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Characteristic cycles and Gevrey series solutions
of A-hypergeometric systems

Christine Berkesch and Maria-Cruz Fernandez-Fernandez

We compute the L-characteristic cycle of an A-hypergeometric system and higher Euler—Koszul homology
modules of the toric ring. We also prove upper semicontinuity results about the multiplicities in these
cycles and apply our results to analyze the behavior of Gevrey solution spaces of the system.

Introduction
Let D denote the Weyl algebra on X = C" with coordinates x = x1, ..., x,. Let 9; denote the variable
that acts on C[x] as 9/dx; and write d = 91, ..., 0,. A weight vector on D is L = (L, Ly) € Q" x Q"

such that L, + Ly > 0. Such a vector induces an exhaustive increasing filtration L on D by, for k € Q,
LD :=C-{x"“9" | L-(u,v) <k}.
Write L<¥D :=J,_, L*D. For any P in L*D \ L<*D, set
ing(P):=P+L*Deg"*D:=L*D/L*DC g’ D and degl(P):=k.
For a left D-ideal I and the D-module M = D/1, set
g (1) == (in(P) | P e I) Sgr"(D) and gr"(M):=gr"(D)/ gr™(]).

If L, + Ly = 0, the associated graded ring gr’ D is isomorphic to D and gr’ (1) can be identified with a
left D-ideal, which is also called a Grobner deformation of I in [Saito et al. 2000]. It is suggestive to
call grk (M) the Grobner deformation of M with respect to L. On the other hand, if L, + Ly > 0, the
associated graded ring gr’ D is isomorphic to the coordinate ring of 7*X = C?", which is a polynomial
ring in 2n variables. In this latter case, the L-characteristic variety of M is

Charl (M) := Var(grt (I)) € T*X = C*". (0-1)
The L-characteristic cycle of M is the finite formal sum

CcCt(My =) M) -,
C
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where C runs over the irreducible components of Char (M), and

(M) = 0((gr™ (M) p,)

is the multiplicity of gr’ (M) along C, where Pc is the defining ideal of C in gr’ (D) and £ denotes the
length of a grf (D) p.-module.

The weight vector F = (0,,1,) :=(0,...,0,1,...,1) € Q" x Q" induces the order filtration on D.
We notice that Char’ (M) and CCF (M) are called, respectively, the characteristic variety and the char-
acteristic cycle of M. If M is holonomic, that is, the dimension of its characteristic variety is n, then
the rank of M, defined rank(M) := dimg(x) C(x) ®c[x] M, coincides with the dimension of the space of
germs of its holomorphic solutions at any nonsingular point by a result of Kashiwara (see e.g., [Saito
et al. 2000, Theorem 1.4.19]). Notice that rank(M) = u* € (M) for C = T X.

One motivation for the study of L-characteristic cycles comes from the theory of irregularity of
holonomic D-modules. For a flavor of this deep and involved theory that fits the goals of this paper, a
projective weight vector of the form

L=F+(s—-1V

where s € Q@ and V = (—w, w), with w = (0, ..., 0, 1), induces the Kashiwara—Malgrange filtration
along the coordinate hyperplane ¥ = {x, = 0} € X = C". In this case, the L-characteristic variety
Charf *¢=DV (M) is locally constant with respect to s € @, except for at a finite set of values called
algebraic slopes of M along Y. This is a global version of the algebraic slopes defined and studied by
Laurent [1987]. On the other hand, the analytic slopes of M along Y were defined as jumps in the Gevrey
filtration of the irregularity sheaf of M along Y by Mebkhout [1990]. The comparison theorem for slopes
states that the algebraic and analytic slopes for M along Y coincide, and, even more, the Euler—Poincaré
characteristic of the irregularity sheaf can be computed in terms of the L-characteristic cycles of M
[Laurent and Mebkhout 1999]. In particular, certain multiplicities in the L-characteristic cycles are closely
related to the dimension of the space of Gevrey solutions of M along Y.

Another motivating idea of this article is that the F-characteristic cycle of a Grobner deformation
of a holonomic D-module M is equal to the L-characteristic cycle of M for an appropriate L (see
Lemma 3.1 for the precise statement). In particular, the holonomic rank of such a Grébner deformation is
the multiplicity of the component 7 X in cct(m).

Our main interest is A-hypergeometric D-modules, also known as GKZ-systems after their introduction

and study by Gelfand, Graev, Kapranov, and Zelevinsky [Gelfand et al. 1987; 1989; 1990]. Let
A=laij]=1a - a,] € 27"

be an integral matrix such that the group generated by the columns of A, ZA, is equal to Z¢, and the
positive real cone R>A over the columns is pointed. Let

Iy := (0" —09"| Au= Av) C C[3]
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denote the toric ideal of A. For B € C?, write E — B for the sequence of Euler operators given by
n
E;—Bi = Zaijxjaj —Bi
j=1

fori =1,...,d. The A-hypergeometric system of A at B € C? is
His(B):=D-(Is+ (E—B)) with associated module M4 (B) := D/H4(B).

A weight vector L = (L, L3) € @" x Q" as above is called projective it L,+Ly=c-1,:=c-(1,...,1)
for some constant ¢ > 0. Notice that any Euler operator E; is homogeneous with respect to such a filtration.
In [Schulze and Walther 2008], the irreducible components of CCE(M4 (B)) were enumerated, and when
B is generic (or not rank-jumping), CCE(M 4 (B)) was computed. In this article, we compute CCl(M 4 (B))
for any B, along with the characteristic cycles of higher Euler—Koszul homology modules (see Section 1)
of the toric ring C[d]/14. We also provide upper semicontinuity results for some of these multiplicities
and apply our results to the Gevrey solution spaces of M4(f).

Outline. In Sections 1-2, we provide background and preliminary results on Euler—Koszul homology and
L-characteristic cycles of A-hypergeometric systems. We compute the multiplicities in the characteristic
cycles of the Euler—Koszul homology of the toric ring in Section 4, with consequences in Section 5. We
provide upper semicontinuity results in Section 6 and study Gevrey solutions of H4(8) in Section 7.

1. Euler—Koszul homology

In this section, we present background related to Euler—Koszul homology, as found in [Matusevich et al.
2005; Schulze and Walther 2009], with some additions needed in the sequel. We use the convention that
0 € N. Recall that a; denotes the i-th column of the matrix A. Given a subset 7 C A of the column set
of A, the semigroup generated by 7,

Nt = {Zj,-a,- |ji e N forall g; € r},
a;€T
generates the semigroup ring S; := C[Nz]. With 7, : C[d;] :=C[9; | a; € ] — S; denoting the map
induced by 7, we have the isomorphism of rings S; = C[d;]/ ker ;. When convenient, we will abuse
notation and also view 7 as a matrix.

A subset G of the columns of the matrix A is a face of A, denoted G < A, if R>oG is a face of the
cone R>pA and G = ANRG. The codimension of a nonempty face G is codim(G) := d — dim(RG),
with codim(&) = d by convention. Let G¢ denote the complement of G in A.

Define a Zd-grading on D viadeg(x;) := —a; and deg(dy,) :=a;. A Zd—graded C[0]-module N is foric
if it has a filtration

0=NOcNDc...c NEDcNO =N
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such that N@ /N (=D for each i, is a 74 -graded translate of Sg, for some face G; < A. The degree set of
a finitely generated Z¢-graded C[d]-module N is deg(N) := {« € Z¢ | N, # 0}. The quasidegree set of N,
denoted qdeg(N), is the Zariski closure of deg(N) under the natural embedding Z¢ < C¢. A Z?-graded
C[0]-module N is weakly toric if there is a filtered partially ordered set (&, <) and a z¢ -graded direct
limit

¢s: N® > 1lim N® =N,
7 s5e6

where N is a toric C[d]-module for each s € &. The quasidegrees of N are

qdeg(N) := |_J qdeg(s (N®)),
se6
where each qdeg(¢;(N®)) is already defined since ¢, (N ) is toric for each s.
Let N be a weakly toric module. Given a homogeneous y € D ®cs) N, define an action of the Euler
operators for 1 <i <d by

(Ei —Bi)oy = (E; — B +deg;(y))y,

and extend this action C-linearly to D ® N. With this sequence of commuting endomorphisms on D Q N,
let IC.A (N, B) denote the Koszul complex on the left D-module D ®cja1 N, which we call the Euler—Koszul
complex of N at . Its homology is denoted H:} (N, B) := H; (KA (N, B)) or simply H; (N, B) when A is
clear from the context. Euler—Koszul homology was first introduced in [Matusevich et al. 2005] for toric
modules and extended to weakly toric modules in [Schulze and Walther 2009].

If b € 7%, we denote by N(b) a Zd—graded translated copy of N such that N (b), = N,_p, forall v € 74
Thus, deg(N (b)) = b+ deg(N). For example, if N = S4 = C[NA] then N(b) = CI[NA]z%. Euler—Koszul
homology is compatible with these graded shifts. Namely, we have

Hq(N(b), B) =Hg(N, p —b)(D). (1-1)

Theorem 1.1 [Schulze and Walther 2009, Theorem 5.4]. For a weakly toric module N, the following are

equivalent:

(1) Hi(N,B)=0foralli > 0.

(2) Ho(N, ) =0.

(3) B ¢ qdeg(N). O

Theorem 1.2 [Matusevich et al. 2005, Theorem 6.6; Schulze and Walther 2009]. Let N be a weakly toric
module. Then H;(N, B) =0 for all i > 0 and for all B € C? ifand only if N is a maximal Cohen—Macaulay
Sa-module. O

For a subset © C A, given an Nt-module S, define the S;-module C{S} := @seg C-¢t* as a C-vector
space with S;-action given by 9; -#* =514 _ Then C{S} has a multiplicative structure given by ¢*-#5' =%
and S; = C{Nrt} as rings. The saturation of t in Zt is the semigroup Nt = Rsot NZz. The saturation
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of S; is the semigroup ring of the saturation of = in Zt, which is given by S, = C{T\TT} as a 7%-graded
S;-module. By [Hochster 1972], 5‘, is a Cohen—Macaulay S;-module.

2. Characteristic cycles of A-hypergeometric systems

Let L =(L,,Ly) € @* be a projective weight vector on D. In this section, we recall from [Schulze
and Walther 2008] the description of the L-characteristic variety of an A-hypergeometric system, which
includes the computation of the L-characteristic cycle of H4(f) when B is not rank-jumping for A.

Leth=(hy,...,hy)€Q?besuchthath-a; >0fori=1,...,n. Choose ¢ >0 such that h-a;+¢eLy, >0
fori =1,...,n, and denote by H, the hyperplane in [P’f’CD given by

{yo:yr: - yal € PGl eyo+hiyi+- - +hays =0}

The L-polyhedron of A is the convex hull of {[1:04], [Lj, :a1], ..., [Lj, : a,]} in the affine space [P’fé \ He.
The (A, L)-umbrella, denoted ®% . is the set of faces of the L-polyhedron of A that do not contain [1 : 04].
We denote by d>ﬁ’k C de‘ the subset of faces 7 of dimension k (equivalently, dim(Cz) =k + 1). A
face 7 of CDﬁ will be identified with {j € {1, ..., n} | [Ly, : a;] € T} or with the submatrix of A indexed
by this set, when necessary. With this identification, CID[L1 is an abstract polyhedral complex. For any face
G < A, set L :={r € L |t C G}.
Let (x, &) denote the coordinates on T7*X = T*C". Forany 7 C {1, ..., n}, let

CY = {(x, §)eT*X|&=0fori¢r, Y ax&=0and3r e (CH & =1Y,Vj e z},
iet
and let CTE denote the Zariski closure of C} in T*X, with defining ideal P, C C[x, &]. In particular,
D {J}
CL=TiXand Cj' =T; _,X. B
If Nisa Zd—graded C[d]-module and C = C} for some 7 € CDf‘, we write

HETN, B) = S (Hi (N, ) = £((gr™ (Hi(N, B))p,). (2-1)

We will also denote /Lf"j(ﬁ) = Mf{,f(SA, B). By [Schulze and Walther 2008, Corollary 4.13],

d
T = (=D i tB) = i §(Sa. B) = w5 (Saldy '] B) (2-2)
j=0

is independent of 8 € C4.

Note that rank(M 4(8)) is equal to ;/,510@ (B). Since M 4(p) is always holonomic [Gelfand et al. 1987;
Adolphson 1994], its rank is always finite. Further, the rank of M4 () is upper semicontinuous as a
function of the parameter 8, with a generic value equal to volz(A), the normalized volume in ZA = Z¢
of the convex hull of the columns of A and the origin [Matusevich et al. 2005; Adolphson 1994; Gelfand
et al. 1990]. We recall that the normalized volume function in a lattice €2, denoted by volg, is defined so
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that the volume of the unit simplex in €2 (that is, the convex hull of the origin and a lattice basis of €2) is
one.
A parameter B is said to be rank-jumping when rank(M4(B8)) > volz(A). The set of rank-jumping
parameters is described in [Matusevich et al. 2005]; namely, with 4 := 27: 1 Gis
d—1
Ex={B € c? rank(M(B)) > volza(A)} = — qdeg(@ Exta)i (S4, (E[a])(—gA)>.
i=0
Schulze and Walther provided a description of CCL(H4(8)) when g is not rank-jumping, as summarized
through the following two results.

Theorem 2.1 [Schulze and Walther 2008, Theorem 4.21]. Forall G < A, ift € &L then

pe" = Z [ZG : Z7']- [(Z7' N Q1) : Z7] - VOl zey(Prv \ Qr.or),

o L.d/—1
tgre®G

where d' = dim(CG), w: Zt" — Z7'/(Zt' N Q) is the natural projection and Py and Q- denote the
convex hull of w(t' U {0}) and 7 (t' \ T) respectively.

In [Schulze and Walther 2008], Theorem 4.21 is only stated for G = A. Theorem 2.1 is a straightforward
adaptation that will be useful in the sequel. Note that here we are using (2-1) and (2-2) with A replaced

by G, but we still write L for the filtration induced on the Weyl Algebra Dg in the variables {x; | j € G}
by the projective weight vector given by the G-coordinates of L, and Lj.

Theorem 2.2 [Schulze and Walther 2008, Corollary 4.12]. The L-characteristic variety of Ma(B) is
independent of B € C¢ and given by

Char" (Ma(8) = | J C3,

L
Tedy

where each component CT’;; is irreducible. Moreover, ,bLIX’B(,B) > /Lf"r, and equality holds if B is not

rank-jumping.
Theorem 2.2 implies that when $ is not rank-jumping,

CClMaB)) = ul™-CE,

L
Tedy

and for each 7 € ¢IA, the multiplicity ,uf"r is computed in Theorem 2.1.

A subset T C A is called F-homogeneous if the set of columns of A indexed by t lie in a common
affine hyperplane off the origin. For a subset 7 C A, let A, = conv(t U{0}) € R? denote the convex hull
of the origin and all the columns of 7.

By [Schulze and Walther 2008, Corollary 4.22 and Remark 4.23],

Mgzzvolzd( U A,/\conv(r/)). (2-3)

;o aL.d—1
T'ed,
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Hence if all the facets of the (A, L)-umbrella are F-homogeneous, then

Mgﬂ:volzd( U A> (2-4)

,_aL.d—1
T'ed,

3. F-characteristic cycles of initial ideals are L-characteristic cycles

Given any real vector w € R" and any left ideal J C D, we can consider the initial ideal in(_, ,)(J) as
defined in [Saito et al. 2000]. We recall that by [loc. cit., Theorem 2.2.1], if M = D/J is a holonomic
D-module, then so is gr(_w’w)(M) := D/in_y ) (J) and, moreover,

rank(gr'™%"*) M) < rank(M). (3-1)

On the other hand, by [loc. cit., Lemma 2.1.6], for any weight vector (u, v) € R and L = (—w, w) +
€(u, v) with € > 0 small enough,

gtV (g (M) = gt (M) (3-2)
Lemma 3.1. If M = D/J is a holonomic D-module, then for L chosen as in (3-2) with (u, v) = F,
ccf (gr=»w (M) = cct(m).

The holonomic rank of in(_,, )(M4(B)), a central object of study in [loc. cit.], equals the multiplicity
,uﬁ”og (B) for L = (—w, w) + € F and € > 0 small enough. Notice that, by the form of L, all the facets of
QDIA are F-homogeneous. We will see in Section 4 that for any projective weight vector L, the multiplicity
,uﬁ”? (B) equals the rank of a Grobner deformation of M4 (8) (see Corollaries 4.3 and 4.5).

4. Computing multiplicities in L-characteristic cycles

In this section, we use the approach of [Berkesch 2011] to compute the multiplicities in the L-characteristic
cycles of Euler—Koszul homology modules of the toric ring S4. We first recall some definitions from
[Berkesch 2011; Berkesch et al. 2018].

For a face G < A, consider the union of the lattice translates

Ep ==[2"N(B+COI\NNA+ZG) = | | b+76), (4-1)

beBg

where Bg is a set of lattice translate representatives. As such, |Bg| is the number of translates of ZG
appearing in E?, which is by definition equal to the difference between [Z¢ N QG : ZG] and the number
of translates of ZG along 8 + CG that are contained in NA 4+ ZG.

For a face T € @ﬁ of the (A, L)-umbrella, let [E’f denote the union of the ranking lattices 4 , where
G < A contains t.

Theorem 4.1. Let L be a projective weight vector and t € GD/L,‘ be a face of the (A, L)-umbrella. For each i
and B, the multiplicity ,uf“t (B), which is the coefficient of C ', in the characteristic cycle CCL(Hi(Sa, B))
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(see (2-1)), can be computed from the combinatorics of the ranking lattices at 8 and the (A, L)-umbrella
CIDQ. More precisely, there is a spectral sequence involving the faces of CDf\ that contain t and the ranking
lattices in [Ef , from which ,uﬁ:f(,@) can be computed.

Before proving Theorem 4.1, we state some consequences.

Corollary 4.2. For all B € C? and all projective weight vectors L, L',
CCL(MA(B) = CCE (Ma(B)) ifand only if @4 = @F.

Proof. While the only if direction follows from Theorem 2.2, the if direction uses Theorems 2.1, 2.2,
and 4.1. ([l

Corollary 4.3. For any projective weight vector L = (u, v) on D such that all the facets of CDf‘ are
F-homogeneous,

CCF(gr ™" (MA(B))) = CCE(MA(B)).
In particular, rank (g™ (M4 (8))) = ;' (B).

Proof. Let € > 0 be as small as necessary in the sequel. Notice first that ccr (gr(_”’“)(M 4(B))) =
CCLe(M4 (B)) for L, := (—v,v) + € F by Lemma 3.1. Moreover, by the assumption on the (A, L)-
umbrella, we have CI>§ = ®i+€F . On the other hand, the last n coordinates of L + ¢ F and L. are equal
to v+e€-1,, and hence <I>f1 = CDﬁE. Thus, the result follows from Corollary 4.2. O

As a particular case of Corollary 4.3, the characteristic cycles, and hence the ranks, of the modules
gr(_lﬂ’ln)(M 4(B)) and M 4(B) are equal. We next show that [Saito et al. 2000, Corollary 3.2.14] holds
with weakened hypotheses.

Corollary 4.4. For any B € C¢ and any (not necessarily homogeneous) A, the small Grobner fan of the
hypergeometric ideal Ha(B) refines the secondary fan of A.

Proof. 1t suffices to see that each open cone of the small Grobner fan of H4 () is contained in an open
cone of the secondary fan of A. Since such an open cone corresponds to a Grobner deformation with
respect to a generic weight vector w € R", it follows that L = (—w + ¢ - 1,,, w) is a projective weight
vector for any ¢ > 0 and ®%, which only depends on w, has only F-homogeneous facets. Thus, beginning
with generic vectors w, w’ with

g (MA(B)) = g (M4 (),

Corollaries 4.2 and 4.3 imply that &% = CI>X where the last coordinates of L and L’ are w and w’,
respectively. This means that w and w’ belong to the same cone of the secondary fan of A. ([l

Corollary 4.5. Any projective weight vector L = (u, v) on D has a perturbation L’ such that all the
facets of the (A, L")-umbrella CDX are F-homogeneous and ,uﬁ:og(ﬂ) = Mi/,’og (B).
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Proof. If L' (¢) := L+€¢(1,, —1,,) for € > 0, then there is an €y > 0 such that the L’ (¢)-umbrella is constant
for € € (0, €]. Thus, if we fix L’ = L'(¢p), then all the facets of CI>£ are F'-homogeneous. Moreover, by
the choice of L', any F-homogeneous facet of ®% is a facet of CDf‘/, while each non- F-homogeneous
facet t of CIJIA is replaced in CDﬁ/ by the set of facets of QDf”, where L” := (c1,, —1,) is a projective
weight vector for any ¢ > 1. This latter set is the set of facets of conv(t) that are not facets of A;. This
proves that Mf{@ = ,ug’@ by using (2-3) to compute ,uﬁ’@ and (2-4) to compute Mﬁ/’g . Analogously,
,ulé’@ = ,ué/’@ for any face G < A. Finally, the result follows from previous equality and Theorem 4.1. [J

Corollary 4.6. Given any projective weight vector L and B € ce,
w8 (B) < rank(Ma(B)) < 4“4+ vol(A).

Proof. The first inequality is a consequence of (3-1) and Corollaries 4.5 and 4.3. The second is [Berkesch
et al. 2018, Corollary 6.2]. O

To prove Theorem 4.1, we will follow the approach used to compute the rank of an A-hypergeometric
system from [Berkesch 2011] (see also [Berkesch et al. 2018]). We will use the set

Ca(B) :=7%N(Re B +R=0A).

Note that C4(B) here is defined differently than in [Berkesch 2011]. However, the quotient between
the subsequent modules with the same names, defined using C4(8) here or as in [loc. cit.], all have
quasidegree sets that do not contain 8. Hence, by Theorem 1.1, the Euler—Koszul homology modules for
modules with the same names here and in [loc. cit.] are isomorphic.
Given a subset

JSJIPB)={(G,b)|G <A, be B} #2), (4-2)
define

)= |J 0+26) and P):=ca(p)nE.

(G,b)elJ

Now define the respective sets and S4-modules

—~ T8
LK :=NAU[ U (b+NA)], T8 :=C(T?), Sh:=T\P), sh:=C{sf}, and PJ:=—.
B SJ

beP7 )

The degree set of Pf is deg(P}3 ) = [P’g. If a toric module N is isomorphic to P}B for some J C J(B)
and B, then we say that N is a ranking toric module determined by J. A simple ranking toric module is a
module isomorphic to Pg’ J = Pf(c)’ where G < A is a fixed face of A such that [Eg # & and

J(G):={(G,b)e J | be BLY.

When J = J(B), we suppress it from the notation and write P? and Pg in place of Pf and Pg’ 7>
respectively. If (G, b) € J and there is not any other pair (G', b’) € J such that b+ 7ZG C b’ +7ZG’ we

say that (G, b) is a maximal pair in J. We denote by max(J) the set of all maximal pairs in J.
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Lemma 4.7. If G < A and T € ®%, then the multiplicity uﬁ:Z(Pg, B) of the simple ranking toric module
P is _
codim(G)

. ‘= |BL)- ukT oifrca,
u’;’,q(Pﬂ,m:|B(”}|~uﬁ:q<sc<b>,ﬁ>={OG (5 G

otherwise.
for any b € Bﬁ
Y G

Proof. For all j ¢ G we have that 3; - Sg = 0, hence that £; - gr’ (Ho(Sg (b), B)) =0 where &; =in;,(3;) €
Clx, £] = grl (D). On the other hand, by the definition of P;, it is clear that & ;€ Py ifand only if j ¢ 7.
Thus, we have that (grL (Ho(§G b)), B)p, =0if ;(_ G. Now, with u- :C} in place of rank, the arguments
in the proof of [Berkesch 2011, Theorem 6.1] yield this result. O

Proof of Theorem 4.1. The argument proving [Berkesch 2011, Theorem 6.6] can be used to obtain this
result, when J is chosen to be the right hand side of (4-2) and /LL’C7 in place of rank. We make note of
the necessary modifications below.

To begin, it follows from Theorem 1.2 and (2-2) that

WRT T (Qa. B) — 1y 6(Qa. ) ifi =0,

e 4-3)
“i:erl(QA’ B) ifi >0,

G {

where Q4 sits in the short exact sequence 0 — S4 — S A[07'1 = Q4 — 0. Then [Berkesch 2011,
Proposition 5.10] implies that

15T (Qa, B) = 15T (PY B, (4-4)

where J is equal to the right hand side of (4-2). Now [loc. cit., Lemmas 6.9, 6.10, 6.11, and 6.14] can be

applied verbatim, while Lemma 4.7 replaces the need for [loc. cit., Lemma 6.13]. Finally, as [loc. cit.,

Lemmas 6.12 and 6.15] hold when rank is replaced with ,ui’CA, which is possible since localization at P;

and gr’ (—) are exact functors and length is additive, the arguments of the proof of [loc. cit., Theorem 6.6]

yield the desired result. In particular, the spectral sequence involved begins with the cellular resolution of
Pf as constructed in [loc. cit., (6.3)]:

(R N N e /= ) (4-5)
where I3 is constructed as follows. Set
AY ={F < A|3(F, b) e max(J)},

Al ={s S AJ|ls|=p+1), and

Fy={)G forse Al
Ges

Withr 4+ 1= |A(} [, let A = Ag be the standard r-simplex with vertices corresponding to the elements
of A(}. To the p-face of A spanned by the vertices corresponding to the elements in s € A, assign
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the ranking toric module Pﬁs _s- Choosing the natural maps Pﬁs’ ;> Plé, .y for s © ¢ induces a cellular
complex supported on A,

I 10— 1) —--—1;—0 withI] =D P} ,. (4-6)

seA"

Applying Euler—Koszul homology to (4-6) yields a double complex. The desired spectral sequence arises
from this double complex after localizing at P; and applying gr’(—). (I

Remark 4.8. If § € C4 is such that max(J (B)) involves two faces, F, F», then the proof of Theorem 4.1
shows that

1o (B) — Z(|B [codim(F;) — 11 ") + B - CF - g™, (4-7)

where G = F| N F, and the constant C? is given by

cF — (codim(G)

, codim(F1)> _ (codim(F2)> n (codim(CFl —|—CF2))‘

)—codim(G)+1—( ) ) )

Example 4.9. The values of the uf\:(f)(ﬁ) for a fixed B are dependent upon the choice of face 7 € <I>IL4.
For example, consider the matrix
2310001
A=10002311]{,
0010010

and the parameter 8 = (0, 0, —1), which lies outside the cone R>(A. It turns out that
NA\NA = (8 +NG1) NR=0A = (B+NG1) \ (B},

where G| = {as, ag} and G, = {ay, ay, a4, as, a7} are facets of A. In particular, £4 = {8} and the ranking
lattices at B are

Ef = (B+ZG)U(B+ZG»).

By Remark 4.8, ,uﬁ:?(ﬁ)—,uﬁ’g =1 for any projective weight vector L. On the other hand, Mf"’é(ﬂ) =ulT
if T #@.

Example 4.10. The choice of projective weight vector impacts the resulting stratification via multiplicities
of £4. For example, consider the matrix

2300001
A=(0013001},
0000121
which has
NA\NA = (B+NG)U(B+NG2),
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where G| = {a3, as}, G, = {as, ag} < A and B = (1, 0, 0)’. Moreover, we also have
Ef =(B+ZG)U(B+2ZGy) and Ex=(B+CG)U(B+CGy).

If Ly=(1,4,1,4,1,3, 1) and Ly =517 — Ly, then p;’¢ () — u'y’® = 1 for any B’ € £4. On the other
hand, the stratification of £4 by the rank jump is different:

2 if B € (B+CGy) \ {B),
Whe B~k =13 if B e (B+CG)\1{B),
4 if B =8.

5. More consequences of the multiplicity computation
For T € @ﬁ, let
Ja T B) = 1B = uy T
be the (L, t)-multiplicity jump at 8, and let
ExT={BeC! | T (B) > 0)

be the (L, t)-exceptional set of A. In this section, we record consequences of Theorem 4.1 and its
implications for £ ﬁ '". We also propose a description of £ j '" and prove it holds in a special case.

Corollary 5.1. If 7 € CDIA is a face of the (A, L)-umbrella such that T is not contained in any face of A of
codimension 2, then Sg’f =0.

Proof. Fix B € C?. By hypothesis, 7 is contained in at most one facet of A. Recall that the cellular
resolution of P}S is made of ranking toric modules Pg for faces G < A such that [E’é # J.

If = is not contained in any proper face of A or it is contained in a unique facet F < A with [E‘Ig; =g,
then Lemma 4.7 guarantees that M/ﬁ”;(Pﬂ, B) = 0 for all g > 0 for any proper face G < A with [E’g # .
Thus, the formula from Theorem 4.1 computes that uf",f(Pﬂ ,B)=0foralli >0.

For the remaining case when t is contained in a unique facet F < A and [E’; # O,

~ 1
T PP B) = ni T (P B = BRI 1T Sr. By = 1BRI- () b
for all i > 0. Therefore, as in the proof of Theorem 4.1,
JiTB) =y (PP — i (PP gy =0, O

Remark 5.2. As an immediate consequence of Corollary 5.1, if dim(Ct) > d — 1, then /Lﬁf)(ﬁ) is
independent of 5. Notice that this fact was known when dim(Ct) = d (see [Schulze and Walther 2008,
Theorem 3.10]). [l



Characteristic cycles and Gevrey series solutions of A-hypergeometric systems 335

Corollary 5.3. Ift € <I>ﬁ is a face of the (A, L)-umbrella such that T is contained in a unique face G < A
of codimension 2, then

L |BE - uE™  if (G, b) e max(J(B)) for b € B, see (4-2),
Ja (B)= 0 .
otherwise.

Proof. By the proof of Theorem 4.1 and Lemma 4.7,
JTB = uk (PP — uh (PP By = u (P B — 1k S (P B).

where J' = {(F,b) e J |t C F} for J = J(B). If (G,b) € max(J) and b € B? then J/ = J(G) and
Pﬁ = Pg. Thus, it is enough to consider the case when (G, b) ¢ max(J) for any b but there exists
at least one facet F such that 1 C G < F and (F, b) € max(J). In this case, either max(J') = J(F)
or J/ = J(F) U J(F') for some other facet F’ such that F N F’ = G. Either way, it follows that
WAL, B = 1y G (P, B) =0, 0

By Corollaries 5.1 and 5.3, if dim(Ct) = d — 2, then jAL’T(,B) > 0 only when there is a (unique)
codimension 2 face G of A containing t and (G, b) € max(J(8)) for some b € Bg.

Notation 5.4. For any 7 € <I>fv let us denote S5 := C[(NA 4+ Z1) NR>pA].

Conjecture 5.5. There is an equality
d—1
=~ qdeg(@ Exty](Si. @[an(—sA)),
q=0

where g4 == ;_, a;. In particular, Ei"r = @ if and only if S is Cohen—Macaulay.

As evidence of the truth of Conjecture 5.5, we exhibit a containment between the two sets involved.
We then prove the second part of conjecture in the case that R>A is a simplicial cone.

Proposition 5.6. There is a containment

d-1
gt — qdeg<@ Exte ) (Sh, C[a])(—SA)>-
q=0

Proof. By the definition of S, it is clear that S7[d, = Salo; 11 and thus,
1y o(Sa. B) = uly5(Salo; 11 B) = ki §(Shl0; "1, B) = 1§ (SE. B).

where the first and third equalities follows from the definition of uif) (see (2-1)) and the fact that
& =in;(9;) ¢ P, if and only if j € 7.

If B ¢ — qdeg(Extgy|(Sh, C8])(—¢a)) forany ¢ =0, ...,d — 1, then #;(S;, ) =0 for all i >0
by [Matusevich et al. 2005, Theorem 6.6]. Thus, MQZS(SE, B) = Z?ZO(—I)J'MX;(S’, B), which is
independent of 8 by [Schulze and Walther 2008, Theorem 4.11] and hence equal to the generic value ,ulg’f.

In particular, 8 ¢ £5°°. O



336 Christine Berkesch and Maria-Cruz Fernandez-Fernandez

Proposition 5.7. Fix 8 € C? and let J be as in (4-2). If J involves only facets of A satisfying that the
intersection of r of them is a face of codimension at most r, then Hq(Pﬂ ,B)=0forall g > 2.

Proof. Consider the cellular resolution of P}S as constructed in [Berkesch 2011, (6.3)]:
0— PJ-)I‘(])—)I}—)"'—)I;_)O,

where r + 1 is the cardinality of J. On the other hand, if K, :=ker(I} — If“) for0<p<r—1and
K, = I, then there are short exact sequences

O—>PJ—>19—>K1—>0 and O—>Kp—>lf—>Kp+1—>O forl<p<r-—1.

By the assumption on J, [ f is a direct sum of simple ranking toric modules P for faces G of codimension
at most p + 1, so by [Berkesch 2011, Proposition 3.2], H, (17, B)=0forallg > p+2and p=0,...,r.
Therefore

Hq(PJs B) = Hqul(Kl’ == /Hqurfl(Krfl, B)= Hqur(I;, B)=0
for all g > 2, as desired. O

Note that if R>0A is simplicial then any set of facets of A satisfies the property required in Proposition 5.7.
To the contrary, Example 4.9 does not satisfy this property.

Theorem 5.8. Let 7 € CI)IA and assume that R>oA is a simplicial cone. Then Eﬁ’r = @ ifand only if S} is
Cohen—Macaulay.

Proof. The if direction is proven in Proposition 5.6. By the definition of S} we have that
rank(Ho (S, B)) = Vol(A) + uly T (Py) — wh'§ (Pyr),

where J':={(G, b) € J(B) | T € G}. If S} is not Cohen—Macaulay, then by Theorem 1.2, there exists
B € C? such that rank(Ho(S%, B)) > vol(A). Since Rx>oA is simplicial, by Proposition 5.7 there must be
a face G of codimension at least 2 such that (G, b) € max(J'). Thus, for generic 8’ € b + CG, we have
that max(J(8")) = {(G, b1), ..., (G, b,)} with r = |Bg|. Now, using Lemma 4.7, we have that

i Sas B = g (S5 B = pg T+ r(codim(G) = 1) g " > T

and thus B’ € £57 £ 2. O

6. Upper-semicontinuity and convex filtrations

It was conjectured in [Schulze and Walther 2008] that the multiplicities uif)(ﬁ ) are upper semicontinuous
in B € C“ for any projective L and 7 € d>ﬁ. We prove this conjecture when L and 7 satisfy certain
conditions with respect to A (see Theorem 6.1 and Corollary 6.6). We also prove Conjecture 5.5 in this
setting when T = & (see Corollary 6.5).
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Given a submatrix o € A with rank d, denote by E? the Euler operator associated with the i-th row of
the matrix o. Let D, denote the Weyl algebra associated to the variables x, = {x; | a; € o}. We have that
ZA=7'=@_, Aj, where r =[2?:Zo] and A; = b; + Zo for some b € Z¢ with j =1,...,r.

If Nis a Zd—graded Sa-module, then N; := @%Aj Ny is an Sy-module. Let 7 (N, ) denote
the direct sum over j of the Euler—-Koszul complexes on D, ®cpy,] Nj(—b;) given by the operators
{Ef —Bi+ (b j)i}fl:p where each such Euler-Koszul complex is placed in degree b;. That is,

K°(N, B) := @D K7 (Nj(=b)), B—b) (b)),

j=1

where the right-hand side Euler—Koszul complexes where defined before since Nj(—b;) is a Zo-graded
Sy-module. This definition is independent of the chosen elements by, ..., b, € z¢ by (1-1). With this
setup, D, @ N = EB;.:I(DU ® N;j), and K2 (N, B)is a Zd—graded complex of left D,-modules. Set

H{ (N, B) :== H;(K] (N, B)),

and note that these definitions make (1-1) and Theorem 1.1 also valid for the homology modules H7 (N, B).

Let L be a projective weight vector, which induces a filtration on D as considered in the introduction.
We denote by A’ the submatrix of A whose columns belong to facets of @f\. We say that L is a convex
filtration with respect to A if all facets of CIDIA are F-homogeneous and

U Ay (6-1)

regl-d—1
T'ed,

is a convex polytope, and thus equal to A 4-. Notice that, by the inclusion S, C Sy, the ring S4 is an
S 4-module.

Theorem 6.1. If L is a convex filtration with respect to A, then ,uﬁ”og(ﬂ) = rank(’H(’)‘\L (S4, B)). In

particular, ,ui’og(ﬁ) is upper-semicontinuous in f3.
Before proving Theorem 6.1, we first consider the simple case.

Proposition 6.2. Let L be a convex filtration of D with respect to A and G < A. Then for all (G, b) € T (B),
L
ng” =volzg(Gh) = rank(H§ (Plg; ;). B)).
where Gt denotes the submatrix of A whose columns belong to facets of d>é.

Proof. The first equality follows from Theorem 2.1 and (2-4) since L is convex. For the second equality,
by definition of the (G, L)-umbrella @é, the submatrix GX of G is such that R-¢G = R>oG’ and
rank(G) = rank(G*). This implies that Sg is a toric Sgr-module. Further,

Pl ) € Sclig'1(b) = €D Se1 1051 1),

aeA
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where A is a finite subset of b + ZG of cardinality [ZG : ZG"]. Since
deg(SGloG 1(b)/ P ) = (b+ZG)\ Pl ),

it follows from the definition of C4(B) that the parameter 8 does not belong to the quasidegrees set of
the weakly toric module Sg[d; 1](b) / P(%’ by- Thus, since SGL[E)(_;L]] is a Cohen—Macaulay Sgr-module,

by Theorem 1.1 and Theorem 1.2, HiGL (P(’SG’b), B)=0foralli >1 and
rank(’HgL(P(%’b), B) =[2G : ZG*]-volyL (GL) = volz (GF). a

Remark 6.3. Notice that any weakly toric S4-module M C Sy [8;1] can be viewed as a weakly toric S4z-
module. Indeed, since A~ and A have the same rank, then ZA = EB;.:] (bj +7ZA") for some b j € ZA with
j=1,....r. Thus SA[9;'1=@@)_, Sac[0,.1(b)) as Sy.-modules. Setting M; := M N S4.[3,,1(b)),
then M is the direct sum of the weakly toric S.-modules M ;. Moreover, for any face G < A,

Bp=||®+26)= | | (c+2zGh). (6-2)
beBg ceBgL

where Bg and B’é . 1s a set of lattice representatives (see (4-1)).

Lemma 6.4. The module PP is a direct sum of toric S ,.-modules, and for any face G < A and q > 0,
Wi 2 (P B =1l (PG, ).

Proof. The decomposition of M = S, as a direct sum of weakly toric Sﬁ-modules M given in Remark 6.3
induces a decomposition of S A[ag‘ 1/M as a direct sum of the weakly toric S 1’5 -modules S, [BXLI](Z) i)/ M;.
Then, by the two short exact sequences in the proof of [Berkesch 2011, Proposition 5.10], P# is a direct
sum of weakly toric S 4.-modules. Moreover, since P? = Ff NC4(B) and C4(B) = C4.(B), it follows that
P# is a direct sum of toric S ﬁ -modules.

On the other hand, if G is a face of A, then by (6-2), |Bg [ZG:ZG* ] = |BgL |. Thus, using Lemma 4.7
and Proposition 6.2,

‘ (codi;n(G))

' Ly_ pf | codim(G)
volza(G") =Bl |- (€7 )

wig (PG, B)=1Bg| Volzge(GH) =uhi? (PL. ). O

The proof of Theorem 6.1 makes use of the notion of a holonomic family from [Matusevich et al. 2005,
Definition 2.1], which we now recall. While defined over any algebraic variety B with structure sheaf Op,
we will need only the case when B = A%, affine d-space over C.

If B € B, denote by pg the prime ideal (sheaf) of B and set kg = Op g/ ppOp g, the residue field of
the stalk Op g. A coherent sheaf of (D ®c Op)-modules is a quasicoherent sheaf of Op-modules on B
whose sections over each open affine subset U C B are finitely generated over the ring of global sections
HY%(B, D ®c Op). Let Op(x) denote the localization at (0) € Spec(Clx]) of Op[x] :=Clx] ®c Op C
D ®c Op. The sheaf-spectrum of Op(x) is the base-extended scheme B(x) := Spec C(x) Xgspecc B.

A holonomic family over B is a coherent sheaf M of left (D ®c Op)-modules such that
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(1) the fibers Mg = M ®o; kp are holonomic D-modules for all 8 € B, and
(2) Op(x) ®o, M is coherent on B(x).

Proof of Theorem 6.1. Since S 4[071] is a maximal Cohen—Macaulay weakly toric S ,r-module,
HA (Sal7"1, B) =

for all i > 0 by Theorem 1.2. Thus, applying Euler—Koszul homology with respect to A% to the short
exact sequence
0— Sy — SA[a_l]—> 0—0

and using that H2" (PP, B) = HA" (0, B) (see the proof of [Berkesch 2011, Proposition 5.10], which can
be adapted to this case), it follows that

rank(H{ (Sa. ) = rank(H{ (Sald ™", B) + 5,7 (PP, B) — 5,7 (PP ).

The proofs of [loc. cit., Theorem 6.6] and Theorem 4.1 and the induction argument in the proof of [loc. cit.,
Proposition 6.18] reduces the computation of

iy (PP B — 2 (PP, B)  (and respectively py 7 (PP, B) — g (PP, B))

to that of ,u AL (N B) (and respectively pL Aq (N B)) for g = 0 and simple toric modules N = P’B with
D # 2. Thus, by Lemma 6.4,

il (PP B — w5 (PP By = s T (PP, B) — iy 6 (PP, B) = s 6 (B) — i ®

which yields the desired equality.
Finally, since Sy is a toric S4.-module, H{?L (S4, b) is a holonomic family by [Matusevich et al. 2005,
Theorem 7.5]. Hence [loc. cit., Theorem 2.6] guarantees that

B > rank(H{" (Sa, B))

is an upper semicontinuous function. U

Theorem 6.1 provides a way to prove Conjecture 5.5 when L is a convex filtration of D with respect
toAand Tt =9
Corollary 6.5. If L is a convex filtration of D with respect to A, then

d—1

£8P = _ qdeg(@ExtC[a](SA, @[a])(—eA)).

q=0

Proof. By the proof of Theorem 6.1, H (S 4, D) is a holonomic family and 5 =¢h;
[Matusevich et al. 2005, Theorem 9.1],

d—1
Ey° = deg(Z@H\%L(SA)>ZaIiSki,
i=0

AL , and thus by
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where m;, denotes the maximal homogeneous ideal in S4.. However, since R>0A = IR%EOAL, the radical
of the extended ideal m; S4 in S4 equals m. Therefore, by applying graded Matlis duality, we obtain the
desired result. [l

Let L be a filtration on D induced by a projective weight vector. For T € ®4, we denote by ALT the
submatrix of A whose columns belong to facets t’ € CIDi’d_1 such that t € /. We say that L is t-convex

if all facets of CD% containing t are F-homogeneous and the polytope

U Ay (6-3)

rgt’edﬁ‘d"

is convex, and thus equal to A 4r.-.
We recall that a subset " C A is said to be a pyramid over n C n’ if

rankz(Zn) + |n' \ nl =d,

where we denote by || the cardinality of a set A.

Theorem 6.1 can now be generalized as follows.
Corollary 6.6. If L induces a t-convex filtration for some T € CIDIA and any t’ € CDf\’d_l such that Tt C t’
is a pyramid over T’ \ T, then

L.t
Wi 6(B) =rank(Hy " (Sa. B).
In particular, Mi:é(ﬂ) is upper-semicontinuous in f3.

Proof. Recall the formula in Theorem 2.1. For any 7" € QDI;‘ containing t, since 7’ is a pyramid over t’\ 7,
it follows that

Z7'NQt =Zr, 7w (Zt)=Z(t'\1), Prv= Ay,

Q.1 is the convex hull of 7"\ 7 (whose volume is zero because t’ is F-homogeneous), and volz, (t') =
Volz(,/\,)(r/ \ 7). Thus, for any face G < A that contains t,

uet= Y [ZG:Zt')-volz(Ar) = volzg U A,/) =volzG(AgLr).

rgr’e@é’dfl th’é@é‘dﬁl
When (G, b) € J(B), to obtain the equality
L.t
rank(?—[g (P(ﬂG’b), B)) = volzg(AgL.x) (6-4)

we can proceed as in the proof of Proposition 6.2, but now RxoG is not equal to R=oG%7, so Sy is only
a direct sum of weakly toric S4z.--modules (by Remark 6.3) instead of a toric S,z.--module. On the other
hand, in the proof of Theorem 6.1 we can use P}g with J = {(G, b) € 7(B) | T € G} instead of P? and
consider each Pg as a direct sum of weakly toric Cohen—Macaulay Ss:.--modules.
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Finally, by [Schulze and Walther 2009, Remark 5.5.(5)], in the analytic topology, ’H{)‘L’T(S 4, B) 1S
locally a holonomic family on A?. This fact along with [Matusevich et al. 2005, Theorem 2.6] and
Theorem 4.1 imply that the function § rank(’H()‘L'r (S4, B)) is upper-semicontinuous. ]

7. Gevrey series solutions associated to slopes

Let D be the sheaf of linear partial differential operators with coefficients in the sheaf OF' of holomorphic
functions on X = C". The irregularity sheaf of order s > 1 of a holonomic D-module M along a
hypersurface ¥ was introduced and proved to be a perverse sheaf on Y by Mebkhout [1990]. In particular,
higher cohomology of the irregularity sheaf vanishes at generic points of Y.

In this section, for a coordinate hyperplane ¥ C X, we compute the dimension of the stalk at a generic
point p € Y of the irregularity sheaf of order s of M4 (8) :=D ®p M4 (B) along Y for any parameter
B e ce, generalizing results from [Fernandez-Ferndandez 2010]. As a consequence, we provide some
formulas for the dimension of the Gevrey solution spaces of M 4(B) in particular cases, and we show that
the dimension of the generic stalk of the irregularity sheaf of M4 (8) along Y is upper-semicontinuous
in B.

We assume for simplicity that ¥ = Var(x,) and write s instead of L(s) for the filtration given by
L(s):=F+ (s —1)V, with s > 1, where F = (0,, 1,) is the filtration by the order of the differential
operators and V), is the Kashiwara—Malgrange filtration along Y. Recall that this filtration is induced by
the weight vector V,, :=(0,...,0,—1,0,...,0, 1), where —1 is the weight for the variable x,. More
precisely, the filtration L(s) is determined by

1 ifl<i<n-—1,

deg, 9; = { and deg,(x;) =1 —deg,(9;).

s ifi=n,
In this section, we call the (A, L(s))-umbrella the (A, s)-umbrella, and we denote @ := @f\(‘y) for
s> 1.
A global version of Laurent’s slope theory [1987] proceeds as follows. Let M be a holonomic D-
module. A number s > 1 is said to be a slope of M along Y = Var(x,,) if and only if the s-characteristic
variety Char’ (M) of M along Y is not homogeneous with respect to the weight vector F = (0, 1,,).

Remark 7.1. Denote by A’ the submatrix of A defined by the first n — 1 columns and by A’ the convex
hull of the columns of A" and the origin. Note that a, /s belongs to a hyperplane off the origin that
contains a facet of A4 if and only if there exists a facet of the (A, s)-umbrella, in other words an element
of <Df4’d_1, that is not F-homogeneous. Moreover, by [Schulze and Walther 2008, Corollary 4.18], this
condition holds if and only if s > 1 is a slope of M4(8) along Var(x,).

Let Oxjy denote the formal completion of Oy along Y. A germ f € Oxjy , with p € Y is a formal

series

f= Z S (X1, ooy Xm1)x))
m=0
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such that there exists some open subset U € C"~! so that f,, is a holomorphic function in U for all m > 0.
The formal series f € Oy , is said to be a Gevrey series of order s € R along Y at p € Y if the series

ps(f): —Zf’"(x“” nt) g

!)s 1

is convergent at p. Moreover, if oy (f) is not convergent at p for any s’ < s, then s is said to be the
Gevrey index of f along Y at p. Denote by Ox|y (s) the subsheaf of Ox7y whose germs are Gevrey series
of order s along Y.

The irregularity sheaf of a D-module M along Y of order s > 1 is

(Y)(M) := RHomp (M, Ox|y(s)/OX|Y)

For s = oo, the sheaf Irr}° (M) is simply called the irregularity sheaf of M along Y. If M is a D-module,
we define Irrg/s)(M) = Irrg/s)(/\/l), where M :=D®p M.

Setds(A, B) :=dim HO(Irrgf) (M 4(B))p) for a generic point p € Y = Var(x,). Applying Théoreme 2.3.1
and (2.3.1) in [Laurent and Mebkhout 1999] to this setting yields the equality

(A, B) = 1S e 7 (B) — e 7B + iy s B — 1t M (B (7-1)

for € > 0 small enough. In particular, if 8 is not rank-jumping for A, then by Theorem 2.1 and [Fernandez-
Fernandez 2010, Theorem 7.5], d;(A, B) is equal to

A (A) i= 7 = gt e et = > volw(Ad.  (72)

n¢r€®;+e.d71 \(Drre,dfl

Remark 7.2. Notice that (7-2) also holds for any face G < A in place of A when a, € G. Moreover,
d,(G) = dim HO(Irrgf)(MG(ﬂ/))p for a generic point p € Y’ = Var(x,) € C% and g’ € CG that is not
rank-jumping for G. The genericity condition on p requires that it avoids any other irreducible component
of the singular locus of Mg (B’) (which is independent of 8" as a consequence of Theorem 2.2). On the
other hand, if a,, ¢ G, then the coordinates indexed by G of the projective weight vectors L(s) and F
are the same. Hence the two induced filtrations over (any cyclic module over) the Weyl algebra in the
variables indexed by G are also the same. Thus, ,ul+€ ’

d;(G) =
Proposition 7.3. Forany B € C4, there is a lower bound dg (A, B) = d;(A).

= puy " for T = {n} and T = @ in this case, so

Proof. For a Z%-graded C[d]-module N, define dgj)(N, B) ;= dim HO(Irr;Y)(Hj (N, B))p) for a generic
point p € Y = Var(x,). Then by the same argument as in (7-1),
dD(N, B) = w2 (N B — iy o7 (NL B+ (N, B) — i (v, B) (7-3)

for € > 0 small enough. Notice that ds(A, 8) =d”(S4, B). By [Schulze and Walther 2008, Corollary 4.13]
and (7-3), d¥(S4, B) = ds(A). Moreover, if j > 1, then d)(S4, B) = 0 because H;(S4, f) = O by
Theorem 1.2.
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On the other hand, if N is a toric module with dimension lower than d, it follows that
d (N, ) <d"(N, B)

by the same argument as in the proof of [Schulze and Walther 2008, Lemma 4.29], with the replacement,
for each D-module M that appears in that proof, of the role of CCH(M) by dim H O(Irrgf) (M) ) for a
generic point p € ¥ = Var(x,). This is allowable because H 1(Irrgf)(M )p) = 0 for generic points p € Y
when M is holonomic (see [Mebkhout 1990]). Thus, with the previous ingredients, the proof of [Schulze
and Walther 2008, Theorem 4.28] gives the result with d§0> in place of fo:(r)- (I

Corollary 7.4. For s > 1, the dimension d;(A, B) of the stalk of Irrgf)(MA (B)) at a generic point p of Y
can be computed from the combinatorics of d>i‘+€ \ ® i‘“ for € > 0 small enough and the ranking lattices
[E’(g; at B such that a,, € G < A.

Proof. 1t follows from (7-1) and Theorem 4.1 that d;(A, 8) can be computed from the combinatorics of
the (A, s")-umbrellas for s’ € {1 + ¢, s + €} and the ranking lattices EA. Thus, by Remark 7.2, it is enough
to consider the ranking lattices [Eg at B corresponding to the faces G < A containing a,,. (Il

We now state further consequences for d; (A, B).
Corollary 7.5. If P? = Pf for some G < A, then
ds(A, B) =ds(A) + IBCﬁ;I - (codim(G) — 1) - ds(G).
In particular, if a,, ¢ G or codim(G) = 1, then d;(A, B) = d;(A).
Proof. 1t is a direct consequence of (4-3), (4-4), Lemma 4.7, (7-1), (7-2), and Remark 7.2. U
Corollary 7.6. Ifd =2, then dy(A, B) = d,;(A) for any B € C%.

Proof. Since d = 2, the matrix A has only two proper faces G|, G, < A, which both have codimension 1.
Moreover, a, belongs to at most one of these two facets. Thus, by Corollaries 7.4 and 7.5, it is enough to
consider the case when a, € G| and max(7(8)) involves G. In this case, d;(A, 8) can be computed
as in the simple case, so the formula in Corollary 7.5 can be applied, giving d;(A, 8) = d;(A) since
codim(Gi) = 1. O

Notice that Corollary 7.6 also follows from [Schulze and Walther 2008, Proposition 4.25] and (7-1).

Corollary 7.7. Ifd =3, then d,(A, B) > d;(A) if and only if max (7 (B)) involves a face G with a, € G
and dim G = 1. If this is the case, d;(A, B) = d;(A) + IBgl -d; (G).

Proof. Again by Corollary 7.4, we only need to consider the ranking lattices [Eg such that a,, € G. Thus,
by the reduction given in [Berkesch 2011, Section 5.3], it is enough to prove the result in the following
two cases.

The first case is that a, belongs to a unique face G among those involved in max(7(8)). In this case,
the computation follows as in the simple case, and we obtain the same formula as in Corollary 7.5.
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In the second case, we may assume that there are exactly two faces G| and G, involved in max (.7 (8))
that contain a,. Since the face G| N G, contains a,, and d = 3, it follows that G; and G, are two facets
intersecting in a face of codimension 2. In this case, Remark 4.8 shows that uf\’,(r)(ﬁ) = uf"r for any
filtration L and any 7 € dL s0 d(A, B) =ds(A). O

Lemma 7.8. Let s > 1 be such that the (A, s)-umbrella ®°, has a unique facet t that is not F-
homogeneous, p is a generic point of Y = Var(x,), and € > 0 small enough. Then the function

B d(A, B,s):=dimHomp(Ma(B), Ogjy (s +€)/Ogy (s —€))p

1S upper-semicontinuous.

Proof. Notice first that by the assumption and Remark 7.1, s is a slope of M4(8) along Y and a, € t.
Indeed, the assumption implies that " := t \ {n} is the unique facet of <I>f4+6 that does not contain a, and
is also not a facet of @’ . On the other hand,

d(A, B.s) =dyre(A, B) —ds—c(A, B) = 157 (B) — 1ty g7 (B) + s o " (B) — 5 M (B).

Thus, setting d(A, s) := M’Zg’g — MZTS’Q + Mi;g’{n} - /xifg’{"} yields

d(A, 5) = volza(Ay) = rank(HE (Sa, B)),

where the first equality follows by the assumption, (2-4), and [Ferndndez-Ferndndez 2010, Lemma 7.4].
The second equality follows as in the proof of (6-4), since A, is a rank d submatrix of A. Simi-
larly, for faces G of A such that @, € G and t” := ' N G is a facet of CDi;re, we also have that
d(G,s) = rank(?—[{)//(gc, B)). Thus, arguments similar to those in Corollary 6.6 show that d(A, B, s) =
rank(’Hé/(S 4, B)) and that the function 8 — d(A, B,s) = rank(”H,(T,/(S 4, B)) is upper-semicontinuous
in 8. (Il
Theorem 7.9. Assume that for all s > 1, a,/s is in at most one of the hyperplanes off the origin supported

in a facet of A’ (see Remark 7.1). Then the function 8 — dg(A, B) is upper-semicontinuous for all s > 1.

Proof. Let 1 <51 < --- < s, be the set of slopes of M4(f8) along Y that are lower or equal to s. Then
ds(A, B) = Z;:l d(A, B,s;), and the result follows by Lemma 7.8. O

In view of the preceding results we state the following conjecture.

Conjecture 7.10. The map  +— ds(A, B) is upper-semicontinuous. Moreover, there is an equality
d-1
Ex(s) = {B € C?|dy(A, B) > dy(A)} = — qdeg(z P Extg sy C[aD(—sA)),
q=0
where €5 1= i_, a;. In particular, £} (s) = @ if and only ifSi‘n} is Cohen—Macaulay.
The values d; (A, B) and d;(A) defined in this section depend on the variety Y along which we are
considering the irregularity sheaf of M 4(8). Although we assumed Y = Var(x,) for simplicity, we can
consider any Y; := Var(x;) C C" since reordering the variables is equivalent to reordering the columns
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of A. Let ds(A, B, j) and dy(A, j) denote the values of dy(A, B) and d,(A) respectively for ¥; in place
of Y. In the following example, we compute the difference d;(A, 8, j) —ds(A, j) for different j by using
Corollary 7.7.

Example 7.11. Let us consider the matrix A in Example 4.10. The hyperplanes contained in the singular
locus of M 4(B) are exactly Y; for j € {2,4, 6,7} and there is exactly one slope s; > 1 of M4 (B) along
each Y;. More precisely, by Remark 7.1, 5o = % s4=23,5¢=2,and s7 = %. It is clear that d, (A, B/, j) =0
if 1 <s <s;forany g’ € C4, so let us assume that s > s; in each case. We have that d;(A, ', j) =d,(A, j)
for all 8’ and j € {2, 7}. On the other hand, d,(A, 8’,4) —ds(A,4) is 1 if B’ € B+ CG, and 0 otherwise.
Finally, d;(A, B’, 6) —ds(A, 6) is 1 if 8’ € 8+ CG, and zero otherwise.

One natural problem after the computation of d;(A, 8) = m is to construct an explicit set of Gevrey
series ¢y, . .., ¢ along Y at a nonsingular point p € ¥ so that their classes in the space (Ogpy (s)/Oxy)p
form a basis of H O(Irrgf)(M A(B))p). This was done in [Ferndndez-Fernandez 2010] when S is generic
enough. At any parameter §, this problem is much more involved in general. However, it is easy to
compute some examples by using a slightly modified version of a method used in [Ferndndez-Ferndndez
2013]. In order to do so, recall that the direct sum of two matrices A; € Z4*" | Ay € 7%*"2 i the
following (d| + d») x (n| + ny) matrix:

Al Od Xn
Al® Ay = 2
1D A2 <0d2><n1 A )

~

where 0,4, denotes the d x n zero matrix. Let 8 = (,3(1), ,3(2)) denote a complex vector in Chtdr ~
C% x C®. 1t is easy to show using [Fernandez-Fernandez 2013, Lemma 2.2] that

ds(A, B, ny) =dg(Ay, BV, ny) - rank(My, (B?)).

Now, let us take (Ag, B1) such that M4, (B") has slopes along {x,, = 0}, and let consider the subset of
Gevery series {g1, ..., &1} € Oxy (s) whose classes form a basis of

HOMy,) oy (Ma, (B),).

Let us take also a pair (A, B@) for which a basis {fi, ..., fr@} of convergent series solutions of
My, (B?%) at a nonsingular point p’ is known for a rank-jumping parameter 8* € C%. Then {g, f il
1<i<r(l),1<j<r(2)}isabasis of

HOWey) oy (May@a,(B) )
where g = (B1V, ). Note that
dim HO(Irr) o) (Ma,@4, () (p.p) = (1) -7(2) > ds (A, m) = ds (A1, m1) - -

In particular, the smallest example of this family is the one obtained by taking A =A; @ A, for A; = (12)
and A, = (0, 1,3, 4), where @ = (1, a)" and B = (b, 1, 2)" for any b € C\ Z. We notice that M, ((1, 2)")
was the first example known of an A-hypergeometric system for which the rank is greater than the
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normalized volume [Sturmfels and Takayama 1998]. Indeed, a basis of H O(Irrgiizzo}(M A, (D))p) 1s
{dv} C Ox7 () /Ox1v) ps where ¢, is the I'-series associated to v = (b, 0) (see [Fernandez-Fernandez
2010]) and rank(M 4, (B®)) = volz2(Az) + 1 =5 (see [Sturmfels and Takayama 1998], where a basis of
solutions is also described). Thus, in this case, M4 () has the slope s = 2 along x, = 0 and for s > 2,
ds(A, B,2) =d;(A,2)+1=5.
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