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Abstract
We characterize the (regular) holonomicity of Horn systems of differential equations under
a hypothesis that captures the most widely studied classical hypergeometric systems.
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1 Introduction

Let Z = C™ with coordinates z1, 22, ..., Zn, and denote by 9d;,, d,,, ..., d;, the partial
derivative operators 9/0z1, ..., 3/3z,. The Weyl algebra Dz, generated by the z; and 9,
is the ring of algebraic differential operators on Z.

The goal of this article is to obtain D-module theoretic results about normalized Horn
systems; in particular, we seek criteria for the following two properties. A (left) Dz-module
M 1is holonomic if Extf)Z (M, Dz) = 0 whenever j # m; it is regular holonomic if the
natural restriction map from formal to analytic solutions of M is an isomorphism in the
derived category. We note that if & is a function space, the space of ¢-valued solutions of M
is Homp, (M, 0). Thus, if m > 1, regularity of Dz-modules involves the derived solutions
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Exti)z (M, 0) for j > 0, where O is either the space of formal or analytic solutions of M at
any given point of Z.

Definition 1.1 Let B be an n x m integer matrix of full rank m with rows By, Ba, ..., By,
whose Z-column span contains no nonzero vectors with all nonnegative entries. Let « € C"
and 1 1= [210;,, 2204, . . ., Zm 0z, |. Construct the following elements of D:
bir—1 |bik|—1
ac:=[] []Bi-n+xi—0) and pe:=[] [] Bi-n+w—0.
big>0 £=0 bix<0 £=0

(1) The Horn hypergeometric system associated to B and « is the left Dz-ideal
Horn(B,x) := Dz - {gx —zxkpr | k=1,2,...m) C Dyz. (1.1)

(2) Assume that B has an m x m identity submatrix, and assume that the corresponding
entries of k are all zero. The normalized Horn hypergeometric system associated to B
and « is the left Dz-ideal

1
nHorn(B, ) 1= DZ~<—qk—pk k = 1,2,...m>§ Dy. (1.2)
Zk

[m}

Normalized Horn systems abound in the mathematical literature, and they include the
(generalized) Gauss hypergeometric equation(s), as well as the systems of differential equa-
tions corresponding to the Appell series, Horn series in two variables, Lauricella series, and
Kampé de Feriét functions, among others. In general, Horn hypergeometric systems have
proved resistant to D-module theoretic study; in fact, we are aware of only [1,6,7,13], which
contain partial results regarding the holonomicity of Horn(B, «).

In the late 1980s, Gelfand, Graev, Kapranov, and Zelevinsky introduced a different kind
of hypergeometric system, known as A-hypergeometric, or GKZ systems, that are much more
amenable to a D-module theoretic approach [9,10]. A modification of these systems led to
lattice basis D-modules, whose solutions are in one-to-one correspondence with the solutions
of Horn systems.

Definition 1.2 Let B and « be as in Definition 1.1, and setd = n — m. Let A = (a;;) be a
d x n integer matrix of full rank, whose columns span 74 as alattice, and such that AB = 0.
Let X = C" with coordinates x1, x7, ..., x, and consider the Weyl algebra Dy generated
by the x; and their corresponding d,, = aix[' Denote 6; = x;0dy, fori = 1,2,...,n. The
polynomial ideal

1(B) ::< [T 2% = ] axi(3i>i>c(C[axl,axz,...,axn]

(BJ'),'>0 (BJ'),'<0

is called a lattice basis ideal. Let E; := Z'l’-:l a;j0;, and denote by E — Ax the sequence
E1 —(Ak)1, E2 — (Ak)2, ..., E4 — (Ak)q4, which are known as Euler operators. The lattice
basis Dx-module associated to B and « is the quotient of Dy by the left Dx-ideal H (B, k)
generated by I(B) and E — Ax. O

The solutions of Horn hypergeometric systems and lattice basis binomial D-modules are
related as follows. Let B and « be as in Definition 1.1, and denote by by, by, ..., b, the
columns of B. Let ¢(z) = ¢(z1, 22, - - - » Zm) be a germ of a holomorphic function at a point
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p of Z that is nonsingular for Dz /Horn(B, k). Then ¢(z) is a solution of Dz /Horn(B, «) if
and only if x"g(xb' ,xb2 .. xPm) is a solution of Dx/H (B, k) (at a corresponding point
pB = (pB, ..., pB) in X). Note that this does not imply any relationship among higher
derived solutions of the corresponding modules, or about solutions at singular points.

This correspondence between the solutions of the Horn and lattice basis D-modules does
not imply that there is a D-module theoretic relationship between the systems. This would
be desirable, since lattice basis D-modules are fairly well understood; in particular, there are
complete characterizations of their holonomicity and regularity (see Sect. 3), so one could
hope to transfer these results from the lattice basis to the Horn setting. Unfortunately, the
following example shows that such a D-module theoretic relationship cannot exist in general.

Example 1.3 The lattice basis Dy-module corresponding to

1 1 27 2
-1 -1 0 0
0 0 -1 0
B = 1 0 0 and k = |0
0 1 0 0
-1 0 0 0
0 -1 0 | 1 0]

is holonomic, but Dz /Horn(B, «) is not. This can be tested explicitly using the computer
algebra system Macaulay?2 [11]. O

However, for normalized Horn systems, the main result in this article provides a relation-
ship between these and their lattice basis counterparts.

Theorem 1.4 Suppose that the top m rows of B form an identity matrix and K\ = ky =
- = kym = 0. Let r denote the inclusion r: Z — X given by (z1,22,...,2m) >
(21,225 ++ - Zmy Ly o ooy, )OI P* is the restriction (inverse image under r) on Dx-modules,
then there is an equality
Dy _ < Dx >
nHorn(B, k) H(B,k)) "~

This result is inspired by [2, §§11-13]. In this work, Beukers obtains examples of clas-
sical Horn series by setting to one certain variables in the series solutions of associated
A-hypergeometric systems. Theorem 1.4 implies this correspondence among series solu-
tions, as well as invariants including characteristic varieties and singular loci.

Corollary 1.5 Under the hypotheses of Theorem 1.4, the (regular) holonomicity of the modules
Dz/nHorn(B, k) and Dx /H (B, k) are equivalent.

Notation

In [1], Z and Z are used for C" and (C*)™, while in this article, we use Z and Z*, at the
suggestion of the referee.

Outline

In Sect. 2, we prove Theorem 1.4. In Sect. 3, we recall the characterizations for holonomicity
and regularity of lattice basis D-modules and prove Corollary 1.5.
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2 Normalized Horn systems are restrictions

In this section, we prove Theorem 1.4. We use the notation and assumptions introduced in
Definitions 1.1 and 1.2 .
By [14, §5.2], the restriction r* of a cyclic Dx-module Dy /J is given by

o (Px\ Clx1, x2, ..., x4] ® Dx
7 Comet — 1 xman — Lo xp — 1) Clonazeen] 757

(2.1)

It is a fact that the restriction of a cyclic Dy-module is not necessarily cyclic. Consequently,
to establish Theorem 1.4, the first step is to show that r*(Dx/H (B, k)) = r*(Dx/Dx -
(I(B), E — Ak)) is cyclic. To do this, we compute the b-function for the restriction, as
defined in [14, §§5.1-5.2]. The relevant result states that, if the maximal integral root of this
b-function is 0, then the restriction is a cyclic module (see [14, Algorithm 5.2.8]).

Lemma 2.1 Ifthe matrix formed by the top m rows of B has rank m, then the b-function b(s)
of H(B, k) for restrictionto {x € X | Xpyy41 = Xm42 = - - - = X, = 1} divides s.

Proof Consider the change of variables x j>xj+1form+1<j<m,andlet J denote
the Dy-ideal obtained from H (B, k) via this change of variables. We now compute the
b-function of J for restriction to {x € X | xp41 = X2 = -+ = x, = 1}.

With w = (0,,,1;) € R", the vector (—w, w) induces a filtration on Dy, and the b-
function we wish to compute is a generator of the principal ideal gr=*>®)(J) N C[s], where
§ :=6pt1 +Ont2 + - - - + 6,. Note that, since the submatrix of B formed by its first m rows
has rank m, the submatrix of A consisting of its last n — m = d columns has rank d. Thus
there are vectors ™ +D @+2) -, ¢ R gych that (V) A), = Sjrform+1 <k <n.
Form +1 < j <n, with § = Ak,

d m
S v E v g = 0D ApG +6; v B e Dy (E —B).
i=1 k=1

Using the change of variables
X forl <j<m
X
xj+1 form+1<j<n,

and then multiplying by x;, form + 1 < j < n, we obtain

m

D 0D A)xj0 + x70,, +60; — vV Bxj € J.

k=1
Taking initial terms with respect to (—w, w) of this expression, it follows that 6; €
gr(_w’“’)(]) foreachm +1 < j < n.Therefores = 0,41 +6p2+---+6, € gr(_w’“’)(]),
and the result follows. ]

Proof of Theorem 1.4 By Lemma 2.1, r*(Dx/H (B, k)) is of the form Dz /L. In order to find
the ideal L, we must perform the intersection

H(B. k)N Ry, where Ry, := Clx1, x2, ..., X ](dx; . Dyr - ... 0x,) € Dx,  (2.2)

and then set X;;+1 = Xp41 = --- = x, = 1. We proceed by systematically producing
elements of the intersection (2.2). Using the same argument as in the proof of Lemma 2.1,
we see that form + 1 < j < n, each 6; can be expressed modulo Dy - (E — B) as a linear
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combination of 61,6, ..., 6, and the parameters «. By our assumption on B, 6; can be
written explicitly as follows:

m
0j =kj+ Y bjiti modDx-(E—p) form+1<j<n. 2.3)

i=1
Now if P € Dy, then there is a monomial £ in X, 41, Xp+2, - - . , X, SO that the resulting oper-
ator P can be written in terms of x1, X2, ..., X, Ox;, Oxys - - -, Ox,» ANA O 1, Opg2, . ., Oy
In addition, working modulo Dy - (E — B), one can replace 6; when j > m by the expres-
sions (2.3). Thus @ P is an element of R,, modulo R,, - (E — B). If this procedure is applied

to E; — B;, the result is zero. We now apply it to one of the generators 8)Ebk)+ — 8§b")’ of
1(B), where by, b, ..., b, denote the columns of B. An appropriate monomial in this case

i5 11 = [Tipyr %) "', Then the fact that by, = 1 for 1 < k < m and (2.3) together imply
that

b bi)—
Ik (a}g K+ _ a)(( k) )

—b; b ) b; —bj _p:
— ( 1—[ xj Jk> anbkk 1—[ xjjkaij_,k _ 1—[ x'Jk 1—[ xj .Ikaxj b
b

k<0 Jj>m.bjr>0 Jj>m.bjr>0 I bjr<0

by bjr—1 m
=\ IT x; 7 )os I I K.,-+Z]bj,-9,-—z
i=

bjr<0 Jj>m.bjr>0 £=0
bik —bjr—1 m
- J] I 11 (Kj+zb,~i9i—z>. (2.4)
j>m.bjx>0 bjr<0 £=0 i=1
Note that setting x,,4+1 = Xp42 = --- = x, = 1 in (2.4), we obtain the kth generator of
the normalized Horn system nHorn(B, «), since bj; < 0 implies j > m. This shows that
nHorn(B, k) is contained in the intersection (2.2) after setting x,,, 11 = Xp42 = -+ = x, = L.

Now suppose that P is an element of the intersection (2.2). In particular, P belongs to
1(B) + (E — B), so there are Py, P, ..., Py, Q1, Q2,..., Q4 € Dy such that

m d
b br)—
P=Y P (0 =07 + Y 0iE - .
k=1 i=1
If we multiply P on the left by a monomial in x,,,41, X;42, - .., X, and set X, 41 = X402 =
.-+ = x, = 1, theresult is the same as if we set X, 41 = X;42 = -+ = x, = 1 on P directly.

Thus we choose an appropriate monomial 7 such that a monomial i as above can be pulled
through to the right of each P, as follows:

m d
b by)—
P =Y 0k (0 = o) 40 Y 0iCE - )

k=1 i=1

m d
= P (B)Ebk)+ - 3)(cbk)’) +1) Qi(Ei — B)
k=1

i=1

for some operators P, Py, ..., P,. An appropriate monomial 1 here is
n
wj —+o
n= [T "7,
j=m+l1
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where

w; := max{orderof 9; in P, | 1 <€ <m}foreachl < j <m

and o :=max{degreeof uy |m+ 1<k <n}=max{|bji| |m+1=<k <n}.

But now, the result of setting x,,+1 = X42 = - -+ = x, = 1 on n P (the same as if this were
done to P) is a combination of the generators of nHorn(B, «). Thus, we have shown that the
intersection (2.2) after setting x;,+-1 = Xpu42 = -+- = X, = 1 is contained in nHorn(B, k).
We conclude that r*(Dz/H (B, k)) = Dz/nHorn(B, ). O

3 Lattice basis D-modules

The ring Dy is Z-graded by setting deg(dy;) = —deg(x;) = a;, where ay, ..., a, are
the columns of the matrix A from Definition 1.2. This grading, which is also inherited
by the polynomial ring C[d,] := C[dy,, 0x,, - .., dx,], is known as the A-grading. An A-
homogeneous binomial C[d,]-ideal I is an ideal generated by A-homogeneous elements of
the form 0¥ — A0!. (In this definition, A = 0 is allowed; in other words, monomials are
admissible generators in a binomial ideal.)

Note that H (B, k) is A-homogeneous, so that the lattice basis binomial Dx-modules are
A-graded. It is this grading that can be used to determine the set of parameters « for which
the module Dx/H (B, k) is holonomic (Theorem 3.3). We need the notion of quasidegrees
of a module, originally introduced in [12].

Definition 3.1 Let M be an A-graded C[d,]-module. The set of true degrees of M is
tdeg(M) = {B € C* | Mg # 0).
The set of quasidegrees of M, denoted qdeg(M), is the Zariski closure in C? of tdeg(M). 0

Definition 3.2 ([4, Definition 4.3], [5, Definitions 1.11 and 6.9]) Let A be as in Definition 1.2,
and let 7 be an A-homogeneous binomial C[d,]-ideal. By [8], any associated prime of I is
of the form C[dy] - J + (x; | j ¢ o), whereo C {1,2,...,n}and J C C[dy; | i € o]is
a prime binomial ideal containing no monomials. Such an associated prime is called foral if
the dimension of C[dy, | i € o]/J equals the rank of the submatrix of A consisting of the
columns indexed by o. An associated prime of / which is not toral is called Andean.
Consider a primary decomposition / = mév: 1 Ce, where Cq, Cy, ..., Ck are the primary
components corresponding to Andean associated primes and Ck 41, Cx 42, ..., Cy are the
components corresponding to toral associated primes. The Andean arrangement of 1 is

K
Zandean (D) = |_J adeg (C[3:1/Co) .
=1
m}

The name Andean refers to an intuitive picture of the grading of an Andean module (see [5,
Remark 5.3]).

Since Andean primes may be embedded, the definition of the Andean arrangement seems
a priori to depend on the specific primary decomposition; however, [5, Theorem 6.3] shows
that this is not the case. We will make use of the following Theorem 3.3, whose first part is
a special case of [5, Theorem 6.3], while its second part is proved in [3].
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We recall that the holonomic rank of a D-module is the dimension of its space of germs
of holomorphic solutions at a generic (nonsingular) point.

Theorem 3.3 Use the notation from Definitions 1.2 and 3.2. The following are equivalent.

(1) The Dx-module Dx /H (B, k) has finite holonomic rank.
(2) The Dx-module Dx /H (B, k) is holonomic.
(3) Ak ¢ Zandean(H (B, k)).

In addition, Dx / H (B, k) is regular holonomic if and only if it is holonomic and the rows of
B sum to 0y,. o

We need one more result in order to prove Corollary 1.5. Let Z* = (C*)", and consider
its ring of differential operators Dz« := (C[zfl, o 22 ®CL2y 0.2 Dz The saturated
Horn system corresponding to B and k is sHorn(B, k) := Dz« - Horn(B, k) N Dz.

Theorem 3.4 [1, Corollary 7.2] The Dx-module Dy /H (B, k) is (regular) holonomic if and
only if the Dz-module Dz /sHorn (B, «) is (regular) holonomic. ]

Proof of Corollary 1.5 If Dx/H (B, k) is (regular) holonomic, then so is Dz/nHorn(B, k)
by Theorem 1.4, since restrictions preserve (regular) holonomicity. For the converse, if
Dx/H (B, k) is not (regular) holonomic, then neither is Dz /sHorn(B, k) by Theorem 3.4.
Since nHorn(B, k) € sHorn(B, k), and the category of (regular) holonomic Dz-modules is
closed under quotients of Dz-modules, Dz /nHorn(B, «) also fails to be (regular) holonomic.

O
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