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Abstract
We characterize the (regular) holonomicity of Horn systems of differential equations under
a hypothesis that captures the most widely studied classical hypergeometric systems.
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1 Introduction

Let Z = C
m with coordinates z1, z2, . . . , zm , and denote by ∂z1 , ∂z2 , . . . , ∂zm the partial

derivative operators ∂/∂z1, . . . , ∂/∂zm . The Weyl algebra DZ , generated by the zi and ∂zi ,
is the ring of algebraic differential operators on Z .

The goal of this article is to obtain D-module theoretic results about normalized Horn
systems; in particular, we seek criteria for the following two properties. A (left) DZ -module
M is holonomic if Ext jDZ

(M, DZ ) = 0 whenever j �= m; it is regular holonomic if the
natural restriction map from formal to analytic solutions of M is an isomorphism in the
derived category. We note that if O is a function space, the space of O-valued solutions of M
is HomDZ (M,O). Thus, if m > 1, regularity of DZ -modules involves the derived solutions
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Ext jDZ
(M,O) for j > 0, where O is either the space of formal or analytic solutions of M at

any given point of Z .

Definition 1.1 Let B be an n × m integer matrix of full rank m with rows B1, B2, . . . , Bn ,
whose Z-column span contains no nonzero vectors with all nonnegative entries. Let κ ∈ C

n

and η := [z1∂z1 , z2∂z2 , . . . , zm∂zm ]. Construct the following elements of DZ :

qk :=
∏

bik>0

bik−1∏

�=0

(Bi · η + κi − �) and pk :=
∏

bik<0

|bik |−1∏

�=0

(Bi · η + κi − �).

(1) The Horn hypergeometric system associated to B and κ is the left DZ -ideal

Horn(B, κ) := DZ · 〈qk − zk pk | k = 1, 2, . . .m〉 ⊆ DZ . (1.1)

(2) Assume that B has an m × m identity submatrix, and assume that the corresponding
entries of κ are all zero. The normalized Horn hypergeometric system associated to B
and κ is the left DZ -ideal

nHorn(B, κ) := DZ ·
〈
1

zk
qk − pk

∣∣∣∣ k = 1, 2, . . .m

〉
⊆ DZ . (1.2)

��
Normalized Horn systems abound in the mathematical literature, and they include the

(generalized) Gauss hypergeometric equation(s), as well as the systems of differential equa-
tions corresponding to the Appell series, Horn series in two variables, Lauricella series, and
Kampé de Feriét functions, among others. In general, Horn hypergeometric systems have
proved resistant to D-module theoretic study; in fact, we are aware of only [1,6,7,13], which
contain partial results regarding the holonomicity of Horn(B, κ).

In the late 1980s, Gelfand, Graev, Kapranov, and Zelevinsky introduced a different kind
of hypergeometric system, known as A-hypergeometric, orGKZ systems, that are muchmore
amenable to a D-module theoretic approach [9,10]. A modification of these systems led to
lattice basis D-modules, whose solutions are in one-to-one correspondencewith the solutions
of Horn systems.

Definition 1.2 Let B and κ be as in Definition 1.1, and set d = n − m. Let A = (ai j ) be a
d × n integer matrix of full rank, whose columns span Zd as a lattice, and such that AB = 0.
Let X = C

n with coordinates x1, x2, . . . , xn and consider the Weyl algebra DX generated
by the xi and their corresponding ∂xi = ∂

∂xi
. Denote θi = xi∂xi for i = 1, 2, . . . , n. The

polynomial ideal

I (B) :=
〈

∏

(Bj )i>0

∂xi
(Bj )i −

∏

(Bj )i<0

∂xi
(Bj )i

〉
⊂ C[∂x1 , ∂x2 , . . . , ∂xn ]

is called a lattice basis ideal. Let Ei := ∑n
j=1 ai jθ j , and denote by E − Aκ the sequence

E1 − (Aκ)1, E2 − (Aκ)2, . . . , Ed − (Aκ)d , which are known as Euler operators. The lattice
basis DX -module associated to B and κ is the quotient of DX by the left DX -ideal H(B, κ)

generated by I (B) and E − Aκ . ��
The solutions of Horn hypergeometric systems and lattice basis binomial D-modules are

related as follows. Let B and κ be as in Definition 1.1, and denote by b1, b2, . . . , bm the
columns of B. Let ϕ(z) = ϕ(z1, z2, . . . , zm) be a germ of a holomorphic function at a point
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p of Z that is nonsingular for DZ/Horn(B, κ). Then ϕ(z) is a solution of DZ/Horn(B, κ) if
and only if xκg(xb1 , xb2 , . . . , xbm ) is a solution of DX/H(B, κ) (at a corresponding point
pB = (pB1 , . . . , pBn ) in X ). Note that this does not imply any relationship among higher
derived solutions of the corresponding modules, or about solutions at singular points.

This correspondence between the solutions of the Horn and lattice basis D-modules does
not imply that there is a D-module theoretic relationship between the systems. This would
be desirable, since lattice basis D-modules are fairly well understood; in particular, there are
complete characterizations of their holonomicity and regularity (see Sect. 3), so one could
hope to transfer these results from the lattice basis to the Horn setting. Unfortunately, the
following example shows that such a D-module theoretic relationship cannot exist in general.

Example 1.3 The lattice basis DX -module corresponding to

B =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 2
−1 −1 0
0 0 −1
1 0 0
0 1 0

−1 0 0
0 −1 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

and κ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
0
0
0
0
0
0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

is holonomic, but DZ/Horn(B, κ) is not. This can be tested explicitly using the computer
algebra system Macaulay2 [11]. ��

However, for normalized Horn systems, the main result in this article provides a relation-
ship between these and their lattice basis counterparts.

Theorem 1.4 Suppose that the top m rows of B form an identity matrix and κ1 = κ2 =
· · · = κm = 0. Let r denote the inclusion r : Z ↪→ X given by (z1, z2, . . . , zm) �→
(z1, z2, . . . , zm, 1, . . . , 1). If r∗ is the restriction (inverse image under r) on DX -modules,
then there is an equality

DZ

nHorn(B, κ)
= r∗

(
DX

H(B, κ)

)
.

This result is inspired by [2, §§11–13]. In this work, Beukers obtains examples of clas-
sical Horn series by setting to one certain variables in the series solutions of associated
A-hypergeometric systems. Theorem 1.4 implies this correspondence among series solu-
tions, as well as invariants including characteristic varieties and singular loci.

Corollary 1.5 Under the hypotheses of Theorem1.4, the (regular) holonomicity of themodules
DZ/nHorn(B, κ) and DX/H(B, κ) are equivalent.

Notation

In [1], Z̄ and Z are used for Cm and (C∗)m , while in this article, we use Z and Z∗, at the
suggestion of the referee.

Outline

In Sect. 2, we prove Theorem 1.4. In Sect. 3, we recall the characterizations for holonomicity
and regularity of lattice basis D-modules and prove Corollary 1.5.
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2 Normalized Horn systems are restrictions

In this section, we prove Theorem 1.4. We use the notation and assumptions introduced in
Definitions 1.1 and 1.2 .

By [14, §5.2], the restriction r∗ of a cyclic DX -module DX/J is given by

r∗
(
DX

J

)
= C[x1, x2, . . . , xn]

〈xm+1 − 1, xm+2 − 1, . . . , xn − 1〉 ⊗C[x1,x2,...,xn ]
DX

J
. (2.1)

It is a fact that the restriction of a cyclic DX -module is not necessarily cyclic. Consequently,
to establish Theorem 1.4, the first step is to show that r∗(DX/H(B, κ)) = r∗(DX/DX ·
〈I (B), E − Aκ〉) is cyclic. To do this, we compute the b-function for the restriction, as
defined in [14, §§5.1–5.2]. The relevant result states that, if the maximal integral root of this
b-function is 0, then the restriction is a cyclic module (see [14, Algorithm 5.2.8]).

Lemma 2.1 If the matrix formed by the top m rows of B has rank m, then the b-function b(s)
of H(B, κ) for restriction to {x ∈ X | xm+1 = xm+2 = · · · = xn = 1} divides s.
Proof Consider the change of variables x j �→ x j + 1 for m + 1 ≤ j ≤ m, and let J denote
the DX -ideal obtained from H(B, κ) via this change of variables. We now compute the
b-function of J for restriction to {x ∈ X | xm+1 = xm+2 = · · · = xn = 1}.

With w = (0m, 1d) ∈ R
n , the vector (−w,w) induces a filtration on DX , and the b-

function we wish to compute is a generator of the principal ideal gr(−w,w)(J ) ∩C[s], where
s := θm+1 + θm+2 + · · · + θn . Note that, since the submatrix of B formed by its first m rows
has rank m, the submatrix of A consisting of its last n − m = d columns has rank d . Thus
there are vectors ν(m+1), ν(m+2), . . . , ν(n) ∈ R

d such that (ν( j)A)k = δ jk form+1 ≤ k ≤ n.
For m + 1 ≤ j ≤ n, with β = Aκ ,

d∑

i=1

ν
( j)
i Ei − ν( j) · β =

m∑

k=1

(ν( j)A)kθk + θ j − ν( j) · β ∈ DX · 〈E − β〉.

Using the change of variables

x j �→
{
x j for 1 ≤ j ≤ m

x j + 1 for m + 1 ≤ j ≤ n,

and then multiplying by x j , for m + 1 ≤ j ≤ n, we obtain

m∑

k=1

(ν( j)A)k x jθk + x2j ∂x j + θ j − ν( j) · βx j ∈ J .

Taking initial terms with respect to (−w,w) of this expression, it follows that θ j ∈
gr(−w,w)(J ) for eachm+1 ≤ j ≤ n. Therefore s = θm+1 +θm+2 +· · ·+θn ∈ gr(−w,w)(J ),
and the result follows. ��
Proof of Theorem 1.4 By Lemma 2.1, r∗(DX/H(B, κ)) is of the form DZ/L . In order to find
the ideal L , we must perform the intersection

H(B, κ) ∩ Rm, where Rm := C[x1, x2, . . . , xn]〈∂x1 , ∂x2 , . . . , ∂xm 〉 ⊆ DX , (2.2)

and then set xm+1 = xm+1 = · · · = xn = 1. We proceed by systematically producing
elements of the intersection (2.2). Using the same argument as in the proof of Lemma 2.1,
we see that for m + 1 ≤ j ≤ n, each θ j can be expressed modulo DX · 〈E − β〉 as a linear
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combination of θ1, θ2, . . . , θm and the parameters κ . By our assumption on B, θ j can be
written explicitly as follows:

θ j = κ j +
m∑

i=1

b jiθi mod DX · 〈E − β〉 for m + 1 ≤ j ≤ n. (2.3)

Now if P ∈ DX , then there is a monomialμ in xm+1, xm+2, . . . , xn so that the resulting oper-
atorμP can be written in terms of x1, x2, . . . , xn, ∂x1 , ∂x2 , . . . , ∂xm , and θm+1, θm+2, . . . , θn .
In addition, working modulo DX · 〈E − β〉, one can replace θ j when j > m by the expres-
sions (2.3). Thus μP is an element of Rm modulo Rm · 〈E − β〉. If this procedure is applied
to Ei − βi , the result is zero. We now apply it to one of the generators ∂

(bk )+
x − ∂

(bk )−
x of

I (B), where b1, b2, . . . , bm denote the columns of B. An appropriate monomial in this case

is μk = ∏n
j=m+1 x

|b jk |
j . Then the fact that bkk = 1 for 1 ≤ k ≤ m and (2.3) together imply

that

μk

(
∂

(bk )+
x − ∂

(bk )−
x

)

=
(

∏
b jk<0

x
−b jk
j

)
∂xk

bkk
∏

j>m,b jk>0
x
b jk
j ∂x j

b jk − ∏
j>m,b jk>0

x
b jk
j

∏
b jk<0

x
−b jk
j ∂x j

−b jk

=
(

∏
b jk<0

x
−b jk
j

)
∂xk

∏
j>m,b jk>0

b jk−1∏
�=0

(
κ j +

m∑
i=1

b jiθi − �

)

−
∏

j>m,b jk>0

x
b jk
j

∏
b jk<0

−b jk−1∏
�=0

(
κ j +

m∑
i=1

b jiθi − �

)
. (2.4)

Note that setting xm+1 = xm+2 = · · · = xn = 1 in (2.4), we obtain the kth generator of
the normalized Horn system nHorn(B, κ), since b jk < 0 implies j > m. This shows that
nHorn(B, κ) is contained in the intersection (2.2) after setting xm+1 = xm+2 = · · · = xn = 1.

Now suppose that P is an element of the intersection (2.2). In particular, P belongs to
I (B) + 〈E − β〉, so there are P1, P2, . . . , Pm, Q1, Q2, . . . , Qd ∈ DX such that

P =
m∑

k=1

Pk
(
∂

(bk )+
x − ∂

(bk )−
x

)
+

d∑

i=1

Qi (Ei − βi ).

If we multiply P on the left by a monomial in xm+1, xm+2, . . . , xn and set xm+1 = xm+2 =
· · · = xn = 1, the result is the same as if we set xm+1 = xm+2 = · · · = xn = 1 on P directly.
Thus we choose an appropriate monomial η such that a monomial μk as above can be pulled
through to the right of each Pk , as follows:

ηP =
m∑

k=1

ηPk
(
∂

(bk )+
x − ∂

(bk )−
x

)
+ η

d∑

i=1

Qi (Ei − βi )

=
m∑

k=1

P̃kμk

(
∂

(bk )+
x − ∂

(bk )−
x

)
+ η

d∑

i=1

Qi (Ei − βi )

for some operators P̃1, P̃2, . . . , P̃m . An appropriate monomial η here is

η =
n∏

j=m+1

x
ω j+σ

j ,
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where

ω j := max{order of ∂ j in P� | 1 ≤ � ≤ m} for each 1 ≤ j ≤ m

and σ := max{degree of μk | m + 1 ≤ k ≤ n} = max{|b jk | | m + 1 ≤ k ≤ n}.
But now, the result of setting xm+1 = xm+2 = · · · = xn = 1 on ηP (the same as if this were
done to P) is a combination of the generators of nHorn(B, κ). Thus, we have shown that the
intersection (2.2) after setting xm+1 = xm+2 = · · · = xn = 1 is contained in nHorn(B, κ).
We conclude that r∗(DZ/H(B, κ)) = DZ/nHorn(B, κ). ��

3 Lattice basisD-modules

The ring DX is Z
d -graded by setting deg(∂xi ) = − deg(xi ) = ai , where a1, . . . , an are

the columns of the matrix A from Definition 1.2. This grading, which is also inherited
by the polynomial ring C[∂x ] := C[∂x1 , ∂x2 , . . . , ∂xn ], is known as the A-grading. An A-
homogeneous binomial C[∂x ]-ideal I is an ideal generated by A-homogeneous elements of
the form ∂ux − λ∂v

x . (In this definition, λ = 0 is allowed; in other words, monomials are
admissible generators in a binomial ideal.)

Note that H(B, κ) is A-homogeneous, so that the lattice basis binomial DX -modules are
A-graded. It is this grading that can be used to determine the set of parameters κ for which
the module DX/H(B, κ) is holonomic (Theorem 3.3). We need the notion of quasidegrees
of a module, originally introduced in [12].

Definition 3.1 Let M be an A-graded C[∂x ]-module. The set of true degrees of M is

tdeg(M) = {β ∈ C
d | Mβ �= 0}.

The set of quasidegrees of M , denoted qdeg(M), is the Zariski closure in Cd of tdeg(M). ��
Definition 3.2 ([4, Definition 4.3], [5, Definitions 1.11 and 6.9]) Let A be as in Definition 1.2,
and let I be an A-homogeneous binomial C[∂x ]-ideal. By [8], any associated prime of I is
of the form C[∂x ] · J + 〈x j | j /∈ σ 〉, where σ ⊂ {1, 2, . . . , n} and J ⊂ C[∂xi | i ∈ σ ] is
a prime binomial ideal containing no monomials. Such an associated prime is called toral if
the dimension of C[∂xi | i ∈ σ ]/J equals the rank of the submatrix of A consisting of the
columns indexed by σ . An associated prime of I which is not toral is called Andean.

Consider a primary decomposition I = ⋂N
�=1 C�, where C1,C2, . . . ,CK are the primary

components corresponding to Andean associated primes and CK+1,CK+2, . . . ,CN are the
components corresponding to toral associated primes. The Andean arrangement of I is

ZAndean(I ) :=
K⋃

�=1

qdeg (C[∂x ]/C�) .

��
The name Andean refers to an intuitive picture of the grading of an Andean module (see [5,
Remark 5.3]).

Since Andean primes may be embedded, the definition of the Andean arrangement seems
a priori to depend on the specific primary decomposition; however, [5, Theorem 6.3] shows
that this is not the case. We will make use of the following Theorem 3.3, whose first part is
a special case of [5, Theorem 6.3], while its second part is proved in [3].
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We recall that the holonomic rank of a D-module is the dimension of its space of germs
of holomorphic solutions at a generic (nonsingular) point.

Theorem 3.3 Use the notation from Definitions 1.2 and 3.2. The following are equivalent.

(1) The DX-module DX/H(B, κ) has finite holonomic rank.
(2) The DX-module DX/H(B, κ) is holonomic.
(3) Aκ /∈ ZAndean(H(B, κ)).

In addition, DX/H(B, κ) is regular holonomic if and only if it is holonomic and the rows of
B sum to 0m. ��

We need one more result in order to prove Corollary 1.5. Let Z∗ = (C∗)n , and consider
its ring of differential operators DZ∗ := C[z±1

1 , . . . , z±1
m ] ⊗C[z1,z2,...,zm ] DZ . The saturated

Horn system corresponding to B and κ is sHorn(B, κ) := DZ∗ · Horn(B, κ) ∩ DZ .

Theorem 3.4 [1, Corollary 7.2] The DX-module DX/H(B, κ) is (regular) holonomic if and
only if the DZ -module DZ/sHorn(B, κ) is (regular) holonomic. ��
Proof of Corollary 1.5 If DX/H(B, κ) is (regular) holonomic, then so is DZ/nHorn(B, κ)

by Theorem 1.4, since restrictions preserve (regular) holonomicity. For the converse, if
DX/H(B, κ) is not (regular) holonomic, then neither is DZ/sHorn(B, κ) by Theorem 3.4.
Since nHorn(B, κ) ⊆ sHorn(B, κ), and the category of (regular) holonomic DZ -modules is
closed under quotients of DZ -modules, DZ/nHorn(B, κ) also fails to be (regular) holonomic.

��
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