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A Graphic Encoding Method for
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and Representation of Conformational Changes
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Abstract—In order to successfully predict a proteins function throughout its trajectory, in addition to uncovering changes in its
conformational state, it is necessary to employ techniques that maintain its 3D information while performing at scale. We extend a
protein representation that encodes secondary and tertiary structure into fix-sized, color images, and a neural network architecture
(called GEM-net) that leverages our encoded representation. We show the applicability of our method in two ways: (1) performing
protein function prediction, hitting accuracy between 78 and 83%, and (2) visualizing and detecting conformational changes in protein

trajectories during molecular dynamics simulations.

Index Terms—Protein function prediction, molecular encoding, graphic representation, neural networks.

1 INTRODUCTION

THE functions carried out by proteins in biological sys-
tems depend on the specific folding of their amino acid
sequence into 3D structures [1], [2]. The architecture of these
structural folds is encoded in the chain of the amino acids
(also called residues) connected by their chemical (pep-
tide) bonds. While the forces underlying the interactions of
residues with each other and with the environment (solvent,
membrane, ligands, etc.) are well understood, predicting
the fold adopted by a specific amino acid sequence and
its subsequent dynamics remains a major challenge [3], as
does the identification of the specific mechanism by which
an individual sequence folds to adopt its 3D structure.
Some approaches to classify protein structure and un-
derstand the changes it undergoes throughout its trajectory
are based on the expectation that sequence homology of a
sufficiently high degree leads to structural similarity [4].
Other exercises, such as molecular dynamics (MD) simu-
lations, are based on statistical physics and are used to
evaluate the structural changes related to function [5]. The
main weakness of these homology-based strategies is that
they do not scale well as the number of proteins increases.
Structural alignment is an instance of the traditional 3D
graph matching problem, which is known to be NP-hard
[6] (ie., there is no known algorithm that can solve these
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problems in polynomial time O(n®), where c is a constant
and n is the size of the input, which in this case is the
number of proteins and their size).

We are interested in the high-throughput analyses of pro-
teins, in uncovering their functions, and noting changes in
their conformational states. In an effort to develop scalable
methods for this purpose, we investigate machine learning
(ML) approaches, with a particular focus on deep convo-
lutional architectures [7], [8], [9], which are becoming the
de-facto inference techniques in a variety of fields, solving
previously open problems such as object recognition [10].

Our encoding in [11] formats the structural and confor-
mational information of macromolecules into a fixed-size,
color image. We avoid the complexity of 3D protein match-
ing by turning the analysis into a more computationally
tractable image-based pattern recognition problem. We aim
to avoid certain constraints that arise in homology-based
studies, and focus on a methodology that enables analysis
of arbitrarily large protein databases or MD trajectories in
an efficient, high-throughput manner. In this work we ex-
tend our previous encoding representation with additional
visualization capabilities and the ability to better represent
molecular conformational changes over time. Specifically,
our contributions are:

1) A general representation of macromolecules that
explicitly encodes secondary structural motifs and
their spatial characteristics within the molecule.
This representation exposes intra- and inter-
molecular structural patterns without having to per-
form protein alignments.

2) A split-input, residual, convolutional neural net-
work architecture that is specifically geared towards
manipulating and gleaning information from the
above encoding setup.

3) An image classifier using our network and encod-
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ing, to predict eight different classes of protein
functions, reaching a balanced accuracy of 80%.

4) A means of visualizing and quantifying changes in
conformational states during molecular dynamics
simulations.

5) Access to the dataset of our encoded representations
and our neural network graph’.

Our proposed encoding opens the door for structural bi-
ologists to use image processing and machine learning
techniques to analyze very large macromolecular databases
in an efficient, high-throughput way. Large scale analyses of
this magnitude can be used to identify inter-molecular pat-
terns that may signal function, interaction, and homology.

The remainder of the paper is organized as follows:
Section 2 discusses other approaches related to protein
representations and machine learning in structural biology.
Section 3 introduces our macromolecular representation and
the neural architecture we use for its analysis. Section 4
discusses two applications: a system for protein function
prediction that serves to highlight the power of our encod-
ing, and an approach to visualizing and detecting conforma-
tional changes in MD simulations. Section 5 summarizes our
work, reflects on our lessons learned, and presents ongoing
and future research directions.

2 BACKGROUND AND STATE OF THE PRACTICE

A variety of work has been done on general protein analyses
[11, [2], [3], [4], [5], [11], [12]. Two major elements of this type
of work are representations, or how the protein is expressed,
and methodology of prediction, or how the represented pro-
teins are used to perform inference. In this section, we cover
common representations of proteins. We then discuss the
use of machine learning in structural biology, and conclude
with the impact of data representations and predictive ap-
proaches for high-throughput analyses.

2.1 Representations

Proteins can be represented in a variety of ways, each with
their own pros and cons with respect to preserving or
exposing information for specific purposes. We present a
summary of some standard representations and focus on
their applicability to protein function prediction.

2.1.1 Sequence Representation

DNA, RNA, or proteins can be represented by their nu-
cleotide sequences: a succession of letters using GACT
for DNA, GACU for RNA, and the one-letter codes for
the 20 natural amino acids for proteins. A technique to
identify functional or structural relationships among pro-
teins depends on aligning their sequences to find global or
local shared motifs. Aligned sequences are usually repre-
sented through matrices, where each sequence corresponds
to a row. Alignments can include gaps between columns
to allow for local dissimilarities. Pairwise sequence align-
ment can be performed using dynamic programming (e.g.,
Smith—Waterman algorithm [13], Needleman-Wunsch algo-
rithm [14], [15] both with a time complexity of O(nm) [16],

1. https:/ /lobogit.unm.edu/datascience/graphicencoding_tcbb19

where n and m are lengths for a pair sequence alignment).
It is inexpensive to align millions of proteins using modern
parallel methods [17]. Using sequence alignment for protein
function prediction is based on the idea that proteins with
similar sequences (homologous) share similar functions.
However, this is not always true, and it has been argued [18]
that sequence alone is not enough for predicting protein
functions and requires knowledge on the folding patterns of
the protein’s 3D structure. For example, despite the lack of
sequence homology between classes, all GPCRs have a com-
mon structure and mechanism of signal transduction [19].

2.1.2 Structural Representations

Methods for protein structure determination include X-
ray crystallography, NMR spectroscopy, and electron mi-
croscopy [20]. Structural representations involve expressing,
in a variety of ways, the 3D arrangement of atoms in a pro-
tein. A 3D representation consists of the spatial coordinates
of each of the (non-hydrogen) atoms in a Cartesian coor-
dinate system (see Figure 1.a). An angular representation
expresses the proteins backbone conformation through its
dihedral angles (i.e., angles between planes of two sets of
three atoms). With this representation, folds of proteins are
expressed through dihedral angles formed by four consecu-
tive alpha Carbon atoms. Due to the degrees of freedom of
both of these protein representations, their space complexity
grows exponentially with the number of residues.

The multi-fold representation (see Figure 1.b) is based on
the observation that a proteins structure can be expressed
through the combination of small structural units, called
folding motifs, [21], [22], [23]. This representation takes
advantage of collections of motifs that occur frequently
and uses them as a meta-dictionary to express the entire
protein complexity in a condensed way. The most common
representation of this kind uses folding motifs known as
secondary structure motifs (e.g., helix, turn, and sheet).

Structural comparison and alignment of proteins is a
critical aspect of multiple research problems, including pro-
tein annotation, and protein structure prediction. Structure-
based function prediction often outperforms sequence-
based methods because structural homologous contain sim-
ilar folding patterns, even after evolution leads to their se-
quence similarity being undetectable [18]. Structural align-
ment combines sequence information with the secondary
and tertiary structure of the protein or RNA molecule and
is considered as the standard practice for homology-based
structure and function prediction [18]. But thoroughly com-
paring protein structures, whose size range from tens to sev-
eral thousand amino acids, is computationally expensive,
as 3D matching is an NP-hard problem [6]. Moreover, for
high-throughput analysis and identification of homologous
structures, the alignment and comparison has to be done for
multiple macromolecules at a time, limiting opportunities
for parallelism.

2.1.3 Other Protein Representations

Other representations are being used to describe proteins,
their components, or binding pockets for example [24].
One such representation expresses only the molecular sur-
face [25] as a set of functions (e.g., triangulation, poly-
gons, distance distributions and landmark theory) on a
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Fig. 1: Visual depiction of multiple representations for the human alpha-lactalbumin protein (PDBid: 1A4V). Figures (d)
and (e) contrast our previous encoding in [11] and our improved version in this work

unit sphere. This particular representation makes multiple
protein comparison relatively easy [26], [27], [28], but does
not account for the internal structure of the protein, which
is crucial for determining function (see Figure 1.c for an
abstraction of this representation).

Another representation treats the residues in a protein as
if they were vectors in a 20-dimensional space [29]. In this
case, a protein is represented as a random walk and proteins
can be compared to each other through their vectorized
profile. Ultimately, this representation loses global folds
which are helpful in characterizing protein functions. The
multipolar representation [30] offers a hierarchical, paramet-
ric approach to characterizing the shape of a molecule. This
representation uses multipoles (i.e., mathematical series that
describe functions in terms of spherical harmonics) associ-
ated with coordinates of the alpha Carbon of each residue
as shape descriptors. The multipolar model reduces a pro-
tein to a vectorized format; calculating distances between
proteins can be done through vector operations rather than
detailed alignment and spatial superimposition.

Our work differs from all of the described related work
in that we propose an encoding mechanism that captures
secondary and tertiary information of proteins into an easy-
to-analyze format. Figure 1 shows a visual comparison
between three structural protein representations described
above (i.e., 3D Cartesian atoms, multi-fold, and surface)
against our proposed graphic encoding. Our contribution
is in the general and homogeneous data representation
of molecules and their subsequent analysis. The specific
changes made in this paper with respect to our encoding
in [11], as described in Section 3.1.3 allow us to use it
not only for classification, but also to perform visualization
and complex local and global analyses on temporal data,
such as molecular dynamics simulations. We present two
applications of our encoding that were not possible with
the previous version: protein function prediction 4.1 and
detection of conformational changes in molecular dynamics
(MD) simulations 4.2. Our ongoing work uses this encoding
to extend in-situ analysis [31] and indexing of molecular
dynamics trajectories [32].

2.2 Machine Learning in Structural Biology

Machine learning (and more recently, deep learning) has been
used extensively in structural biology [33], [34], [35]. One
of the main uses is in the prediction of secondary and
tertiary structure of macromolecules. Li et al. [36] use a
convolutional neural network to extract multi-scale features

and predict secondary structure from protein sequences.
Wang et al. [37] use two deep residual neural networks
to perform contact prediction from protein sequences to
improve folding accuracy. Recently, a team from Google
(AlphaFold) used deep neural networks and images to
reconstruct protein structures. Their work won the CASP18
competition [38]. Similarly to our work, they use distance
matrices and angles to to analyse proteins. But in their case
these two sources of information are decoupled, while our
work puts the two together into a single input.

Hou et al. [39] use a deep convolution neural network
(DeepSF) to classify a protein sequence into known folds.
Nguyen et al. [40] propose an ensemble of classifiers like
nearest neighbors, deep convolutional neural networks, and
residual neural networks to predict a variety of angular and
structural information to predict loops. Li et al. [41] compare
the effectiveness of a deep neural network, a deep restricted
Boltzmann machine, a deep recurrent neural network, and
a deep recurrent restricted Boltzmann machine to predict
phi and psi torsion angles of protein backbones. Poplin
et. al [42] introduce a deep convolutional neural network
(DeepVariant) used to determine the sequence of an indi-
vidual’s genome by learning likelihoods between images of
read pileups around putative variant sites and ground-truth
genotype calls.

More closely related to our work, deep learning has also
been used for a variety of protein function prediction prob-
lems. Kulmanov et al. [43] propose DeepGO, a deep learning
architecture used to learn features from protein sequences to
predict function in the form of the Gene Ontology hierarchy.
Similarly Liu et al. [44] use a recurrent neural network to
predict four types of functions from protein sequences. In
both cases, the neural network architecture is employed to
form low-level feature representations from a simple input
format as is the protein sequence. Cao et al. [45] propose
ProLanGO, a deep recurrent neural network that deals
with protein function prediction as if it was an analogous
problem to language translation. This approach maps the
protein sequence to a sequence of functions defined in the
Gene Ontology.

2.3 High-throughput analysis of molecular simulations

Work has been done to understand structural properties of
proteins as they fold. The most common approaches are
based on structural homology, and are usually performed by
computing sub-graph similarity between sets of structural
patterns and a target protein [46]. This process is known
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to be NP-hard [6] (i.e., there is no known algorithm that
can solve these problems in polynomial time O(n°), where
c is a constant and n is the size of the input, which in this
case is the number of proteins and their size). Optimizations
such as efficient filtration of spaced k-mer neighbors [47],
extraction of family specific packing motifs [48], Laplacian
characterization of tertiary structures [49], and use of multi-
dimensional scaling to index conformational space [50], [51]
have been proposed to speed up the search and compari-
son of structures for homology analysis. However, a major
limitation remains, and it is the need to access the large
homology database, which can be in the order of 50 to 80
GB and will continue to grow.

Both types of analyses start by collecting a large number
of protein structures. For this comparison, we can divide the
analysis into offline stage and online stage. The offline stage
is independent of the specific protein(s) to be analyzed, it is
performed ahead of time and can be computationally expen-
sive, but it is done only once (for a given model). The online
stage is the inference step, where a protein is analysed. For
the online stage, if performed in-situ, resources are limited
and speed of computation, memory usage, and 1/O access
need to be optimized.

2.3.1 Homology-based Approach

In this approach, a database or data organization is built
offline. When a new structure needs to be analyzed online,
it is compared with the structures in the database. Even by
using searching and comparison optimizations, accessing
the database can become a problem; compute nodes would
have to keep the database in memory or retrieve the data
from secondary storage. As I/O has become the bottleneck
in high performance computing, this problem renders the
homology-based approach prohibitive. As the number of
proteins increases over time (e.g., with the advancing of
crystallography and NMR techniques), more scalable anal-
ysis techniques are needed to fully take advantage of high
performance computing resources.

2.3.2 Model-based Approach

In this case, the offline stage consists of building a model
(for example, training a neural network) that can be used
at a later stage to perform predictions without requiring
expensive memory accesses. The major drawback of model-
based methods is that the model needs to be recomputed
every time new data is added. Depending on the time and
resources it takes to compute the model, this may or may
not be a limitation.

The way in which proteins are represented affects the
ways in which we make inference or draw predictions
from them. Classic homology-based approaches leverage
sequential and structural representations and require query-
ing large data collections at run time. Whereas model-based
approaches can take advantage of inference methods. In this
work we provide the encoding mechanism and a convolu-
tional neural network architecture that enable a particular
type of model-based protein analysis approach. In practice,
training our neural network (see 3.2) takes less than one
hour in a commodity GPU. Once the network is trained, it
can be used as an online prediction model. This network
can be kept in RAM, and when a new structure has to be

analyzed, it is enough to encode the structure as an image
and pass it through the network. The whole process takes
less than 2 seconds in the modest Intel Xeon E5-1620 v4.

3 METHODS

In this section, we present our graphic encoding of sec-
ondary and tertiary structure of proteins and note five key
advantages over other structural representations:

e It is invariant to the protein size (i.e., number of
residues). Proteins vary in size through thousands
of residues but our graphic encoding can represent
them all in a standard way.

o Itisinvariant to the protein orientation and does not
require any sort of alignment.

e It exposes structural domains and folding motifs as
patterns in an image.

o It enables efficient model-based approaches for
querying structures in a high-throughput fashion.

o It provides a visual interpretation of proteins and
can be used to visually and efficiently inspect large
collections of data efficiently.

We also introduce our neural network architecture, the
Graphic Encoding of Macromolecules Network, which is
used in subsequent sections for particular applications in
classification proteins and detection conformational changes
in simulations.

3.1 Structural Encoding

Our encoding mechanism translates the complex structural
and conformational information in 3D proteins into a much
simpler-to-analyze format: a 3D NxNx3 tensor that can be vi-
sualized as an NxN image. The three NxN matrices encode
proteins’ secondary and tertiary structure in three channels
in a Red-Green-Blue (RGB) color model. The advantages of
this representation is that it enables the use of state-of-the-
art pattern recognition techniques in machine learning to
automatically find structural motifs in data collections or to
detect conformational changes in folding trajectories. While
these color images are aesthetically pleasing, they map back
to the original 3D protein in a tractable way.

The encoding process consists of four steps, also de-
picted in Figure 2 and explained in detail in the following
subsections:

1) Extracting secondary structural information using
the Ramachandran plot (see 3.1.1).

2) Expressing tertiary structural information via the
distance matrix (see 3.1.2).

3) Encoding secondary and tertiary information into
multiple codified channels (see 3.1.3).

4) Formatting the image (or tensor) into a fixed-size
final encoding (see 3.1.4).

3.1.1 The Ramachandran Plot for Secondary Structures

The first step for our encoding is to identify the basic
molecular structures forming the protein. One way of doing
this is through the analysis of backbone dihedral angles of
the amino acid residues in the macromolecular structure.
The Ramachandran [52] plot determines the energetically
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Fig. 2: Steps of encoding procedure. Pictured, gene V protein (PDBid: 1AE2).

allowable regions for the torsion angle ¢, (angle between
the C-N-CA-C atoms) versus the torsion angle %, (angle
between the N-CA-C-N atoms), and w (usually restricted to
be 180 deg for the typical trans case or 0 deg for the rare cis
case), for each residue of a protein sequence. Based on the
constraints of the torsion angles (¢, ¥, and w) as described
by the Ramachandran plot, we can associate each amino
acid residue in the protein with one of six types of sec-
ondary structures: a-helix, 8-strand, Polyproline PII-helix,
~/-turn, y-turn, and cis-peptide bonds. For each residue in
the protein, we compute its torsion angles and determine
its corresponding secondary structure given. For our inter-
pretability purposes, we create 3 groupings of secondary
structures: a-helix, S-strand, and other, which is explained
further in 3.1.3.

3.1.2 Expressing Tertiary Structure through Distances

The second step seeks to establish a spatial correlation
between the different residues in the protein. In this step,
we use the protein’s distance matrix [53], which has been
used as an aid to perform enzyme structural analysis and
modeling [54]. We first identify the alpha carbon (i.e., the
first carbon atom of an aliphatic chain that is attached to
a functional group. For amino acids, this is the carbon
atom next to the carboxyl group) in each residue. Then, for
a protein with M alpha carbon atoms (Ca), its distance
matrix is a squared matrix D of size M x M, where the
element in D(4,j) corresponds to the euclidean distance
(originally calculated in Angstroms A) between atoms Ca;
and Ca;. In turn, this is a symmetric matrix. Note that the
matrix is not restricted to a particular distance metric and
we could use any metric or correlation coefficient for this
purpose (e.g., Euclidean, squared Euclidean, Minkowsky,
Chevychev, cosine, spearman, or hamming). However, to
be able to capture conformational changes as the protein
folds, we require our encoding to be robust to rotational
changes in the protein and thus, we opt to use the Euclidean
distance. To encode the raw secondary and tertiary structure
of the protein, we compute the distance between every pair
of alpha carbon atoms (C') in the backbone of each residue

and use it as the skeleton of our graphic encoding. An
example of a distance matrix is shown in Figure 2.2.

3.1.3 Encoding Structures in an Image

The third step combines the extracted secondary struc-
tures and distance matrix to represent the protein into a
tensor. For practical purposes, and to take advantage of
image processing models, we decided to use a tensor of
dimensions M x M x 3, where M is again the number of
amino acid residues in the protein, and 3 indicates the Red-
Green-Blue channels in an image. We use color to encode
secondary structure and use intensity, or color saturation,
to proportionally represent distances. Recall in 3.1.1, amino
acid residues were classified according to their dihedral
angles into three secondary structures: a-helix, (-strand,
and other. Then, we can use the RGB model to differentiate
each structure as follows: a-helix, red; S-strand, blue; other,
green. If the residue cannot be associated to any of the
secondary structures defined as energetically allowed in the
Ramachandran plot, we color that residue gray. Interaction
between the three secondary structures take the remainder
color shades (e.g., interactions between a-helices and 3-
strands are colored magenta, interactions between c-helices
and other structures are colored yellow).

To encode a protein into its image representation, we
define a function dist(i,j) over the distance matrix D,
where dist (i, j) is a returns a scaled distance value between
0 and 1, proportional to the euclidean distance between
the 3D coordinates of Ca; and Caj. This function scales
a distance of 104 to 1, and everything else proportionally
(e.g., dist(i,j) «— %O’J)). A scaling factor of 10 was
chosen because typical cutoffs for electrostatic calculations
of atomic interactions in molecular dynamics simulations
range from 94 to 154 [55]. We determine the saturation
of each color channel using the colors assigned to the
particular residue of that channel and its interactions with
all the other residues in the protein. Helices are red, strands
are blue, and all others are green. Unidentified regions are
treated as gray and interaction between different structures
produce a mix of colors. As an example, a red a-helix
in position ¢, the saturation for channels red, green, and
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Fig. 3: Example of encoding in three channels of Antagonist HIV-1 GAG peptide (PDBid: 1AGB).
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Fig. 4: Examples of encodings for a diverse set of proteins.

blue is [1,dist(s,j),dist(i,7)] and [1,dist(j,1),dist(F,1)]
Vj € D. In the same way, the saturation for other struc-
tures in blue, green, and gray are [dist(i,j), dist(i,5),1],
[dist(i,7),1,dist(i,7)], [dist(i,j),dist(i,j),dist(i, )], re-
spectively. The color of two interacting residues i, j is given
by the element-wise maximum between the two colors.
Note that if residue ¢ is of the same type of j, then their
contributions to pixels ¢, 7 and j, ¢ are the same. If they are
of different types, they contribute to different channels and
lead to a larger span of colors. Compared to our encoding
in [11], we capture only 3 different secondary structures
rather than the six we did before. The rationale for this
change, that effectively reduces the information contained
in an image, was necessary to enable coherent visualiza-
tion. Previously, interaction between two different types of
secondary structures was not immediately apparent, as one
secondary structure color would override the other. In this
new version, the colors get combined to showcase these
interactions. This seemingly simple change, allows us to
extend the work to an entirely new scope, such as the MD
analysis in Section 4.2.

To provide a more concrete example of the information
contained in each channel and the resulting image, we
walk through Figure 3. The first three blocks (from left
to right) correspond to the three different channels in the
RGB image. The fourth block corresponds to the resulting
encoded image. The right-most block is the encoded protein.

The protein of reference in this example is the agonist HIV-
1 GAG peptide, which (broadly) consists of two helical
domains (which we denote A1 and A2), a 8-sheet (denoted
B1) joining the two helices, and a collection of j3-strands
interacting with each other (denoted B2). Recall that the
diagonal encodes the secondary structure for a particular
residue and elements off the diagonal encode interactions
between residues. Pixel intensity corresponds to distance
between residues and color shades correspond to different
secondary structures. Given this information, and recalling
that red encodes a-helices, blue encodes [-strands and
green encodes everything else, we can visually find different
structures in the encoded image. Note how the Bl §-sheet
is partitioned in four squares. This indicates that one of the
helices is coming out from the middle of the sheet. Also, this
4-square pattern indicates that all of these 3 strands are very
close to each other, as opposed as being part of two different
B-sheets, which would generate a 2-square pattern along the
diagonal. Similarly, the distinctive cross formed by the red
regions indicate that these two a-helices are in close proxim-
ity. Now, for the specific information encoded in the three
different channels, a darker shade of gray corresponds to
distance between particular secondary structures. The first
block shows proximity regions between -strands and other
structures, the second is a-helices and (-strands, and the
third one is a-helices and other, which all combined result
in the colored image in the fourth block. Figure 4 shows
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examples of some very different macromolecules in a multi
fold representation and our graphic encoding. Note that
helices tend (although not always) to produce narrower rep-
resentations (almost like bands along the diagonal) and their
interactions produce X’s. This is because residues arrange in
elongated structures rather than in packed spaces, which is
the case for B-sheets that generally produce blocks. Loops
and coils can be seen mostly as elongated crosses through
the image. Different domains can be seen as diamond-like
shapes through the diagonal. By looking at these images it
is easy to distinguish how our encoding exposes motifs at
different granularities in the image.

3.1.4 Formatting and Resizing

The final step consists of performing an image resizing (by
applying a bi-cubic interpolation) to produce an output of
consistent dimensions across proteins regardless of their
original length. Assuming a new size N the output is a
N x N x 3 tensor, where N can be smaller or larger than the
original M, and 3 is again the number of channels used in
the RGB encoding. The output image either encodes more
than one residue per pixel, or uses multiple pixels to encode
one residue. The size of N can be chosen differently to
optimize different performance metrics. For example, N can
be equal to the number of residues in the longest protein in
a dataset to optimize fidelity of the encoding; it can be the
average number of residues in the dataset to keep a trade off
between fidelity and efficiency; or it can be set to an smaller
size to enhance processing speeds. For our experiments we
use N = 227, which allows us to experiment with a variety
of neural network architectures [7], [9], [12].

Our encoding process for proteins, depicted in Figure 2,
produces symmetric images that visually highlight the sec-
ondary and tertiary structure of a protein. Small differences
between similar structures can be noticeable by a sharp
change in color. For example, when a helix unfolds, this
maps to a turn from red to yellow/green. Note that, in
this particular encoding approach, we are building images;
however, the number of channels that could be used is not
restricted to three. In addition to structure and distances,
other information like charge, or physical properties like
hydrophobicity, could be encoded into supplementary chan-
nels. One of our goals is to visualize the proteins, so three
channels give us the best trade off between information and
interpretation.

3.2 Graphic Encoding of Macromolecules Network

As our method provides a structural representation of
proteins that is different from other formats, its analysis
mechanisms are also different. Identifying structural motifs
across a large database or performing protein modeling
for function prediction does not require alignment and/or
superimposition; thus, breaking a performance barrier for
high-throughput analysis. Our representation transforms
traditional structural biology problems into an image pat-
tern recognition problem, and it enables a straightforward
use of image processing and machine learning techniques
for analysis and prediction.

Then, as a supplement for our encoding, we present
GEM-net, a convolutional neural network architecture that

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2019.2945291, IEEE/ACM

TABLE 1: Our neural network architecture

GEM-net
input
(227 x 227 x 3)
red channel green channel blue channel
(227 x 227 x1) | (227x227x1) | (227 x227 x 1)
conv3-16-1 conv3-16-1 conv3-16-1
(227 x 227 x 16) | (227 x 227 x 16) | (227 x 227 x 16)
Add Add Add
(227 x 227 x 16) | (227 x 227 x 16) | (227 x 227 x 16)
merge
(227 x 227 x 48)
conv3-64-2

(114 x 114 x 64)
Batch Normalization
conv3-32-2
(57 x 57 x 32)
Batch Normalization
conv3-32-2
(29 x 29 x 32)
Batch Normalization
conv3-16-2
(15x 15 x 16)
Batch Normalization
FC-64
(1 x 64)
Dropout 25%
FC-16
(1x16)
softmax
(1x8)

we use in different ways to perform protein function pre-
diction 4.1 and detect conformational changes in protein
folding trajectories 4.2. A convolutional neural network, also
known as a CNN, is a mathematical construction that trains
complex non-linear functions out of linear compositions.
CNNs handle matrix-oriented input and can produce a
classification output. When applied to images, convolutions
are used to preserve spatial relationships between pixels and
learn visual patterns. By representing secondary and tertiary
structural information of proteins as NxNx3 tensors, we are
able to lean on these image-based classification techniques.

Noting that our encoding method relies on the channel
separation of secondary structures, we opted to develop
an architecture that was specific for our task. Common
neural architectures take a 3-color channel image as in-
put and apply convolutions and other operations directly.
This immediate convolution means that the input channels
are handled together, such that filter kernels attempt to
capture the relationships between different color channels.
However, in our encoding method, we particularly aim
to maintain different secondary structures in the different
color channels. It follows, then, that we treat each channel
independently, and aim at learning filters that are relevant
for each type of secondary structure.

Our Graphic Encoding of Macromolecules Network, or
GEM-net, is a split-input residual network architecture de-
signed to extract the most information from each channel,
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independently. We employ skip-connections [12] to propa-
gate information from the input of the convolutional layer
(i.e., the red, green, or blue channels) to the output of the
convolution using the “Add” function. This is equivalent to
adding the values of the input back into each output chan-
nel. Table 1 describes the general architecture of GEM-net,
in which we use a setup that first treats each color channel
independently through the residual blocks and then sends
the combined tensor onward through four convolutional
layers with padded input. A classification layer is followed
after two dense layers. Batch normalization between layers
serves to denoise the intermediate output tensors and lead
to stable convergence. Dropout is also used to help reduce
overfitting. Tensor sizes are provided in parenthesis and
convolution parameters are denoted by the name of the
layer as conv<receptive field>-<channels>-<stride>.

4 APPLICATIONS

In this section, we cover two major applications that are
made possible through use of our graphical encoding and
our neural network architecture. First, we use it for protein
function prediction, and more specifically, to determine if
the changes we did to our encoding from the previous
version in [11] still hold a predictive value. Thus, we train,
test, and validate our encoding and neural network on over
70K encoded images of proteins and we compare against a
set of publicly available networks in the task of protein func-
tion prediction. The second application, for detecting and
visualizing conformational changes in protein trajectories, is
only possible because of the slight modifications we made
to the encoding; by allowing us to visualize and quantify
in s straight manner the interaction between the different
parts of the protein. In this second case, after demonstrating
a robust model for function prediction, we transfer our
network’s knowledge to perform a completely different task
without retraining, that is detecting conformational changes
in protein trajectories. We discuss particular use cases and
the insights that can be derived from our methodology for
two molecular dynamics simulations.

4.1 Protein Function Prediction

Proteins contain a wide variety of structural motifs, which
can also constitute functional microdomains that support
the protein’s functions. In this section we test the ability
of our graphic encoding to expose structural information
necessary to perform basic protein function prediction.

4.1.1 Dataset Description

Our dataset consists of 73,337 proteins from the Protein Data
Bank [56]*. The protein data bank format (PDB) provides a
standard representation for macromolecular structural data
derived from X-ray diffraction and NMR studies. A PDB file
encodes a protein as a sequence of atoms, their type, and
their 3D coordinates. This representation can be easily con-
verted to our encoding as explained in Section 3. Proteins in
the dataset range in size from less than 100 non-hydrogen
atoms to more than 50,000. The mean size is 6508 atoms
with a standard deviation of 19495. The mean resolution

2. PDB Dataset download date — August 30, 2017

is 2.2 Angstroms, with a 1.7 standard deviation. The main
source organism in this dataset is the Homo Sapiens, but the
collection also includes Escherichia coli, Mus musculus, Sac-
charomyces cerevisiae, Rattus norvegicus, and Mycobacterium
tuberculosis among others. Figure 4 depicts multiple exam-
ples of proteins in our dataset that were transformed from a
3D structure to our graphic encoding.

To perform function prediction in this dataset, we obtain
GO terms through the RCSB Protein Data Bank [20] and
their biological details report. GO terms are established by
the Gene Ontology Consortium [57], [58], [59] (GOC). GOC
provides a standardized and consistent way of describing
and documenting gene products across databases. The GO
project comprises three structured ontologies with a well
defined vocabulary to express gene product properties over
three domains: cellular component, molecular function, and
biological process in a species-independent manner. Terms
in the cellular component describe the parts of a cell or its
extracellular environment, for example a ribosome. Terms in
the molecular function describe activities that are performed
by individual gene products or assembled complexes. Ex-
amples of such activities include binding or catalysis. Fi-
nally, terms identifying biological processes encompass se-
ries of events carried out by molecular function with a
well defined beginning and end. To label our dataset with
specific functions, we use a biological process taxonomy
provided by RCSB-PDB [20]. From this taxonomy we se-
lected eight biological processes with the largest number of
proteins (i.e., more than 5,000) and use these groups as our
classification targets. Table 2 describes this classification.

TABLE 2: Dataset breakdown by their biological processes

LabelFunction GO-term Number
0 Biological regulation GO:0065007 5,872
1 Immune system process GO:0002376 7,106
2 Signaling GO0:0023052 8,829
3 Multi-organism process GO:0051704 8,309
4 Catabolic process GO:0009056 9,889
5 Localization GO:0051179 6,732
6 Oxidation-reduction process GO:0055114 12,344
7 Biosynthetic process GO:0009058 14,248

GO source http://amigo.geneontology.org

4.1.2 Evaluation of Function Prediction

To test our approach we compare two general purpose pre-
trained deep neural networks: Google’s Inception-v3 [7] and
MobileNet [8]; one other established image classification
architecture trained from the ground up: VGG-net [9]; and
our split input residual architecture designed specifically to
take advantage of individual channel encoding. For all of
our tests we perform 5-fold cross validation, which splits
the dataset into 5 disjoint partitions, each worth about 20%
of the data. Then, training is done with 4 out of 5 partitions
(i.e., 80%) and testing is done with the unseen partition.
The process is repeated 5 times, using a different set of
partitions each time for training and testing. Through this
process, every protein in the dataset is used for training four
times and for testing once. We use a learning rate of 0.005,
a batch size of 100, and cross-entropy as our loss-function.
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The number of epochs we used varied per architecture and
is indicated in Table 2.

The pre-trained networks needed longer training periods
because they only change weights in the last layer and use
features learned from general image classification in the
other layers. The networks we trained from scratch con-
verged quite quickly (within 10-20 epochs), further training
steps only increased overfitting. The hardware used for
building our models is an Intel Xeon 8 core E5-1620 v4 at
3.50GHz with 8 GPU Tesla P100. A summary of our results
is presented in Table 3, with the main performance metric
being balanced accuracy, as defined by Mosley [60] to avoid
inflated performance estimates on imbalanced datasets for
multiclassification problems. We also include confidence
intervals at 95% and training times in minutes.

TABLE 3: Results

Encoding: proposed 3-channel representation
Architecture Epochs Accuracy £ CI Training time

MobileNet 500 36.3% £ 0.349 32 min.
Inception-v3 500 46.8% = 0.362 75 min.
VGG-net 15 24.2% =+ 0.833 58 min.
GEM-net 15 80.8% =+ 0.285 45 min.

The class assignments are based on the protein’s GO term
classification, as explained above. Note that none of this
information is provided to the classifiers. Like many convo-
lutional architectures, the networks rely solely on the images
to learn distinguishing characteristics from the groups and
perform a final classification. Our results in Table 3 indicate
that the general purpose networks are not able to reach high
accuracy with this dataset. This result is expected because to
build a deep network of these characteristics, with the hopes
of it converging to a state that is practical for prediction,
typically requires a very large number of labeled images
(the original Inception network for ImageNet was trained
on 1.2 million images, with 50,000 images for validation and
100,000 images for testing [10]). Note that, for this specific
problem, GEM-net achieves the highest performance.

By using GEM-net and only 15 epochs, we are able to
reach 80.8 balanced accuracy, and above 80% for five of
the classes (Oxidation-reduction process, immune system
process, catabolic process, signaling, and biosynthetic pro-
cess) and below 75% for two of the classes (Localization
and biological regulation). These results indicate that our
encoding captures characteristics that differentiate functions
among proteins and that GEM-net is able to find relevant
discriminating patterns. With this in mind, our next goal
(as presented in Section 4.2) is to determine if a trained
GEM-net can be used to detect conformational changes in
molecular dynamics simulations.

4.2 Detecting Conformational Changes in Trajectories

Protein molecular dynamics (MD) simulations study struc-
tural changes in the protein as a trajectory of conformations
that evolve over time: as the protein folds, unfolds, or
performs steps of its physiological function. During the
process, it is important to identify the different structural
changes that a protein undergoes over time (e.g., specific
changes within a functional domain or correlated changes

between multiple domains), as well as structural changes
that occur in a similar way for different proteins. Our
encoding method coupled with GEM-net enable a model-
based structural analysis that is lightweight (i.e., prediction
cost in GEM-net is O(C) or about 2 seconds in a commodity
computer), can be easily performed on the fly, and requires
minimal memory accesses compared to the homology-based
approach (i.e., GEM-net takes only 2.4MB compared to the
~ 50GB of a protein database). In the following sections we
describe two ways in which GEM-net or the encoding itself
can be used to detect conformational changes in protein
folding trajectories.

4.2.1 Case Study: Opsin

,e_\f‘. E
FNr* 4

(a) Opsin protein
7 EE
(b) Frame 50
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Fig. 5: Opsin (a) shows the entire protein and its encoding;
(b,c,d) show residues 230-250 (left, red) and encoding (from
the bounded box in (a))

Opsins are a group of proteins containing seven trans-
membrane a-helical domains connected by three extra-
cellular and three cytoplasmic loops. They belong to the
G protein-coupled receptor (GPCR) superfamily. The struc-
tures of activated or agonist-bound GPCRs indicate how
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ligand binding at the extracellular side of a receptor leads
to conformational changes in the cytoplasmic side of the
receptor [19]. According to Rasmussen et al. [61] the change
consists of an outward movement of the cytoplasmic part
of the 5th and 6th transmembrane helices (TM5 and TM6
respectively).

Our graphic encoding makes the conformational
changes between TM5 and TM6 easy to visualize and iden-
tify. In Figure 5.(a) we visualize the protein and its encoded
image. The top corresponds to the extracellular side and the
bottom to the cytoplasm. The different helices connected
by loops can be seen in the encoded image as thick red
diagonals connected by yellow/magenta lines. Labeled in
the figure are the transmembrane helices TM5 and TM6
respectively. Figures 5.(b), (c), (d) zoom in the cytoplasm
loop bounded by TM5 and TM6. In frame 0, the two helices
connected to the loop are tightly formed (they are intense
areas of red in the zoomed encoding, joined by small yellow
and magenta bands), but as the simulation progresses, the
loop performs an outward movement and the two helices
unravel to some degree [62]. Using our encoding we can
easily identify this process as the yellow color begins to
dominate the encoded image.

Beyond just visualization, we can also use GEM-net to
perform analysis of trajectories. We trained GEM-net with
the ~ 70K proteins to determine function prediction as
discussed in Section 4.1. But for this analysis we leverage
the learned features from that step to analyze MD simula-
tions. This concept, of taking an existing neural network
that has been trained on some dataset and re-purposing
it for a new task is known as Transfer Learning. In fact,
Google’s Inception [7] and VGG [9] are general purpose
image classification architectures that are successfully used
for transfer learning.

To identify conformational changes in MD simulations
we use the network body of GEM-net to analyze the way
in which the network responds to different frames in a
trajectory as the protein undergoes conformational changes.
When a convolutional network is trained, its filters (also
called kernels) converge to a variety of patterns that are
used to form a composite (called feature maps) that sig-
nals the existence of complex patterns. When the network
receives input, the feature maps highlight the variety of
trained patterns within the input. Then, activation functions
propagate patterns that the network deemed relevant. With
a classifier attached to the end of the neural network, these
filtered patterns are used in prediction. Using only the net-
work body (without the classification layer), we can extract
activations at each layer and visualize which locations in
the image contributed to a particular activation. We then
continue through the network body, passing through each
layer up to the final convolution, (see Table 1). This is similar
to Grad-CAM [63] that propagates input through layers of
the neural network and highlights the activations.

Figure 6 shows class activation maps (left) for the Opsin
protein at several simulation frames. We can use these acti-
vation maps to draw insight from our network architecture,
to see which regions in the image (and the corresponding
residues in the protein) are deemed relevant for classifica-
tion. It is interesting to see how some regions of the protein
become more or less relevant over time. For example, in

(d) Frame 1950

Fig. 6: Activation maps for Opsin (left) and highlights with
respect to the encoding (right).

Figure 6 we focus our attention on the two cytoplasm loops
(denoted by the two dotted arrows). At first only the central
loop is relevant, but as the simulation goes on, the second
loop, or more specifically, the distance between the second
loop and the first one (see region off the diagonal that corre-
sponds to both of these loops) becomes relevant. These time
frames, where the second loop in TM5 and TM6 becomes
relevant correspond to times in the simulation where the
outward movement is detected and TM5 and TM6 start to
unravel (as depicted in Figure 5). It is important to note
that additional research is needed to understand which of
these interactions are truly relevant functional mechanisms
and which are picked up by the network due to their high
degrees of freedom. However, they provide us with concise
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(a) GltPh protein and encoding, with (b) Protomer C and block BC at (c) Protomer C as it moves down-
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(d) Mean saturation in blocks AC, AB, and BC of GltPh’s codified images as a function of time

Fig. 7: Gltph - a homotrimeric Asp/Glu transporter. The three transport domains are shown in green, and the scaffolding
trimerization domains are in grey. Transport of substrate bound in the protein region shown in red, requires inward

displacement of the substrate cage in an elevator-like motion.

information to further explore the dynamics of this protein.

4.2.2 Case Study: GltPh

GltPh is an aspartate transporter. It is a bowl-shaped ho-
motrimer (i.e, a protein composed of three identical units
of polypeptide), in which each protomer consists of two
domains: a rigid trimerization domain formed by four
transmembrane helices, and a peripheral transport domain
formed by four transmembane helices and two re-entrant
loops [64]. Protomers in GltPh exhibit a rigid body move-
ment, sometimes called elevator-like motion that is consid-
ered a crucial part of the transport cycle [65].

In Figure 7.(a), we show the extracellular side in the
outward-facing state of GltPh (top) and its encoded image
(bottom). Its three protomers are easily identifiable in the
encoded image as the three dark blocks in the diagonal (A, B,
C). The blocks off the diagonal represent proximity among
the protomers (e.g. block BC represents distance between
protomer B and protomer C). Our graphic encoding is able
to detect the elevator-like movement of protomer C with
respect to A and B. This is expressed by increased saturation
in blocks AC and BC as the cage moves downward.

If we quantify the saturation of the different blocks
over time, we can automatically identify the simulation
frames where a particular protomer performs the elevator
movement. In Figure 7.(d) we present time series for the mean

saturation intensity of the off-diagonal blocks in the GItPh
encoded images as the simulation progresses. The solid lines
represent saturation for blocks AC and BC in blue and
purple respectively. The dotted line is saturation for block
AB in yellow. Patterns that can provide us with insights
are steady increase or decrease in saturation, correlated
behavior, and pronounced differences. First, note that all the
captured movement is relative. Then, off-diagonal blocks
represent the movement of one protomer with respect to
another (e.g., block BC represents relative movement of pro-
tomer B with respect to protomer C). Increased saturation in
off-diagonal blocks indicate that the protomers are moving
closer to each other, while decreased saturation indicates
that they are moving apart. Correlated movement between
blocks indicate that their common protomer is moving in a
different direction with respect to the others. For example,
in Figure 7.(d) we observe a correlated behavior between
AC (in blue) and BC (in purple), which means that block C
is moving in a different direction with respect to A and B.
The difference becomes more evident around frame 500 and
again towards the end of the simulation, starting at frame
2000. Specifically during the later stages of the simulation,
it was manually verified that protomer C was performing
an elevator-like movement, as predicted by the gap in satu-
rations. With this, we provide a qualitative and quantitative
way to estimate conformational changes at a coarse grain.
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However, it is important to note that this method is not fail-
safe though, if two or more protomers move in synchrony,
this analysis will confuse the movement source.

5 CONCLUSIONS AND FUTURE WORK

Modern homology-based approaches to protein folding
analyses can be computationally expensive or rely on
heuristics that lose information about a protein’s 3D shape.
In order to leverage modern machine learning technologies
and successfully predict a protein’s function throughout its
trajectory, in addition to uncovering changes in its confor-
mational state, it is necessary to employ techniques that
maintain the 3D information while performing at scale.
We present a novel approach to encode proteins that po-
tentially boosts the capabilities of scientists seeking high-
throughput analysis techniques for their ever-increasing
molecular datasets. We found that distance matrices coupled
with angles of secondary structures provide a meaningful
data representation for proteins. Our approach does not rely
on homology calculations and we can create that encoding
in isolation, in addition to performing predictions concur-
rently and avoiding costly computations from traditional
homology-based approaches.

One of our future directions is to perform more focused
function prediction (i.e., finer grained protein function def-
initions). We expect that by looking at a narrower scope
and a better defined biological function, the classifier will
be able to achieve even better accuracy. Another direction
is experimenting with enriched representations, for exam-
ple by including more channels (that is, instead of only
RGB images, working with multidimensional tensors). This
approach would sacrifice interpretability and visualization,
but can include information such as energy and specify
more than three secondary structures. Finally, to expand
the potential impact of our work, we aim to provice it as
an analytics tool for MD packages. We have released our
model and datasets openly in hopes that other researchers
may find it useful.
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