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Abstract
Room-temperature (RT) gas sensing is desirable for battery-powered or self-powered instrumentation that can monitor emissions
associated with pollution and industrial processes. This review (with 171 references) discusses recent advances in three types of porous
nanostructures that have shown remarkable potential for RT gas sensing. The first group comprises hierarchical oxide nanostructures
(mainly oxides of Sn, Ni, Zn,W, In, La, Fe, Co). The second group comprises graphene and its derivatives (graphene, graphene oxides,
reduced graphene oxides, and their composites with metal oxides and noble metals). The third group comprises 2D transition metal
dichalcogenides (mainly sulfides of Mo, W, Sn, Ni, also in combination with metal oxides). They all have been found to enable RT
sensing of gases such as NOx, NH3, H2, SO2, CO, and of vapors such as of acetone, formaldehyde ormethanol. Attractive features also
include high selectivity and sensitivity, long-term stability and affordable costs. Strengths and limitations of these materials are
highlighted, and prospects with respect to the development of new materials to overcome existing limitations are discussed.
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Chemiresistive gas sensors

Introduction

Gas sensing technologies play a crucial role in applications that
affect our daily life, such as in monitoring the environment and
the air quality, in addition to detecting toxic gases [1–8]. Gas
sensors of various types have been employed but the most
popular ones are resistivity-based sensors owing to their low-
cost fabrication, smooth operation and possible miniaturization
[9–15]. The first commercial gas sensor produced in 1923 was
based on a hot platinum wire, while the first oxide-based gas
sensor was patented by Taguchi in 1962. Since the pioneering
work by Seyama with gas sensors made by ZnO thin films and

a basic electrical circuit operating at 485 °C [16], efforts have
been made to improve sensitivity, stability and selectivity. With
nanotechnology, it has been possible to make significant pro-
gresses with oxide nanostructures, conducting polymers, car-
bon nanostructures and 2D materials. This progress is reflected
in the increasing number of scientific articles published, as
shown in Fig. 1, particularly in the past few years.

In spite of the many advances of late, the search for reliable,
robust gas sensors is an ongoing endeavor, and much more is
expected for the next decade [17–23]. Improvements are continu-
ously sought in the figures of merit that include sensor response,
selectivity, stability and response/recovery speed, for which re-
search is performed in novel materials, especially derived from
nanotechnology [24–29, 18]. Efforts are particularly directed to-
ward decreasing the operation temperature of such sensors [5, 6,
30,31].Traditionalgas sensorsmadeofmetaloxides, for instance,
normally operate at 100–400 °C, leading to high power consump-
tion and reduced sensor stability and lifetime owing to an induced
growth ofmetal oxide grains [32–35]. Gas sensors producedwith
conductingpolymerscanoperateat roomtemperature,but theyare
affected by humidity being amenable to degradation with a slug-
gish response and recovery time, and poor stability [36–38].
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Strategies to improve sensitivity and selectivity have been
developed, including surface functionalization with noble
metals, the use of oxide heterostructures and thermal assis-
tance with UV-illumination or an external heater [39–44,
30]. However, high operating temperatures and/or lack of sta-
bility of sensor devices are still major limitations. A primary
challenge for this research field is, therefore, to design and
develop robust, reliable gas sensors that are highly sensitive
and selective to target gases, which can be operated at or close
to room temperature under the influences of humidity. Various
review articles and book chapters have addressed many issues
involved in gas sensors [45–48], and therefore the aim is not to
present a comprehensive survey of the achievements and

prospects in the field. Rather, the focus here is on oxide nano-
structures [12, 49–53], graphene and layered inorganic 2D
materials [54–56, 46] for room temperature gas sensing, in
view of their promising recent results. Our main motivation
is to provide a short summary of recent developments with
promising materials, and present an outlook for the next few
years. The article has been divided into three sections, each of
which corresponds to a class of these materials.

Materials for gas sensors operating at room
temperature

Oxide nanostructures

Oxide nanostructures have been used in solar cells, sensors and
biosensors, energy storage, drug delivery and dielectric/
piezoelectric systems [57–63]. Metal oxides may adopt various
shapes such as nanowires, nanotubes and nanobelts for gas
sensing at room temperature [64–69], as illustrated in the param-
eters summarized in Table 1. The sensor response or sensitivity

of materials is evaluated as ΔR
Ra

�
�
�

�
�
�� 100, where ΔR =Ra −Rg in

the presence of oxidizable (ox.) gases, while the formΔR =Rg −
Ra applies for reducible (red.) gases. Ra and Rg indicate the
resistance in air and in the presence of gas, respectively.
Highly porous and permeable shell layers are advantageous
for the complete electron depletion and effective gas diffusion,
respectively, thus yielding high sensing performance in terms of
short recovery times and low detection limits [70–73].

An efficient sensing with hierarchical WO3·0.33H2O
nanocolumns was demonstrated by Perfecto et.al. [81], whose
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Fig. 1 The number of publications in the area of gas sensors from 1997 to
2017 (internet search of the Scopus on Jan. 29, 2018). Keywords for
search: gas sensor

Table 1 Room-temperature gas-sensing properties of metal-oxide-based nanostructures

Materials Structure Gas Concentration Sensor response or Sensitivity Response time

SnO2 [74] Nanocrystalline tubes NOx 9.7 ppb 16.1 (ox.) 20 s

SnO2 [75] Nanowires CO 20 ppm 4 (red.) -

SnO2 [76] Thin film NH3 50 ppm 6.94 (red.) 175 s

CuO [77] Nanosheets H2S 200 ppb 5.01 (red.) 400 s

CuO-MnO2 [78] Nanocomposites NH3 100 ppm 135 (red.) 120 s

NiO [79] Nanowire NH3 50 ppm 0.19 (red.) 36 s

Na:ZnO [80] Nanoflowers Acetone 100 ppm 2.16 (red.) -

WO3 [81] Nanocolumns Isopropanol 100 ppm 3 (red.) 53 s

In2O3 [82] Nanocrystals NOx 970 ppb 1.9 (ox.) 45 s

W18O4 [83] Nanowires H2 25 ppm 0.18 (red.) -

LaFeO3 [84] Nanocubes NO2 1 ppm 0.29 (ox.) 24 s

Co3O4 [85] Quasi-spherical holes NH3 100 ppm 1.46 (red.) 2 s

CuO/SnO2 [86] Nanorods H2S ppm - (red.) 750 s

NiO/WO3 [87] Nanoplates NO2 30 ppm 4.8 (ox.) 2.5 s

V2O5/SnO2 [88] Nanowires Ethanol 100 ppm 14 (red.) -
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sensing results are summarized in Fig. 2. The smooth, uniform
columns with hierarchically assembled structures in the
FESEM (Field Emission Scanning Electron Microscope) im-
age in Fig. 2a were obtained with a microwave-assisted hy-
drothermal (MAH) process combined with ultrasonic spray
nozzle (USN) methods. The changes in resistance and sensor
response are measured by applying a bias voltage of 2V at
room temperature with a static gas sensing method as shown
in Fig. 2b and it shows the typical p-type behavior, as the
resistance increased with increasing isopropanol concentra-
tion. The WO3·0.33H2O gas sensors exhibited fast response
(~82 s) and recovery time (~ 260 s) and excellent sensor re-
sponse (3.4) in a controlled humidity environment (55%),
which should be attributed to the high surface area of the
nanostructures. Figure 2c displays isopropanol response as a
function of gas concentration. The sensor response changed
from 1.1 to 6.7 for 1 to 200 ppm isopropanol, confirming the
excellent sensing performance of the material. Moreover, a p-
type behavior of the material observed after exposure to
isopropanol. The gas sensing mechanism at room temperature
has been explained as the electronic conduction in an energy-
band model and oxygen-vacancy model [81]. When the sen-
sor is exposed to air, oxygen and water molecules are
adsorbed on the surface to create a p-type inversion layer at
room temperature. As temperature increases, the surface of the

sensor becomes intrinsic first due to desorption of water and
oxygen molecules, and becomes n-type as the surface gets
depleted at high temperature due to further desorption.
Additionally, the reverse behavior of p-type gas sensing is also
observed. When the sensor is exposed to isopropanol, nega-
tive charges were trapped on the surface with decreased oxy-
gen ionic species and the electronic potential decreases with
respect to the holes to form an inverse layer as oxygen vacan-
cies. As a result, hole concentration increases and causes the
band bending, resulting in the p-type gas sensing response.
Details of gas sensingmechanisms for n-type and p-type metal
oxides are given in [89].

Fe2O3 nanostructures used as sensing materials for room-
temperature gas sensors include single Fe2O3 nanowires
(Fe2O3 NWs) fabricated by oxidation of metallic Fe micropar-
ticles in ambient air [83]. Fe2O3 NWs such as those in Fig. 3a
were transferred to a SiO2/Si substrate with prepatterned Au/
Cr electrodes (see Fig. 3b), and connected by Pt contacts at
both ends of NWs (Fig. 3c). Detection with the iron oxide
sensors was made with the two-probe DC method for four
reducible gases at room temperature with controlled humidity
(RH 30%). The sensor response increased with decreasing
diameter of NW, as shown in Fig. 3d, owing to the larger
surface area and fast adsorption-desorption process.
Figure 3e, f indicate that the sensor was more selective for

Fig. 2 a FESEM and bChange in
resistance after isopropanol
exposure in the concentration
range of 1–200 ppm. The inset
shows the amplification of the
sensor signal for 1 and 10 ppm. c
chemiresistive sensor responses
to isopropanol in the
concentration range of 1–
200 ppm for WO3·0.33H2O-
USN-MAH. Reprint with
permission [81], Copyright of
The Royal Society of Chemistry
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acetone, and displayed high sensitivity and reproducibility,
fast response and recovery times of 16 and 50 s, respectively.
The gas sensing mechanism has been discussed with two phe-
nomena: adsorption-desorption of gas molecule on the mate-
rial surface and band bending.When Fe2O3 nanowires surface
is exposed to air, chemisorbed oxygen molecules cause the
formation of electron-depleted, space charge region. Upon
exposure to acetone, electrons are released back to nanowires
to reduce the space–charge layer and resistance. A typical
feature of such oxide nanostructures exploited in gas sensing
are the well-aligned porous structures with high surface area,
as discussed in the comprehensive review on hierarchical and
hollow oxide nanostructures [90].

The oxide nanostructures discussed here appear to be suit-
able for room-temperature gas sensing applications with good
performances in terms of responses, recovery speed, and long-
term stability. Many examples in Table 1 and recent advances
in the synthesis of highly porous structures suggest that metal
oxide nanostructures are promising candidates for gas sensing

at room temperature. In addition to large active surface areas,
well-aligned porous structures also allow smooth gas penetra-
tion for gas adsorption and desorption processes. However,
humidity and gas selectivity are two major challenges for
room temperature gas sensing by metal oxide nanostructures.
Without heating up the sensing element, H2O molecules can
interfere and compete with oxygen molecules to decrease the
sensing responses [91, 92] and a variety of reactions from
various gases can occur at room temperature to result in false
sensing results. Strategies including surface modifications,
doping, ultraviolet (UV) or visible light illuminations have
been proposed while further investigations and innovations
are needed to address these challenges.

Graphene and its derivatives for gas sensing

Graphene and derivatives such as graphene oxide and reduced
graphene oxide have been the most studied carbon materials
over the last decade, including for chemical gas sensors

Fig. 3 SEM images of the Fe2O3

nanowires a on SiO2/Si substrate
after releasing from the initial
substrate; and b
dispersion to a lower
concentration. c Fabricated
nanosensor of single Fe2O3

nanowire with D ≈ 25 nm. d
Sensor response versus diameter
of Fe2O3 nanowire for 100 ppm
acetone vapor. e Selectivity
histogram of single Fe2O3

nanowire with D ≈ 25 nm for
different reducible gases. f
Dynamic chemiresistive gas
response for 1–100 ppm acetone
vapor at room temperature.
Reprint with permission [83],
Copyright of Wiley
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[93–99]. They are suitable for gas sensing owing to their en-
hanced electron transport properties, efficient adsorption of
gas molecules and good signal-to-noise ratio [100, 101]. For
the use in gas sensors, graphene has been synthesized via top
down and bottom up techniques, including chemical vapor
deposition (CVD) [102], exfoliation–intercalation–expansion
of graphite [103], arc-discharge techniques [104], epitaxial
growth [105], and chemical or thermal reduction of graphene
oxide [106]. In the mass production of large-area single layer
graphene (SLG) sheets, the CVD growth technique has been
preferred because it provides large detection area and con-
trolled sensor fabrication [107, 108]. The very first graphene
based gas sensor was reported by Schedin et al. [93] and had
micromechanically exfoliated graphenewith sub-ppb (part per
billion) detection of gas molecules. Themain drawback of this
sensor was the long recovery time which indicates that at
room temperature gas molecules are strongly attached to
graphene. It is possible to achieve complete recovery within
a shorter time by UVillumination or external heating. In 2012,
Yavari et al. [109] demonstrated room temperature detection
of NO2 (100 parts-per-billion (ppb)) and NH3 (∼500 ppb) with
graphene films synthesized by CVD. The performance was
superior to commercially available NO2 and NH3 detectors,
and the complete recovery was reached via the joule-heating
method to desorb gas molecules.

The 2D nature of graphene provides mechanical flexibility,
and various works explored the possibility of operating a

graphene FET on a flexible substrate [110–112], especially
for wearable applications. The graphene FET transferred on
a flexible substrate [113] depicted in Fig. 4a, b was used for
gas sensing under various DC gate biases. The graphene FET
with a polymeric dielectric film was first deposited on a rigid
wafer before being transferred onto a polyimide substrate. A
key factor limiting the applications of graphene FET gas sen-
sors is the selectivity issue. Figure 4c, d show that four gases
can be clearly distinguished with a single graphene FET upon
extracting a linear factor by tracking the change of field effect
mobility and Dirac Point voltage. The y-axis represents the
reverse of the field effect mobility of graphene (the delta sym-
bol denotes the "change"), having therefore the unit of [Vs/
cm2]) and the x-axis indicates the Dirac Point voltage [114].
Another recent advance in improving graphene FET sensor
performance is to accelerate the poor recovery speed at room
temperature, which is typically from hundreds to thousands of
seconds [115]. The recovery speed can be boosted by 10 times
when graphene FET is operated in an AC scheme (AC phase
measurements), as compared to the conventional DC scheme
(DC resistance measurements) [116]. Figure 4e shows the
sensitive distance of AC is far enough to reach the weakly
adsorbed gas molecules for a quicker desorption process in
comparison with DC sensing schemes where the sensing dis-
tance is limited by the charge transfer RC time constant as
modeled in Fig. 4f. Figure 4g, h compare the drift-free sensing
results of saturated ethanol vapor by using AC sensing scheme

Fig. 4 a Schematic diagram of the flexible graphene FET for gas sensing.
b An array of 3x3 devices before polyimide coating and after polyimide
coating and separation on a flexible substrate (scale bar 70 μm). Also
shown are magnified views of the corresponding single transistor on the
bottom (scale bar 7 μm). Linear factor measured for four types of
gases on a single graphene FET in electron c branch and d hole branch,
showing the selectivity. e Illustration of the AC sensing scheme which is

more effective to detect weakly adsorbed gases (faster desorption) away
from the graphene surface than DC sensing. f TheRCmodel of the charge
transfers pathway between adsorbed gas and graphene with a distance
Bd.^ The experimental results of the g AC sensing signal and h DC
sensing signal measured simultaneously on a graphene FET under 6
cycles of saturated ethanol vapor injections. Reprint with permission
[113, 114, 116], Copyright of IEEE
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(Fig. 4g) and drifted sensing results measured simultaneously
using the DC sensing scheme (Fig. 4h), showing the improved
sensing recovery speed of graphene FET.

Noble metals have proven their potential to improve sens-
ing performance, but they are expensive [117–119]. Metal
oxides have therefore been used in gas sensors, which may
include nanocomposites with graphene [120–124]. Song and
co-workers reported the one-step colloidal synthesis of SnO2

quantum wire/reduced graphene oxide nanocomposites as se-
lective gas sensors for H2S with detection in the 10-100 ppm
range with fast response/recovery time (2/292 s), better sensor
response (~33) as compared to pure reduced graphene oxide
[125]. The HRTEM (High-resolution transmission electron
microscopy) image in Fig. 5a shows well dispersed, crystal-
line SnO2/rGO nanocomposites, while Fig. 5b illustrates the
fast response at room temperature for a wide concentration
range. The histogram in Fig. 5c confirms the high selectivity
for H2S, in comparison with NO2, SO2, NH3 and ethanol
vapor. Figure 5d displays the response curves of gas sensors
based on pristine rGO, pure SnO2 quantum wires (8 h) and
SnO2/rGO nanocomposites (8 h). The gas sensing mechanism
is related to the formation of Schottky junctions between

graphene and metal oxides as the Schottky barrier determined
by the work-function difference between metals and semicon-
ductors is affected by adsorbed chemical species. At the SnO2/
rGO junction, electrons are moving from the smaller work
function of SnO2 to rGO to balance the Fermi level. The
H2S gas molecules provide electrons to increase the potential
barrier for electrons to flow from SnO2 to rGO, which results
in decrease in resistance.

Table 2 illustrates the recent advances on room-temperature
gas sensors made with scalable graphene fabrications, which
are highly selective and sensitive to target gases. It is signifi-
cant that these sensors display efficient recovery speed with-
out the assistance of UV/IR light illuminations or thermal
effects. A critical analysis of the literature indicates that
graphene composites decorated with metals and metal oxides
yield higher performance in room-temperature gas sensing
than pristine graphene. The main strength of graphene-based
sensors is the high sensitivity for a range of gases, reaching
ppm (parts per million) levels. The drawbacks are associated
with poor specificity in many cases, slow recovery time, and
potential high cost. As a result, graphene-based materials
seem not as efficient for room-temperature gas sensing as

SnO2/rGO

a b

c d

Fig. 5 a High-resolution transmission electron microscopy (HRTEM)
image and selected area electron diffraction (SAED) pattern of the
SnO2/rGO nanocomposites synthesized at 180 °C for 8 h. b
Chemiresitive response curves toward different concentrations of H2S. c
Selectivity of the optimal gas sensor employing SnO2/rGO
nanocomposites. d Response curves with the sensor response defined as

the ratio of Ra to Rg, where Ra is the resistance in the air and Rg is the
resistance in the presence of a target gas. The sensors were made of
pr is t ine rGO, SnO2 quantum wires (8 h) and SnO2/rGO
nanocomposites (8 h). Reprint with permission [125]. Copyright of
American Chemical Society
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those based on the oxide nanostructures at the present time.
However, high sensitivity and possible optimizations together
with new innovations, and low-cost, large area manufacturing
with a wide variety of graphene composites could make the
graphene-based room temperature gas sensing promising in
the future.

Gas sensors based on 2D transition metal
dichalcogenides (TMDs)

Transition metal dichalcogenides (TMDs) are materials with
the formula of MX2, where M refers to a transition metal ele-
ment such as Mo, W, Hf, Ti, Zr, V, Nb, Ta, Re, etc. and X
represents a chalcogen (S, Se or Te) [138–140]. Two-
dimensional (2D) structures of TMDs have attracted renewed
interest due to their superior molecular sensing capability,
unique physical and chemical properties, including semicon-
ducting property and high surface-to-volume ratio [141–145].
These 2D layered materials such as MoS2, WS2, ReS2, MoSe2,
WSe2 and ReSe2, with atomically thin-layered structure, are
potentially effective sensing materials [46, 146–149]. They
may be synthesized with various techniques, including CVD
[150], micromechanical exfoliation and liquid exfoliation
[151]. The latter is the most often used since it is suitable for
large-scale devices in electronics, optoelectronics and gas sens-
ing. These 2D TMDs have been amenable for room- tempera-
ture sensing but recovery was poor, while a high performance
was achieved with thermal assistance or UV illumination but
then there is the issue of energy consumption [46, 152].

Some of the room-temperature gas sensors madewith these
atomically thin-layered 2D materials are based on field-effect
transistors (FET), which are difficult to fabricate, thereby lim-
iting the throughput of sensor production. Li et.al. [54] report-
ed single- and multilayer MoS2 film-based FET for NO sens-
ing at room temperature. FET devices were fabricated with

exfoliated one to four layer of n-typeMoS2 films, but practical
applications were hindered because of a poor response toward
NO gas and slow recovery, which were worse than those of
previously demonstrated sensors based on single-layer MoS2
transistors. 3D assemblies of these 2D materials provide more
surface area per footprint with a reproducible, scalable synthe-
sis process as compared to single and few layer MoS2. Cho
et.al. [153] produced MoS2 nanofilms by CVD capable of
detecting NO2 at room temperature at ppb level (120-1200
ppb), but the recovery time was long. For full gas desorption,
MoS2 was heated to 100 °C but the sensitivity was lowered.
To overcome this difficulty with improved sensitivity, metal
dichalcogenide surfaces are being functionalized with sensi-
tizers, dopants and metal oxides. Some recent advances of
MoS2 and WS2 based gas sensors for room-temperature oper-
ation are summarized in Table 3.

Li et al. [165] investigated room temperature chemiresistive
ammonia sensing for 2DWS2 nanoflakes which showed excel-
lent sensitivity (1-100ppm) and good selectivity as compared to
other target gases. Figure 6a shows the layered spherical flake
morphology with diameter of 1–4 micrometers and thickness
around 110 nm. The dynamic response curve as a function of
time at room temperature and relative humidity for WS2
nanoflakes are shown in Fig. 6b. The resistance of WS2 in-
creased upon exposure to ammonia indicating a Bp-type^ be-
havior since ammonia is a reducible gas. The response and
recovery time was ∼120 s and ∼150 s, respectively. The sensor
response increased with increasing relative humidity up to 73%
due to the hydroxylation reaction on the WS2 surface, but sat-
uration was observed if the humidity was increased further to
99% (Fig. 6c).

Other metal dichalcogenides such as MoSe2 and SnS2
[159, 166] have also shown promising gas sensing properties.
Late et al. [167] studied the gas sensing properties of single
layer MoSe2 prepared by mechanical exfoliation, whose SEM

Table 2 Room-temperature gas-sensing properties of graphene-based nanostructures

Materials Structure Gas Concentration Sensor response or Sensitivity Response time

Graphene [95] Sheet CO2 100 ppm 26 (ox.) 8 s

Reduced Graphene Oxide [126] Flakes NH3 800 ppm 11 (red.) 540 s

Reduced graphene oxide [127] Nanosheets SO2 5 ppm 5.93 (ox.) 122 s

Ag-Sulfonated graphene [128] film NO2 50 ppm 45 (ox.) 12 s

Graphene/SnO2 [129] film Acetone 10 ppm 2.19 (red.) 107 s

rGO/TiO2 [130] Hybrid Methanol 10 ppm 24.66 (red.) 18 s

rGO/CuO [131] Nanosheets Formaldehyde 100 ppm 7.07 (red.) 108 s

rGO/ZnO [132] Mesoporous NO2 1 ppm 119 (ox.) 75 s

rGO/CuO [133] Composites CO 1 ppm 2.56 (red.) 70 s

rGO-WO3 [134] Nanosheet NO2 5 ppm 0.7 (ox.) 600 s

Co3O4-rGO [135] Nanosheets NO2 60 ppm 0.8 (ox.) -

NiO-rGO [136] Nanosheets NO2 15 ppm 1.1 (ox.) -

In2O3-rGO [137] Nanosheets NO2 30 ppm 8.25 (ox.) 240 s

Microchim Acta (2018) 185: 213 Page 7 of 16 213



image and picture are shown in Fig. 7a. The performance of
the exfoliated single layer MoSe2 was investigated by expos-
ing the sensor to various concentrations (50-500 ppm) of am-
monia (Fig. 7b, c). The single MoSe2 layer showed high sen-
sitivity (∼1200) for 500 ppm of ammonia with fast response
(∼150 s) and recovery (∼9 min.), which is lower than that
reported for single-layer MoS2. Generally, strong adhesion

of gas molecules to the sensing material favors sensitivity
but it also makes it more difficult to remove the sensed mate-
rials, which is the reason for the slow recovery time of 2D
material-based gas sensors. The gas sensing mechanism of 2D
TMDs is based on the charge transfer process. In this case,
when ammonia molecules are adsorbed onto MoSe2 surfaces,
lone-pair electron acts as an electron donor, and transfers its

Fig. 6 a SEM image of WS2
nanoflakes. b Dynamic
chemiresistive response curve of
the sensor made with WS2
nanoflakes as a function of time to
1–10 ppm ammonia. c Influence
of relative humidity in the air
background on the WS2
nanoflake based sensor response
to 5 ppm ammonia at room
temperature. Reprint with
permission [165], Copyright of
Elsevier

Table 3 Room-temperature gas-sensing properties of 2D nanostructures

Materials Structure Gas Concentration Sensor response or Sensitivity Response time

MoS2 [154] Thin films NH3 300 ppb 4.2 (SNR*) (red.) 15 s

MoS2 [155] Thin films NO2 10 ppm ~23 (ox.) -

MoSe2 [156] Thin Film NO2 300 ppm 1907 (ox.) 1200 s <

WS2 [157] Nanosheets NO2 25 ppm 8.7 (ox.) -

Ag-WS2 [157] Nanosheets NO2 25 ppm 58 (ox.) -

WS2-Pd [158] Thin film H2 50,000 ppm 0.78 (red.) 119 s

SnS2 [159] Flower-shaped NH3 5 ppm 21.6 (red.) ~50 s

Ni-MoS2 [160] Nanoflowers SO2 5 ppm 7.4 (ox.) 50 s

WS2-TiO2 [161] Nanohybrids NH3 250 ppm 43.72 (red.) 200 s

MoS2/ZnO [162] Nanocomposites NH3 50 ppm 46.2 (red.) 10 s

MoS2/SnO2 [163] Nanosheet NO2 10 ppm 28 (ox.) 408 s

MoS2 –rGO [164] Hybrid Formaldehyde 10 ppm ~2.8 (red.) 73 s

Pd-SnO2/MoS2 [165] Composite Hydrogen 500 ppm ~5 (red.) 23 s

SNR* Signal to Noise Ratio
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electron to the conduction band of MoSe2. Such a charge
transfer process induces an increased electron concentration
and electrical conductivity.

In spite of the promising results as illustrated above, im-
provements in 2D TMDs are needed to reach high sensitivity,
selectivity, and stability. Specifically, an important limitation
of 2D TMDs for room-temperature gas sensing is the slow
recovery time owing to the slow gas desorption process. As
of now, these materials appear to be inferior in terms of the

sensing performances when compared with those made of
metal oxide nanostructures but display similar responses as
those made of pristine graphene.

Conclusion and future prospects

The fabrication of gas sensors has undergone a revolu-
tionary transition from powder-based thick films to thin

Fig. 7 Single-layer MoSe2 a
SEM image, b ammonia

sensitivity ( ΔR
R0

�
�
�

�
�
�� 100, where

ΔR =Rg − R0, while R0 and Rg

indicate the resistance in air and in
the presence of gas, respectively)
as function of gas concentration,
c linear plot of sensitivity of
MoSe2 gas sensor device as a
function of ammonia gas
concentration (ppm). Reprint with
permission [167]. Copyright of
AIP Publishing LLC

Fig. 8 The concept of selective
sensing and fast recovery by
using an arrays of gas sensors
combining different sensing
materials and/or schemes to offer
multi-variable responses, and
thereby provide selectivity via
data-assisted pattern recognition
and machine-learning schemes
and fast recovery by using the AC
sensing scheme [171]
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films produced by physical or chemical vapor deposition.
These methods enable finer control over materials micro-
structures such as grain size and boundary, and may allow
for fabrication of porous structures that are suitable for
gas sensing. In a survey of the literature, three classes
were identified of nanotech-based materials with porous
morphology and amenable to room-temperature gas sens-
ing. Oxide nanostructures, graphene composites and 2D
transition metal dichalcogenides (TMDs) have indeed
been proven as suitable for instantaneous detection of
toxic and hazardous gases and real-time gas monitoring
under controlled humidity. There are important limitations
to these materials though, mostly associated with the need
to improve selectivity and stability. Furthermore, the gas
sensing mechanism is still not well established for
graphene and 2D TMDs. It is our belief that these limita-
tions may be overcome in the near future via surface
functionalization and the design of heterostructures
exploiting the wide variety of nanomaterials. In addition
to the strategies discussed in the review, several other
directions are being exploited. For example, improve-
ments in the recovery speed can be obtained by introduc-
ing the AC test method [168]. The AC test offers phase
change responses which are only sensitive to the weak
adsorption of gas molecules above a distance to the
graphene surface for fast gas adsorption and desorption
processes, while the conventional DC resistance results
are sensitive to the strong adsorption and desorption pro-
cess close to the sensing material surface. Arrays of gas
sensors combining different sensing materials and/or
schemes may offer multi-variable responses, and thereby
provide selectivity via data-assisted pattern recognition
and machine-learning schemes [169–171]. For example,
an array of sensors with different sensing materials and/
or schemes such as metal oxide nanostructures, nano-
heterostructures, graphene and its derivatives, and 2D
TMDs as shown in Fig. 8 could respond to individual
vapors or vapor mixtures with distinguishable response
patterns - much like the way the mammalian olfactory
system to produce diagnostic patterns. This approach
may address the key gas sensing problems in selectivity
and fast recovery speed to meet the requirements in prac-
tical applications in a multi-gas environment.
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