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Economic Reasoning from Simulation-Based Game
Models

Michael P. Wellman∗

Simulation modeling in economics has historically been viewed as an
alternative tomainstream analytic technique, and as such has generally
and intentionally avoided the focus on rational behavior and equilib-
rium reasoning that is characteristic of game-theoretic approaches. The
emerging methodology of empirical game-theoretic analysis (EGTA)
attempts to bridge agent-based simulation and game theory, combin-
ing the flexibility of simulation with the discipline of rationality crite-
ria. The basic idea is to estimate a restricted game model from data
generated by systematic simulation over a space of heuristic strategy
profiles. EGTA enables a standard form of strategic analysis for com-
plex economic scenarios previously addressed only in severely stylized
form.

Keywords: agent-based modeling, agent-based simulation, empirical
game-theoretic analysis, computational game theory

Le raisonnement économique dans les modèles de jeux basés sur des
simulations
Historiquement, la modélisation par simulation en économie s’est dé-
veloppée comme alternative aux techniques analytiques courantes. De
ce fait, elle a généralement et sciemment évité de traiter de la rationa-
lité et du raisonnement à l’équilibre, qui sont au cœur de la théorie des
jeux. La nouvelle méthodologie d’analyse empirique de jeux (EGTA en
anglais) tente de faire le pont entre la simulation à agentsmultiples et la
théorie des jeux, combinant la flexibilité de la simulation avec la disci-
pline des critères de rationalité. L’idée principale est d’estimer un mo-
dèle de jeu réduit à partir de données générées par des simulations sys-
tématiques sur un espace heuristique des profils de stratégie. L’EGTA
fournit une norme stratégique pour analyser les scénarios économiques
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complexes qui étaient auparavantmodélisés uniquement sous des formes
fortement stylisées.

Mots-clés: modélisationmulti-agents, simulationmulti-agents, théorie
des jeux, économie computationnelle
JEL: C63, C7, D44

Advocates of agent-based modeling (ABM) in economics (Fagiolo and Ro-
ventini, 2012; Gilbert, 2007; Miller and Page, 2007; Richiardi, 2012; Tesfat-
sion, 2006) tend to invoke two kinds of arguments in favor of simulation-
based approaches relative to prevailing analytical methods.

1. Simulation can accommodate a great deal of complexity, in compar-
ison to models amenable to theoretical characterization. For exam-
ple, heterogeneity in agent types, partial and asymmetric informa-
tion, and dynamic interaction all pose significant challenges for ana-
lytic reasoning, but can be incorporated in simulationwith little addi-
tional effort. In practice, an imperative for theoretical characterization
therefore limits model complexity, potentially in ways that systemati-
cally distort the kinds of issues addressed or phenomena recognized.

2. Standard solution concepts impose unrealistic rationality requirem-
ents or adhere too strictly to equilibrium assumptions. A “bottom-
up” (Epstein and Axtell, 1996) approach to generating economic out-
comes may be more likely to produce novel insight (particularly on
“emergent” phenomena) than models conceived in a “top-down”
manner. As Richiardi (2018) points out, whereas equilibrium reason-
ing can be relevant to bottom-up systems, it is problematic to ignore
the dynamics of adaptation or other out-of-equilibrium behavior.

Though these arguments are typically put forth together and viewed as
complementary, let us take them separately for current purposes. The first
is a purely technical point and perhaps uncontroversial. Whereas clever
theorists continually extend the boundary of analytic tractability, it is hard
to deny that complexity is a constraint, and that economically relevant fea-
tures are often sacrificed for the sake of maintaining feasibility of math-
ematical treatment. It is far easier to include complicating features in a
simulation model. Though complexity may later impose a burden in un-
derstanding simulation results, it generally does not add significant cost to
development and execution of the simulation model itself.

The second category of argument is less straightforward. Concepts like
rationality and equilibriummaybe restrictive, but that restrictiveness serves
to impose a necessary discipline on agent behaviors considered. Whether
these concepts bring exactly the right form of restrictiveness is debatable,
but the need for some discipline is compelling, as virtually any outcome
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may be producible by some pattern of agent behavior. Indeed, the degree
of freedom afforded the designer of agent-based simulations is perhaps the
greatest cause for skepticism about simulation results. The way that some
(though by no means all) ABM advocates have positioned their methods in
opposition to mainstream economics has probably also contributed to the
lack of general acceptance of these techniques in the field to date.

For the past 20 years or so, some computer scientists have been pursuing
an approach that aims to exploit the advantages of simulation for model-
ing complex systems while maintaining the appeal to selection of rational
agent behavior. The approach is a hybrid of ABM and game theory called
empirical game-theoretic analysis (EGTA) (Tuyls et al., 2020; Wellman, 2006;
2016). In the sequel, we explain the key components of EGTAmethodology
and demonstrate through examples its value for economic reasoning. We
also discuss the challenges and limitations of this approach, and its tech-
nical and historical relations to ABM and other simulation approaches in
economics.

1 EGTA: Basic Concepts
The defining feature of EGTA is induction of a game model from systemat-
ically generated simulation data. Each run of the simulator produces data
about the outcome of the game, including payoffs for each of the players.
The simulator can itself be viewed as a model of the game, albeit one ex-
pressed in procedural form not directly amenable to game-theoretic anal-
ysis. Typically we start from a set of candidate agent behaviors, that is,
strategies for playing the game modeled by the simulator. These strategies
may represent heuristic policies for the game, based on behavioral data,
approximate optimization, or any other approach typically employed in
agent-based modeling. Often the strategies are points in a well-defined
space of feasible policies, specified in terms of tunable parameters or other
controllable features.

1.1 A Very Simple Example
Let us illustrate with a toy example. Consider a game between two bidders
in a first-price sealed bid (FPSB) auction.1 We assume independent private
values, distributed uniformly on [0,1]. For candidate strategies, we consider
those where the players bid a constant fraction k of their private value, with
k ∈ {1/3, 1/2, 2/3}. Thus we have a 3× 3 two-player game. Simulating this
game is trivial: All we do is draw private values for the two players, apply
their bidding strategy, and declare the highest bidder thewinner. If a player

1 This game is simple enough to characterize analytically (Krishna, 2010), so one would cer-
tainly not employEGTA in this instance. Nevertheless, examining a gamewith known solution
helps to illustrate the concepts, and as even small variants on this game may be analytically
intractable, it well exemplifies some contexts where EGTA has been applied.
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with strategic parameter k and value v wins, it obtains profit (1− k)v. The
losing bidder gets zero profit.

Results from the exercise of estimating the game in this way are shown
in Table 1. At left is the payoff table for the exact 3× 3 normal-form game,
taken from analytically derived formulas (Schvartzman and Wellman,
2009a). At right is an empirically derived model of the game, estimated
by sampling. With 500 samples per strategy pair (for symmetric pairs we
get two payoff observations per sample, for a total of 1000), the estimates
exhibit errors in the second or third decimal place. For a game this simple,
it would be feasible to take millions of samples and get quite a few more
decimal places right. When simulation of a game instance is more compu-
tationally intensive, however, or when there are many more strategy com-
binations to be considered, sampling errors of this sort may be expected in
empirical game estimation.

Table 1: Normal Forms for Two-Player FPSB with Three Heuristic Strate-
gies.

k 1/3 1/2 2/3
1/3 2/9 4/27 1/9
1/2 11/54 1/6 1/8
2/3 11/72 13/96 1/9
k 1/3 1/2 2/3

1/3 .2234 .1252 .1198
1/2 .2258 .1659 .1210
2/3 .1405 .1371 .1066

Payoffs are shown for the row player. Left: exact payoffs calculated analyti-
cally. Right: empirical game estimated by numeric simulation, 500 samples
of each strategy pair.

Even with such errors, in this case the unique solution of the empiri-
cal game, (1/2, 1/2), is also the unique Nash equilibrium of the underlying
(true) game. Not all game-theoretic inferences correctly transfer, however:
For instance, k = 1/2 is a dominant strategy in the empirical game but not
in the underlying game.

1.2 Parametrized Heuristic Strategies
A key design decision in any EGTA study is what strategies to make avail-
able to the respective players. Inevitably, the strategy sets will be strict
subsets of the full set of behaviors possible in the underlying game. In
the spirit of agent-based modeling, strategies tend to be heuristic, embody-
ing insights about effective behavior drawn from intuition or experience.
Heuristic strategies may even incorporate optimization techniques or rep-
resent optimal behavior in idealized conditions, but generally fall short of
exact equilibrium solutions (if we could solve for equilibria we would not
need to adopt a simulation-based approach). In some cases, modelers may
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prefer to limit the considered strategies to reflect bounded rationality con-
siderations or observed characteristics of real-world behaviors.

Since heuristic strategies are by nature imprecise fits for particular cir-
cumstances, common practice is to expose control parameters by which the
heuristics may be tuned to specific environments. In our FPSB example,
there is a single strategic parameter k, representing the fraction of valua-
tion the agent will bid. In this instance, the parameter space happens to
cover the exact equilibrium, though for typical subject games this would
not be possible to ensure in practice. The k parameter in any case captures
an intuitive way to explore a natural range of behaviors, from lowball bid-
ding (k → 0) to conservatively offering near one’s valuation (k → 1). The
setting k = 1 also corresponds to the concept of truthful bidding, which is
a poor strategy in FPSB (guaranteed zero surplus) but represents a natural
landmark for bidding problems in general.

For auctions and other games related to revelation mechanisms, degree
of deviation from truthfulness (i.e., bid shading) is a natural candidate for a
strategy parameter. In our FPSB example, the quantity 1− k represents the
shading proportion, and more broadly, shading parameters are typical in
EGTA studies of competitive bidding. For example, Zhan and Friedman
(2007) performed a simulation-based game-theoretic analysis of double-
auction markets, with buyer strategies defined by shading parameters, and
seller strategies inversely bymarkup parameters. This study considered ad-
ditive and exponential in addition to multiplicative application of shading
(and markup), further refined in follow-up work by Cervone et al. (2009).

More complex strategies will naturally admit more elaborate parametri-
zations, ranging over multiple dimensions. For example, Cliff (2006) con-
ducted extensive evolutionary optimization of double-auction bidding
strategies over 60 parameters. These parameters controlled aspects of di-
rect behavior such as tendency to shade bids, as well as higher-order factors
like rate of adaptation (learning). For environments with multiple forms
of decisions (e.g., interactions across markets with distinct mechanisms),
strategies may employ distinct approaches for each form, leading to multi-
faceted parameter spaces (Wellman et al., 2006). Once behavior is complex
enough, agent designers find it useful to describe the fixed or structural ele-
ments of this behavior as the agent architecture (Weiss et al., 2010), naturally
leaving the variable elements to be exposed as control parameters.

1.3 Incomplete Game Models
A natural measure of the complexity of a normal-form game is the number
of strategy combinations, or profiles, that is, ways of mapping the players to
chosen strategies. For a 3 × 3 game like the toy FPSB example above, it is
quite feasible to evaluate through simulation all strategy profiles. More
generally, the size of the profile space is exponential in the numbers of
agents and strategies, and so exhaustive estimationwill typically be infeasi-
ble. Fortunately, in many cases, game-theoretic solutions can be character-

Œconomia – History | Methodology | Philosophy, 10(2): 257-278



262 Michael P. Wellman |

ized far short of simulating the entire game. For example, after analyzing
the empirical FPSB game of Table 1, we may wish to test the provisional
solution by exploring additional strategies, say k′ and k′′. Rather than sim-
ulate these strategies against all the previous strategies (and each other), we
might just test them as deviations from the (1/2, 1/2) equilibrium. As long
as neither k = k′ nor k = k′′ outperform k = 1/2 against the other bidder
playing 1/2, we may conclude (modulo sampling error) that the original
solution remains a solution to the extended game. This leaves open the
possibility that other solutions exist, and indeed we cannot reach conclu-
sions about the full set of solutions without exhaustive evaluation, unless
we invoke additional game-specific assumptions.

We refer to a gamemodel as incomplete if only a strict subset of the strat-
egy profiles have been evaluated through simulation.2 Researchers have
developed a variety of approaches to explore and characterize incomplete
game models. This includes methods to drive simulation toward regions
of the game model that are deemed most important. Sureka and Wur-
man (2005) proposed a procedure for extending an incomplete gamemodel
based on tabu best-response search. Subsequent works identified and eval-
uated alternative search procedures, likewise under a model where the ba-
sic operation is evaluating the expected payoff of a specified pure profile
(Jordan et al., 2008; Vorobeychik et al., 2006). Fearnley et al. (2015) formal-
ized this payoff query approach to game solving and characterized situations
where approximate equilibria may be identified in the worst case without
exhaustive exploration of the profile space.

Perhaps the simplest illustration of profile-space exploration is a pro-
cedure that Wellman et al. (2013) refer to as the “EGTA inner loop” (see
Figure 1). Let us define a candidate solution to be a strategy profile (gen-
erally, mixed) that is evaluated in the current incomplete game, but such
that there is no strategy for any player that is a beneficial deviation in the
incomplete game. Since the game is incomplete, a potential deviation may
be unevaluated (i.e., some profiles required to calculate the deviation pay-
off have not been simulated), or if evaluated, may or may not be beneficial.
If all potential deviations have been evaluated and are non-beneficial, then
the candidate is confirmed as a Nash equilibrium. Otherwise, if some devi-
ation is unevaluated, the candidate is unconfirmed. The EGTA inner loop,
in somewhat simplified form, repeats the following steps until done:

1. Analyze the incomplete game to identify candidates.

2. If there exists an unconfirmed candidate, then simulate all unevalu-
ated deviations, and go to step 1.

3. If there exists a confirmed candidate, then done. Otherwise, find a
subgame with all profiles evaluated, extend it by adding a strategy
and completing the extended subgame, and go to step 1.

2 Note that even a “complete” game model by this definition is a restricted version of the
original game of interest, since the strategies considered are only enumerated sets of paramet-
ric instances of the full space of possible strategies.
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Note that even when the inner loop is “done” and we have a confirmed
solution candidate, there remains opportunity to refine the model by con-
sidering additional strategies. This is reflected in the “outer loop” of Fig-
ure 1, in which additional strategies are brought into consideration based
on results from analyzing the current empirical game model.

Figure 1: Iterative Procedure for Reasoning about Incomplete Empirical
Game Models.

1. Game Analysis: Identify solution 
candidates
2. Simulate unevaluated deviations 
from candidate profiles
3. If no confirmed candidate, extend a 
subgame by simulating missing profiles

inner loop

confirmed solution

strategy sets, incomplete 
empirical game model

Generate new 
heuristic strategies
(outer loop)

As illustrated in the presentation of the toy FPSB example above, sim-
ulation does not exactly reveal expected payoffs, but rather noisy samples
as a means to estimate such payoffs. Hence the computational resources
available for sampling need be allocated considering not only which pro-
files to evaluate, but according to the relative accuracy needed among those
profiles evaluated. This issue was addressed directly in early EGTA work
by Walsh et al. (2003), who introduced a criterion they termed expected con-
firmational value of information. Alternative criteria were later proposed by
Reeves et al. (2005) and Jordan et al. (2008). Subsequent work has also ad-
dressed statistical characterization of EGTA results (Vorobeychik, 2010), in-
cluding direction of sampling to maximize statistically valid conclusions
(Jecmen et al., 2020; Wiedenbeck et al., 2014).

Another approach is to go beyond estimation of profile payoffs by direct
simulation of those profiles, and instead fit a general game model to what-
ever simulation data has been collected. Given payoff data generated over
a range of sampled profiles, induction of a game model can be viewed as
a statistical machine learning problem. A variety of methods for learning
game models from data have been developed (Honorio and Ortiz, 2015; Li
and Wellman, 2020; Sokota et al., 2019; Vorobeychik et al., 2007; Wieden-
beck et al., 2018). Basing a game model on data—even simulated data—
may overcome skepticism that some harbor about game-theoretic models.

2 EGTA and Agent-Based Modeling
Strictly speaking one should classify EGTA as a special case of ABM, in that
EGTAmethodology entails simulation of strategic behavior, effectively em-
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ploying a model which would naturally be labeled as “agent-based”. This
label does not have an unambiguous technical definition, but generally is
understood to focus on entities that autonomously generate behavior and
can be ascribed agent attitudes such as beliefs, goals, and intentions. There is
no requirement that strategies in an agent-based simulation explicitly refer-
ence such attitudes, and practice within the ABM genre varies in extent of
appeal to explicit beliefs and preferences.3 As Schinckus (2019) notes, there
are diverse methodological perspectives motivating agent-based models,
and these may be more or less complementary with (versus substitutable
for) standard agent concepts. In particular, the ABM literature includes
an extensive body of simulation studies (roughly aligned with so-called
“EconoPhysics” perspectives) where the actors have simple particle-like be-
haviors and interactions. More complex strategic domains would tend to
call for more sophisticated agent designs, better aligning with senses of the
term “agent” from the field of artificial intelligence (Wellman, 2016).

The focus on simulation as the tool for examining agent interactions es-
tablishes a foundation of shared elements betweenABMandEGTAmethod-
ology. Figure 2 shows how the methodologies relate, including these com-
mon features as well as more distinguishing characteristics. As discussed
in the introduction, the foremost motivation for simulation is its ability
to accommodate complexity in the environment. Complexity may mani-
fest, for example, in nonlinear effects of actions, interactions dependent
on fine-grained or localized features, path-dependent dynamic patterns,
and asymmetric information structures. Environments with such features
rarely admit closed-form or provably optimal strategies, hence the neces-
sity of heuristic behavior specification. The appeal of heuristics also lies in
the ability to incorporate in procedural form ideas about how agents make
decisions, based on empirical evidence or behavioral theories.

The agent-based modeling approach also fosters consideration of het-
erogeneity among agents. Members of a population invariably differ in be-
liefs (e.g., based on differences in available information) and preferences,
as well as capabilities and opportunities, among other things. These differ-
ences may be parametric or categorical, and arise randomly or through a
generative process (or some combination of the above). Regardless, the het-
erogeneity itself is often pivotal in driving the trajectory of the multi-agent
system, and so approaches based on aggregate or representative-agent be-
havior may be fundamentally inadequate (Chapman and Polkovnichenko,
2009).

Where EGTA departs from the main line of ABM research is in how it
explores and selects among candidate agent designs from which to draw
its conclusions. EGTA is motivated by the goal of understanding rational
behavior in a complex strategic environment modeled by a simulator. The
“GT” in EGTA stands for “game-theoretic”, after all, which naturallymeans

3 Though since the target of simulation in EGTA is to build a game model there must at
least be some explicit quantification of outcome payoffs. Such payoffs technically correspond
to agent utility functions, representing the agents’ preferences over the outcome space.
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Figure 2: Comparison of ABM and EGTA Methods and Practice.

ABM EGTA

Various

Evolutionary

Fitness

Rationality

Game-theoretic

Payoff

behavioral criterion

stability concept

agent evaluation

Complex environments: dynamics, interactions, information, etc.

Heuristic specification of behavior

Heterogeneous agents

Evolutionary game theory

common 
elements

The foundation of common elements derives from the methodologies’ cen-
tral use of simulation. The crux of differences lies in the criteria for select-
ing among agent behaviors. ABM employs various criteria, often informal,
whereas EGTA expressly filters for rational configurations based on game-
theoretic solution concepts.

that it will appeal to GT stability concepts (in turn, derived from rationality
theories) in assessing the relevant agent strategies.

ABM studies in economics also sometimes apply stability concepts,
though these tend to be based on evolutionary dynamics rather than ratio-
nality criteria. This stems in part from the way the agent-based approach
has been motivated as a departure from mainstream neoclassical frame-
works, and especially in contrast to the prevailing focus on equilibrium rea-
soning. Evolutionary thinking in economics, as pioneered by Nelson and
Winter (1982), emphasizes change in behavior through incremental adjust-
ment and feedback over extended and repeated interactions. This is framed
in explicit contrast to optimization-oriented models, such as commonly in-
voked inmainstreameconomic theory and inherent to game-theoretic treat-
ments.

However, avoiding explicit optimization does not obviate the need for
some way to evaluate agent performance. Following the influence of theo-
retical work in evolutionary biology, evolutionary modeling in ABM mea-
sures success of an agent by fitness, a term meant to capture tendency to
thrive or grow in prevalence within a population of evolving entities. In
ABM, fitness typically represents the same sort of outcome features (e.g.,
profit in an economic context) that would be captured by a payoff or util-
ity function. As such, the difference is more terminological than substan-
tive. Based on the chosen evaluation function, ABM studiesmay include an
evolutionary tournament whereby a population of agent behaviors is iter-
atively adjusted according to relative fitness, for example using the model
of replicator dynamics (Schuster and Sigmund, 1983). The evolutionary path
in this approach is computed by simulation of a population over a series of
generations, ultimately converging to a set of strategies that is evolutionarily
stable (Taylor and Jonker, 1978). For large populations or sets of candidate
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behaviors, the associated computational burden may limit consideration to
fairly simple agent behaviors and fitness functions.

Concern with evolutionary dynamics and outcomes is also shared by a
significant thread of work in EGTA (Phelps et al., 2005; Tuyls et al., 2020).
Tuyls and Parsons (2007) argue that evolutionary game theory is particularly
relevant to understand systems of learning agents, and that analyzing the
trajectory of agent behavior under evolutionary dynamics can provide spe-
cial insights. Studies that perform evolutionary analysis under the EGTA
label contrast algorithmically with typical ABM practice by separating the
simulation-based generation of fitness data from the simulation of evolu-
tion itself. EGTApractice is to estimate the fitness of a space of strategy pro-
files through simulation, constructing a heuristic payoff table (essentially esti-
mating the empirical game), which in turn provides sufficient data for evo-
lutionary computation without requiring further simulation of the agents
themselves (Bloembergen et al., 2015).

From a broader perspective, evolution and game theory are two par-
ticular approaches to characterize stability of a configuration of agent be-
haviors. As such, they provide alternative criteria for selecting among can-
didate configurations. In principle, one could apply any sufficiently well-
defined criterion in a systematic manner for behavior selection, just as evo-
lutionary and rationality-based solution concepts are employed in EGTA.
ABMpractice often promotes alternative criteria, such as generating behav-
ior that reproduces stylized facts of a domain. Such stylized facts are not
always sufficiently formalized to automate a systematic search, but never-
theless do provide an effective way to filter candidate behaviors.

3 Historical Development
The first paper explicitly describing an EGTA methodology was written
by a group of IBM researchers (Walsh et al., 2002), advocating equilibrium
(strategic and evolutionary) analysis of games estimated by simulation over
heuristic strategies. This early work studied a dynamic pricing game with
5–20 agents over three heuristic strategies, as well as a double-auction game
over 14 or 20 agents, again with three heuristic strategies. As described in
the paper, themain idea is to compute through simulationwhat the authors
term a heuristic-payoff table representing expected payoffs over the heuristic
profile space.

The approach of Walsh et al. (2002) was an outgrowth of prior agent-
based modeling efforts by themselves and others in these domains, in par-
ticular on the dynamics of interacting heuristics for automated shopping
and pricing (Greenwald et al., 1999). These works in turn extended an
emerging practice in agent-based modeling to explore various combina-
tions of behavior, and often to trace out the dynamics of evolutionary or oth-
erwise adaptive variation. For example, adaptive variation was a key fea-
ture of early agent-based studies of financial markets (Arthur et al., 1997).
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Moving from evolutionary dynamics and stability concepts to game-theo-
retic stability is in some respects a small conceptual step; however, it is not
one that the field of agent-based economics would have been inclined to
take. As discussed above, agent-based modeling was seen by many prac-
titioners as an alternative to analysis based on rational behavior, so apply-
ing game theory to data from agent simulations might have been consid-
ered anathema. The work by Greenwald and Kephart (1999) was different
in that it expressly appealed to game-theoretic concepts in the definition
of heuristic strategies and characterization of steady-state behavior. How-
ever, the step of applying game-theoretic analysis to the interactions among
heuristic strategies was taken for the first time in the paper by Walsh et al.
(2002).4

Trading and bidding games, particularly double-auctions, were popu-
lar targets for agent-based simulation game modeling in the earliest days
of its development. Phelps et al. (2005) employed the approach to compare
two alternative double-auction mechanisms, performing simulation-based
game analysis of heuristic strategies applied to each. In follow-on work,
this team showed how to derive new strategies through genetic search over
a parametric strategy space, optimizing performance against the equilib-
rium derived from an empirical game model (Phelps et al., 2006). This was
perhaps the first work to automate the outer-loop step of empirical game
generation (Figure 1). They further built on these ideas to consider basin
size under an evolutionary dynamic as a fitness measure, and proposed
an algorithm for extending the strategy space by repeated iteration (Phelps
et al., 2010).

The methodology was given the name “EGTA” and systematically de-
veloped in a program of sustained research at the University of Michigan,
shortly following the Walsh et al. (2002) paper. This began with a study
of heuristic strategies for simultaneous ascending auctions (Wellman et al.,
2003), which derived constrained equilibria for empirical games over se-
lected parametric instances. A series of PhD dissertations over the next 15
years advanced the methodology in a variety of directions (Cassell, 2014;
Jordan, 2010; Reeves, 2005; Schvartzman, 2009; Vorobeychik, 2008; Wieden-
beck, 2015; Wright, 2018).

A significant thread of EGTA work from this group was driven by the
Trading Agent Competition (TAC) series of market games, posed as chal-
lenges to the research community (Jordan et al., 2010; Niu et al., 2008; Sadeh
et al., 2003; Wellman et al., 2007). In these competitions, AI researchers de-
veloped innovative trading strategies for a variety of complex market envi-
ronments. Since the strategies were developed independently (at least ini-
tially) by diverse groups focusing on different approaches, understanding
the strategic interactions among them often required careful post-hoc anal-
ysis. For example, an empirical game study of strategic procurement in the

4 It was foreshadowed though by the first author’s earlier dissertation work (Walsh, 2001),
in which he characterized “quasi-equilibria” among a restricted class of heuristic strategies in
a supply chain game (Walsh et al., 2000).
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TAC supply chain game provided insight about why the 2003 tournament
was prone to bouts of ruinous price cutting (Wellman et al., 2005). The same
game served for a case study in empirical mechanism design (EMD) (Vorob-
eychik et al., 2006), where an incentive engineer searches over mechanism
candidates using EGTA to assess strategic response. A recent extension of
EMD methodology by Viqueira et al. (2019) also employed a TAC game to
exercise the authors’ proposed technique.

A particularly exciting future direction for EGTA is the exploitation of
recent AI advances—especially deep reinforcement learning (RL)—for the
automated generation of strategy candidates. Schvartzman and Wellman
(2009b) demonstrated the use of RLwith EGTA in an early study of dynamic
trading strategies. This has recently been extended to deep RL methods in
work at Google DeepMind (Lanctot et al., 2017). It is quite natural that
they might pursue this direction, given that their breakthroughs in com-
puter game-playing demonstrated by AlphaGo Zero (Silver et al., 2017) are
essentially products of learning through massive simulation of game play.
Indeed, DeepMind’s advances in the game of StarCraft II explicitly relied
on empirical game analysis over the strategy learning process (Vinyals et al.,
2019). The promise of combining of deep RL with EGTA has been further
demonstrated in complex security games in very recent work (Wang et al.,
2019; Wright et al., 2019).

4 Economic Applications of EGTA
Experience employing EGTA in a variety of economic domains illustrates
some of the motivating advantages described above. As described in Sec-
tion 3, much of the original focus of the methodology was on auctions, mo-
tivated by scenarios in electronic commerce. There is an extensive game-
theoretic literature on auction theory (Krishna, 2010), but definitive treat-
ments are available only for the most highly stylized of situations. Classic
auction theory emphasizes one-shot mechanisms like sealed-bid auctions,
perhaps with some generalization to handle multiple units, or two-sided
bidding. Dealing with multiple heterogeneous goods, simultaneously or
sequentially, typically gets beyond the scope of established theory, as does
consideration of highly dynamic mechanisms.

Over the years, EGTA studies succeeded in developing insights and
best-known strategies for several auction settings that had proven too com-
plex for analytic auction theory. One example studied in early EGTA work
(Reeves et al., 2005) is simultaneous ascending auctions (SAAs), in which a
number of goods are up for sale at the same time. Bidders may submit
offers on any subset, as long as these offers exceed the highest prices bid
for the respective goods to that point. As bid withdrawal or cancellation is
prohibited, prices only ascend, until no agent wishes to bid further and the
last bids on each good prevail. Milgrom (2000) had shown that straight-
forward (myopic) bidding strategies lead to efficient outcomes in SAAs, as
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long as valuations exhibit gross substitutes. Such strategies could perform
quite poorly, however, in the presence of complements, due to the exposure
problem. Greenwald and Boyan (2004) explored a range of heuristic bidding
strategies to deal with exposure, introducing in particular a variety of ways
to employ price predictions in SAAbidding. In a comprehensive EGTA study,
Wellman et al. (2008) considered strategies from prior literature, as well as
new strategies based on price predictions that are self-confirming: that is,
the predictions are borne out when the agents bid accordingly. This work
demonstrated the benefits of self-confirming price prediction in the pres-
ence of complements, but also found that strategies focusing on demand
reduction were more effective when goods are substitutes.

The idea of self-confirming price predictionwas likewise found to be ef-
fective in simultaneous one-shot auctions, again through a comprehensive
EGTA study (Wellman et al., 2017). Follow-on work extended the price-
prediction technique to handle interdependence in goodprices (Mayer et al.,
2013).

In a continuous double-auction (CDA), both buyers and sellers bid, with
transactions executed as soon as a new bid matches an existing bid in the
order book (Friedman, 1993). Static double-auctions have been well char-
acterized (Satterthwaite and Williams, 1993), but dynamic CDAs are no-
toriously difficult to analyze game-theoretically. As noted in the preceding
section, Zhan and Friedman (2007) performed EGTA over heuristic markup
strategies in a CDA model. A variety of more sophisticated heuristic CDA
strategies have been developed in the agent-based literature, incorporating
a range of approaches to adaptation andprediction, for example (Cliff, 2006;
Gjerstad and Dickhaut, 1998; Tesauro and Das, 2001; Vytelingum et al.,
2008). Schvartzman and Wellman (2009b) conducted an EGTA study over
representative strategies from the literature and further employed reinforce-
ment learning to generate new strategies improving on these, at leastwithin
the environment simulated in that work.

CDAs are of particular relevance as they represent the generic limit-
order mechanism at the core of almost all financial markets. ABM resear-
chers have long employed simulation to deal with the intricacies of realistic
financial markets (LeBaron, 2006). EGTA finance studies have addressed a
variety of financial market contexts, providing insight on existing theoret-
ical models as well as extending understanding to scenarios beyond those
apparently addressable by analyticmethods. For example, one recent study
employed EGTA to explore market making strategies and identify condi-
tions in which market makers were either beneficial or detrimental to mar-
ket performance (Wah et al., 2017). Other finance topics addressed byEGTA
include asset pricing (Cassell and Wellman, 2012), latency arbitrage (Wah
andWellman, 2016), and market manipulation (Wang andWellman, 2017).

A recent study of banking regulation provides a particularly direct dem-
onstration of what EGTA brings to simulation-based economic reasoning.
Poledna et al. (2014) developed an interesting agent-basedmodel capturing
the dynamics of leverage cycles as described by Geanakoplos (2010). Stated
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simply, in this model the relatively aggressive agents gain increasing shares
of wealth and influence until their predominance renders the system vul-
nerable to crisis-like corrections. Poledna et al. used this model to study
the effects of Basel-style regulation of bank capitalization, finding some-
what counterintuitively that regulation could actually degrade financial
stability, as reflected for example in default rates. Given these intriguing
results, Cheng and Wellman (2017) undertook to replicate the model and
indeed confirmed the original findings. However, they also observed that
the comparison of regulated and non-regulated environments did not take
into account any possible strategic response of the agents to the presence
or absence of regulation. By making aggressiveness a strategic parameter,
the EGTA approach could essentially endogenize that choice. The study
generated simulation data for profiles over a range of settings, enabling a
more appropriate equilibrium-to-equilibrium comparison of the regulated
and non-regulated regimes. The main finding was that regulation reduced
aggressiveness, and with this response taken into account did not actually
exacerbate instability compared to the unregulated environment.

Discussion
As noted in the introduction, agent-based approaches in economics are of-
ten motivated by the goal of avoiding the kind of strict rationality assump-
tions pervasive inmainstreammicroeconomic theory. Bringing game-theo-
retic reasoning to agent-based modeling could be viewed as undercutting
this particularmotivation. Thatmay be fine for thosewho embrace rational-
ity-based foundations, but others may wish to retain some of the flexibil-
ity afforded by the agent-based approach. The EGTA framework itself can
accommodate concerns about excessive rationality assumptions in at least
three ways.

1. The construction of input strategies may incorporate behavioral as-
sumptions (e.g., myopic or otherwise bounded behavior) or other lim-
itations on full rationality.

2. Since the game environment is much more complex and may already
reflect challenges like agent heterogeneity and dynamic uncertainty,
notions of equilibrium aremuch less stylized than in the limited envi-
ronment. Although behaving according to exact equilibrium may be
even more unrealistic, the approach of striving to identify (approxi-
mate) equilibrium may be more defensible.

3. The game model is itself subject to analysis with non-standard so-
lution concepts. For example, accommodating behavioral theories
such as quantal response or cognitive hierarchy (Camerer, 2003) in
the analysis of induced games is quite straightforward.

High-fidelity simulation offers great promise for extending economic
analysis to far more complex and realistic situations than are feasible with
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strictly analytic methods. Particularly with the increasing availability of
large-scale computational resources (e.g., through cloudproviders), wemight
expect that economics would begin to leverage simulation technology in
a substantial way, just as such computational methods are routinely em-
ployed in the physical sciences and engineering. To date adoption has been
slow, likely due to methodological questions and resulting acceptance bar-
riers (Lehtinen and Kuorikoski, 2007). Showing how agent-based simula-
tion is not inherently in conflict with accepted concepts, particularly ratio-
nality and game-theoretic reasoning, may go some way to weaken those
barriers. There yet remain limitations and challenges for simulation-based
game analysis. Ongoing work aims to exercise the methodology and refine
its technique, building a new and powerful set of simulation-based tools
for economic reasoning.
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