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ABSTRACT

The increasing complexity and ubiquity of using IoT devices exac-
erbate the existing programming challenges in smart environments
such as smart homes, smart buildings, and smart cities. Recent
works have focused on detecting conflicts for the safety and utility
of IoT applications, but they usually do not emphasize any means
for conflict resolution other than just reporting the conflict to the
application user and blocking the conflicting behavior. We propose
ReMEDIOT, a remedial action ! framework for resolving Internet-
of-Things conflicts. The REMEDIOT framework uses state of the art
techniques to detect if a conflict exists in a given set of distributed
IoT applications with respect to a set of policies, i.e., rules that define
the allowable and restricted state-space transitions of devices. For
each identified conflict, REMEDIOT will suggest a set of remedial
actions to the user by leveraging REMEDIOT s programming abstrac-
tions. These programming abstractions enable different realizations
of an IoT module while safely providing the same level of utility,
e.g., if an air-conditioner application that is used to implement a
cooling module conflicts with a COz monitor application that re-
quires ventilation at home, a non-conflicting smart fan application
will be suggested to the user. We evaluate REMEDIOT on Samsung
SmartThings applications and IFTTT applets and show that for 102
detected conflicts across 74 sample applications with 11 policies,
ReMEDIOT is able to remediate ~ 80% of the conflicts found in the
environment, which would normally be blocked by prior solutions.
We further demonstrate the efficacy and scalability of our approach
for smart city environments.

CCS CONCEPTS

« Software and its engineering — Software safety; General
programming languages.

KEYWORDS
Smart Environment, Environment safety, IoT conflicts

!This paper draws on the analogy of remedial action schemes for safety-critical,
complex industrial control systems such as the electric power grid.
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1 INTRODUCTION

The proliferation of the Internet-of-Things (IoT) has enabled sen-
sors and actuators across several facets of society for the purpose
of automating and optimizing our daily tasks. As humans settle
into smart environments, the collection of data and automation
of associated processes draw concerns of safety, security, and pri-
vacy [2, 15, 27]. IoT programming platforms such as IFTTT [28],
Zapier [31], and Samsung SmartThings [25] have eased the con-
figuration process of smart environment devices, but they placed
the burden of addressing those aforementioned concerns on both
the IoT application developers and the application users who are
configuring the environment.

Previous works have attempted to alleviate this burden by check-
ing potential IoT configurations against policies, which are rule
specifications of a particular system with respect to some objective
function such as safety or utility. An example policy may aim at pre-
venting racing conditions between two applications that may turn
a device on or off. Policy-based mechanisms have been proposed
to enforce policies that avoid unsafe or unsecure states for smart
environments. Solutions such as IoTGuard [6] will raise an alert to
the user if a particular policy is violated and block the associated
action. The general focus of these mechanisms has been to deter-
mine inter or intra-app safety, security, and privacy conflicts for
either explicitly defined relationships amongst devices [8, 11, 14]
or for implicit relationships that are learned based on the device
behavior [3, 12, 20].

Although these solutions provide promising approaches to con-
flict detection, they typically do not have a means of taking the
right course of action once a conflict is detected—they usually only
block the conflicting actions [4]. Several of these conflicts may be
in the context of a safety-critical application and require immedi-
ate remediation, i.e., an automated solution to resolve the conflict
without deadlocking any critical applications. For example, an IoT
application may specify that if the concentration of CO3 is high,
an immediate ventilation action needs to be performed by opening
the windows. Meanwhile, another thermostat application ensures
that the windows remain closed in cold weather to save energy.
If the indoor CO; accumulates to a dangerous level in winter, a
conflict may arise. The current state of the art conflict protection
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mechanisms, however, may block the safety-critical ventilation ac-
tuation. In this case, a remedial action would resolve the conflict
by finding an alternative or redundant path that implements the
same utility, e.g., an HVAC system would be used instead of the
smart window for ventilation. However, finding alternative or re-
dundant realizations for commodity IoT utilities can be difficult.
Implemented as traditional device drivers, IoT device interfaces are
typically monomorphic and, as such, cannot be easily realized by
alternative means. We, therefore, need a method to provide a poly-
morphic interaction interface such as polymorphic programming
abstractions for those devices that facilitate such remedial actions.

Polymorphic abstractions for sensors and actuators have been
employed by IoT macroprogramming frameworks that suggest
high-level commands for distributed IoT frameworks [23]. These
frameworks rely on the notion that they can specify what should be
sensed or actuated as opposed to how sensing or actuation is carried
out. Preliminary works show the possibility of raising abstractions
via inference graphs for sensors[26], e.g., a “fitness activity" sensor
abstraction may be realized by either an inertial movement sensor
or a heart rate monitor. However, the same notion has yet to be
realized for actuation as it is difficult to reason about the utility of
an actuator based on the user’s intention.

In this paper, we present REMEDIOT, a remedial action engine
framework for resolving the conflicts (i.e., policy violations) of IoT-
based smart environments. REMEDIOT helps the application users
remediate conflicts when they configure the smart environment
through smart application platforms. We introduce a key compo-
nent, actuation graphs, that allows raised, polymorphic abstractions
of both IoT actuators and sensors. REMEDIOT leverages the IoT ac-
tuation graphs to provide alternative realizations of sensors and
actuators for smart environments. Safety, security, and privacy poli-
cies can then be specified with respect to these raised high-level
sensor and actuator abstractions. REMEDIOT then uses a conflict
detector to determine if a given IoT actuation or control command
triggers any conflicts. If a conflict is detected, the Remedial Action
Engine suggests alternative realizations of a user’s intended appli-
cation that can be installed to avoid such a conflict. Once a remedial
action has been selected, the same conflict runtime executes the
remedial action scheme.

We evaluate REMEDIOT on Samsung SmartThings applications
and IFTTT applets by extracting 195 possible automation logics
and generating 74 sample applications with 11 policies. For these
applications, we utilized state of the art conflict detector approaches
to detect 102 possible conflicts. We show that REMEDIOT is able to
remediate ~ 80% of the conflicts that would normally be blocked by
prior solutions. We show how remedial actions can be optimized
against abstraction cost functions such as power consumption and
device profiling. We further discuss the efficacy and scalability of
REMEDIOT in the context of smart city environments.
Contributions. Our contributions are summarized as follows.

o We provide actuation graph abstractions for actuators in IoT
smart environments.

o We present REMEDIOT, a remedial action engine framework
that utilizes alternative realizations of IoT applications to
provide remedial actions for a given IoT policy conflict.
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e We evaluate REMEDIOT on a set of Samsung SmartThings
applications and IFTTT applets and show how REMEDIOT
can remediate ~ 80% of conflicts that would normally be
blocked by previous solutions.

e We show how remediation can be optimized for providing
automated remedial actions based on abstraction metadata.

Our source code and datasets are available online:
https://github.com/nesl/buildsys-19-code

2 BACKGROUND

In this section, we provide the preliminary information necessary to
understand the rest of this paper. We first discuss the state-of-the-art
for IoT event service platforms. We then discuss the state-of-the-art
for conflict detection across different IoT services along with their
limitations.

2.1 IoT Event Service Platforms

The current programming paradigms for commodity IoT smart
environments typically facilitate IoT device interaction through a
control hub, e.g., Samsung SmartThings [25], Apple HomeKit [1],
and the Microsoft Azure IoT Edge [19].

Recently, programming paradigms have emerged that allow
users to interact with IoT devices through event services. Instead
of having the user manually control IoT devices through a con-
trol hub, these services abstract away the complexities of automa-
tion. These mechanisms automate user control processes through
events,i.e., user-defined trigger-action schemes for IoT environ-
ments. For instance, event service platforms such as IFTTT (If-
this-then-that) [28] and Zapier [31] provide a more convenient way
to execute an action when a user-defined condition or set of condi-
tions is satisfied. The user only needs to set an “if" condition (i.e.,
event trigger condition), and the corresponding IFTTT rule will
interact with the control hub to execute the associated event action.
Although these paradigms generally provide a convenient means
of programming IoT domains, we will show that their limitations
reside in their sensor and actuator programming abstractions.
Generalized system model. The system model we consider in
this paper has a control hub that may be running one of the hub
services mentioned above. A user may have direct access to a de-
vice via an application interface or can write an event for the smart
environment using a commodity IoT event service platform. Each
event consists of a condition or a set of conditions and an associated
action(s). The condition is an expression that specifies the state of
the smart environment, and the action is the actuation command
that changes the environment state(s). The device state-space rep-
resentation for both conditions and actions is domain-specific and
depends on the API provided by the IoT event service platform, e.g.,
a smart bulb being on or off. A policy will also be domain-specific as
it defines the sets of allowed and disallowed state-space transitions
for an IoT system [6]. Our model allows a policy to be specified by
whoever is configuring the IoT system. In this paper, we seek to
provide conflict remediation, i.e., policy violation resolution, for the
system model and a number of defined events. The remediation, in
essence, is a set of new events suggested for replacing some old ones
in order to resolve conflicts in the event set. We first enumerate the
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Types of Policies

P1: Mutually exclusive states must not exist in the environment.

P2: User-defined rules.

Racing Events Cyclic Events

E.g.: Doors and windows must be locked is user is not home

E1: CO: density-high -> turn-on-fan
E2: temp-low -> turn-off-fan

E1: user-home, lights-on -> lights-off
E2: user-home, lights-off -> lights-on

E1: user-away -> user-away-mode-on
E2: user-away-mode-on, temp-high -> windows-on

CO, density-high turn-on-fan

p—

temp-low turn-off-fan

User-home

lights-on

lights-off

P: <user-not-home, doors-lock, windows-lock>

open-windows

temp-high

Table 1: The two general categories of policies: the policies defined by Celik et al. [6] and user-defined policies.

limitations of current conflict detection methods and formalize the
conflicts considered in this paper.

Conflict types. We define a conflict as a violation of policy. We
consider two general categories of policies: user-defined policies
and the class of policies introduced by Celik et al. that do not allow
mutually exclusive states to exist in an environment [6]. The latter
category can be decomposed into racing events and cyclic events.
Racing events stand for two or more events that are triggered at
the same time while having conflicting actions, and cyclic events
represent two or more events consist of a set of conditions and a
set of actions that mutually trigger each other continuously. Ta-
ble 1 summarizes the types of policy violations we consider with
illustrative examples.

As was previously pointed out, any forms of conflict resolution
from prior works have been limited to simply blocking a prospective
action or reporting the conflict to the user[4]. The bottleneck for
providing remedial actions for such conflicts resides in the current
state-of-the-art for obtaining the user’s intention since the current
IoT actuation programming abstractions hide such information.
These premises allow us to provide an overview of the REMEDIOT
framework.

2.2 Related Work

We now discuss the relevant works directly related to REMEDIOT.
Conflict Detection. Several works have already focused on the
problem of detecting conflicts between IoT events. BuildingRules [22]
proposes an occupant customized building configuration system.
Surbatovich et al. [29] builds an information-flow model to analyze
how IFTTT recipes violate the integrity, and it then categorizes
what damages the IFTTT recipes could cause for the user. IoT-
SAT [21] models the cyber-physical behaviors of IoT devices based
on the factors including the network, device configurations, and
user policies to analyze the possible or potential vulnerability of
the IoT network. Danger-system [24] detects the smart building
environment conflicts through mobile crowd sensing. Ma et al. [17]
and CityGuard [16] provide runtime detection for the specific con-
flicts in the smart city through an intermediate layer of watchdog.
IoTMon[8] uses data mining and NLP-based technology to analyze
how the applications affect physical environments, which further
suggests the risks of the applications. IoTGuard [6] enforces a set of
policy rules on IoT applications by injecting monitor code into the
target app, and it blocks any unsafe states. Soteria [5] builds a static
analysis system from the application descriptions to infer whether
there are potential safety or security issues of the app. SIFT (Liang et
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al)) [14] proposes a safety-centric programming platform for con-
nected devices in IoT environments to safely verify that there are no
conflicts when the developers compile the applications. Miettinen et
al. [20] introduced a technique for IoT device-type identification
used for security enforcement based on device-fingerprinting.

All of the above works have focused on analyzing or detecting
conflicts or security violations. However, none of them has yet
provided a way to resolve such conflicts or violations except for
simply reporting them to the user. Nextly, we introduce some other
works showing how conflicts can be debugged.

Conflict Debugging. CityResolver [18] uses Integer Linear Pro-
gramming (ILP) method to find the most optimal conflict resolution
in a given set of resolutions. Meanwhile, REMEDIOT provides a
means of automatically generating the resolutions. Liang et al. [13]
provides an automated debugging tool for the IFTTT platform by
adjusting the clauses or the parameters of IFTTT rules. However,
such modifications might not lead to the original desired state that
the user wants. REMEDIOT focuses on providing an alternative path
to get to the exact original desired states without violating any
policies or conflicting with other events.

IoT programming abstractions Beam [26] abstracts sensors into
modules based on the inference that can be made from the sensory
data. Such abstraction is realized using inference graphs, and then
the developers only need to focus on sensing capabilities rather
than choosing particular sensors. However, Beam does not deal with
the abstraction of actuators that might cause conflicts among the
devices. ExPat [30] proposes a formal specification programming
language to ensure that the rules in the smart environment can
be varified by the user’s intention without conflicting with other
rules. However, it does not provide any solutions to the conflicts.
HomeOS [9, 10] and BOSS [7] provide an operating system for
smart home environments so that programming or accessing the
IoT devices at home can be done through an OS-like interface, i.e.,
device drivers. However, like all other traditional operating system,
HomeOS simply puts a lock on the device when other processes
are trying to access it. It does not make attempts to find conflicts
or resolve them.

3 REMEDIOT OVERVIEW

REMEDIOT is a dynamic and context-based mediator for IoT event
services. REMEDIOT aims to provide a set of meaningful remedial
actions for conflicting actions rather than merely block the actions.
For example, an application user may configure an event that opens
the window when the temperature is too high, but this configu-
ration may violate a safety policy which states that all windows
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Figure 1: An overview of the REmEDIOT framework.

and doors should be closed when the user is not home. REMEDIOT
would provide a remedial action to suggest the user turn on the
HVAC instead of opening the window as the former provides the
same utility. Figure 1 shows the design overview and the workflow
of how REMEDIOT interacts with the aforementioned system model.

At configuration time, a user may attempt to install a third-party
10T safety policy through a policy interface or configure an event
service (o) that can be analyzed by the conflict detector (o)
The conflict detector will check if the prospective event conflicts
with any installed events or policies. If conflicts do not exist, the
new event will be installed. If a conflict exists, it will send the set of
conflicting events to the REMEDIOT Remedial Action Engine (e)
that will analyze the conflict and see if any remedial actions can be
installed to prevent conflicting actions from being triggered at the
same time. The remedial actions will then be suggested to the user
{o) After the remedial actions are selected by the user, they will

then be written back to a database for future use {o) When such
a conflict happens during runtime, the remedial action from the
database will be executed. At runtime, all events from the installed
event services are examined in case an event is conflicting with a
po]icy(@). If a conflict exists, the appropriate remedial action is

carried out if available. Otherwise, the action is blocked (0)

The core contribution of this paper resides in the Remedial Ac-
tion Engine. However, in order to realize such a tool, we need to
design appropriate programming abstractions first.

4 REMEDIOT PROGRAMMING
ABSTRACTIONS

The main goals of REMEDIOT s programming abstraction design
are to not only increase the usability of distributed applications
for dynamic smart environments, but to also ease the development
effort for application developers with respect to safety and security.
The abstractions enable the application developers to specify high-
level programming intentions of an application instead of focusing
on which devices will realize the application utility. For example, if
a developer wants to develop an application that lowers the tem-
perature of a space, he or she only needs to specify "cooling down"
rather than selecting an HVAC or a smart fan realization. REMEDIOT
maintains the dynamic realization of these high-level intentions
through lower-level device abstractions—where the lowest level
abstractions will be the monomorphic device drivers. Such a design
provides an inherent redundancy for abstractions that provide the
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core of REMEDIOT's remedial action engine. Previously, Beam [26]
presented a framework to provide such a hierarchical structure for
sensors called an inference graph. REMEDIOT couples this notion of
an inference graph with an actuation graph to abstract the actuators
of the system.

4.1 Actuation Graph

REMEDIOT s actuation graph—provided by the programming envi-
ronment developers —maintains how an actuation should be re-
alized. The graph is built as a directed graph where each node
stands for an actuation module that indicates how to perform actua-
tion or sensing tasks by combining other submodules or devices
either collaboratively or independently. Each actuation module can
have different implementation units—which are hidden from the
application developers—to realize the module. The direction of the
actuation graph corresponds to the dependency relationship among
the actuation modules. With the assistance of the actuation graph,
REMEDIOT can easily infer the intentions of an application user by
looking at which module is used. The actuation graph subsumes the
notion of Beam'’s inference graph [26] because it encapsulates the
sensing dependencies of actuators. Moreover, the actuation graph
is highly customized and developed differently for each smart envi-
ronment.

Although abstraction modules enable REMEDIOT to reason about
a user’s high-level intentions as well as to provide alternative ac-
tuation realizations, REMEDIOT conversely needs a mechanism to
expose the capabilities of physical devices. It is necessary to build
device-level abstractions that are then used to realize the higher-
level modules. As such, we introduce a device abstractor module that
allows developers to interface devices with abstraction modules.
For clarity, we will present the aforementioned actuation graph
components in an illustrative example.
Motivating example: home control application. Figure 2 shows
an actuation graph used by a home control application. The home
control application has two installed events:

(1) If dangerous incidents are detected, then send notification to
the user.

(2) Ifthe temperature of a room is higher than 80 degrees, then
cool it down.

The first rule will require the actuation graph to provide a detection
module for "dangerous incidents” and a "notification” module such
that the user can be appropriately notified. The second rule needs to
have a "temperature” module to sense the ambient temperature as
well as a "cool down" module that lowers the ambient temperature.
In the associated actuation graph, the sensing module temperature
requires the data from a smart thermal sensor installed in the room
to infer the temperature. Those data are hidden from the application
developer’s perspective. The actuation module cooling down needs
to access either a smart window or the air conditioner—where the
application developers need not worry about which device to use.
However, in order to be compatible with existing IoT systems such
as SamSung SmartThings and Apple HomeKit, our programming
model also allows event services to directly access the devices
without going through high-level sensing or actuation modules. In
any case, the abstraction modules are designed to account for all
possible conflicts that may exist in the network.
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Figure 2: A sample smart home control application and its associated actuation graph.

We now describe the attributes of an abstraction module required
to maintain the actuation graph.

4.1.1 Abstraction Module. The abstraction module is a program-
ming interface of a sensing or actuation functionality performed
by specific implementations. An abstraction module may also be
realized by other abstraction modules. Each module is implemented
through implementation units, where the module provides a tem-
plate of the attributes to be defined. The implementation units
encapsulate the actuation or sensing algorithms of the associated
modules. For instance, the aforementioned cool down abstraction
module is generally associated with lowering the ambient tempera-
ture of a space, while the actuation graph developers may be able to
develop different cooling down implementation units for a specific
smart home environment, such as cooling down through an air
conditioner, or cooling down by opening the windows or doors.
The following attributes are necessary to realize an abstraction
module for our actuation graph:

e Module name. The module name is the label for the ab-
straction modules, which summarize the characteristics of
that module, e.g., "cooling down".

Implementation unit name. The implementation unit name
summarizes the function of an actual implementation unit
that may realize the associated abstraction module. For in-
stance, “turn on AC" or “open the window". Each abstraction
module may correspond to multiple implementation units.
Module type. The module type indicates whether the ab-
straction module is a sensing module, an actuation module,
or both.

Implementation prerequisites. The prerequisites refer to
the implementation unit’s dependent modules. Each imple-
mentation unit needs to specify what it may depend on in
order to be realized. For instance, one of the implementation
units of the notification module might depend on a send text
module, and another implementation unit of the notification
module might depend on a send email module. Different im-
plementation units can have different prerequisites under
the same module.

Cost and utility metrics. Each abstraction module may be
associated with a cost or utility metric that will establish how
implementation units should be prioritized when REMEDIOT
is suggesting remedial actions. For instance, the utility metric
of a "cooling down" abstraction can be defined as to how
efficiently an implementation unit may lower the ambient
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temperature, while a cost metric may be associated with the
power consumption of a unit.

Defining each of the attributes mentioned above will be domain
specific, and it is up to the programming environment developer to
ensure that all of the components of the actuation graph are com-
patible with each other. The first step in doing so is to implement a
device abstractor module.

4.1.2 Device Abstractor Module. The device abstractor is a type of
special abstraction module that handles the details of a particular
device's metadata so that the high-level information is exposed to
the developer. In particular, the abstractor module characterizes
and implements the connection to the device through the device
driver and the network. Every physical device corresponds to an
implementation unit, but each device abstractor module might have
one or more device implementation units. For example, if there are
three installed cameras, each of them will have one corresponding
implementation unit, and only one device abstractor module "RGB
camera” is needed to encapsulate all the three implementation
units. Similar to HomeOS [9], REMEDIOT dynamically handles the
connections and disconnections of devices in the network. When
a device is disconnected from REMEDIOT, REMEDIOT updates the
actuation graph accordingly. Moreover, if a new type of device is
connected, REMEDIOT creates a new device abstractor instance and
updates the graph if other abstraction modules depend on it.

To provide context of these abstractions, we describe how a an
example abstraction module may be implemented.

4.2 Programming Example

Listing 1: Sample Inference Module

# Import the existing modules
from ActuationGraph import -

# Implementation of cooling down module via AC
class ACTurnOn(ImplementationUnit ):

def __init__(self):
ImplementationUnit. __init__ (...}
acDA = ACDeviceAbstractor () #device abstractor

super (ACTurnOn, self ). appendChildDeviceAbstractor(acDA)

def performFunc(self, -args):

# Perform the specific action to turnm on AC

# Cool Down Module
class CoolDownModule{ Module ):

def __init__(self):
Module. __init__ (...)
acTurnOn = ACTurnOn() # Implementation Unit

fanTurOn = FanTurnOn() # Implementation Unit
super( CoolDownModule, self ). addimplUnit (acTurnOn)
super( CoolDownModule, self ). addimplUnit (fanTurOn)
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To develop an implementation unit of a module in the actuation
graph, the actuation graph developers need to follow the template
of the module and implementation units. Moreover, each actuation
module can only allow prerequisites on either device abstractor
modules or other general actuation modules for its implementation
units. The device abstractor modules and the general actuation
modules cannot simultaneously be the prerequisites of one actu-
ation module. For instance, in Figure 2, the send text module and
computer abstractor module cannot be the prerequisites of notifica-
tion module at the same time. This is to ensure that all prerequisites
of one module have the same level of hierarchy.

Listing 1 shows an example implementation of how a CoolDownModule

class may be implemented as a base abstraction module associated
with device modules that can cool down the ambient temperature.
We show an example implementation unit of this module called
ACTurnOn that may define the behavior associated with turning on
an air conditioning unit.

Given the aforementioned programming abstractions, we now
show how prior notions of a policy file can be augmented to incor-
porate abstraction modules.

4.3 Policy Grammar Definition

We show how policy grammars for conflict detectors in previous
works can be augmented to incorporate our abstraction modules.
For instance, [oTGuard [6] defined a Backus-Naur Form (BNF) pol-
icy grammar to allow developers to define rules regarding the sets
of allowed and restricted state transitions for IoT devices. The
same policy grammar can be augmented to define the allowed and
restricted state transitions for abstraction modules, as shown in Fig-
ure 3. The semantics would remain the same as long as abstraction
module attributes are syntactically correct.

These programming abstractions, along with a conflict detector
that utilizes an associated augmented policy grammar, allow us to
realize the REMEDIOT remedial action engine.

5 REMEDIAL ACTION ENGINE

As discussed in Section 3, REMEDIOT s runtime remedial action
engine takes as its input a conflict generated by a conflict detector
and attempts to resolve the the conflict by utilizing a configured
remedial action for the particular conflict. If no remedial action
exists, the conflicting events will be blocked. To provide the design
details of this system, we first discuss how these remedial actions
are configured and installed prior to runtime.

5.1 Remedial Action Configuration

Remedial actions are configured upon encountering a new conflict
from the conflict detector. New conflicts may arise during the in-
stallation of either event services or policies. Algorithm 1 describes

{policy-set }
{statement }
{restrict-clause) ::
{allow-clause) ::
{state-transition) ::
{state) HE

{statement ); ({statement );)* EOF
{restrict-clause} | {allow-clause)

RESTRICT : {state-transition)
ALLOW: (state-transition}

{transition) (, {transition})* : (state) (,{state})"
{abstraction-module} . {abstraction-attr-id )
(. {abstraction-atir-id)* <logical-operator ) {atir-value)

Figure 3: Policy grammar for IoTGuard [6] augmented with
RemEDIOT’s programming abstractions.
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the remedial action configuration process for a candidate event e.
The first step is to detect whether the candidate event conflicts with
any existing event services or policies.

Conflict detection. REMEDIOT ensures that any candidate events
or policies are first passed through the conflict detector (Line 4)
to see if any conflict exists with other installed events or policies.
Because the state space for event services considered by REMEDIOT
is limited to two states (on or off), the set of conflicts that arise,
Econf can then be divided into two sets: the singleton set with the
candidate event and the set of all events that have a conflicting
action with e. Further, we only care about remediating the conflicts
for the set of events with lower priority, where “priority" refers
to the aforementioned cost and utility metrics of an abstraction
module. The higher priority set should always take precedence
for executing a particular action at runtime. Therefore, REMEDIOT
will first generate the full set of conflicting events E¢o,r (Line 4),
sort the events based on priority (Line 5), and then extract the
lower priority set of conflicting events E/ f (Line7). Given this
extracted set, REMEDIOT will attempt to find a remedial action for
each conflict.

Remedial action generation. REMEDIOT first iterates through
each conflicting event service, e.opf, and prompts the user (Line
10) for the intended abstraction module of the conflicting imple-
mentation unit by utilizing the actuation graph, Gg.¢. For instance,
in Figure 2, if the conflicting implementation unit was the “Window
Controller”, the user may confirm that the intended abstraction
module was the parent “Cooling Down" module. If the user de-
clines to use the parent abstraction module, then REMEDIOT will
block this action upon detecting a conflict at runtime. REMEDIOT
ensures that any parent abstraction module that is presented to the

Algorithm 1 Remedial Action Configuration

1: Input: candidate event e, actuation graph Gy, policy data-
base DBpoIicya event database DBeypent, remedial action data-
base DBrem;

2. Output: updated event database DB, ,, updated remedial
action database DB;eme dial’

: //Get conflicting events for given event.

: Econf < conflictDetector(e, DBevent, DBpolicys DBrem);

: Sort conflict events E.,, ¢ based on priority;

: // Extract lower priority set of conflicts to remediate:

 E ;< getLowerPrioritySet(E¢onf)

: for all ecopnf € E;O"f d
9: /I Get user to select the intended non-conflicting module:

10: intendedModule «— getIntentionFromUser(econf,Gact);

G =1 o W A W

o

11:
12:

// Given intended module with pruned impl. units, prompt
// user to select a non-conflicting rem. action impl. unit:

arem —getRemActionFromUser(intendedModule, Ggct);
// Map each conflict pair to its remedial action in database:

13:

14:

15: | for all eC e Ecoﬂf"'lE::onf do

16: | | DBrem Hadd{((econf,ec ], a,em>);
17: //Add candidate event to event database:
18: DBeyent —add(e);
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user will have a set of non-conflicting implementation units, i.e.,
any implementation units from the actuation graph Gg.; that will
cause a new conflict are pruned. Given the intended abstraction
module, REMEDIOT then prompts the user to select an alternative
implementation unit (Line 13), e.g., the aforementioned example
will prompt the user to select the “Air Conditioner” implementation
unit. If the user selects a suggested remedial action, the action is
stored in a remedial action database DB, . mediql by mapping each
conflicting event pair, ie., econf and the complementary e> for
all events in the higher priority set Econf\E, £
remedial action arem (Line 15). If no remedial action is chosen,
then the default action will be to block the conflicting event. Once
all remedial actions have been generated, REMEDIOT can now add
the candidate event e to the event database DBeyent-

to its associated

5.2 Runtime Remediation

At runtime, REMEDIOT runs alongside the event service platform.
IoT event service platforms such as IFTTT typically check the
trigger conditions of all installed event services periodically. When
a new event is activated, REMEDIOT will utilize the conflict detector
mentioned in Algorithm 1 to check if the new event has conflicts
with other events that are currently active. If a conflict exists, it will
query the remedial action database DB, to select the appropriate
action.

Each of the aforementioned components will have engineering
challenges which we address in the subsequent section.

6 IMPLEMENTATION

In order to implement REMEDIOT s core utilities, we first demon-
strate how an existing conflict detector can be instrumented to
interface with the REMEDIOT remedial action engine. We first de-
scribe the conflict detector instrumentation and then discuss the
implementation for both the abstraction graph module support as
well as the REMEDIOT action engine.

6.1 Conflict Detector Instrumentation

We implement the framework for the conflict detector as a di-
rected graph-as was done in the conflict detector for [oTGuard [6]°.
Within the graph, an event can be described as two nodes and one
directed edge. Each node stands for a set of device (or module)
states and each directed edge indicates a trigger-action relationship.
Note that one node may contain a cascade of conditions (actions)
instead of only one module state. A conflict arises when a collection
of compatible conditions, i.e., conditions that can be satisfied at the
same time, can simultaneously cause a set of incompatible actions,
i.e., lead to mutually exclusive states of the same device.

When a new event is added, the conflict detector® traverses the
graph nodes to determine all the compatible conditions nodes as well
as all the incompatible actions nodes. We then perform a reachability
analysis to determine if a path exists between these two sets. Any
detected path will be considered as a potential conflict and removed
from the graph. If any conflicts arise, these conflicts, along with the

“We implemented our own conflict detector inspired by IcTGuard since the source
code was not available at the time this paper was written.

*The conflict detector module was implemented in Python with 400 LoC and is available
in the repository.
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Conflicts Detected
E1: CO; density-high -> turn-on-fan E2: temp-low > turn-off-fan
Intention Confirmation
Do you want to REDUCE VENTILATION? A
Do you want to INCREASE WPERATURE? %
NONE OF THE ABOVE
oK ] [ Cancel l/
Remedial Actions
~
Can you TURN QWHEATER %
NONE OF THE ABOVE
oK ] [ Cancel ] )

Figure 4: An example interface for REMEDIOT that suggests
a remedial action to the user when a conflict is detected.
new event, are delivered to the remedial action engine to generate
the associated remedial actions. If no direct conflicts are observed
in this stage, the new event will be added to the graph. Finally, we
employ a depth-first search-based algorithm to find all the loops
inside the dependency graph. All discovered conflicts and loops are
forwarded to the Remedial Action Engine.

Given a conflict detector, we now describe how we implement
the core components of REMEDIOT. Before we can describe the
implementation of the remedial action engine, we first describe the
implementation of the actuation graph module support that enables
the remediation.

6.2 Actuation Graph Module Support

We implement a generic API for IoT programming environments to
support the aforementioned actuation graphs. The graph support
is implemented as a base abstract class in Python with a domain-
specific implementation. We illustrate how an actuation graph can
be constructed in Section 7. The actuation graph support enables
the remediation of conflicts.

6.3 Remedial Action Engine

The Remedial Action Engine is also implemented in Python based
on Algorithm 1. We implement a proof-of-concept interface to allow
the user to select the proper remedial action, as illustrated in figure 4.
The remedial action, event, and policy databases are implemented
and maintained as dictionaries in Python. The Remedial Action
Engine also utilizes the aforementioned conflict detector both at
configuration time and at runtime. We now detail our evaluation
with illustrative examples.

7 EVALUATION

To illustrate a domain-specific implementation, we evaluate REME-
pIoT on Samsung SmartThings and IFTTT applets. We first describe
how we manually extract events and policies for the platforms in
order to perform an evaluation.

7.1 Event and Policy Realization

We manually extract a large set of events from both program-
ming platforms. Although we do not obtain all possible events
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(D) window Curtain
@ Air Conditioner @ Camera
@ Vent. Fan . Motion
@ Heater Sensor
® Fire Place @ Speaker
@ Main Door @ ™

(@) uent @ Humidifier

Figure 5: The simulated smart home environment with arti-
ficially placed IoT devices utilized in our evaluation.

from both platforms, we try to choose the most representative ac-
tions from each application*. When we extract the events from
the platforms, we format the input events as "IF conditions THEN
actions|,priority]", where the priority can be one of three categories
(highest to the lowest): safety, energy, and utility. By default, each
event is designated as a utility. The priority is used to determine
which event is more important when a conflict is detected. For exam-
ple, in a Samsung SmartThings safety application, we manually ex-
tract an event as "if co2.density >= 50 then vent_fan.state
= on, safety”. The extracted event is then parsed and passed to
the conflict detector as an input.

Further, all policies are implemented as special events to our
system. For our evaluation, each specific policy has been assigned
to a category — house safety, energy economy, or user comfortability.
For example, P.1 in table 3 is implemented as "if userhome = 0 then
doors.state = 1 and windows.state = 1,safety”. We now discuss the
environmental setup for our experiments.

7.2 Environment Setup

We first describe how we set up our experimental environment.
We simulate a smart home environment, as shown in figure 5.
It has 13 different smart devices. We run our experiment on an
Intel Nuc desktop equipped with an Intel Core i7-6770HQ. For this
smart environment, we have to construct an actuation graph for
the associated IoT modules.

Actuation graph modules. We construct an actuation graph that
implements 13 different devices through 8 actuation modules that
cover all situations in our selected events. Moreover, each module
provides 2 to 3 different paths (implementation units) to achieve
the desired state specified by the module. Table 2 summarizes the
modules and the implementation units we provide.

The cost of each module or implementation is simply the energy
it might consume using a hard-coded value. For example, turning
on the AC has a higher cost than opening the window®. Given this
environmental setup, we now describe the set of microbenchmarks
used to evaluate REMEDIOT.

7.3 Microbenchmarks

We propose a set of benchmarks extracted for real Samsung Smart-
Things applications and IFTTT applets. The goals of our bench-
marks are to determine how many conflicts—which would normally

4 All the events we select are available in the github repo.

3 Although power consumption profiles can be made for devices, we simply set relative
values to ensure the devices are sorted correctly according to their expected power
consumption for a proof-of-concept.
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Mo-dule Description Implementation Unit Description
Cooling Cool down the V\ﬁn:luw_ Opening Low | Open the _wn:lulw when outside temp. is lower
down house AC Turning On Turn on Air C to cool down
Fan Turning On Turn on cooling fans
Window Opening High | Open the window when outside temp. is higher
Heating up | Heat up the house | Heater Turning On Turn on the heater to heat up
Fireplace On Light up the fireplace to heat up the house
o Ventilate the air Fan Turning 0|.| Turn on Ihe_lan to vEnliIalz_e
Ventilation of the house Window Opening Open the windows to ventilate
Door Opening Open the doors to ventilate
Nlumination Brighten up the | Light Pulhs 0|:| Turning on the .I'ght bulbs __
house Curtain Opening Open the curtain when outside is brighter
Green Save the energy of | High-Power Devices Off | Turn off the hi er consumption devices
Energy the house Low Power Mode On Set low power mode for the devices
Movement Detect Camera Detection Detect the motion through cameras
at home Motion Sensors Detect the motion through motion sensors
Warning Send the waming Text Warning i Text the u\fam’lﬂg message to the user
Notification | info to the user Speaker Warning Play warning sounds through speaker
Flashlight Warning Display flashlight using the lightbulbs
Increasing Increase the Fan Turning Off Turn off the ventilation fan
i idi k idifier On Turn on the id

Table 2: The actuation modules and their associated imple-
mentation units we considered in our evaluation.

Category Index | Policy Description
General PO Mutually exclusive states must not exist in the environment.
P.1 The doors and the windows must be locked when the user is not home.
House Safety P2 '_I'he EMmergency system must be on.
P3 The security cameras must be on when the users are not home.
P4 The electronic devices must be off when fire sprinklers are on.
- P5 The heater and the AC must not be on at the same time.
L.Energy P& The sprinklers must be off when it rains.
P7 The dryer and the humidifier must not be on at the same time.
[ The non oy sound system must be off when users are
User - P9 The curtains must be closed when private mode is on.
Comfortability - . -
P.10 The lights must be off while the users are sleeping.

Table 3: The policies used to evaluate REmeEDIoT on Sam-
sung SmartThings and IFTTT applets.

# Apps | #Events | # Conflicts % Conflicts % Blocked Events | % Remedial Actions
(Out of Events) | [Out of Conflicts) |  (Out of Conflicts)
74 195 102 52.31% 19.61% B80.39%

Table 4: The aggregated results for conflict detection and re-
mediation using REMEDIOT in the context of the Samsung
SmartThings and IFTTT applets.

be blocked by prior works—can be remediated. We achieve this
by essentially trying to configure as many events as possible in
our simulated smart environment. We further want to show the
configuration time overhead to illustrate the efficacy and usability
of REMEDIOT. In total, we collect 195 representative events from
74 applications. Moreover, we propose ten specific policies ranging
from housing safety to user comfort and one general policy, as
illustrated in table 3. We implement eight different modules with 20
implementation units, as shown in table 2, to support the Remedial
Action Engine.

7.4 Results

The aggregated results for installing the set of events are shown in
Table 4. Based on 195 extracted events from 74 sample applications
and 11 policies, we detect 102 conflicts, i.e., 52.31% of all events
conflicted with each other upon configuration. By using the REME-
pIoT framework, 80.39% of the conflicts can be sought for remedial
actions. These remedial actions highlight the contributions of our
paper: in previous conflict detecting systems, theses conflict events
are simply blocked. REMEDIOT provides a set of substitution events
that can realize the same function for 80.39% of the conflicts, i.e.,
82 of the 102 events could be configured without worrying about
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Index Event Conflict Remedial Action
home temp >= 60 & outside temp < 60 = open window home temp >= 60 & outside temp < 60 = vent. fan on
c1 user away = user away mode on window is on and off at the same time Not Applicable
user away mode on = close window Not Applicable
c2 vacat'll.)n mode on = ui'.HighB off Lights on and off at the same time i Not Applicable
motion detected = lights on motion detected = text the user
c3 home |_'nnde on =» turn on TV TV on and off at the same time _ Not Applicable
energy saving mode on = turn off TV energy saving on = TV low power mode
-hometemp »=70 =>ac on -home temp >= 70 = fan on
c4 home temp >= 75 = ac on AC on and off at the same time home temp >= 75 = fan on
user away mode on = ac off Not Applicable
C5 light lux <= 1500 = open curtain P.9 Light lux <= 1500 = light on
user away mode on =» camera on X Not Applicable
C6 P.3 ; camera on and off at the same time -
user away mode on => camera off user away mode on => motion sensor on
C0z density > 50 = fan on Not Applicable
light on = fan on Not Applicable
time scheduled = fan on Not Applicable
humidity <= 50 = fan on Not Applicable
c7 home temp >= 70 & outside temp <= 65 & ac off = fan on Fan on and off at the same time Not Applicable
home mode on & home temp > 75 = fan on Not Applicable
smoke detected = fan on Not Applicable
user shower = fan on Not Applicable
humidity <= 50 = fan off humidity <= 50 = humidifier on
C8 home temp >= 71> heater off Heater on and off at the same time Not Appllca!)le
home mode on = heater on home mode on = window open
co motion detected = _h'ghts on Lights on and off at the same time Motion detected = pla.v sound on speaker
sleep mode on = light off Not Applicable
arrive home = door open Not Applicable
Cc.10 CO;z high = door open Door open and close at the same time Not Applicable
home mode = door close home mode = fan on

Table 5: Ten selected remedial actions provided by REmEDIoT after running the microbenchmarks.

Execution Time of Actuation Graph Construction

Execution Time (ms)
°,.558 §

10 100 1000 10000

Number of Actuation Modules Assembled

100000

Figure 6: Average performance overhead of 50 iterations
when constructing an actuation graph while varying the
number of actuation modules.

—%— 10 Remedial Adions
=~ 100 Remedid Actions
1000 Remedial Actions

Remedial Action Generating Performance

€ 10000 4 10000 Remedial Actions
g 1000 + ¥
§ 100 * x x x *
0 - . - - -
E 1 - i . . - L =
10 100 1000 10000 100000

Number of Modules in Actuation Graph

Figure 7: Average performance overhead of generating re-
medial actuations. We performed over 50 iterations while
varying the size of the associated actuation graph.

possible conflicts. Table 5 describes ten selected remedial actions
suggested by REMEDIOT framework. For instance, for conflict C.1,
one event is trying to close the window when the user is away, and
the other is trying to open the window to cool down the house.
Because the former event has a higher priority for safety, the smart
fan is chosen to realize the cooling abstraction. We now discuss the
feasibility of deploying REMEDIOT in a real environment.
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7.5 Configuration Time Overhead

Because REMEDIOT might be deployed in large scale smart environ-
ments such as smart cities, we evaluate the scalability of REMEDIOT.
In particular, we calculate the overhead induced by REMEDIOT when
constructing the actuation graphs. We investigate the execution
time of actuation graph construction against the number of its
associated actuation modules. For each different number of actua-
tion modules, we average the execution time over 50 runs. Figure 6
shows a nearly logarithmically linear relationship between the num-
ber of assembled modules and the time consumed. Given the fact
that the number of smart devices is limited, the time to construct
the actuation graph can be ignored. Further, the actuation graph
only needs to be constructed once before runtime, so configuration
time may be a moot point.

We also obtain the overhead time of running our Remedial Action
Engine by generating different quantities of remedial actions on
different sizes of the actuation graph. We again run each experiment
for 50 iterations to get the average overhead as well as the error
range. As illustrated in figure 7, the performance of the Remedial
Action Engine is irrelevant to the number of actuation modules
in the actuation graph, which means that simply increasing the
number of devices will not incur more overhead. The computation
time logarithmically increases with the number of remedial actions
that need to be proposed. Our results show that a personal desktop
can easily enable constructing 100000 modules while suggesting
up to 10000 remedial actions at runtime, highlighting REMEDIOT s
scalability. Our results also validate the scalability of REMEDIOT
even if more complex policies are added, i.e., more conflicts are
triggered.
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8 CONCLUSION REMARK

There are several future directions enabled by the REMEDIOT.
Automating remediation. A future direction of this work is to
automate such a process so that REMEDIOT system is able to dy-
namically learn and make adjustments based on the application
user’s behaviors. Techniques such as reinforcement learning, crowd-
sourcing, and collaborative filtering can facilitate the usability of
ReMEDIOT. However, one limitation is that REMEDIOT relies on at
least one redundancy path to achieve the same functionality.
Modeling sensors and actuators. Currently, the state space for
sensors and actuators are binary, i.e. on or off. Cyber-physical
modeling techniques can be utilized to better model different types
of sensors and actuators. Further, we can dynamically optimize
how an implementation unit implements an abstraction module at
runtime. For instance, if an abstraction module performs human
detection, a camera would be more effective than a microphone for
certain environments.

In this paper, we proposed REMEDIOT, a remedial action frame-
work for resolving IoT conflicts. We evaluated the efficacy of REME-
pIoT on Samsung Smarthings and IFTTT applets in the context of
a simulated smart home environment and showed that for a large
set of applications, REMEDIOT is able to resolve ~ 80% of conflicts.
We further show the scalability of REMEDIOT for generalizing to
smart city environments.
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