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a b s t r a c t

We develop a generalized variational method for analyzing wandering bumps in a stochastic neural
field model defined on some domain U . For concreteness, we take U = S1 and consider a stochastic
ring model. First, we decompose the stochastic neural field into a phase-shifted deterministic bump
solution and a small error term, which is assumed to be valid up to some exponentially large stopping
time. An exact, implicit stochastic differential equation (SDE) for the phase of the bump is derived
by minimizing the error term with respect to a weighted L2(U, ρ) norm. The positive weight ρ is
chosen so that the error term consists of fast transverse fluctuations of the bump profile. We then
carry out a perturbation series expansion of the exact variational phase equation in powers of the
noise strength

√
ϵ to obtain an explicit nonlinear SDE for the phase that decouples from the error

term. Solving the corresponding steady-state Fokker–Planck equation up to O(ϵ), we determine a
leading-order expression for the long-time distribution of the position of the bump. Finally, we use
the variational formulation to obtain rigorous exponential bounds on the error term, demonstrating
that with very high probability the system stays in a small neighborhood of the bump for times of
order exp(Cϵ−1).

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Neural field theory concerns the analysis of nonlinear integro-
differential equations arising from a coarse-grained continuum
model of spatially-structured neural tissue. The associated
integral kernels represent the spatial distribution of neuronal
synaptic connections. Neural fields are an important example
of spatially extended excitable systems with nonlocal interac-
tions, and exhibit a wide range of self-organizing spatiotemporal
patterns analogous to those found in nonlinear partial differ-
ential equation (PDE) models of diffusively coupled excitable
systems [1,2]. For recent reviews see [3,4]. One topic of current
interest is how these patterns are affected by the addition of spa-
tially extended noise terms [5–8]. Much of the recent focus has
been on traveling fronts and bumps (stationary pulses) in one-
dimensional neural fields. The analysis of stochastic fronts was
originally developed using formal perturbation methods [9–11],
and was subsequently extended to the case of wandering bumps
in single-layer and multi-layer neural fields [12–14]. There have
also been a number of more rigorous functional analytic treat-
ments of stochastic neural waves. For example, Faugeras and
Inglis [15] addressed the issue of solutions and well-posedness in
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stochastic neural fields by adapting results from stochastic partial
differential equations (SPDEs). Stannat et al. [16–18] developed a
rigorous treatment of the multi-scale decomposition of solutions,
Inglis and Maclaurin [19] introduced a variational method that
allows one to obtain rigorous bounds on the size of deviations
from the underlying deterministic solution, and more recently,
Hamster and Hupkes [20] define a wave-position that agrees with
the definitions in [16–19] to linear order. A well-written recent
review can be found in [21].

A common thread through all of these treatments is that in
the case of a homogeneous neural field, a bump or wave solution
is marginally stable with respect to uniform spatial translations.
This means that one has to treat longitudinal and transverse
fluctuations of the bump or wave separately in the presence
of noise. This is implemented by decomposing the stochastic
neural field into a deterministic bump or wave profile, whose
spatial location has a slowly diffusing component, and a small
error term. (There is always a non-zero probability of large de-
viations, but these are assumed to be negligible up to some
exponentially long stopping time.) However, this decomposition
is non-unique unless an additional mathematical constraint is
imposed. Within the context of formal perturbation methods,
the latter takes the form of a solvability condition that ensures
that the error term can be identified with fast transverse fluc-
tuations, which converge to zero exponentially in the absence
of noise. One advantage of formal perturbation theory is that
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it provides a relatively straightforward method for deriving an
explicit stochastic differential equation (SDE) for the diffusive-
like wandering of the deterministic component in the weak noise
regime. However, it is not rigorous and does not provide bounds
on the size of transverse fluctuations. Therefore, in this paper,
we show how the explicit results of formal perturbation theory
can be derived more rigorously using variational methods. This
requires generalizing the analysis of [19] by taking perturbations
to belong to the Hilbert space L2(U, ρ) for an appropriately chosen
weight ρ, rather than L2(U), where U is the spatial domain of the
neural field. That is,

⟨u, v⟩ρ =

∫
U
u(x)v(x)ρ(x)dx < ∞, u, v ∈ L2(U, ρ).

Fixing ρ is the additional mathematical constraint necessary to
uniquely specify the amplitude-phase decomposition. ρ is chosen
to ensure that the dynamics is linearly stable about the bump
centered at position β , where β is the bump position that mini-
mizes the norm weighted by ρ. In other words, to leading order
in the perturbation, ρ is such that in the absence of any noise, the
solution would converge to Uβ (the bump centered at β) as t →

∞. ρ also ensures that the linearized dynamics about Uβ is self-
adjoint with respect to the weighted inner product. (Note that
the idea of using a variational principle with a weighted norm
was previously introduced by the authors to study stochastic
limit cycle oscillators [22–24]. In the latter case, marginal stability
arises from phase-shift invariance around the limit cycle, and
the weighted norm ensures that the amplitude is projected on
to Floquet vectors.) For concreteness, we develop the theory by
considering wandering bumps in a stochastic ring model, which
was previously analyzed using perturbation methods in [12,25].
An advantage of the ring model is that the spatial domain U = S1
is compact, which means that the spectrum of the linear operator
obtained by linearizing about a bump solution is discrete. As a
further generalization of [19], we also include a weak external
stimulus h that can pin the location of the peak or phase of the
bump in the absence of noise.

The paper is organized in follows. In Section 2 we briefly
review the analysis of the deterministic ring model, considering
both the existence and stability of bump solutions. In Section 3
we turn to the variational analysis of wandering bumps in a
stochastic ring model. We derive an exact, implicit SDE for the
phase of the bump by minimizing the error term with respect
to a weighted L2(U, ρ) norm. The positive weight ρ is chosen so
that the error term consists of fast transverse fluctuations of the
bump profile. We then carry out a perturbation expansion of the
exact variational phase equation to obtain an explicit nonlinear
SDE for the phase which is accurate to O(ϵ), where ϵ is the noise
strength (Section 4). Taking the homogeneous synaptic weight
distribution and external input to be first-order harmonic func-
tions on the ring with h = O(

√
ϵ), one finds that the leading order

phase equation reduces to a von Mises process, see also [25].
The steady-state phase density is given by a classical von Mises
distribution [26,27] and the wandering of the bump is unbiased.
This result was previously obtained using formal perturbation
methods [12,25]. Finally, we use the variational formulation to
obtain rigorous exponential bounds on the error term (Section 5).
This is a major improvement on our previous result in Corollary
6.4 in [19].

2. Stationary bumps in the deterministic model ring model

Consider the deterministic neural field equation on the ring
S1:

τ
∂u(θ, t)
∂t

= −u(θ, t) +

∫ π

−π

J(θ − θ ′)f (u(θ ′, t))dθ ′
+ h(θ ) (2.1)

where u(θ, t) denotes the activity at time t of a local population
of cells with direction preference θ ∈ [−π, π ), J(θ − θ ′) is the
strength of synaptic weights between cells with direction pref-
erence θ ′ and θ , and h(θ ) is an external stimulus expressed as a
function of θ . (Most applications of the ring model take θ ∈ [0, π]

and interpret θ as the orientation preference of a population of
neurons in primary visual cortex, see for example [28,29].) The
weight distribution is a 2π-periodic and even function of θ and
thus has the cosine series expansion

J(θ ) =

N∑
n=0

Jn cos(nθ ). (2.2)

For analytical simplicity, we assume that there are a finite num-
ber of terms in the series expansion. Finally, the firing rate func-
tion is taken to be a sigmoid

f (u) =
1

1 + e−γ (u−κ) , (2.3)

with gain γ and threshold κ .
The existence and stability of deterministic bump solutions

has been analyzed elsewhere [12], so we just state the main
results here. We fix the time-scale by setting the time constant
τ = 1. First, suppose that there are no external inputs (h ≡ 0)
and consider an even stationary solution

u(θ, t) = U(θ ) =

N∑
n=0

An cos(nθ ). (2.4)

The latter U(θ ) satisfies the integral equation

U(θ ) =

∫ π

−π

J(θ − θ ′)f (U(θ ′))dθ ′. (2.5)

with U(θ ) = U(−θ ). Expanding the weight function as a cosine
Fourier series one obtains the self-consistency conditions

An = Jn

∫ π

−π

cos(nθ )f

(
N∑

n=0

Al cos(lθ )

)
dθ. (2.6)

For the general sigmoid function, the coefficients An could be
obtained using a numerical root finding method. One way to
ensure a unimodal direction tuning curve (stationary bump) is
to take J(θ ) = cos(θ ) so that A1 = A, Al = 0 for all l ̸= 1 and
U(θ ) = A cos(θ ) with

A =

∫ π

−π

cos(θ )f (U(θ ))dθ. (2.7)

The amplitude A can be calculated explicitly in the large gain limit
γ → ∞, for which f (u) → H(u − κ), where H is the Heaviside
function [12]. One finds a pair of bumps, a marginally stable large
amplitude wide bump and an unstable small amplitude narrow
bump, consistent with the original analysis of Amari [30].

Linear stability of the stationary solutions can be determined
by considering weakly perturbed solutions of the form u(θ, t) =

U(θ ) + ψ(θ )eλt for |ψ(θ )| ≪ 1. Substituting this expression
into Eq. (2.5) and Taylor expanding to first order in ψ yields the
equation [12]

(λ+ 1)ψ(θ ) =

∫ π

−π

J(θ − θ ′)f ′(U(θ ′))ψ(θ ′)dθ ′. (2.8)

This can be reduced to a finite-dimensional eigenvalue problem
using Eq. (2.2). In the specific case J(θ ) = cos θ , we have [12]

(λ+ 1)ψ(θ ) = A cos(θ ) + B sin(θ ), (2.9)

where

A =

∫ π

−π

cos(θ )f ′(U(θ ))ψ(θ )dθ, B =

∫ π

−π

sin(θ )f ′(U(θ ))ψ(θ )dθ.

(2.10)
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Substituting Eq. (2.9) into (2.10) yields a matrix equation for
the coefficients A and B, from which one obtains the pair of
eigenvalues

λ0 = 0, λe = 2
∫ π

0
f ′(U(θ ))dθ − 2. (2.11)

The zero eigenvalue is a consequence of the fact that the bump
solution is marginally stable with respect to uniform shifts around
the ring; the generator of such shifts is the odd function sin θ .
The other eigenvalue λe is associated with the generator, cos θ ,
of expanding or contracting perturbations of the bump. Thus
linear stability of the bump reduces to the condition λe < 0.
This can be used to determine the stability of the pair of bump
solutions in the high-gain limit [12]. (Note that there also exist
infinitely many eigenvalues that are equal to −1, which form
the essential spectrum. However, since they lie in the left-half
complex λ-plane, they do not affect stability.)

A variety of previous studies have shown how breaking the
underlying translation invariance of a homogeneous neural field
by introducing a nonzero external input stabilizes wave and
bump solutions to translating perturbations [12,31–34]. For the
sake of illustration, suppose that h(θ ) = h0 cos(θ ) in the deter-
ministic version of Eq. (2.1). This represents a θ-dependent input
with a peak at θ = 0. Extending the previous analysis , one finds
a stationary bump solution U(θ ) = A cos θ + h0 cos θ , with A
satisfying the implicit equation

A =

∫ π

−π

cos θ f (A cos θ + h0 cos θ )dθ. (2.12)

Again, this can be used to determine both the width and am-
plitude of the bump in the high-gain limit. Furthermore, it can
be established that for weak inputs, the bump is stable (rather
than marginally stable) with respect to translational shifts [12].
The pinning of bumps can also occur in the presence of heteroge-
neous weights; this also provides a mechanism of restricting the
diffusion of noisy bumps at the cost of some information loss [35].

3. Stochastic ring model and the variational method

Consider a stochastic version of the ring model given by

τdu(θ, t) =

[
−u(θ, t) +

∫ π

−π

J(θ − θ ′)f (u(θ ′, t))dθ ′
+ ηh(θ )

]
dt

+
√
ϵΦ(u(θ, t))dW (θ, t), (3.1)

where u(θ, t) now denotes the stochastic activity at time t of a
local population of cells with direction preference θ ∈ [−π, π ),
and we have rescaled h(θ ) by the parameter η which determines
the amplitude of the input. The final term on the right-hand
side represents external multiplicative noise in the Ito sense,
with W (θ, t) a Q-Wiener process and ϵ the noise strength. In
particular, we write

E[W (θ, t)] = 0, E[W (θ, t)W (θ ′, s)] = q(θ, θ ′)s ∧ t, (3.2)

q : S1
× S1

→ R is continuous (with units of inverse time) and
such that

∫
S1
∫
S1 q(θ, θ

′)a(θ )a(θ ′)dθdθ ′
≥ 0 for any continuous

a : S1
→ R, and s ∧ t denotes min{s, t}. The noise is thus

colored in θ (which is necessary for the solution to be spatially
continuous) and white in time. We also require that q(θ, θ ′) =

q(θ ′, θ ) for it to be a well-defined covariance. (One could also
take the noise to be colored in time by introducing an additional
Ornstein–Uhlenbeck process.) We write the integral operator on
L2([−π, π]) corresponding to q as

Qz(θ ) =

∫ π

−π

q(θ, θ ′)z(θ ′)dθ ′, (3.3)

noting that Q must be positive semi-definite. We will assume
throughout that the input amplitude η = O(ϵp) for some p > 0.
As we will see later, the choice of p will determine whether the
network is noise or stimulus dominated in the weak noise regime
(0 ≤ ϵ ≪ 1).

Introducing the notation

u(·, t) = ut , dWt = dW (θ, t),

we rewrite Eq. (3.1) in the more compact form

dut = [−ut + F(ut ) + ηh]dt +
√
ϵΦ(ut )dWt , t ≥ 0, (3.4)

where

F(ut )(θ ) =

∫ π

−π

J(θ − θ ′)f (ut (θ ′))dθ ′. (3.5)

Introduce the Hilbert space H = L2(S1, ρ) of periodic functions
on [−π, π] with generalized inner product

⟨g, k⟩ρ =

∫ π

−π

g(θ )k(θ )ρ(θ )dθ, g, k ∈ H (3.6)

where ρ is a positive periodic function. For the moment we
will keep ρ arbitrary. Later on we will determine ρ uniquely by
considering the weak noise limit. In the following we will denote
the inner product for ρ = 1 by ⟨g, k⟩.

In the presence of noise we wish to decompose the solution ut
into two components: the ‘closest’ point of the marginally stable
manifold to ut for a stochastic phase βt , and a periodic error term
vt :

ut = Uβt +
√
ϵvt , Ua(θ ) := U(a − θ ). (3.7)

We emphasize that this decomposition is well-defined for strong
noise. However in the case of strong noise, the time that the
system spends in a neighborhood of the bump is much less. Note
that since the bump is symmetric, U(a−θ ) = U(θ−a). We prefer
the above definition because it ensures that d

daUa(θ ) = U ′
a(θ ).

We determine βt by requiring that it satisfies the following
variational problem:

inf
a∈N (βt )

∥T−1
a ut − U∥ = ∥T−1

βt
ut − U∥, (3.8)

where Ta is the translation operator Taut (θ ) = ut (θ − a) with
T−1
a = T−a, N (βt ) is a sufficiently small neighborhood of βt , and

for any periodic function g(θ )

∥g∥
2

= ⟨g, g⟩ρ =

∫ π

−π

ρ(θ )g(θ )2dθ. (3.9)

There exists an exact analytic expression for the SDE giving the
dynamics of the βt (locally) minimizing (3.8), until when the
curvature of the local minimum hits zero and the local minimum
might disappear. This expression is exact for all values of ϵ.
From the shift invariance of the inner product, we can recast the
variational problem as

inf
a∈N (βt )

∥ut − Ua∥a = ∥ut − Uβt ∥βt , (3.10)

where

∥g∥
2
a =

∫ π

−π

ρa(θ )g(θ )2dθ, (3.11)

and ρa(θ ) = ρ(a − θ ) (we assume that ρ is symmetric in θ ). We
also write ⟨g, f ⟩a =

∫ π
−π
ρa(θ )g(θ )f (θ )

dθ .
We can find an exact SDE for βt (up to a stopping time τ that

we specify precisely in (3.16)) by considering the first derivatives

G(z, a) :=
∂

∂a
∥z − Ua∥

2
a = −2

⟨
z − Ua,U ′

a

⟩
a
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+

∫ π

−π

ρ ′

a(θ )(z(θ ) − Ua(θ ))2dθ. (3.12)

Define M ∈ R according to

M(z, a) =
1
2
∂

∂a
G(z, a).

The shift invariance of the system implies

0 =
∂

∂a
⟨Ua,Ua⟩a = 2

⟨
Ua,U ′

a

⟩
a +

∫ π

−π

ρ ′

a(θ )Ua(θ )2dθ,

which means that

G(z, a) = − 2
⟨
z,U ′

a

⟩
a +

∫ π

−π

ρ ′

a(θ )
(
z(θ )2 − 2z(θ )Ua(θ )

)
dθ

= − 2
∂

∂a
⟨z,Ua⟩a +

∫ π

−π

ρ ′

a(θ )z(θ )
2dθ. (3.13)

Hence,

M(z, a) = −
∂2

∂a2
⟨z,Ua⟩a +

1
2

∫ π

−π

ρ ′′

a (θ )z(θ )
2dθ. (3.14)

It can be seen that M is the curvature at the local minimum. At
the local minimum, it is necessary that

G(ut , βt ) = 0. (3.15)

Assume that initially M(u0, β0) > 0, which is sufficient for β0 to
be a strict local minimizer of (3.10). We then seek an SDE for βt
that holds for all times less than the stopping time τ

τ = inf{s ≥ 0 : M(us, βs) = 0}. (3.16)

The implicit function theorem guarantees that βt exists until this
time. To see why this is the case, for any particular βs, as long as
M(us, βs) > 0, then since M(us, βs) is the derivative of G(ut , βt )
in the second variable, the implicit function theorem implies.
Thus we can find a βt satisfying (3.15) in some neighborhood of
ut .

In order to derive the SDE for βt , we apply Ito’s lemma to the
identity

dGt ≡ dG(ut , βt ) = 0, (3.17)

with dut given by Eq. (3.4). We take dβt to satisfy an SDE of the
form

dβt = V (ut , βt )dt +
√
ϵ ⟨B(ut , βt ),Φ(ut )dWt⟩ , (3.18)

for functions V and B that we determine below. (Since βt is inde-
pendent of θ ∈ (−π, π], V is a functional of ut .) Using Eq. (3.13),
dGt is found to be

dGt = −2
∂

∂a
⟨dut ,Ua⟩a

⏐⏐⏐⏐
a=βt

+ 2
∫ π

−π

ρ ′

βt
ut (θ )dut (θ )dθ

+ 2M
(
ut , βt

)
dβt

+
1
2
∂2Gt

∂a2

⏐⏐⏐⏐
a=βt

dβtdβt +

∫ π

−π

ρ ′

βt
(θ )dut (θ )dut (θ )dθ

+ 2dβt

∫ π

−π

ρ ′′

βt
(θ )ut (θ )dut (θ )dθ − 2

∂2

∂a2
⟨
dut ,Ua

⟩
a

⏐⏐⏐⏐
a=βt

dβt

(3.19)

Note that we only include the dt contributions from the quadratic
differential terms involving the products dutdβt and dβtdβt ,
which are also known as cross-variations. For example,

dβtdβt=̂ϵ
⟨
Φ(ut )̂B(ut , βt ),QΦ(ut )̂B(ut , βt )

⟩
dt, (3.20)

where B̂(ut , βt ) = B(ut , βt )ρβt . Substituting Eqs. (3.4) and (3.18)
into Eq. (3.19) yields an SDE of the form

dGt = V(ut , βt )dt +
√
ϵ ⟨B(ut , βt ),Φ(ut )dWt⟩ . (3.21)

In order that (3.17) is satisfied, we require both terms on the
right-hand side of the above equation are zero, which will de-
termine V and B.

First, we have

0 :=
1
2

⟨B(ut , βt ),Φ(ut )dWt⟩βt

= M(ut , βt ) ⟨B(ut , βt ),Φ(ut )dWt⟩ −
∂

∂a
⟨Φ(ut )dWt ,Ua⟩a

⏐⏐
a=βt

+
⟨
ρ ′

βt
ut ,Φ(ut )dWt

⟩
.

Since for all times less than τ , M(ut , βt ) > 0, we have

B(ut , βt ) = M−1(ut , βt )Xt , (3.22)

where

Xt =
(
ρβtUβt

)′
− ρ ′

βt
ut . (3.23)

Second,

0 := V(ut , βt )dt = 2 [M(ut , βt )V − κ(ut , βt )] dt, (3.24)

with

κ = ⟨−ut + F(ut ) + ηh, Xt⟩ dt

−
1
2

∫ π

−π

ρ ′

βt
(θ )dut (θ )dut (θ )dθ −

1
4
∂2Gt

∂a2
⏐⏐
a=βt

dβtdβt

− dβt

∫ π

−π

ρ ′′

βt
(θ )ut (θ )dut (θ )dθ +

∂2

∂a2
⟨
dut ,Ua

⟩
a

⏐⏐
a=βt

dβt .

(3.25)

The cross-variations in Eq. (3.25) can now be evaluated us-
ing Eqs. (3.4), (3.18) and (3.22):

dβtdβt=̂ϵM−2(ut , βt ) ⟨Φ(ut )Xt ,QΦ(ut )Xt ⟩ dt, (3.26a)∫ π

−π

ρ ′

βt
(θ )dut (θ )dut (θ )dθ =

∫ π

−π

q(θ, θ )ρ ′

βt
(θ )Φ

(
ut (θ )

)2dθ, (3.26b)

dβt

∫ π

−π

ρ ′′

βt
(θ )ut (θ )dut (θ )dθ = ϵM−1(ut , βt )

⟨
Φ(ut )ρ ′′

βt
ut ,QΦ(ut )Xt

⟩
,

(3.26c)
∂2

∂a2
⟨
dut ,Ua

⟩
a

⏐⏐⏐⏐
a=βt

dβt = ϵM−1(ut , βt )
⟨
QΦ(ut )Xt ,Φ(ut )

∂2

∂a2
(ρaUa)

⏐⏐
a=βt

⟩
,

(3.26d)

It follows that the drift term V is given by

V (ut , βt ) = M−1(ut , βt )κ(ut , βt ) (3.27)

We thus obtain the following SDE for the phase shift βt :

dβt =
1

M(ut , βt )

(
κ(ut , βt ) +

√
ϵ ⟨Xt ,Φ(ut )dWt⟩

)
, (3.28)

where κ can be decomposed as

κ(ut , βt ) = ⟨−ut + F(ut ) + ηh, Xt⟩ + ϵκ1(ut , βt ), (3.29)

with κ1 containing all of the cross variation terms in (3.25).
Eq. (3.28) is an exact SDE for βt , which holds for arbitrary levels
of noise ϵ up to some stopping time that depends on ϵ (assuming
η = O(ϵp)) [19,22]. One can also derive a corresponding equation
for the amplitude vt using the fact that

√
ϵvt = ut −Uβt , so from

Ito’s lemma
√
ϵdvt = dut − U ′

βt
dβt −

1
2
U ′′

βt
dβtdβt . (3.30)

Of course, as they stand, Eqs. (3.28) and (3.30) are implicit equa-
tions, since they assume that the full solution ut is known. More-
over, the weight ρ of the modified L2 norm has not yet been
specified. In the following, we will use the implicit equations to
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obtain two important results, and in the process determine an
appropriate choice for ρ. First, in Section 4 we will derive an
explicit closed SDE for the phase in the weak noise limit, which
recovers the results of formal perturbation theory [12,25] within
a more rigorous setting. Second, we will then derive a higher
order closed SDE for the phase, which is necessary in situations
where the magnitude of the noise is at least of the order of the
stimulus. Third, we will derive rigorous bounds on the expected
time of transverse fluctuations to escape a neighborhood of the
bump solution, based on a modification of the analysis of [19],
see Section 5.

4. Weak noise limit

The derivation of the variational phase equation does not
require ϵ (and hence η = O(ϵp)) to be small. However, in order
to ensure that the amplitude-phase decomposition remains valid
for exponentially long time-scales, the noise and inputs have
to be sufficiently weak, see Section 5. In this section, we use
perturbation theory to derive an explicit, closed SDE for the phase
in the weak noise regime. The form of the phase equation will
depend on the choice of p. We will consider the simplest case
for which η =

√
ϵ so that O(ϵ) contributions to the drift can be

dropped. In particular, we can neglect the cross-variation terms
arising from Ito’s lemma and terms coupling the amplitude and
phase.

4.1. Perturbation expansion to leading order in
√
ϵ

Set η =
√
ϵ. Substituting the decomposition ut = Uβt +

√
ϵvt

into the left-hand side of Eq. (3.29), Taylor expanding in
√
ϵ, and

using the stationary condition (2.5) gives Xt ≈ ρβtU
′

βt
and

κ(ut , βt ) =
√
ϵ
⟨
Lβt vt ,U

′

βt

⟩
βt

+
√
ϵ
⟨
h,U ′

βt

⟩
βt

+ O
(
ϵ{1 + ∥vt∥

2
}
)
,

where Lβ is the following linear operator acting on L2(S1):

Lβv(θ, t) = −v(θ, t)+
∫ π

−π

J(θ − θ ′)f ′(U(β− θ ′))v(θ ′, t)dθ ′, (4.1)

It can be shown that the operator L0 has a 1D null space spanned
by U ′(θ ). The fact that U ′(θ ) belongs to the null space follows
immediately from differentiating Eq. (2.5) with respect to θ .
Moreover, U ′(θ ) is the generator of uniform translations around
the ring, so that the 1D null space reflects the marginal stability
of the bump solution. (Marginal stability of the bump means that
the linear operator L0 has a simple zero eigenvalue while the
remainder of the discrete spectrum lies in the left-half complex
plane. The spectrum is discrete since S1 is a compact domain.)
The corresponding adjoint operator with respect to ⟨·⟩ is

L†
βv(θ, t) = −v(θ, t)+ f ′(U(β − θ ))

∫ π

−π

J(θ − θ ′)v(θ ′, t)dθ ′. (4.2)

It follows that
⟨
Lβt vt ,U

′

βt

⟩
βt

=

⟨
vt ,L

†
βt
U ′

βt
ρβt

⟩
.

Next, to leading order, Eq. (3.14) reduces to

M(z, a) ≃ −

∫ π

−π

Ua(θ )
∂2

∂a2
{
ρa(θ )Ua(θ )

}
dθ +

1
2

∫ π

−π

ρ ′′

a (θ )Ua(θ )2dθ

=

∫ π

−π

U ′

a(θ )
∂

∂a

{
ρa(θ )Ua(θ )

}
dθ −

∫ π

−π

ρ ′

a(θ )Ua(θ )U ′

a(θ )dθ

=

∫ π

−π

ρa(θ )U ′

a(θ )
2dθ =

∫ π

−π

ρ(θ )U ′(θ )2dθ ≡ Γρ, (4.3)

after integrating by parts and using translation invariance, and

B(ut , βt ) = M−1(ut , βt )
{
ρ(βt )U ′

βt
− ρ ′(βt )(ut − Uβt )

}
≃ M−1(ut , βt )ρ(βt )U ′

βt
.

Hence, the leading order form of Eq. (3.28) becomes

dβt =

√
ϵ

Γρ

[⟨
vt ,L

†
βt
U ′

βt
ρβt

⟩
+
⟨
h,U ′

βt

⟩
βt

]
dt +

√
ϵdŴt , (4.4)

where

dŴt = Γ −1
ρ

⟨
Φ(Uβt )dWt ,U ′

βt

⟩
βt

= Γ −1
ρ

∫ π

−π

Φ(U(βt − θ ))dWt (θ )U ′(βt − θ )ρ(βt − θ )dθ. (4.5)

It follows that

E[dŴt ] = 0, E[dŴtdŴt ′ ] = 2D(βt )δ(t − t ′)dt ′dt,

with state-dependent diffusivity

D(β) =
1

2Γ 2
ρ

∫ π

−π

∫ π

−π

U ′(θ )U ′(θ ′)ρ(θ )ρ(θ ′)

× Φ(U(θ ))Φ(U(θ ′))qβ (θ, θ ′)dθ ′dθ, (4.6)

where

qβ (θ, θ ′) = q(β − θ, β − θ ′).

Hence, for a general correlation function q(θ, θ ′), the noise is
multiplicative (in the Ito sense). Note that if q(θ, θ ′) = q(θ − θ ′)
with q an even, periodic function, then qβ (θ, θ ′) = q(θ − θ ′) and
D is a constant.

Now suppose that we take the weight of the inner product to
be defined according to

U ′(θ )ρ(θ ) = V(θ ), (4.7)

where V is the (unique) null vector of the adjoint operator L†
0,

that is, L†
0V = 0. Within the context of the variational method,

this choice of weight ensures there is a spectral gap for the linear
operator L0, which can be used to obtain rigorous bounds on the
growth of the error ∥vt∥, see Section 6.

4.2. Homogeneous noise

In the case that q(θ, θ ′) = q(θ−θ ′), the law of the phase equa-
tion in (4.4) corresponds to the law of the following SDE that was
previously obtained using formal perturbation methods [9,12,25]:

dβt =
√
ϵH(βt )dt +

√
2ϵDdWt , (4.8)

where

H(β) = Γ −1
∫ π

−π

V(θ )h(θ − β)dθ, (4.9)

for H(β + 2π ) = H(β), with

Γ =

∫ π

−π

V(θ )U ′(θ )dθ, (4.10)

W (t) is a Wiener process,

E[dWt ] = 0, E[dWtdWt ′ ] = δ(t − t ′)dt ′dt,

and the diffusivity is

D =
1

2Γ 2

∫ π

−π

∫ π

−π

V(θ )V(θ ′)q(θ − θ ′)dθ ′dθ. (4.11)

Note that D has units of radians2 per unit time.
For the sake of illustration, let J(θ ) = cos θ and h(θ ) =

h0 cos(θ − β̄). In this particular case, one finds that, up to scalar
multiplications, [12,25]

V(θ ) = f ′(U(θ )) sin θ, U(θ ) = cos θ. (4.12)
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Fig. 1. Sample plots of the von Mises distribution M(β; 0, ξ ) centered at zero
for various values of κ .

It can now be shown that the SDE (4.8) reduces to [25]

dβt = −
√
ϵΛ sin(βt + β̄)dt +

√
2ϵDdWt , Λ =

h0

A
> 0. (4.13)

The latter SDE is known as a von Mises process, which can be
regarded as a circular analog of the Ornstein–Uhlenbeck process
on a line, and generates distributions that frequently arise in
circular or directional statistics [26,27]. Introduce the probability
density

p(β, t|β0, 0)dβ = P[β < β(t) < β + dβ|β(0) = β0].

This satisfies the forward Fokker–Planck equation (dropping the
explicit dependence on initial conditions)

∂p(β, t)
∂t

=
∂

∂β
[
√
ϵΛ sin(β + β̄)p(β, t)] + ϵD

∂2p(β, t)
∂β2 (4.14)

for β ∈ [−π, π] with periodic boundary conditions f (−π, t) =

f (π, t). It is straightforward to show that the steady-state solution
of Eq. (4.14) is the von Mises distribution p(β) = M(β; β̄, ξ/

√
ϵ)

for ξ = h0/AD, where

M(β; β̄, z) =
1

2π I0(z)
exp

(
z cos(β + β̄)

)
, (4.15)

where I0(x) is the modified Bessel function of the first kind and
zeroth order (n = 0). Sample plots of the von Mises distribution
are shown in Fig. 1. One finds that p(β) → 1/2π as ξ → 0; since
ξ ∼ h0 this recovers the uniform distribution of pure Brownian
motion on the circle. On the other hand, the von Mises distribu-
tion becomes sharply peaked as ξ → ∞. More specifically, for
large positive κ ,

p(β) ≈
1

√
2πσ 2

e−(β+β̄)2/2
√
ϵσ2
, σ 2

= ξ−1. (4.16)

We thus have an explicit example of the noise suppression of
fluctuations by an external stimulus, since σ 2

∝ 1/h0. This
particular issue is explored further elsewhere [25].

5. Bounding the growth of the error ∥vt∥

Recall that the error term is defined to be
√
ϵvt := ut − Uβt .

Extending previous analyses [19,22], the variational method can
be used to derive bounds on the growth of the error ∥vt∥βt for
the L2(U, ρ) norm, given that the linear operator L = −1 + F ′

is linearly stable with respect to transverse perturbations that
are orthogonal to the tangent space of the manifold. The main
aim of this section is to demonstrate that the probability of the
system leaving a neighborhood of width a of the bump scales
as exp(−Ca2ϵ−1), for a constant C , which is formally stated in

(5.9). This means that, in the limit of small noise, one expects the
system to stay close to the manifold of translated bumps for ex-
ponentially long periods of time. Our result is essentially a ‘Large
Deviations’ estimate. We show that as long as the cumulative
stochastic perturbations over a time interval of O(b−1) are not too
large, then the stability of the manifold of bump solutions will
always damp down the stochastic perturbations. For simplicity,
we assume that there is no external stimulus (h = 0) in Eq. (3.1).

We proceed by deriving an SDE for ∥vt∥βt using repeated use
of Ito’s Lemma. First, we have

d ∥vt∥
2
βt

= 2⟨vt , dvt⟩βt + dβt

∫ π

−π

ρ ′(βt − θ )vt (θ )2dθ

+
1
2

dβtdβt

∫ π

−π

ρ ′′
(
βt − θ

)
vt (θ )2dθ

+ 2dβt

∫ π

−π

ρ ′
(
βt − θ

)
vt (θ )dvt (θ )dθ + ⟨dvt , dvt⟩βt , (5.1)

with dvt given by Eq. (3.30), that is,
√
ϵdvt = dut − U ′

βt
dβt −

1
2
U ′′

βt
dβtdβt , (5.2)

and dut satisfying equation (3.1). The latter can be re-expressed
in terms of vt so that (5.2) becomes
√
ϵdvt =

{√
ϵLβt vt + K (

√
ϵvt , βt )

}
dt

+
√
ϵΦdWt − U ′

βt
dβt −

1
2
U ′′

βt
dβtdβt (5.3)

where

K (w, α) := F(Uα + w) − F(Uα) − F ′
(
Uα
)
w. (5.4)

and Lα is the linear operator (4.1). Substituting Eq. (5.3) into the
first term on the right-hand side of Eq. (5.1), and using the fact
that

2
⟨
vt ,U ′

βt

⟩
βt

=
√
ϵ

∫ π

−π

ρ ′(βt − θ )vt (θ )2dθ, (5.5)

which follows from the equation G
(
ut , βt

)
= 0 as noted in (3.15),

we obtain the following result:

d ∥vt∥
2
βt

=
{
2⟨vt ,Lβt vt⟩βt +

2
√
ϵ
⟨vt , K (

√
ϵvt , βt )⟩βt +Σt

}
dt

+ 2
⟨
vt ,Φ(ut )dWt

⟩
βt
,

where

Σtdt =
1
2
dβtdβt

∫ π

−π

ρ ′′
(
βt − θ

)
vt (θ )2dθ + ⟨dvt , dvt⟩βt (5.6)

−
1

√
ϵ

⟨
vt ,U ′′

βt

⟩
βt
dβtdβt + 2dβt

∫ π

−π

ρ ′
(
βt − θ

)
vt (θ )dvt (θ )dθ.

Since dβtdβt = O(ϵ), dβtdvt = O(ϵ1/2) and dvtdvt = O(1), one
can readily see that Σt = O(1). Applying Ito’s identity to the map
x →

√
x, we find that

d ∥vt∥βt =

{
∥vt∥

−1
βt

⟨
vt ,Lβt vt

⟩
+ ϵ−1/2

∥vt∥
−1
βt

× ⟨vt , K (
√
ϵvt , βt )⟩βt +

1
2

∥vt∥
−1
βt
Σt

− ∥vt∥
−3
βt

⟨
Φ(ut )vt ,QΦ(ut )vt

⟩
βt

}
dt

+ ∥vt∥
−1
βt

⟨
vt ,Φ(ut )dWt

⟩
βt
.

Taking ρ to be given by Eq. (4.7) ensures that there is a spectral
gap, see also [16,18]. That is, the deterministic bump is linearly
stable with respect to perturbations that are orthogonal to the
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tangent space of the marginally stable manifold. In other words,
if v ∈ L2(R, ρ) with

⟨
v,U ′

⟩
ρ

= 0, then⟨
v,Lv

⟩
ρ

≤ −b ∥v∥2
ρ (5.7)

for some b > 0. Using the spectral gap inequality, and the fact
that⟨
Φ(ut )ρβt vt ,QΦ(ut )ρβt vt

⟩
≥ 0,

we find that

d ∥vt∥βt ≤
{
−b ∥vt∥βt + ϵ−1/2

∥vt∥
−1
βt

⟨
vt , K (

√
ϵvt , βt )

⟩
βt

+
1
2

∥vt∥
−1
βt
Σt
}
dt

+ ∥vt∥
−1
βt

⟨
vt ,Φ(ut )dWt

⟩
βt
. (5.8)

The above SDE facilitates the following powerful probability
bound on the magnitude of ∥vt∥βt exceeding some threshold. We
will establish that there exists c, A > 0, such that for any p > 1

2 ,
for all a ∈

(
ϵp, A

]
and all ϵ sufficiently small, if

√
ϵ ∥v0∥β0 ≤

a
2 ,

then for all T > 0,

P
(

sup
t∈[0,T ]

∥vt∥βt ≥ aϵ−1/2
)

≤ (Tb + 1) exp
(

−
cba2

ϵ

)
. (5.9)

Our first step towards the above probability bound is to outline
a set of events that, together, imply that

√
ϵ supt∈[0,T ] ∥vt∥βt ≤ a.

Afterwards, we will show that the probability of any of the events
failing to hold scales as exp

(
−cTa2ϵ−1

)
for asymptotically small ϵ.

To this end, we now discretize time: for i ∈ Z+, define ti = ib−1.
Define the event

Ai =

{
sup

t∈[ti,ti+1]

√
ϵ

∫ t∧τ

ti∧τ
∥vs∥

−1
βs

⟨
vs,Φ(us)dWs

⟩
βs

≤
a
12

}
(5.10)

Define

τ = inf
{
t ≥ 0 : ∥vt∥βt = aϵ−1/2

}
(5.11)

B1 =

{⏐⏐ ∥vt∥−1
βt
Σt
⏐⏐ ≤

ba
4
√
ϵ

whenever
√
ϵ ∥vt∥βt ∈ [a/2, a]

}
(5.12)

B2 =

{
sup
t≤τ

⏐⏐ ∥vt∥−1
βt

⟨
vt , K (

√
ϵvt , βt )

⟩
βt

⏐⏐ ≤
ba
8

}
. (5.13)

Our next step is to establish that, writing I =
⌊
Tb
⌋
,{

√
ϵ sup

t∈[0,T ]

∥vt∥βt ≤ a
}

⊆ B1 ∩ B2 ∩

I⋂
i=0

Ai (5.14)

Let us suppose for a contradiction that τ < T . Letting i be such
that τ ∈ (ti, ti+1], define

x = max
{
ti−1 , sup

{
s ∈ [0, τ ) : ∥vs∥βs =

a
2
√
ϵ

}}
.

Since ∥vs∥βs ≥
a
2 for all s ∈ [x, τ ), it follows from (5.8) that

a =
√
ϵ ∥vτ∥βτ ≤

√
ϵ ∥vx∥βx+(τ−x)

(
−

ba
2

+
ab
8

+
ab
8

)
+

a
4

(5.15)

since
√
ϵ

∫ τ

x
∥vs∥

−1
βs

⟨
vs,Φ(us)dWs

⟩
βs

≤
a
4

(5.16)

for the following reason. If x ∈ [ti, τ ], then⏐⏐⏐⏐√ϵ ∫ τ

x
∥vs∥

−1
βs

⟨
vs,Φ(us)dWs

⟩
βs

⏐⏐⏐⏐ ≤

⏐⏐⏐⏐√ϵ ∫ τ

ti
∥vs∥

−1
βs

⟨
vs,Φ(us)dWs

⟩
βs

⏐⏐⏐⏐

+

⏐⏐⏐⏐√ϵ ∫ x

ti
∥vs∥

−1
βs

⟨
vs,Φ(us)dWs

⟩
βs

⏐⏐⏐⏐ ≤
a
12

+
a
12

<
a
4
.

If x ∈ [ti−1, ti], then⏐⏐⏐⏐√ϵ ∫ τ

x
∥vs∥

−1
βs

⟨
vs,Φ(us)dWs

⟩
βs

⏐⏐⏐⏐
≤

⏐⏐⏐⏐√ϵ ∫ τ

ti

∥vs∥
−1
βs

⟨
vs,Φ(us)dWs

⟩
βs

⏐⏐⏐⏐
+

⏐⏐⏐⏐√ϵ ∫ ti

ti−1

∥vs∥
−1
βs

⟨
vs,Φ(us)dWs

⟩
βs

⏐⏐⏐⏐
+

⏐⏐⏐⏐√ϵ ∫ x

ti−1

∥vs∥
−1
βs

⟨
vs,Φ(us)dWs

⟩
βs

⏐⏐⏐⏐
≤

a
12

+
a
12

+
a
12

=
a
4
.

Either way, it is clear that (5.16) holds.
Rearranging (5.15), we obtain that

3a
4

≤
√
ϵ ∥vx∥βx −

ba(τ − x)
4

. (5.17)

From the definition of x, there are two cases. The first case is that
√
ϵ ∥vx∥βx ∈ ( a2 , a) and x = ti−1. In this case, we find that

τ − x ≤
4
ba

(
√
ϵ ∥vx∥βx −

3a
4

)
< b−1. (5.18)

This contradicts the fact that τ − x ≥ b−1. The other case is that
√
ϵ ∥vx∥βx =

a
2 and x ≥ ti−1. In this case, we obtain from (5.17)

that

0 ≤ −
(τ − x)

4
, (5.19)

which is a contradiction since τ − x > 0.
We have thus established that τ ≥ T and therefore that (5.14)

holds. We must now bound the probability of the events (5.10),
(5.12) and (5.13) not holding. Eq. (5.13) holds with probability
one, as long as A is sufficiently small. This is because, thanks to
the Cauchy–Schwarz Inequality,⏐⏐⟨vt , K (√ϵvt , βt )

⟩
βt

⏐⏐ ≤ ∥vt∥βt

K (√ϵvt , βt )

βt

≤ Cϵ ∥vt∥
3
βt
,

for some constant C and ut being in some neighborhood of Uβt
by Taylor’s Theorem. Hence

sup
t≤τ

⏐⏐ ∥vt∥−1
βt

⟨
vt , K (

√
ϵvt , βt )

⟩
βt

⏐⏐ ≤ Cϵa2 <
ba
8
, (5.20)

for small enough ϵ. Turning to (5.12), it can be shown that there
exists a constant C2 such that⏐⏐Σt

⏐⏐ ≤ C2
(
1 + ∥ut∥

2
βt

)
.

In turn,

∥ut∥
2
βt

≤
(Uβtβt +

√
ϵ ∥vt∥βt

)2
=
(
∥U0∥ +

√
ϵ ∥vt∥βt

)2
≤
(
∥U0∥ + a

)2
for all t ≤ τ , as long as

√
ϵ ∥vt∥βt ≤ a. We thus see that if

√
ϵ ∥vt∥βt ≥

a
2 , then since Σt = O(1),

∥vt∥
−1
βt

⏐⏐Σt
⏐⏐ ≤

ba
4
√
ϵ
,

for sufficiently small ϵ. It thus remains for us to show that for
some constant c > 0,

P
({ I⋂

i=0

Ai

}c)
≤ (Tb + 1) exp

(
−cba2ϵ−1). (5.21)
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Clearly

P
({ I⋂

i=0

Ai

}c)
≤

I∑
i=0

P
(
Ac

i

)
.

It therefore suffices for us to show that

P
(
Ac

i

)
≤ exp

(
−cba2ϵ−1). (5.22)

Fix i and define yt =
∫ t∧τ
ti∧τ

∥vs∥
−1
βs

⟨
vs,Φ(us)dWs

⟩
βs
. Clearly yt is

identically zero if τ < ti. If τ ∈ [ti, ti+1], then

yt =

∫ t∧τ

ti+1

∥vs∥
−1
βs

⟨
vs,Φ(us)dWs

⟩
βs
.

The Optional Stopping Theorem implies that yt is a Martin-
gale [36]. For a constant κ > 0, define zt = exp

(
κyt
)
. The

convexity of exp, together with the fact that yt is a martingale,
implies (through Jensen’s Inequality) that zt is a submartingale.
We now find that

P
(

sup
t∈[ti,ti+1]

yt ≥
a

12
√
ϵ

)
=P
(

sup
t∈[ti,ti+1]

zt ≥ exp
( κa
12

√
ϵ

))
≤E
[
zti+1

]
exp

(
−

κa
12

√
ϵ

)
,

through Doob’s submartingale inequality [37, Page 54]. Now, by
assumption, Φ is bounded. It follows from the Cauchy–Schwarz
Inequality that

φs := ∥vs∥
−2
βs

⟨
Φ(us)ρβsvs,QΦ(us)ρβsvs

⟩
is also bounded by (say) C3 for all s ≤ τ . To see this, observe that⏐⏐⟨Φ(us)ρβsvs,QΦ(us)ρβsvs

⟩⏐⏐ ≤ ∥Q∥
Φ(us)ρβsvs

2
≤ ∥Q∥ ∥Φ(us)∥2

∥vs∥
2
βs
.

Hence

E
[
zti+1

]
= E

[
exp

(
κ

∫ ti+1∧τ

ti∧τ
∥vs∥

−1
βs

⟨
vs,Φ(us)dWs

⟩
βs

−
κ2

2

∫ ti+1∧τ

ti∧τ
φ2
s ds +

κ2

2

∫ ti+1∧τ

ti∧τ
φ2
s ds
) ]

≤ E
[
exp

(
κ

∫ ti+1∧τ

ti∧τ
∥vs∥

−1
βs

⟨
vs,Φ(us)dWs

⟩
βs

−
κ2

2

∫ ti+1∧τ

ti∧τ
φ2
s ds

)]
exp

(
κ2

2b
C2
3

)
≤ exp

(
κ2

2b
C2
3

)
,

since the content of the expectation is a supermartingale (one
can use Ito’s Lemma to show that the time-derivative of the
expectation is zero). We thus find that

P
(

sup
t∈[ti,ti+1]

yt ≥
a

12
√
ϵ

)
≤ exp

(
κ2

2b
C2
3 −

κa
12

√
ϵ

)
.

To optimize the above bound we choose κ =
a

12
√
ϵ

b
C2
3
, and obtain

that

P
(

sup
t∈[ti,ti+1]

yt ≥
a

12
√
ϵ

)
≤ exp

(
−

ca2b
ϵ

)
,

for a constant c. We have thus proved (5.22).

6. Discussion

In this paper we developed a generalized variational method
for analyzing wandering bumps in a stochastic ring attractor

model. We decomposed the stochastic neural field into a phase-
shifted deterministic bump solution and an error term. We de-
rived an exact, implicit stochastic differential equation (SDE) for
the phase of the bump by minimizing the error term with respect
to a weighted L2(U, ρ) norm. The positive weight ρ was chosen so
that the error term consists of fast transverse fluctuations of the
bump profile. We then carried out a perturbation expansion of the
phase equation to obtain an explicit nonlinear SDE on the circle.
Finally, we used the variational method to derive rigorous bounds
on the error term, establishing that the latter remains small up to
some exponentially large stopping time.

There are a number of possible extensions of the current anal-
ysis. First, one could consider separate excitatory and inhibitory
populations (E–I neural fields), as well as different classes of
interneuron. One major difference between scalar and E–I neural
fields is that the latter can also exhibit time-periodic solutions,
which would add an additional phase variable associated with
shifts around the resulting limit cycle. The effects of noise on
limit cycle oscillators can be analyzed in an analogous fashion to
wandering bumps [22]. A second extension would be to consider
higher-dimensional neural fields. For example, one could replace
the ring attractor on S1 by a spherical attractor on S2, which has
been proposed as a model of orientation and spatial frequency
tuning in primary visual cortex [38–40]. Marginally stable modes
would now correspond to rotations of the sphere. (Mathemati-
cally speaking, these are generated by the action of the Lie group
SO(3) rather than SO(2) for the circle.)
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