the in-cell chemical reactions and f(0,¢) # 0. Therefore,
in this case, f and h have different zeros, so, by the results of our paper, node-to-medium
synchronization cannot be achieved. Consequently, x;(t) and z(¢) will still be affected by noise
even when node-to-node synchronization is achieved. Intuitively speaking, it may be useful
for bacterial quorum sensing systems to be sensitive to different levels of environmental noise.
This is also related to the so-called diffusion sensing hypothesis, whereby multipathway quo-
rum sensing allows bacteria to react not only to cell density but also to the mass-transfer rate
of the extracellular environment [8]. Our future research will involve extending the results of
this paper to consider more general (nonlinear) node-to-medium coupling terms and intrinsic
noise arising from the nodes’ internal dynamics.
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