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Abstract

Motivation: Graph embedding learning that aims to automatically learn low-dimensional node representations, has
drawn increasing attention in recent years. To date, most recent graph embedding methods are evaluated on social
and information networks and are not comprehensively studied on biomedical networks under systematic experi-
ments and analyses. On the other hand, for a variety of biomedical network analysis tasks, traditional techniques
such as matrix factorization (which can be seen as a type of graph embedding methods) have shown promising
results, and hence there is a need to systematically evaluate the more recent graph embedding methods (e.g. ran-
dom walk-based and neural network-based) in terms of their usability and potential to further the state-of-the-art.

Results: We select 11 representative graph embedding methods and conduct a systematic comparison on 3 import-
ant biomedical link prediction tasks: drug-disease association (DDA) prediction, drug–drug interaction (DDI)
prediction, protein–protein interaction (PPI) prediction; and 2 node classification tasks: medical term semantic type
classification, protein function prediction. Our experimental results demonstrate that the recent graph embedding
methods achieve promising results and deserve more attention in the future biomedical graph analysis. Compared
with three state-of-the-art methods for DDAs, DDIs and protein function predictions, the recent graph embedding
methods achieve competitive performance without using any biological features and the learned embeddings can
be treated as complementary representations for the biological features. By summarizing the experimental results,
we provide general guidelines for properly selecting graph embedding methods and setting their hyper-parameters
for different biomedical tasks.

Availability and implementation: As part of our contributions in the paper, we develop an easy-to-use Python pack-
age with detailed instructions, BioNEV, available at: https://github.com/xiangyue9607/BioNEV, including all source
code and datasets, to facilitate studying various graph embedding methods on biomedical tasks.

Contact: yue.149@osu.edu or sun.397@osu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Graphs (a.k.a. networks) have been widely used to represent bio-
medical entities (as nodes) and their relations (as edges). Analyzing
biomedical graphs can greatly benefit various important biomedical
tasks, such as predicting potential drug indications (a.k.a. drug repo-
sitioning) based on drug-disease association (DDA) graphs (Gottlieb
et al., 2011), detecting long non-coding RNA (lncRNA) functions

based on lncRNA–protein interaction networks (Zhang et al.,
2018d), and assisting clinical decision making via disease-symptom
graphs (Rotmensch et al., 2017).

In order to analyze the graph data, a surge of graph embedding
(a.k.a. network embedding or graph representation learning) meth-
ods (Grover and Leskovec, 2016; Perozzi et al., 2014; Ribeiro et al.,
2017; Tang et al., 2015) have been proposed, where their goal is to
automatically learn a low-dimensional feature representation for

VC The Author(s) 2019. Published by Oxford University Press. 1241

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Bioinformatics, 36(4), 2020, 1241–1251

doi: 10.1093/bioinformatics/btz718

Advance Access Publication Date: 4 October 2019

Original Paper D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/36/4/1241/5581350 by O
hio State U

niversity Libraries,  yue.149@
osu.edu on 20 February 2020

https://github.com/xiangyue9607/BioNEV
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz718#supplementary-data
https://academic.oup.com/


each node in the graph. Intuitively, the low-dimensional representa-
tions are learned to preserve the structural information of graphs,
and thus can be used as features in building machine learning models
for various downstream tasks, such as link prediction, community
detection, node classification and clustering. However, to date, these
advanced approaches are mainly evaluated on non-biomedical net-
works such as social networks, citation networks, and user-item net-
works, and only a few studies provide evaluations and analyses on
biomedical networks. For example, Nelson et al. (2019) review the
application of embedding methods on three representative biomed-
ical prediction tasks. For each task, they select two biomedical
embedding methods for comparison. But some of the selected meth-
ods are biomedical task-driven and may not be generalized to other
tasks. And there exist more graph embedding methods in open-
domain that need comprehensive comparison. Some recent studies
(Hamilton et al., 2017; Su et al., 2018; Zhang et al., 2018a) review
the technical details of graph embedding methods, but few of them
have systematically compared the performance of each method on
biomedical datasets.

On the other hand, traditional embedding techniques such as
Laplacian eigenmap (LE) (Belkin and Niyogi, 2003) and matrix fac-
torization (MF) have shown promising results for a variety biomed-
ical graph analysis tasks (Ezzat et al., 2017; You et al., 2017). Given
that the recent graph embedding methods have been demonstrated to
be more effective than the traditional methods in a wide range of
non-biomedical tasks (Grover and Leskovec, 2016; Perozzi et al.,
2014; Tang et al., 2015), we conduct this work to investigate the ef-
fectiveness and potential of advanced graph embedding methods on
biomedical tasks. Figure 1 summarizes the pipeline for applying vari-
ous graph embedding methods to downstream prediction tasks.

In this paper, we first provide an overview of existing graph
embedding methods and their applications on three important biomed-
ical link prediction tasks: DDA prediction (Gottlieb et al., 2011),
drug–drug interaction (DDI) prediction (Zhang et al., 2018b), pro-
tein–protein interaction (PPI) prediction (Wang et al., 2017) and one
popular node classification task, protein function prediction (Cho
et al., 2016). In addition, we formulate a relatively less-studied but
meaningful node classification task, medical term semantic type classi-
fication and apply graph embedding methods to solve it. For the above
5 tasks, we compile 7 datasets from commonly used biomedical data-
bases or previous studies and select 11 graph embedding methods
(including both traditional and more recent methods) for comprehen-
sive comparisons. By benchmarking them, we demonstrate that the re-
cent graph embedding methods can achieve promising results in
various biomedical tasks and should deserve more attention in the fu-
ture biomedical graph analysis. Additionally, we compare the graph
embedding methods with three recent computational methods that are
specially designed for DDAs, DDIs and protein function prediction.

The results indicate that the graph embedding methods can achieve
very competitive or better performance while being general (i.e.
applied on different graphs and tasks). The learned embedding can
also be treated as a complementary representation for the biological
features. By summarizing the experimental results, we provide insight-
ful observations as well as suggestions for selecting proper graph
embedding methods and setting their hyper-parameters for biomedical
prediction tasks. For instance, for MF-based methods, modeling high-
order proximity (Cowen et al., 2017) [e.g. HOPE (Ou et al., 2016)
and GraRep (Cao et al., 2015)] is more useful in biomedical link pre-
diction tasks compared with node classification tasks. For random
walk-based methods, DeepWalk (Perozzi et al., 2014) and node2vec
(Grover and Leskovec, 2016) perform better in node classification
tasks while struc2vec achieves better results in biomedical link predic-
tion tasks. We also discuss the connections between embedding meth-
ods and the recent network propagation and diffusion methods in
biomedical graph analysis (Cowen et al., 2017). Additionally, we illus-
trate a few new trends and directions (e.g. transfer learning in biomed-
ical graph embedding) to encourage future work.

To summarize, our contributions are 3-fold:

• We provide an overview of different types of graph embedding

methods, and discuss how they can be used in three important

biomedical link prediction tasks: DDAs, DDIs and PPIs predic-

tion; and two node classification tasks, protein function predic-

tion and medical term semantic type classification.
• We compile 7 benchmark datasets for all the above prediction

tasks and use them to systematically evaluate 11 representative

graph embedding methods selected from different categories (i.e.

5 MF-based, 3 random walk-based, 3 neural network-based).

We discuss our observations from extensive experiments and

provide some insights and guidelines for how to choose embed-

ding methods (including their hyper-parameter settings).
• We develop an easy-to-use Python package with detailed instruc-

tions, BioNEV (Biomedical Network Embedding Evaluation),

available at: https://github.com/xiangyue9607/BioNEV, includ-

ing all source code and datasets, to facilitate studying various

graph embedding methods on biomedical tasks.

2 Overview of graph embedding methods

In this section, we provide a brief overview of different graph
embedding methods that are categorized into three groups: MF-
based, random walk-based and neural network-based (Fig. 1 pro-
vides a high-level illustration).

Fig. 1. Pipeline for applying graph embedding methods to biomedical tasks. Low-dimensional node representations are first learned from biomedical networks by graph embed-

ding methods and then used as features to build specific classifiers for different tasks. For (a) matrix factorization-based methods, they use a data matrix (e.g. adjacency matrix)

as the input to learn embeddings through matrix factorization. For (b) random walk-based methods, they first generate sequences of nodes through random walks and then

feed the sequences into the word2vec model (Mikolov et al., 2013) to learn node representations. For (c) neural network-based methods, their architectures and inputs vary

from different models (see Section 2 for details)
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2.1 MF-based methods
MF has been widely adopted for data analyses. Essentially, it aims
to factorize a data matrix into lower dimensional matrices and still
keep the manifold structure and topological properties hidden in the
original data matrix. Pioneer work in this category dates back to the
early 2000s, such as Isomap (Tenenbaum et al., 2000), Locally
Linear Embedding (Roweis and Saul, 2000) and LEs (Belkin and
Niyogi, 2003). Traditional MF has many variants, such as singular
value decomposition (SVD) and graph factorization (GF) (Ahmed
et al., 2013). And they often focus on factorizing the first-order data
matrix (e.g. adjacency matrix).

More recently, researchers focus on designing various high-order
data proximity matrices to preserve the graph structure and propose
various MF-based graph embedding learning methods. For example,
GraRep (Cao et al., 2015) considers the high-order proximity of the
network and designs k-step transition probability matrices for fac-
torization. HOPE (Ou et al., 2016) also considers the high-order
proximity. But different from GraRep, it adopts some well-known
network similarity measures such as Katz Index and Common
Neighbors to preserve network structures.

2.2 Random walk-based methods
Inspired by the word2vec (Mikolov et al., 2013) model, a popular
word embedding technique from Natural Language Processing
(NLP), which tries to learn word representations from sentences,
random walk-based methods are developed to learn node represen-
tations by generating ‘node sequences’ through random walks in
graphs. Specifically, given a graph and a starting node, random
walk-based methods first select one of the node’s neighbors random-
ly and then move to this neighbor. This procedure is repeated to ob-
tain node sequences. Then the word2vec model is adopted to learn
embeddings based on the generated sequences of nodes. In this way,
structural and topological information can be preserved into latent
features.

One of the initial works in this category is DeepWalk (Perozzi
et al., 2014), which performs truncated random walks on a graph.
Compared with DeepWalk, node2vec (Grover and Leskovec, 2016)
adopts a flexible biased random walk procedure that smoothly com-
bines breadth-first sampling and depth-first sampling to generate
node sequences. Furthermore, struc2vec (Ribeiro et al., 2017) is pro-
posed for better modeling the structural identity (e.g. nodes in the
network may perform similar functions). Particularly, struct2vec
first constructs a multi-layer weighted graph that encodes the struc-
tural similarity between nodes where each layer k is defined by using
the k-hop neighborhoods of the nodes. DeepWalk is then performed
on the multilayer graph to learn node representations in which
nodes with high structural similarity are close to each other in the
embedding space.

2.3 Neural network-based methods
Recent years have witnessed the success of neural network models in
many fields. Various neural networks also have been introduced
into graph embedding areas, such as multilayer perceptron (MLP)
(Tang et al., 2015), autoencoder (Cao et al., 2016; Kipf and
Welling, 2016; Wang et al., 2016), generative adversarial network
(GAN) (Wang et al., 2018) and graph convolutional network
(GCN) (Kipf and Welling, 2016, 2017). Different methods adopt
different neural architectures and use different kinds of graph infor-
mation as input. For example, LINE (Tang et al., 2015) directly
models node embedding vectors by approximating the first-order
proximity and second-order proximity of nodes, which can be seen
as a single-layer MLP model. DNGR (Cao et al., 2016) applies the
stacked denoising autoencoders on the positive pointwise mutual in-
formation (PPMI) matrix to learn deep low-dimensional node
embeddings. SDNE (Wang et al., 2016) adopts a deep autoencoder
to preserve the second-order proximity by reconstructing the neigh-
borhood structure of each node; meanwhile, it also incorporates LEs
proximity measure into the learning framework to exploit the first-
order proximity. GAE (Kipf and Welling, 2016) utilizes a GCN en-
coder and an inner product decoder to learn node embeddings.

GraphGAN (Wang et al., 2018) adopts GANs to model the connect-
ivity of nodes. The GAN framework includes a generator and a dis-
criminator where the generator approximates the true connectivity
distribution over all other nodes and generates fake samples, while
the discriminator model detects whether the sampled nodes are from
ground truth or generated by the generator.

3 Applications of graph embedding on
biomedical networks

In this section, we select 11 representative graph embedding meth-
ods (5 MF-based, 3 random walk-based, 3 neural network-based),
and review how they are used on 3 popular biomedical link predic-
tion applications: DDA prediction, DDI prediction, PPI prediction;
and 2 biomedical node classification applications: protein function
prediction and medical term semantic type classification.

3.1 Link prediction
Discovering new interactions (links) is one of the most important
tasks in the biomedical area. A considerable amount of efforts has
been devoted to developing computational methods to predict po-
tential interactions in various biomedical networks, such as the
DDA network (Liang et al., 2017), DDI network (Zhang et al.,
2018b) and PPI network (Wang et al., 2014). Developing such com-
putational methods can help generate hypotheses of potential associ-
ations or interactions in biological networks.

The link prediction task can be formulated as: given a set of bio-
medical entities and their known interactions, we aim to predict
other potential interactions between entities (Lü and Zhou, 2011).
Traditional methods in the biomedical field put much effort on fea-
ture engineering to develop biological features [e.g. chemical sub-
structures (Liang et al., 2017), gene ontology (Gottlieb et al., 2011)]
or graph properties [e.g. topological similarities (Hamilton et al.,
2017)]. After that, supervised learning methods [e.g. support vector
machine (SVM), Random Forest] (Hamilton et al., 2017) or semi-
supervised graph inference model [e.g. label propagation (Cowen
et al., 2017)] are utilized to predict potential interactions. The as-
sumption behind these methods is that entities sharing similar bio-
logical features or graph features could have similar connections.

However, deploying methods based on biological features typical-
ly faces two problems: (i) biological features may not always be avail-
able and can be hard and costly to obtain. One popular approach to
solve this problem is to remove those biological entities without fea-
tures via pre-processing, which usually results in small-scale pruned
datasets and thus is not pragmatic and useful in the real setting.
(ii) Biological features, as well as hand-crafted graph features (e.g.
node degrees), may not be precise enough to represent or characterize
biomedical entities, and may fail to help build a robust and accurate
model for many applications (Hamilton et al., 2017).

Graph embedding methods that seek to learn node representa-
tions automatically are promising to solve the two problems
mentioned above. Embedding ideas have also been employed in
some recently proposed computational methods in the biomedical
field. For example, MF-based techniques (Dai et al., 2015; Yang
et al., 2014; Zhang et al., 2018c) are used for predictions of DDAs.
Essentially, a DDA matrix is factorized to learn low-dimensional
representations for drugs and diseases in the latent space. During
factorization, regularization terms or constraints can be added to
further improve the quality of latent representations. For predictions
of DDIs, Zhang et al. (2018b) propose manifold regularized MF in
which Laplacian regularization is incorporated to learn a better
drug representation. Besides, graph neural network is introduced for
DDIs prediction (Ma et al., 2018; Zitnik et al., 2018) and the intu-
itions are similar to the GAE (Kipf and Welling, 2016). PPIs are
commonly predicted using Laplacian and SVD techniques (You
et al., 2017; Zhu et al., 2013). More recently, Wang et al. (2017)
propose an autoencoder-based model to learn embeddings of pro-
teins, which has a similar design to SDNE (Wang et al., 2016).
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3.2 Node classification
In addition to the link prediction task, node classification which
aims to predict the class of unlabeled nodes given a partially labeled
graph, is also one of the most important applications in graph analy-
ses. Here, we mainly focus on two node classification applications:
protein function prediction and medical term semantic type
classification.

Protein function prediction. The large-scale experimental func-
tional annotation of proteins is often expensive (Gligorijevi�c et al.,
2018; Kulmanov et al., 2018), hence graph-based computational
methods which widely incorporate the idea of graph embedding,
have been proposed in recent years. For example, Lim et al. (2018)
propose a regularized Laplacian kernel-based method to learn low-
dimensional embeddings of proteins. Cho et al. (2016) develop
Mashup, which first performs random walks with restart (RWR) on
PPI networks and then learns embeddings for each protein via a low
rank matrix approximation method (can be optimized by SVD). The
feature vectors are then fed into classifiers to derive functional
insights about genes or proteins. Kulmanov et al. (2018) propose
DeepGO that learns joint representations of proteins based on pro-
tein sequences as well as PPI network via convolutional neural nets
and a graph embedding method (Alshahrani et al., 2017) [similar to
DeepWalk (Perozzi et al., 2014)]. In node2vec, Grover and
Leskovec (2016) test the effectiveness of the proposed embedding
method on a PPI network. Furthermore, Zitnik and Leskovec (2017)
develop OhmNet, which optimizes hierarchical dependency objec-
tives based on node2vec to learn feature representations in multi-
layer tissue networks for function prediction. Gligorijevi�c et al.
(2018) develop deepNF, which learns embeddings of proteins via a
deep autoencoder [similar to SDNE (Wang et al., 2016)].

Medical term semantic type classification. In the past few years,
the increase of clinical texts have been encouraging data-driven
models for improving the patient personal care and help clinical de-
cision (Mullenbach et al., 2018). However, due to the privacy and
security concerns, the access to raw clinical texts is often limited
(Beam et al., 2018; Finlayson et al., 2014; Ta et al., 2018). To facili-
tate research on clinical texts, a popular substitute strategy for
releasing raw clinical texts is to extract medical terms and their
aggregated co-occurrence counts from the clinical texts (Finlayson
et al., 2014; Ta et al., 2018). However, such released privacy-aware
datasets only contain medical terms (words or phrases) extracted
from clinical texts and do not reveal the semantic information (e.g.
semantic types or categories). By referring to some medical know-
ledge bases, e.g. unified medical language system (UMLS)
(Bodenreider, 2004), we can obtain semantic types (labels) medical
terms. But due to mismatch and incomplete knowledge in UMLS,
the semantic types of some medical terms remain unknown. Hence,
we formulate a less-investigated but meaningful node classification
task (Fig. 2): given a medical term co-occurrence graph where terms
and co-occurrence statistics have been extracted from clinical texts,
classify the semantic types of medical terms. In this work, we assume

the clinical texts have been converted into a medical term–term co-
occurrence graph as in Finlayson et al. (2014), where each node is
an extracted medical term and each edge is the co-occurrence count
of two terms in a context window. We apply graph embedding
methods to the co-occurrence graph to learn representations of med-
ical terms. Afterward, a multi-label classifier can be trained based
on the learned embeddings to classify the semantic types of medical
terms.

3.3 Summary
In order to show the current research status of evaluated graph
embedding methods on the above biomedical applications, we sum-
marize 11 graph embedding techniques by 3 categories and the exist-
ing works which have applied these techniques on certain tasks in
Table 1. As can be seen, existing methods for the five representative
biomedical applications primarily adopt the traditional techniques,
e.g. LEs, MF. On the other hand, more recent advanced graph
embedding methods have been demonstrated to outperform trad-
itional techniques in social/information networks (Cao et al., 2015;
Grover and Leskovec, 2016; Tang et al., 2015), but their perform-
ance in biomedical networks is not unknown. In addition, the
comparison between these general graph embedding methods and
state-of-the-arts in the individual prediction task should be explored
to encourage future research. Hence, we conduct comprehensive
experiments to evaluate those 11 graph embedding methods selected
from 3 different categories on 5 representative biomedical tasks and
compare them against the state-of-the-arts in each biomedical pre-
diction task.

We follow the pipeline (shown in Fig. 1) of the widely adopted
link prediction and node classification methods in general domains
(Grover and Leskovec, 2016; Tang et al., 2015): graph embeddings
are first learned and then used as feature inputs to build a binary
classifier or multi-label classifier (e.g. Logistic Regression, SVM,
MLP) to predict the unobserved links or the node labels.

4 Experiments

In this section, we introduce the details of seven compiled datasets,
including two DDA graphs, a DDI graph, a PPI graph for link pre-
diction and a medical term–term co-occurrence graph as well as two
PPI graphs for node classification. Then, we conduct comprehensive
comparisons of 11 selected graph embedding methods on these com-
piled datasets.

4.1 Datasets
We use the following datasets for Link Prediction:

1. DDA graph. We extract chemical-disease associations from the

Comparative Toxicogenomics Database (CTD) (Davis et al.,

2018). CTD offers two kinds of associations: curated (verified)

and inferred. Since our task is to infer potential chemical-disease

associations, we only use curated ones as our golden instances.

Finally, we obtain 92 813 edges between 12 765 nodes (9580

chemicals and 3185 diseases) in this graph (named as ‘CTD

DDA’).

Also, we construct another DDA network from National Drug

File Reference Terminology (NDF-RT) in UMLS (Bodenreider,

2004). NDF-RT is produced by the US Department of Veterans

Affairs, and models drug characteristics including ingredients,

physiologic effect and related diseases. We extract drug-disease

treatment associations using the may treat and may be treated

by relationships in NDF-RT. This graph (named ‘NDFRT

DDA’) contains 13 545 nodes (12 337 drugs and 1208 diseases)

and 56 515 edges.

2. DDI graph. We collect verified DDIs from DrugBank (Wishart

et al., 2018 ), a comprehensive and freely accessible online data-

base that contains detailed information about drugs and drug

(a) (b)

Fig. 2. Illustration of (a) how medical term–term co-occurrence graph is constructed

and (b) node type classification in the graph. Our work assumes that the graph is

given as in Finlayson et al. (2014) and mainly focuses on (b), i.e. testing various

embedding methods on the classification performance
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targets. We obtain 242 027 DDIs between 2191 drugs and refer

to this dataset as ‘DrugBank DDI’.

3. PPI graph. We extract Homo sapiens PPIs from STRING data-

base (Szklarczyk et al., 2015). Each PPI is associated with a con-

fidence score that indicates its possibility to be a true positive

interaction. To reduce noise, we only collect PPI whose confi-

dence score is larger than 0.7 according to the guidelines of

STRING database. Finally, we obtain 359 776 interactions

among 15 131 proteins and name this dataset as ‘STRING PPI’.

We use the following datasets for Node Classification:

1. Medical term–term co-occurrence graph. We adopt a publicly

available set of medical terms with their co-occurrence statistics

which are extracted by Finlayson et al. (2014) from 20 million

clinical notes collected from Stanford Hospitals and Clinics

(Lowe et al., 2009) since 1995. Medical terms are extracted

from raw clinical notes using an existing phrase mining tool

(LePendu et al., 2012) by matching with 22 clinically relevant

ontologies such as SNOMED-CT and MedDRA. Co-occurrence

frequencies between two terms are counted based on how many

times they co-occur in the same temporal bin (i.e. a certain time-

frame; see Finlayson et al., 2014 for more details). We select

perBin 1-day dataset since it contains more medical terms com-

pared with other bins. To filter very common medical terms (e.g.

‘medical history’, ‘medication dose’) that may influence the qual-

ity of embeddings, we convert the co-occurrence counts to the

PPMI value (Levy and Goldberg, 2014) and remove the edges

whose PPMI value is <2. We also adopt a subsampling

(Mikolov et al., 2013) strategy to further filter common terms

and construct a medical term–term co-occurrence graph that

contains 48 651 medical terms and 1 659 249 edges.

We keep the medical terms that can be mapped to the UMLS

Concept Unique Identifiers (CUI) and collect their corresponding

semantic types (e.g. clinical drug, disease or syndrome) from

UMLS. We select 31 different semantic types, with each having

more than 20 samples. Finally, we obtain 25 120 nodes with

label information. This dataset is called ‘Clin Term COOC’.

2. PPI graphs with functional annotations. We also compile two

PPI graphs with functional annotations from previous studies.

One is from node2vec (Grover and Leskovec, 2016), which con-

tains 3890 proteins, 76 584 interactions and 50 different func-

tion annotations (labels). This dataset is named as ‘node2vec

PPI’. The other one is from Mashup (Cho et al., 2016), which is

designed for integrating different information from multiple net-

works. The Mashup dataset contains six individual PPI networks

(e.g. experimental, coexpression). Given that our selected graph

embedding methods can only work on a single network, we se-

lect the experimental PPI network (there are six individual PPI

networks in Mashup dataset, we select the experimental PPI net-

work since Mashup achieves the best performance on it under

single-network circumstance) to learn embeddings. The experi-

mental PPI network contains 300 181 interactions between

16 143 proteins. Same to Mashup, we use the 3 grouped distinct

levels of functional categories of varying specificity, each con-

taining 28 100 and 262 different annotations, respectively. We

only adopt the first level (28 labels) for the main comparison ex-

periment for simplicity. Other label information is used in com-

paring the recent embedding methods with Mashup in Section

4.4. This dataset is called ‘Mashup PPI’.

The details of all datasets are summarized in Table 2.

4.2 Experimental set-up
We use OpenNE (https://github.com/thunlp/OpenNE), an open-
source Python package for network embedding, to learn node
embeddings for LEs (Belkin and Niyogi, 2003), HOPE (Ou et al.,
2016), GF (Ahmed et al., 2013), DeepWalk (Perozzi et al., 2014),
LINE (Tang et al., 2015) and SDNE (Wang et al., 2016). We run
SVD using Numpy (http://www.numpy.org/) and obtain struc2vec
(https://github.com/leoribeiro/struc2vec) (Ribeiro et al., 2017) and
GAE (https://github.com/tkipf/gae) (Kipf and Welling, 2016)

Table 1. A summary of 11 representative graph embedding methods and existing work (if any) using them for a certain task

Method category Method name Link prediction tasks Node classification tasks

Drug-disease

association

prediction

Drug–drug interaction

prediction

Protein–protein

interaction

prediction

Medical term

type

classification

Protein function

prediction

Traditional Matrix

factorization-

based

Laplacian

(Belkin and Niyogi, 2003)

Zhang et al. (2018c) (Zhang et al., 2018b) Zhu et al. (2013) � Lim et al. (2018)

SVD Dai et al. (2015) � You et al. (2017) � Cho et al. (2016)

GF

(Ahmed et al., 2013)

Yang et al. (2014) and

Zhang et al. (2018c)

(Zhang et al., 2018b) � � �

Recently

Proposed

HOPE

(Ou et al., 2016)

� � � � �

GraRep

(Cao et al., 2015)

� � � � �

Random walk-based DeepWalk

(Perozzi et al., 2014)

� � � � Cho et al. (2016) and

Kulmanov et al. (2018)

node2vec

(Grover and Leskovec, 2016)

� � � � Grover and Leskovec (2016)

and Zitnik and Leskovec

(2017)

struc2vec

(Ribeiro et al., 2017)

� � � � �

Neural network-based LINE

(Tang et al., 2015)

� � � � �

SDNE

(Wang et al., 2016)

� � Wang et al. (2017) � Gligorijevi�c et al. (2018)

GAE

(Kipf and Welling, 2016)

� Zitnik et al. (2018) and

Ma et al. (2018)

� � �

Note: � means that a method (row) has not been applied for a task (column).
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embeddings using the source code provided by their authors. More
implementation details can be found in Supplementary Material.

For the link prediction tasks (Section 4.3), all the known interac-
tions are positive samples and are split into the training set (80%)
and testing set (20%). Since unknown interactions are far more than
known ones, we randomly select disconnected edges as negative
samples with an equal number of positive samples in both training
and testing phase. For each node pair, we concatenate the embed-
dings of two nodes as the edge feature and then build a Logistic
Regression binary classifier based on it using scikit-learn package
(Pedregosa et al., 2011). Area under ROC curve (AUC), accuracy
and F1 score are used to evaluate the performance of the classifiers,
so as to evaluate different embedding methods.

For the node classification task (Section 4.4), we use the entire
graph information to train the embeddings. Nodes with label informa-
tion are then split into the training set (80%) and the testing set (20%).
The embedding vectors of nodes are directly treated as feature vectors
and used to train One-vs-Rest Logistic Regression classifiers using the
scikit-learn package. We assign top ai predictions to the node i as its
predicted labels, where ai is the number of golden labels of the node i
in the testing set. Accuracy, Macro-F1 and Micro-F1 are used to evalu-
ate the performance of different embedding methods on the testing set.
Accuracy is defined as the percentage of samples that have all their
labels classified correctly. F1 score is the harmonic mean of precision
and recall. We adopt two weighted strategies of F1 score: micro (calcu-
late metrics globally by counting the total true positives, false negatives
and false positives) and macro (calculate metrics for each label, and
find their unweighted mean).

For all embedding methods, the dimensionality of the learned
embedding is set to 100 unless otherwise stated (we also discuss its
impact on the performance in Section 4.5). Moreover, we tune 1–2
significant hyper-parameters for some embedding methods via grid-
search (see Section 4.5 for details). Other hyper-parameters for each
method are set at their default values recommended by the corre-
sponding papers.

4.3 Link prediction results

We conduct the link prediction task on the 4 compiled biomedical
networks: CTD DDA, NDFRT DDA, DrugBank DDI and STRING
PPI. Table 3 shows the overall performance of different embedding
methods on the four datasets.

Generally, compared with traditional techniques (e.g. LEs, SVD,
GF), the recently proposed embedding methods have largely
improved the link prediction performance. For example, LINE
achieves 3–23% improvement in terms of AUC value on the four
datasets compared with LEs. Struc2vec obtains 3–15% increment in
the accuracy on the four datasets, respectively, when compared with
GF. These results demonstrate that the recently proposed graph
embedding methods are more effective and could be used on various
biological link prediction tasks to improve the prediction
performance.

Furthermore, we have the following key observations and
analyses:

• For the MF-based methods, since HOPE and GraRep are

designed to capture the high-order proximity of graphs, they are

usually more effective than traditional MF methods that only

preserve the first-order of networks.
• For the random walk-based methods, generally, struc2vec per-

forms better than DeepWalk and node2vec. This is because com-

pared with DeepWalk and node2vec, struc2vec constructs a

hierarchy weighted graph to measure the structural identity.

Such hierarchy structure design incorporates both node degree

distributions from the bottom as well as the entire network on

the top, which can better capture the graph structure information

and hence obtain better performance.
• For the neural network-based methods, LINE achieves competi-

tive prediction performance consistently when compared with

the best performing method on each dataset. It indicates that dir-

ectly modeling edge information by a single-layer MLP is an ef-

fective way to learn node embeddings. SDNE and GAE also

obtain satisfying prediction performance, which demonstrates

that autoencoders and GCNs can also be useful for capturing

graph structural information.

Comparison with state-of-the-art studies. To further demon-
strate the effectiveness of graph embedding methods, we compare
them with the state-of-the-art methods for two link prediction:
DDA prediction and DDI prediction.

For the DDAs prediction, we select LRSSL (Liang et al., 2017) as
our baseline. LRSSL is a Laplacian regularized sparse subspace
learning framework which aims to project different drug features
into a common subspace. Three drug feature profiles (i.e. chemical
substructure, target domain and target annotation) are used in the
training process. To be fair, we adopt the code and dataset used in
the LRSSL. To learn graph embeddings without modeling biological
features, we run four representative graph embedding methods:
GraRep, DeepWalk, LINE and struc2vec on LRSSL’s DDA graph.
Following the same train/test split, training and evaluation process
of link prediction in Section 4.2, we plot the ROC Curves to illus-
trate the performance of different methods better. As seen in
Figure 3a, graph embedding methods achieve competitive perform-
ance compared with LRSSL. Furthermore, we use the learned
DeepWalk embedding vectors as the fourth feature for the LRSSL
method and improve the LRSSL performance, which indicates that
the learned node embedding can be used as a complementary repre-
sentation for biological features.

For the DDIs prediction, we compare the embedding methods
with a recent method DeepDDI (Ryu et al., 2018). DeepDDI first
adopts principal component analysis to reduce the dimension of the
drug features (i.e. drug substructure) and then feeds these into a
deep neural network (DNN) classifier. For a fair comparison with
graph embedding methods and to reduce the bias caused by different
classifiers, we compare these methods under four classifiers, Naive
Bayes, Linear SVM, Logistic Regression and eight-layer DNN (the
same as the original paper). More implement details can be found in
Supplementary Material. As seen in Figure 3b, graph embedding
methods outperform the drug features-based model or obtain very
competitive performance under each classifier, which demonstrates
the power of graph embedding methods.

4.4 Node classification results
Table 4 shows the performance of different embedding methods on
medical term semantic type classification and protein function pre-
diction. We make the following key observations:

• For the MF-based methods, it is a little surprising that the trad-

itional method SVD achieves better performance, even surpass-

ing HOPE and GraRep. This may indicate that directly modeling

Table 2. Statistics of the datasets, where the Density is defined as

2 � no: edges=no: nodes2

Task type Dataset No.

nodes

No.

edges

Density No.

node

labels

Link

prediction

CTD DDA 12 765 92 813 0.11% —

NDFRT DDA 13 545 56 515 0.06% —

DrugBank DDI 2191 242 027 10.08% —

STRING PPI 15 131 359 776 0.31% —

Node

classification

Clin Term

COOC

48 651 1 659 249 0.14% 31

node2vec PPI 3890 76 584 1.01% 50

MashUp PPI 16 143 300 181 0.23% 28
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the first-order proximity would be good enough to classify the

nodes.
• For the random walk-based methods, node2vec performs better

since it aims to capture different functions of nodes (i.e. homo-

phily and structural equivalence) via a more flexible biased ran-

dom walk. Struc2vec performs not good as DeepWalk and

node2vec as it mainly focuses on modeling the structural identity

of nodes; however, a clear structural role may not exist in these

biomedical graphs and struc2vec is not suitable on such graphs.
• For the neural network-based methods, LINE achieves better

performance than SDNE, which demonstrates that directly mod-

eling edge information is an effective way to learn the embedding

for the node classification task. And GAE also achieve promising

performance, which demonstrates the power of the graph neural

networks.
Comparison with state-of-the-art study. To better illustrate the

effectiveness of the recent graph embedding methods in biomedical
node classification tasks, we select protein function prediction as
our representative node classification task and compare the graph
embedding methods with a popular state-of-the-art: Mashup (Cho
et al., 2016).

Mashup is also one of embedding learning methods. But differ-
ent from other embedding methods which learn node embedding in
a single network, Mashup is carefully designed to diffuse the infor-
mation from multi-networks. Specifically, RWR is firstly used to
compute the diffusion state for each node in each individual net-
work. Low-dimensional embeddings are then obtained by jointly
minimizing the difference between the observed diffusion states and
the parameterized-multinomial logistic distributions across all

networks. To make a fair comparison with Mashup, we construct a
diffusion PPI network by doing a simple unweighted sum of each
interaction score in the individual networks and then run different
embedding methods on this simple diffusion network. As seen in
Figure 3c, the three representative graph embedding methods:
DeepWalk, node2vec and LINE achieve very competitive or better
performance compared with Mashup on three-level protein function
prediction.

Mashup is specially designed for protein/gene-related prediction
tasks and has an advanced network diffusion strategy (e.g. jointly
optimizing the embedding based on information from each individ-
ual network), but the recent embedding methods can still achieve
competitive performance. This may give some inspirations for future
study (e.g. considering to replace the current embedding optimiza-
tion process of Mashup with DeepWalk, node2vec or LINE).

4.5 Influence of hyper-parameters
Hyper-parameters play essential roles in machine learning models.
However, selecting proper hyper-parameters is often time-
consuming. We investigate the influence of some important hyper-
parameters in various embedding methods. By running grid-search
of these important hyper-parameters of each method, we expect to
summarize some general guidelines for helping researchers better set
the hyper-parameters, so as to save their time and efforts.

We first evaluate how different embedding dimensions can affect
the prediction performance and time efficiency. Figure 4 shows the
impact of embedding dimensionality on the prediction performance
and time efficiency for ‘CTD DDA’ dataset. Generally, the predic-
tion performance becomes better when the embedding dimensional-
ity increases, which is intuitive since higher dimensionality can

(a) (b) (c)

Fig. 3. (a) Comparison with the state-of-the-arts for drug-disease association prediction (LRSSL) (Liang et al., 2017); (b) drug–drug interaction prediction (DeepDDI) (Ryu

et al., 2018) and (c) gene (protein) function prediction (Mashup) (Cho et al., 2016). Same as Mashup, we evaluate their performance on three-level human Biological Process

(BP) gene annotations (each containing GO terms with 101–300, 31–100 and 11–30 genes, respectively). As can be seen, in each task, general graph embedding methods

achieve competitive performance against them

Table 3. Overall link prediction performance on the four compiled biomedical datasets

Method category Method name CTD DDA NDFRT DDA DrugBank DDI STRING PPI

Traditional Matrix factorization-based Laplacian (Belkin and Niyogi, 2003) 0.85660.004 0.93060.003 0.79660.002 0.63960.021

SVD 0.93660.002 0.77960.003 0.91960.001 0.86760.001

GF (Ahmed et al., 2013) 0.88460.004 0.72060.006 0.88260.003 0.81760.005

Recently

proposed

HOPE (Ou et al., 2016) 0.95160.001 0.94960.001 0.92360.001 0.83960.001

GraRep (Cao et al., 2015) 0.96060.001 0.96360.001 0.92560.001 0.89460.001

Random walk-based DeepWalk (Perozzi et al., 2014) 0.92960.002 0.78360.004 0.92160.001 0.88460.001

node2vec (Grover and Leskovec, 2016) 0.91160.002 0.81960.005 0.90260.001 0.82860.003

struc2vec (Ribeiro et al., 2017) 0.96560.001 0.95860.001 0.90460.001 0.90960.001

Neural network-based LINE (Tang et al., 2015) 0.96560.001 0.96260.002 0.90560.002 0.85960.003

SDNE (Wang et al., 2016) 0.93560.010 0.94460.004 0.91160.006 0.88460.008

GAE (Kipf and Welling, 2016) 0.93760.001 0.81360.007 0.91760.001 0.90060.001

Note: Due to the limited space, we only show the AUC value. Other evaluation metrics can be found in Supplementary Material. The best performing method

in each category is in bold.
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encode more useful information. Then, the performance tends to
saturate when the dimension reaches to a threshold (e.g. 100). As
for the time cost, it first increases gradually below 100 but tends to
boost sharply (the y-axis is log-based) if the dimensionality contin-
ues to increase. So we would not suggest to set the dimensionality to
be too large (e.g. around 100 is a good option) for the practitioners
when considering both performance and time efficiency. The results
of dimensionality’s influence on other datasets can be found in
Supplementary Figures S1 and S2.

Furthermore, we choose sensitive hyper-parameters for 7 embed-
ding methods, which have been pointed out to be important by their
authors. Table 5 shows the selected hyper-parameters in different
embedding methods as well as their meanings. We spend a lot of
efforts on carefully tuning these hyper-parameters by grid search.
The influence of the hyper-parameters on each embedding method is
shown in Supplementary Figures S3–S9, respectively. By summariz-
ing these results, we provide some high-level guidelines on setting
hyper-parameters for practitioners in Table 5.

4.6 Summary of experimental results
To better help the practitioners select proper embedding methods
for their biomedical prediction task, we summarize the experimental
results and discuss our observations:

• Generally, the recently proposed graph embedding methods

achieve very promising results in various biomedical prediction

tasks. They deserve more attention for future biomedical graph

analysis.
• By simply applying the recent graph embedding methods on bio-

medical graphs and then feeding into a classifier, we can achieve

very competitive or better performance compared with state-of-

the-arts. Future model design for biomedical prediction tasks

may begin at these embedding methods or integrate them as one

module into the proposed method, which is expected to gain bet-

ter results.
• In particular, for MF-based methods, we observe that modeling

high-order proximity (e.g. HOPE, GraRep) is generally useful for

link prediction tasks on medical graphs but may be less meaning-

ful for the node classification tasks. For random walk-based

methods, struc2vec is more suitable for link prediction tasks

(when there is a lack of structural identity in graphs) while

node2vec and DeepWalk are more suitable for node classification

tasks. For neural network-based methods, LINE usually achieves

competitive performance against the best performing method on

each dataset. SDNE can achieve good performance on link

prediction tasks but less satisfying performance on node classifi-

cation. GAE performs well in relatively large-scale network but

may not perform well on small-scale datasets.

More details of the datasets, implementation, experiment results,
guidelines can be found in Supplementary Material.

5 Discussions and future directions

Connections of network embedding and network propagation. In
the recent biomedical network analyses, a very popular paradigm is
network propagation (Cowen et al., 2017), which amplifies a bio-
logical signal (e.g. label, association) based on the assumption that
nodes with similar neighbors (e.g. genes underlying similar pheno-
types) tend to interact with one another (Menche et al., 2015).
Specifically, the information of one node is propagated through the
edges to their neighbors in an iterative manner for a fixed number of
steps or until convergence (Cowen et al., 2017). The core of these
propagation methods is random walk, which is also adopted in
many embedding methods (e.g. Deepwalk, node2vec and struc2vec).
But different from network diffusion, which propagates the ‘signal’
in the network directly, the random walk-based embedding methods
treat the ‘walk’ as a kind of node similarity or proximity characteriz-
ing method. They expect to preserve the network structural informa-
tion as much as possible through a fixed number of random walks.
These ‘walking histories’ (i.e. node sequences) are then fed into
word2vec (Mikolov et al., 2013) to learn low-dimensional embed-
dings. Though the pipeline of the random walk-based embedding
methods and network propagation methods is different, their idea
and assumption are similar. They both assume that nodes with simi-
lar neighbors have similar functions and tend to interact with each

Table 4. Overall node classification performance on the three compiled datasets

Method category Method name Clini COOC node2vec PPI Mashup PPI

Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

Matrix

factorization-based

Laplacian (Belkin and Niyogi, 2003) 0.31360.005 0.07360.002 0.10160.008 0.07060.007 0.13260.009 0.10760.008

SVD 0.42060.005 0.18660.007 0.22860.011 0.17960.011 0.34760.014 0.29760.014

GF (Ahmed et al., 2013) 0.35260.007 0.14360.009 0.16860.011 0.12160.011 0.29060.015 0.23760.016

HOPE (Ou et al., 2016) 0.39560.005 0.16360.006 0.20860.011 0.15260.011 0.32260.013 0.26660.013

GraRep (Cao et al., 2015) 0.42460.006 0.17760.005 0.23860.010 0.19360.013 0.33460.011 0.28360.011

Random walk-based DeepWalk (Perozzi et al., 2014) 0.47260.005 0.22760.007 0.24360.001 0.19460.011 0.35760.011 0.31160.012

node2vec (Grover and Leskovec, 2016) 0.47960.005 0.23160.010 0.24360.009 0.19060.011 0.36760.012 0.31360.013

struc2vec (Ribeiro et al., 2017) 0.25360.006 0.03860.001 0.09460.006 0.06160.004 0.12060.010 0.08760.008

Neural network-based LINE (Tang et al., 2015) 0.45360.006 0.20560.008 0.23660.011 0.17660.012 0.35260.017 0.29660.017

SDNE (Wang et al., 2016) 0.27160.016 0.04260.007 0.09860.010 0.04760.007 0.17860.013 0.10960.012

GAE (Kipf and Welling, 2016)a — — 0.23760.014 0.18660.014 0.35860.013 0.30760.014

Note: The best performing method in each category is in bold.
aThe source code of GAE provided by the authors does not support a large-scale graph (nodes>40k). We omit its performance on ‘Clini COOC’ here.

Fig. 4. The influence of dimensionality on the performance and training time of dif-

ferent embedding methods based on ‘CTD DDA’ dataset
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other. Besides random walk-based embedding methods, this as-
sumption is also widely adopted in other embedding methods (e.g.
LINE, SDNE).

Additionally, there are some variants of random walk, e.g. ran-
dom walk with restart (RWR), personalized PageRank and diffusion
kernel. They also involve the embedding ideas, e.g. using Laplacian
normalized matrix, factorizing inverse Laplacian matrix. These var-
iants can also be incorporated into current random walk-based
embedding framework.

Modeling external information in graphs. In addition to the
graph structure, external information can also help build computa-
tional models for biomedical networks. For example, Zhang et al.
(2018c) incorporate drug and disease features into MF to learn bet-
ter representations. �Zitnik and Zupan (2014) incorporate prior in-
formation (e.g. gene network) as a vector or a matrix to further
improve the gene-related prediction tasks. There may also exist par-
tial label information on graphs (e.g. semantic types are partly avail-
able for nodes in a medical term co-occurrence graph).
Incorporating those features and labels into advanced graph embed-
ding models can potentially further improve the performance. There
have been a surge of attributed graph embedding methods that ex-
plore this direction. For example, DDRW (Li et al., 2016) and
MMDW (Tu et al., 2016) jointly optimize the objective of
DeepWalk with an SVM classification loss to incorporate label in-
formation. We leave benchmarking such attributed network embed-
ding methods on biomedical graphs as our future work.

Transfer learning for graph embedding. Recent studies in
Computer Vision and NLP show that transfer learning helps im-
prove model performance on different tasks (Howard and Ruder,
2018; Shin et al., 2016). General patterns are captured during pre-
trained processes and can be ‘transferred’ into new prediction tasks.
There also exist some pre-trained embeddings of biomedical entities
(Beam et al., 2018; Choi et al., 2016) which allow us to adopt simi-
lar ideas of ‘transfer learning’ to learn graph embeddings. We can
initialize the embedding vector for each node on a graph with its
pre-trained embedding (e.g. by looking for the corresponding entity
in Choi et al., 2016; Beam et al., 2018) rather than by random ini-
tialization, and then continue training various graph embedding
methods as before (which is often referred to as ‘fine-tuning’). The
pre-trained embeddings can be seen as ‘coarse embeddings’ since
they are usually pre-trained on a large general corpus and have not
been optimized for downstream tasks yet. Nevertheless, they contain
some additional semantic information that may not be able to be
learned from a downstream task graph (e.g. due to its small scale).
By fine-tuning, such additional semantic information can be ‘trans-
ferred’ into the finally learned embeddings. We conduct experiment

with this transfer learning idea on the ‘CTD DDA’ graph. As seen in
Supplementary Table S3, the link prediction performance has been
improved using the pre-trained embeddings from Beam et al. (2018).
Currently, the number of released biomedical entities with pre-
trained embeddings is still limited and entities without pre-trained
embeddings have to be initialized randomly. However, with the
increasing volume of biomedical data, more and more entities can
have pre-trained embeddings, and the idea of pre-training—then—
fine-tuning can be more promising.

6 Conclusion

This paper provides an overview of various graph embedding techni-
ques and evaluates their performance on two important biomedical
tasks, link prediction and node classification. Specifically, we com-
pile 7 datasets from public database or previous studies and use
them to benchmark 11 representative graph embedding methods.
Through extensive experiments, we find that generally the recent
graph embedding methods can perform well in various biomedical
prediction tasks and can also achieve very competitive or better per-
formance compared with state-of-the-arts. Hence, these recent graph
embedding methods can be considered as a starting point when
designing advanced models for future biomedical prediction tasks.
Additionally, we tune some important hyper-parameters of graph
embedding methods and provide general guidelines for setting
hyper-parameters for practitioners. We also discuss the connections
between the recent network propagation (diffusion) methods and
the graph embedding methods as well as potential directions (e.g.
transfer learning for graph embedding) to inspire the future work.
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Table 5. Meanings of main hyper-parameters in different embedding methods and general guidelines for setting hyper-parameters of these

embedding methods

Methods Hyper-parameters General guidelines

GraRep (Cao et al., 2015) Ksteps: k-step relational information (k-step transition

probability matrix)

A large value for link prediction tasks (e.g. 3, 4);

a small value for node classification tasks (e.g.

1, 2)

DeepWalk (Perozzi et al., 2014) Number of walks: the number of walks at each node;

walk length: the length of each walk;

Large values for both (e.g. 64 128 256)

node2vec (Grover and Leskovec, 2016) p, q: two parameters that control how fast the walk

explores and leaves the neighborhood of starting

node

Vary from graphs to graphs, may tune at small

values for both (e.g. 0.25)

struc2vec (Ribeiro et al., 2017) Number of walks: the number of walks at each node;

walk length: the length of each walk

Large values for both (e.g. 64 128 256)

LINE (Tang et al., 2015) epochs: number of training epochs Small training epochs for small-scale graphs

(e.g. 5); and large value for large-scale graph

(e.g. 20)

SDNE (Wang et al., 2016) a: balances the weight of first-order and second-order

proximities; b: controls the reconstruction weight of

the non-zero elements in the training graph

Vary from graphs to graphs, may tune at small

values for both (e.g. a¼0.1, b¼0)

GAE (Kipf and Welling, 2016) Hidden units: number of units in hidden layer A large value (e.g. 128)
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