
Certified Algorithms: Worst-Case Analysis and
Beyond
Konstantin Makarychev
Northwestern University, Evanston, IL, USA
https://konstantin.makarychev.net

Yury Makarychev
Toyota Technological Institute at Chicago, Chicago, IL, USA
https://ttic.uchicago.edu/~yury
yury@ttic.edu

Abstract
In this paper, we introduce the notion of a certified algorithm. Certified algorithms provide
worst-case and beyond-worst-case performance guarantees. First, a γ-certified algorithm is also a
γ-approximation algorithm – it finds a γ-approximation no matter what the input is. Second, it
exactly solves γ-perturbation-resilient instances (γ-perturbation-resilient instances model real-life
instances). Additionally, certified algorithms have a number of other desirable properties: they solve
both maximization and minimization versions of a problem (e.g. Max Cut and Min Uncut), solve
weakly perturbation-resilient instances, and solve optimization problems with hard constraints.

In the paper, we define certified algorithms, describe their properties, present a framework for
designing certified algorithms, provide examples of certified algorithms for Max Cut/Min Uncut,
Minimum Multiway Cut, k-medians and k-means. We also present some negative results.

2012 ACM Subject Classification Mathematics of computing→ Combinatorial optimization; Theory
of computation → Approximation algorithms analysis; Mathematics of computing → Approximation
algorithms; Theory of computation → Facility location and clustering

Keywords and phrases certified algorithm, perturbation resilience, Bilu–Linial stability, beyond-
worst-case analysis, approximation algorithm, integrality

Digital Object Identifier 10.4230/LIPIcs.ITCS.2020.49

Funding Yury Makarychev: Supported by NSF CCF-1718820.

1 Introduction

In this paper, we introduce and study certified algorithm, describe their properties, present
a framework for designing certified algorithms, provide examples of certified algorithms for
Max Cut/Min Uncut, Minimum Multiway Cut, k-medians and k-means. Recall the definition
of an instance perturbation, which was given by Bilu and Linial [10].

I Definition 1. Consider a combinatorial optimization or clustering problem. Suppose that
every instance has a number of parameters p1, . . . , pm > 0; for example, if the problem is a
graph partitioning problem, the parameters are edge weights; if it is a constraint satisfaction
problem, the parameters are constraint weights; if it is a clustering problem, the parameters
are distances between points.

Let γ ≥ 1. An instance I ′ is a γ-perturbation of I if it differs from I only by the values
of the parameters, and the parameters p′1, . . . , p′m of I ′ satisfy the following inequality

pi ≤ p′i ≤ γpi for every i (1)

alternatively, we may require that

pi/γ ≤ p′i ≤ pi for every i. (2)
© Konstantin Makarychev and Yury Makarychev;
licensed under Creative Commons License CC-BY

11th Innovations in Theoretical Computer Science Conference (ITCS 2020).
Editor: Thomas Vidick; Article No. 49; pp. 49:1–49:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://konstantin.makarychev.net
https://orcid.org/0000-0003-3114-3947
https://ttic.uchicago.edu/~yury
mailto:yury@ttic.edu
https://doi.org/10.4230/LIPIcs.ITCS.2020.49
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

49:2 Certified Algorithms: Worst-Case Analysis and Beyond

Note that if γ = 1, then I ′ = I. Loosely speaking, the closer γ to 1 is, the closer I ′ to I is.
All problems we consider are scale invariant, so it will not matter whether we use formula (1)
or (2). It will be convenient to use (1) for combinatorial optimization problems and (2) for
clustering problems. The central definition of this paper is that of a certified algorithm.

I Definition 2. A γ-certified solution for instance I is a pair (I ′, s∗), where I ′ is a γ-
perturbation of I and s∗ is an optimal solution for I ′. A γ-certified algorithm (or a γ-certified
approximation algorithm) is an algorithm that finds a γ-certified solution.1

The definition of a certified algorithm is inspired by the notions of smoothed analysis [18]
and perturbation-resilience (also known as Bilu-Linial stability) [10]. Recall that in the
smoothed analysis framework, we analyze the performance of an algorithm on a small random
perturbation of the input instance. That is, we show that, after we randomly perturb the
input, the algorithm can solve it with the desired accuracy in the desired time. A certified
approximation algorithm perturbs the input instance on its own and then solves the obtained
instance exactly. Importantly, the perturbation does not have to be random or small. Now,
let us talk about perturbation resilience.

I Definition 3 ([10]). An instance I is γ-perturbation-resilient2 if every γ-perturbation of I
has the same optimal solution as I (we require that I have a unique optimal solution).

Bilu and Linial [10] initiated the study of perturbation resilience in 2010. Perturbation-
resilient instances model practical instances, and the model is particularly well-suited for
capturing problems arising in machine learning. As Bilu-Linial (as well as other authors,
see [6, 9]) argued most practically relevant instances should be perturbation-resilient. Since
the seminal paper by Bilu and Linial, there has been a lot of research on algorithms for
perturbation-resilient instances (see e.g., [10, 9, 6, 16, 7, 3, 11, 8], see also [15] for a survey
of known results) and by now there are a number of algorithms for perturbation-resilient
instances of various graph partitioning, clustering, and other problems. A closely related
notion to perturbation resilience is that of weak perturbation resilience.

I Definition 4 ([16]). Consider an instance I. Let s∗ be an optimal solution and N be a set
of solutions, which includes all optimal solutions. Assume that for every γ-perturbation I ′ of
I, solution s∗ is better than every s /∈ N with respect to the I ′ objective. Then I is (γ,N)-
weakly perturbation-resilient. We say that an algorithm solves a weakly perturbation-resilient
instance I, if given a (γ,N)-weakly perturbation-resilient instance, it finds a solution s ∈ N
(crucially, the algorithm does not know N .)

Intuitively, N is the set of solutions that are close to s∗ in some sense. Say, N might be the set
of solutions that are at most ε far from s∗ in some metric or have similar structural properties
to s∗. Note that (γ, {s∗})-weak perturbation resilience is equivalent to γ-perturbation
resilience. In general, the requirement that an instance I be weakly perturbation-resilient is
somewhat less restrictive than the one that I be perturbation-resilient.

1 We call the solution “certified”, because, as we will see later, I′ “certifies” that s∗ is a γ-approximation.
2 Perturbation-resilient instances are also known as Bilu–Linial stable instances.

K. Makarychev and Y. Makarychev 49:3

1.1 Overview: Properties of Certified Algorithms
Consider a γ-certified algorithm A for a constraint satisfaction or graph partitioning problem
(or any problem whose objective is homogeneous of degree 1)3. First of all, A is also a
γ-approximation algorithm, it always finds a γ-approximate solution. Then it exactly solves
γ-perturbation-resilient instances and solves (γ,N)-weakly perturbation-resilient instances.
Thus, we have both worst-case and beyond-worst-case guarantees for A. We believe that this
property is very desirable in practice. In particular, if our instance is indeed perturbation-
resilient, we will find an exact solution; if it is not, we will find a reasonably good approximate
solution. Note that other algorithms do not satisfy this property: state-of-the-art approxima-
tion algorithms do not solve perturbation-resilient instances and state-of-the-art algorithms
for perturbation-resilient instances do not provide a good approximation if the instance is
not perturbation-resilient. Additionally, A also satisfies some other properties; we prove in
Theorems 10, 11, and 13 that:

Worst-Case Guarantees. Algorithm A finds a γ-approximate solution for any instance
I; further, it finds a γ-approximate solution for the complimentary objective. For example,
if the problem is a constraint satisfaction problem (CSP), then A finds a solution that is a
γ-approximation for the problems of (1) maximizing the weight of the satisfied constraints
and (2) minimizing the weight of the unsatisfied constraints. Additionally, if the problem
is a CSP, A is also a γ-approximation algorithm for the variant of the problem with hard
constraints.
Beyond-Worst-Case Guarantees. Algorithm A exactly solves γ-perturbation-resilient
instances and solves (γ,N)-weakly perturbation-resilient instances.

I Remark 5. The running time of most algorithms that we consider will depend not only on
the size of the instance but also on the magnitude of the parameters. In a sense, we will assume
that all parameters are given in the unary. More precisely, let ρ be the ratio between the
largest and smallest parameters (for constraint satisfaction and graph partitioning problems,
ρ is the ratio between the largest and smallest constraint/edge/node weights; for clustering
problems, ρ is the aspect ratio of the given metric space, the ratio between the largest and
smallest distances). Then the running time will depend polynomially on the input size and ρ.
Thus we will call our algorithms pseudo-polynomial-time algorithms.

I Definition 6. We say that a certified algorithm runs in pseudo-polynomial time if its
running time is polynomial in the size of the input n and ρ = maxi pi

mini pi
.

1.2 Our Results
The main contribution of this paper is conceptual rather than technical. We introduce the
notion of a certified algorithm and prove that certified algorithms satisfy the properties listed
above. We believe that certified algorithms will prove useful in developing new algorithms
for solving worst-case and beyond-worst-case instances. We also believe that even if one is
primarily interested in designing an algorithm for solving perturbation-resilient instances,
it is often more convenient to design a certified algorithm (as it is guaranteed to solve
perturbation-resilient instances).

3 That is, the value of the objective multiplies by α when we multiply all the parameters (exactly) by α.

ITCS 2020

49:4 Certified Algorithms: Worst-Case Analysis and Beyond

We provide a general framework for designing polynomial-time certified algorithms for
combinatorial optimization problems and give examples of algorithms for combinatorial
optimization and clustering problems. We also present some negative results. In establishing
these results, we heavily use techniques from papers on perturbation resilience [16, 3, 11, 8, 12].
Specifically, we give pseudo-polynomial-time γ-certified algorithms for

Min Uncut and Max Cut with γ = O(
√

log n log log n) (cf. the state-of-the-art approxi-
mation algorithm for Min Uncut gives an O(

√
log n) approximation [1]),

Minimum Multiway Cut with γ = 2− 2/k + εn for every εn such that εn > 1/ poly(n)
(cf. the state-of-the-art approximation algorithm gives a ≈ 1.296 approximation [17])
k-medians with γ = 3 + ε for every fixed ε > 0 (cf. the state-of-the-art algorithm gives a
≈ 2.732 approximation [14]).

We also observe that the algorithm for (1 + ε) -perturbation resilient instances of Euclidean
k-means and k-medians by Friggstad, Khodamoradi, and Salavatipour [12] is (1 + ε)-certified
(see Theorem 24). Additionally, we show that there are no polynomial-time or pseudo-
polynomial-time O(n1−δ)-certified algorithms for Minimum Vertex Cover, Set Cover, and
Min 2-Horn Deletion if P 6= NP (for every fixed δ > 0).
I Note (Follow-up work). In a follow-up paper [2], Angelidakis, Awasthi, Blum, Chatziafratis,
and Dan use our framework to design a number of new certified algorithms for such problems
as Euclidean Maximum Independent Set and Node Multiway Cut.

2 Preliminaries

We start with formally defining what an instance of a combinatorial optimization problem is.

I Definition 7. An instance of a combinatorial optimization problem is specified by a set
of feasible solutions S (the solution space), a set of constraints C, and constraint weights
wc > 0 for c ∈ C. Typically, the solution space S is of exponential size and is not provided
explicitly. Each constraint is a map from S to {0, 1}. We say that a feasible solution s ∈ S
satisfies a constraint c in C if c(s) = 1.

We consider maximization and minimization objectives.
The maximization objective is to maximize the total weight of the satisfied constraints:
find s ∈ S that maximizes valI(s) ≡

∑
c∈C wcc(s).

The minimization objective is to minimize the total weight of the unsatisfied constraints:
find s ∈ S that minimizes

∑
c∈C wc(1− c(s)) = w(C)− valI(s) (where w(C) =

∑
c∈C w(c)

is the total weight of all the constraints).
We say that maximization and minimization are complementary objectives. Weights {wc}c∈C
are the parameters of the instance in the sense of Definition 1.

Note that s∗ is an optimal solution for I with the maximization objective if and only if it is
an optimal solution for I with the minimization objective. Accordingly, (I ′, s) is a γ-certified
solution for I with the maximization objective if and only if it is a γ-certified solution for I
with the minimization objective.

I Definition 8. An optimization problem P is a family F of instances. All instances in F
have a fixed objective; either all of them have a maximization or all have a minimization
objective. We assume that if instance (S, C, w) is in F , then so is (S, C, w′) for any choice
of weights wc > 0.

This definition captures various constraint satisfaction, graph partitioning, and covering
problems. Consider for example Min Uncut. In Min Uncut, the goal is to find a cut (S, S̄) in
a given graph G = (V,E,w) that minimizes the total weight of the uncut edges (edges that

K. Makarychev and Y. Makarychev 49:5

connect vertices within S or within S̄). For Min Uncut, S is the set of all cuts in G. There is
a constraint ce for every edge e ∈ E; a cut satisfies constraint ce if and only if it cuts edge e.
The objective is to minimize

∑
c∈C wc(1− c((S, S̄))). The objective for the complementary

problem, Max Cut, is
∑
c∈C wcc((S, S̄)).

There are also certified algorithms for clustering problems. In this paper, we describe a
(3 + ε)-certified algorithm for k-medians and note that algorithms for Euclidean k-means
and k-medians from [12] are (1 + ε)-certified. Recall the definition of k-medians.

I Definition 9. In k-medians, we are a given a set of points X, metric d on X, which
satisfies triangle inequalities, and a parameter k ≥ 1. The cost of a cluster C ⊂ X is

costC = min
c∈X

∑
u∈C

d(u, c).

The goal is to partition X into k clusters C1, . . . , Ck so as to minimize their total cost∑k
i=1 costCi. The parameters of the problem (in the sense of Definition 1) are the pairwise

distances d(u, v).

We say that c is an optimal center for C, if c ∈ arg minc∈X
∑
d(u, c). Note that a set of

centers c1, . . . , ck defines a clustering C1, . . . , Ck of X; namely, C1, . . . , Ck is the Voronoi
partition for c1, . . . , ck (if there are ties, several partitions may correspond to the same set of
centers).

A γ-perturbation of an instance (X, d) is an instance (X, d′), such that 1
γ d(u, v) ≤

d′(u, v) ≤ d(u, v) for every u, v ∈ X. Note that we do not require that d′ satisfy triangle
inequalities (if we did, we would get the definition of a metric perturbation; see [3] for details).

3 Properties of Certified Algorithms

In this section, we prove that certified algorithms satisfy the properties we described in
Section 1.

I Theorem 10. Consider a γ-certified algorithm A for a combinatorial optimization problem.
A finds a solution that is a γ-approximate solution w.r.t. both the maximization and
minimization objectives.
If the instance is γ-perturbation-resilient, A finds the optimal solution. If it is (γ,N)-
weakly perturbation-resilient, A finds a solution in N .

Proof. Consider an instance I. Denote its optimal solution by s∗. Denote the certified
solution found by A by (I ′, s′). For each c ∈ C, let wc and w′c be its weights in I and I ′,
respectively.

I. First, we prove that the algorithm always gives a γ-approximation for both objectives.
Consider the maximization objective. We have,

valI(s′) =
∑
c∈C

wcc(s′) ≥
∑
c∈C

w′c
γ
c(s′) = 1

γ

∑
c∈C

w′cc(s′)

(?)
≥ 1

γ

∑
c∈C

w′cc(s∗) ≥
1
γ

∑
c∈C

wcc(s∗) = valI(s∗)
γ

where (?) holds since s′ is an optimal solution for I ′. We conclude that s′ is a
γ-approximate solution for the maximization objective. Similarly, we analyze the
minimization objective.∑

c∈C
wc(1− c(s′)) ≤

∑
c∈C

w′c(1− c(s′)) ≤
∑
c∈C

w′c(1− c(s∗)) ≤ γ
∑
c

wc(1− c(s∗)).

ITCS 2020

49:6 Certified Algorithms: Worst-Case Analysis and Beyond

problem Phard problem P
unperturbed instance I J
perturbed instance I′ J ′

Figure 1 Instances I, J , I′, and J ′. If s is a feasible solution for I′, valI′(s) = valJ ′(s)−WH .

II. Now, assume that I is γ-perturbation-resilient. By the definition of perturbation
resilience, I and I ′ have the same optimal solution. Thus, s∗ is an optimal solution not
only for I ′ but also for I. Finally, assume that I is (γ,N)-weakly perturbation-resilient.
Since I is (γ,N)-weakly perturbation-resilient and I ′ is a γ-perturbation of I, we get
form Definition 4 that either s′ ∈ N or s∗ is better than s′ w.r.t. to the I ′ objective.
The latter is not possible, since s′ is an optimal solution for I ′. We conclude that
s′ ∈ N . J

Consider an instance of an optimization problem. We may choose a subset of constraints
H ⊂ C and require that all of them are satisfied. We call them hard constraints and the
obtained instance an instance with hard constraints. Formally, given an instance (S, C, w)
and a subset of constraints H, we define the correspondent instance (S ′, C′, w) with hard
constraints as follows: S ′ = {a ∈ S : c(s) = 1 for every c ∈ H}; C′ = C \H; w′(c) = w(c) for
c ∈ C′.

I Theorem 11. Assume that γ = γn is at most polynomial in n. If there is a pseudo-
polynomial-time γ-certified algorithm for a problem P, then there is also a pseudo-polynomial-
time γ-certified algorithm for a variant Phard of P with hard constraints.

Proof. Consider an instance I of Phard. Let H be the set of hard constraints and S be
the set of soft constraints. We transform I to an instance J of P by setting the weight of
every hard constraint c ∈ H to (γ + 1)W where W =

∑
c∈S wc is the total weight of the soft

constraints (see Figure 1). Note that the parameter ρJ for J (the ratio between the largest
and smallest constraint weights in J ; see Definition 6) is polynomial in ρI and the input size:

ρJ = (γ + 1)W
minc∈C wc

≤ |S|(γ + 1) maxc∈C wc
minc∈C wc

≤ |S|(γ + 1)ρI .

We run the algorithm for P on input J and get a certified solution (J ′, s∗). Let WH =∑
c∈H w

J ′
c , where wJ ′c is the weight of c in wJ ′c . Every feasible solution s for I satisfies all

the constraints in H and thus valJ ′(s) ≥ WH . In particular, if I has a feasible solution s,
then valJ ′(s∗) ≥ valJ ′(s) ≥ WH . Conversely, every solution s for J ′ with valJ ′(s) ≥ WH

satisfies all the hard constraints (since the total weight of the soft constraints is less than the
weight of any hard constraint in J ′) and thus is a feasible solution for I.

If valJ ′(s∗) < WH , we report that I has no feasible solution. Otherwise, s∗ is a feasible
solution for I. We let I ′ be a perturbation of I, in which all the soft constraints have the same
weights as in J ′. Observe that for every feasible solution s of I ′, valI′(s) = valJ ′(s)−WH .
It follows that s∗ is an optimal solution for I ′. We output (I ′, s∗). J

I Corollary 12. Consider a problem P and its variant with hard constraints Phard. Let γn be
at most polynomial in n (the instance size). If there is a pseudo-polynomial-time γn-certified
algorithm for P, then there are pseudo-polynomial-time γn-approximation algorithms for
maximization and minimization variants of Phard.

We prove an analog of Theorem 10 for k-medians and k-means in Appendix (its proof is
very similar to that of Theorem 10).

K. Makarychev and Y. Makarychev 49:7

I Theorem 13. Consider a γ-certified algorithm A for k-medians or k-means. If A is
for k-medians, then A is a γ-approximation algorithm; if A is for k-means, then A is a
γ2-approximation algorithm. If the instance is γ-perturbation-resilient, A finds the optimal
solution. If it is (γ,N)-weakly perturbation-resilient, A finds a solution in N .

4 Designing Certified Algorithms

4.1 Iterative Improvement Algorithms
We use an iterative approach to design certified algorithms: our certified algorithms start
with an arbitrary solution and then iteratively improve it. The approach resembles that of
local search, except that improvements will not necessarily be local. In this approach, the
key component of a certified algorithm is a procedure for improving the current solution;
namely, a procedure for solving the following task.

I Task 14. Given an instance I and the current solution s,
either find a new solution s′, which is better than s (w.r.t. to the I objective), or
find a γ certified solution (I ′, s).

B Claim 15. Consider a combinatorial optimization or clustering problem. Let ε = εn >

1/ poly(n). Assume the following.
1. There is a polynomial-time algorithm for Task 14 with γ = γn.
2. There is polynomial-time algorithm that finds a feasible solution.
Then there is a pseudo-polynomial-time (1 + εn)γn-certified algorithm for the problem.

Proof. Let pmin = mini pi be the smallest parameter and ε′ = ε/2. First, we apply a
preprocessing step, where we round all parameters pi to multiples of q = ε′pmin as follows:

p′i = (dpi/qe+ 1)q.

It is easy to see that q ≤ p′i − pi ≤ 2q. Thus, instance I ′ with parameters p′i is a (1 + ε)
perturbation of I.

If the problem is k-medians (or for that matter another clustering problem), then
parameters pi are distances d(u, v), satisfying triangle inequalities. Then the new distances
d′(u, v) also satisfy triangle inequalities:

d′(u, v) + d′(v, w) ≥ (d(u, v) + q) + (d(v, w) + q) ≥ d(u,w) + 2q ≥ d′(u,w).

Now we proceed as follows. We find a feasible solution for I ′ and then iteratively improve it
using the procedure for Task 14, until the procedure finds a γ-certified solution (I ′′, s) for I ′.
Clearly, I ′′ is a (1 + ε)γ-perturbation of I. Thus, (I ′′, s) is a (1 + ε)γ-certified solution for I.

It remains to prove that the algorithm runs in pseudo-polynomial time. To do so, we
need to upper bound the number of iterations. Assume that the problem is a combinatorial
optimization problem. Consider the maximization objective. Initially the value of the
problem is non-negative. It increases by at least q in every iteration. When the program
terminates, it is at most

∑
c∈C w

′
c ≤ (ρwmin + 2q)|C| (where ρ as in Definition 6). Thus the

algorithm performs at most (ρwmin+2q)|C|
q ≤ 2(ρ/ε+ 1)|C| iterations, which is polynomial in

|C|, ρ, and 1/ε.
If the problem is k-medians, the cost of the initial clustering is at most nmaxu,v∈X d′(u, v).

It decreases by at least q in every iteration. The cost of the obtained clustering is non-negative.
It is easy to see that the number of iterations is polynomial in n, ρ, and 1/ε.

We conclude that the algorithm runs in pseudo-polynomial time. C

ITCS 2020

49:8 Certified Algorithms: Worst-Case Analysis and Beyond

4.2 Designing Certified Algorithms for Combinatorial Optimization
Problems

Consider a combinatorial optimization problem. We show that in order to solve Task 14, it
suffices to solve the following task.

I Task 16. Assume that we are given an instance I = (S, C, w), a partition of its constraints
C = C1 ∪ C2, and a parameter γ ≥ 1. We need to either

find s ∈ S such that γ
∑
c∈C1

wcc(s) >
∑
c∈C2

wc(1− c(s)), or
report that for every s ∈ S:

∑
c∈C1

wcc(s) ≤
∑
c∈C2

wc(1− c(s)).
(Note that the above options are not mutually exclusive.)

I Theorem 17. Assume that (1) there is a polynomial-time procedure for Task 16 with
γ = γn and (2) there is a polynomial-time algorithm that finds some s ∈ S. Then there
exists a pseudo-polynomial-time (γn + εn)-certified algorithm for the problem (for every
εn > 1/ poly(n)).

Proof. By Claim 15, it suffices to design an algorithm for Task 14. Given a solution s, we will
either find a better solution s′ or return a certified solution (I ′, s). Let C1 = {c ∈ C : c(s) = 0}
and C2 = {c ∈ C : c(s) = 1} be the sets of unsatisfied and satisfied constraints, respectively.
Define weights w′ as follows:

w′c =
{
wc, if c ∈ C1

γwc, if c ∈ C2

We run the procedure for Task 16 on instance I ′ = (S, C, w′). Consider two cases. Assume
first that the procedure returns a solution s′ such that γ

∑
c∈C1

w′cc(s′) >
∑
c∈C2

w′c(1−c(s′)).
We get that∑

c∈C1

wcc(s′) >
∑
c∈C2

wc(1− c(s′))

and thus

valI(s′) =
∑

c∈C1∪C2

wcc(s′) >
∑
c∈C2

wc = valI(s).

In this case, we return s′. Assume now that the procedure reports that for every solution s′:∑
c∈C1

w′cc(s′) ≤
∑
c∈C2

w′c(1− c(s′))

or, equivalently,

valI′(s′) =
∑

c∈C1∪C2

w′cc(s′) ≤
∑
c∈C2

w′c = valI′(s).

Then s is an optimal solution for I ′. We return a γ-certified solution (I ′, s). J

4.3 Certified Algorithm via Convex Relaxations
We describe how to design certified algorithms for combinatorial optimization problems using
convex relaxations. Consider a problem and a convex relaxation for it. We refer to problem
solutions s ∈ S as combinatorial solutions and relaxation solutions x as fractional solutions;

K. Makarychev and Y. Makarychev 49:9

we say that x is integral if it corresponds to a combinatorial solution s ∈ S. We assume
that in the relaxation we have a variable xc for each constraint c so that xc = c(s) for every
integral solution x and corresponding combinatorial solution s. The relaxations objective is
to maximize fval(x) =

∑
c∈C wcxc or (equivalently) minimize

∑
c∈C wc(1− xc).

Consider a randomized rounding scheme R that given a fractional solution x outputs a
combinatorial solution R(x). Rounding schemes are widely used for designing approximation
algorithms. When designing an algorithm for a maximization objective, one typically wants
the rounding scheme to satisfy the following approximation condition.

Approximation Condition. The probability that each constraint c ∈ C is satisfied by
R(x) is at least xc/α (the probability is over the random choices made by R).

If R satisfies this condition, it gives an α approximation for the maximization objective (in
expectation). On the other hand, when designing an algorithm for a minimization objective,
one wants the rounding scheme to satisfy the co-approximation condition.

Co-approximation Condition. The probability that each constraint c ∈ C is unsatis-
fied by R(x) is at most β(1− xc).

If R satisfies this condition, it gives a β approximation for the minimization objective (in
expectation). Following [16, 3], we consider rounding schemes that simultaneously satisfy
the approximation and co-approximation conditions.

I Definition 18. We say that a rounding scheme R is an (α, β)-rounding if it simultaneously
satisfies the approximation and co-approximation conditions with parameters α and β.

We note that (α, β)-rounding schemes have been shown to be very useful for solving
perturbation-resilient and weakly perturbation-resilient instances [16, 3]. In particular,
if there is an (α, β)-rounding scheme, then the relaxation is integral for (αβ)-perturbation-
resilient instances [16]. We now show that (α, β)-rounding schemes can be used for designing
certified algorithms.

I Theorem 19. Assume that there exists an (α, β)-rounding scheme R. Additionally, assume
that the support of R is of polynomial size and can be found in polynomial time.

Then there exists a pseudo-polynomial-time certified (γ + εn)-approximation algorithm
for the problem where γ = αβ (for any ε > 1/ poly(n)). Further, the algorithm outputs a
certified solution (I ′, s∗) such that s∗ is an optimal solution not only for I ′ but also for the
relaxation for I ′.

Proof. By Theorem 17, it suffices to design a polynomial-time procedure for solving Task 16.
First, we solve the convex relaxation for the problem and obtain an optimal fractional solution
x = x∗. If

∑
c∈C1

wcxc ≤
∑
c∈C2

wc(1− xc), then for every s ∈ S∑
c∈C1

wcc(s)+
∑
c∈C2

wcc(s) ≤
∑
c∈C1

wcxc+
∑
c∈C2

wcxc ≤
∑
c∈C2

wc(1−xc)+
∑
c∈C2

wcxc =
∑
c∈C2

wc. (3)

So we report that
∑
c∈C1

wcc(s) ≤
∑
c∈C2

wc(1− c(s)) for every s (option 2). Note that in
this case, the certified algorithm from Theorem 17 returns a certified solution (I, s∗) of value
valI′(s∗) = w(C2) ≡

∑
c∈C2

wc. Eq. (3) shows that the value of every fractional solution (let
alone integral) is at most w(C2). Thus s∗ is an optimal solution not only for I ′ but also for
the relaxation for I ′.

Assume now that
∑
c∈C1

wcxc >
∑
c∈C2

wc(1− xc). We apply rounding scheme R and
obtain a solution R(x). From the approximation and co-approximation conditions, we get

E
[
γ
∑
c∈C1

wcc(R(x))−
∑
c∈C2

wc(1− c(R(x)))
]
≥ γ

α

∑
c∈C1

wcxc − β
∑
c∈C2

wc(1− xc) > 0.

Here, we used that γ = αβ. Thus for some solution s in the support of R(x), we have
γ
∑
c∈C1

wcc(s) >
∑
c∈C2

wc(1− c(s)). We find and return such a solution s. J

ITCS 2020

49:10 Certified Algorithms: Worst-Case Analysis and Beyond

We note that it is sufficient to design a rounding procedure only for solutions that are
close to integral solutions.

I Definition 20. Let us say that a fractional solution x is δ-close to an integral if x =
(1− δ)xint + δxfrac for some integral solution xint and fractional solution xfrac. Rounding
scheme R is a δ-local (α, β)-rounding if it is defined and satisfies the approximation and
co-approximation conditions for fractional solutions x that are δ-close to an integral solution.

It turns out that it is sufficient to have a δ-local rounding scheme (for any δ > 0) in Theorem 19.
To see that, we slightly change the proof of Theorem 19. We first find an optimal fractional
solution x∗ and then apply the rest of the argument to solution x = δx∗ + (1− δ)xs (where
xs is the fractional solution corresponding to s).

Finally, we note that if the support of R is not of a polynomial size, we can get a
randomized certified algorithm. To do so, instead of trying out all solutions s in the support
of R(x), we apply R to x sufficiently many times and let s be the best of the obtained
solutions (if we use a δ-local rounding scheme, we need that δ > 1/ poly(n)).

5 Examples of Certified Algorithms for Optimization Problems

I Theorem 21.
I. There exists a pseudo-polynomial-time (1 + εn)αn-certified algorithm for Min Uncut

and Max Cut (these problems are complementary), where αn = O(
√

log n log log n) is
the approximation factor for Sparsest Cut with Non-uniform Demands from [4] and
εn > 1/ poly(n).

II. There exists a pseudo-polynomial-time (2− 2/k + εn)-certified algorithm for Minimum
Multiway Cut.

Proof.
I. We show how to solve Task 16 in polynomial time. Recall that in our formulation

of Min Uncut, ce((S, S̄)) = 1 if edge e is cut. Let E1 = {e ∈ E : ce ∈ C1} and
E2 = {e ∈ E : ce ∈ C2}; denote the weight of the edges in Ei cut by (S, S̄) by
w(Ei(S, S̄)). Let φ(S) = w(E2(S,S̄))

w(E1(S,S̄)) . Then our goal is to either find a cut (S, S̄) such
that φ(S) < γ or report that φ(S) ≥ 1 for every (S, S̄). Now the problem of minimizing
φ(S) over all cuts (S, S̄) is the same as finding the sparsest cut with non-uniform
demands in graph (V,E2) with edge capacities w, demand pairs E1, and demand
weights w. We run the approximation algorithm for Sparsest Cut and get a cut (S, S̄)
that approximately – within a factor of γ – minimizes φ(S). If φ(S) < γ, we report cut
(S, S̄); otherwise, we report that φ(S′) ≥ 1 for every cut (S′, S̄′).

II. Consider the LP relaxation for Minimum Multiway Cut by Călinescu, Karloff, and
Rabani. It is shown in [3] that there exists a δ-local (α, β)-rounding procedure for it
with αβ = 2− 2/k. It follows from Theorem 19, that there is a (2− 2/k + εn)-certified
algorithm. J

6 (3 + ε)-Certified Local Search Algorithm for k-medians

In this section, we consider k-medians. We show that a local search algorithm is (3 + ε)-
certified. We note that our analysis is very similar to that in [11, 8].

We first apply the preprocessing step form Theorem 17 (where we round all distances
to multiples of some q). Then, we consider an arbitrary set of centers c1, . . . , ck and the
corresponding clustering C1, . . . , Ck. Then, at each iteration, we go over all possible swaps

K. Makarychev and Y. Makarychev 49:11

of size r: we swap r centers among c1, . . . , ck with r points outside of c1, . . . , ck. We choose
a swap that decreases the cost of the clustering, if there is one, and recompute C1, . . . , Ck. If
there is no such swap, we terminate and output a certified solution ((X, d′), (C1, . . . , Ck)),
where d′(u, v) = 1

γ d(u, v) if u = ci and v ∈ Ci for some i (or the other way around), and
d′(u, v) = d(u, v), otherwise.

I Theorem 22. The ρ-local search algorithm for k-medians (described above) is a pseudo-
polynomial-time (3 +O(1/ρ))-certified algorithm.

Proof. We use Theorem 14. It guarantees that the algorithm runs in pseudo-polynomial
time. We need to show that when the algorithm terminates it indeed outputs a certified
solution. Suppose that the algorithm outputs a clustering with centers L = {l1, . . . , lk}.

Consider an arbitrary set of centers S = {s1, . . . , sk}. We need to show that the cost of
the k-median clustering with centers in L is at most the cost of the k-median clustering with
centers in S with respect to the perturbed distance function d′. Let l(u) and s(u) be the
closest centers to point u in L and S respectively with respect to d; and let l′(u) and s′(u)
be the closest centers to point u in L and S respectively with respect to d′. Our goal is to
prove that∑

u∈X
d′(u, l′(u)) ≤

∑
u∈X

d′(u, s′(u)). (4)

Observe that for every point u ∈ X, we have d(u, v) = d′(u, v) for all v but v = l(u).
Thus, l′(u) = l(u) and d′(u, l′(u)) = d(u, l(u))/γ. Consequently, the left hand side of (4)
equals

∑
u∈X d(u, l(u))/γ. Similarly, s′(u) = s(u) and d′(u, s′(u)) = d(u, s(u)) if l(u) /∈ S.

However, if l(u) ∈ S, then d′(u, s′(u)) = min
(
d(u, s(u)), d(u, l(u))/γ

)
as, in this case, the

optimal center for u in S w.r.t. d′ can be l(u).
Let us split all vertices in X into two groups A = {u : l(u) ∈ S} and B = {u : l(u) /∈ S}.

Then, for u ∈ A, we have d′(u, s′(u)) = min
(
d(u, s(u)), d(u, l(u))/γ

)
; and for for u ∈ B, we

have d′(u, s′(u)) = d(u, s(u)). Thus, inequality (4) is equivalent to

∑
u∈X

d(u, l(u))
γ

≤
∑
u∈A

min
(
d(u, s(u)), d(u, l(u))

γ

)
+
∑
u∈B

d(u, s(u)),

which after multiplying both parts by γ can be written as∑
u∈X

d(u, l(u)) ≤
∑
u∈A

min
(
γd(u, s(u)), d(u, l(u))

)
+
∑
u∈B

γd(u, s(u)). (5)

For u ∈ A, we have d(u, s(u)) ≤ d(u, l(u)) since both s(u) and l(u) are in S and
s(u) = arg minv∈S d(u, v). Thus, min

(
γd(u, s(u)), d(u, l(u))

)
≥ d(u, s(u)). Consequently,

inequality (5) follows from the following theorem from [11] (see also [5] and [13]).

I Theorem 23 (Local Approximation; [11]). Let L be a r-locally optimal set of centers with
respect to a metric d and S be an arbitrary set of k centers. Define sets A and B as above.
Then,∑

u∈X
d(u, l(u)) ≤

∑
u∈A

d(u, s(u)) + γ
∑
u∈B

d(u, s(u)),

for some γ = 3 +O(1/r). J

ITCS 2020

49:12 Certified Algorithms: Worst-Case Analysis and Beyond

7 Euclidean k-means and k-medians

We note that the algorithm for (1 + ε)-perturbation-resilient instances of Euclidean k-
means and k-medians (in a fixed dimensional space) by Friggstad, Khodamoradi, and
Salavatipour [12] is (1 + ε)-certified. The algorithm finds a solution S and perturbed metric
δ′ on X ∪ S such that (see Lemma 2.2 in [12])

cost′(S) ≤ cost′(O),

where cost′ is the cost of the clustering w.r.t the perturbed metric δ′. In [12], O is the optimal
solution for the non-perturbed instance; however, the proof does not use that O is an optimal
solution and goes through if O is an arbitrary solution. Thus, Friggstad, Khodamoradi, and
Salavatipour proved that their algorithm finds a solution S (specified by the list of centers),
which is optimal w.r.t. the perturbed distances δ′. We get the following theorem.

I Theorem 24. For every fixed ε > 0 and d ≥ 1, there exist (1 + ε)-certified algorithms for
Euclidean instances of k-means and k-medians in Rd (namely, the local search algorithms
from [12]). The algorithms run in time polynomial in the bit complexity of the input.

8 Negative Results

In this section, we present several negative results for certified algorithms. They immediately
follow from the properties of certified algorithm we saw in Section 3. We note that similar
negative results were shown in [3] for robust algorithms for perturbation-resilient instances.

I Theorem 25. There are no pseudo-polynomial-time O(n1−δ)-certified algorithms for
Minimum Vertex Cover, Set Cover, and Min 2-Horn Deletion if P 6= NP (for every fixed
δ > 0).

Proof. Let γ = cn1−δ be the hardness of Maximum Independent Set (MIS) [19].
I. According o Theorem 10, if there were a pseudo-polynomial-time or polynomial-time
γ-certified algorithm for Vertex Cover, then there would be a polynomial-time γ-
approximation algorithm for Maximum Independent Set (the problem complementary
to Minimum Vertex Cover).

II. Since each Vertex Cover instance is also a Set Cover instance, a certified algorithm for
Set Cover would also be a certified algorithm for Vertex Cover.

III. Observe that Max 2-Horn SAT with hard constraints is more difficult than MIS. An
instance (G,V,E) of MIS is equivalent to the following instance of Max 2-Horn SAT
with hard constraints: there is a variable xu for every u ∈ V , a hard constraint xu ∨ xv
for every (u, v) ∈ E, and a soft constraint xu. By Corollary 12, since there is no
γ-approximation for MIS, there is no polynomial-time algorithm for γ-perturbation-
resilient instances of Min 2-Horn Deletion. J

References
1 Amit Agarwal, Moses Charikar, Konstantin Makarychev, and Yury Makarychev. O(

√
log n)

approximation algorithms for Min UnCut, Min 2CNF Deletion, and directed cut problems. In
Proceedings of the Symposium on Theory of Computing, pages 573–581, 2005.

2 Haris Angelidakis, Pranjal Awasthi, Avrim Blum, Vaggos Chatziafratis, and Chen Dan. Bilu-
Linial stability, certified algorithms and the Independent Set problem. In Proceedings of the
European Symposium on Algorithms, 2019.

K. Makarychev and Y. Makarychev 49:13

3 Haris Angelidakis, Konstantin Makarychev, and Yury Makarychev. Algorithms for stable and
perturbation-resilient problems. In Proceedings of the Symposium on Theory of Computing,
pages 438–451, 2017.

4 Sanjeev Arora, James Lee, and Assaf Naor. Euclidean distortion and the sparsest cut. Journal
of the American Mathematical Society, 21(1):1–21, 2008.

5 Vijay Arya, Naveen Garg, Rohit Khandekar, Adam Meyerson, Kamesh Munagala, and
Vinayaka Pandit. Local search heuristics for k-median and facility location problems. SIAM
Journal on computing, 33(3):544–562, 2004.

6 Pranjal Awasthi, Avrim Blum, and Or Sheffet. Center-based clustering under perturbation
stability. Information Processing Letters, 112(1-2):49–54, 2012.

7 Maria-Florina Balcan, Nika Haghtalab, and Colin White. k-Center Clustering Under Pertur-
bation Resilience. In International Colloquium on Automata, Languages, and Programming,
2016.

8 Maria-Florina Balcan and Colin White. Clustering under local stability: Bridging the gap
between worst-case and beyond worst-case analysis. arXiv preprint, 2017. arXiv:1705.07157.

9 Yonatan Bilu, Amit Daniely, Nati Linial, and Michael Saks. On the practically interesting
instances of MAXCUT. In International Symposium on Theoretical Aspects of Computer
Science, 2013.

10 Yonatan Bilu and Nathan Linial. Are Stable Instances Easy? In Innovations in Computer
Science, pages 332–341, 2010.

11 Vincent Cohen-Addad and Chris Schwiegelshohn. On the local structure of stable clustering
instances. In Proceedings of the Symposium on Foundations of Computer Science, pages 49–60,
2017.

12 Zachary Friggstad, Kamyar Khodamoradi, and Mohammad R. Salavatipour. Exact Algorithms
and Lower Bounds for Stable Instances of Euclidean K-means. In Proceedings of the Symposium
on Discrete Algorithms, pages 2958–2972, 2019.

13 Anupam Gupta and Kanat Tangwongsan. Simpler analyses of local search algorithms for
facility location. arXiv preprint, 2008. arXiv:0809.2554.

14 Shi Li and Ola Svensson. Approximating k-median via pseudo-approximation. SIAM Journal
on Computing, 45(2):530–547, 2016.

15 Konstantin Makarychev and Yury Makarychev. Bilu–Linial Stability. In T. Hazan, G. Papan-
dreou, and D. Tarlow, editors, Perturbations, Optimization, and Statistics, chapter 13. MIT
Press, 2016.

16 Konstantin Makarychev, Yury Makarychev, and Aravindan Vijayaraghavan. Bilu-Linial stable
instances of Max Cut and Minimum Multiway Cut. In Proceedings of the Symposium on
Discrete Algorithms, pages 890–906, 2014.

17 Ankit Sharma and Jan Vondrák. Multiway Cut, Pairwise Realizable Distributions, and
Descending Thresholds. In Proceedings of the Symposium on Theory of Computing, 2014.

18 Daniel A Spielman and Shang-Hua Teng. Smoothed analysis of algorithms: Why the simplex
algorithm usually takes polynomial time. Journal of the ACM (JACM), 51(3):385–463, 2004.

19 David Zuckerman. Linear Degree Extractors and the Inapproximability of Max Clique and
Chromatic Number. In Proceedings of the Symposium on Theory of Computing, 2006.

A Proof of Theorem 13

Proof.
I. Denote the certified solution returned by the algorithm by ((X, d′), (C1, . . . , Ck)). Let
C∗1 , . . . , C

∗
k be an optimal clustering. Let ci and c∗i be optimal centers of Ci and C∗i

(respectively). Consider the case of k-medians first. We upper bound the cost of
(C1, . . . , Ck) w.r.t d as follows:

ITCS 2020

http://arxiv.org/abs/1705.07157
http://arxiv.org/abs/0809.2554

49:14 Certified Algorithms: Worst-Case Analysis and Beyond

k∑
i=1

∑
u∈Ci

d(u, ci) ≤ γ
k∑
i=1

∑
u∈Ci

d′(u, ci) ≤ γ
k∑
i=1

∑
u∈C∗

i

d′(u, c∗i) ≤ γ
k∑
i=1

∑
u∈C∗

i

d(u, c∗i).

Now, consider the case of k-means.

k∑
i=1

∑
u∈Ci

d(u, ci)2 ≤
k∑
i=1

∑
u∈Ci

(γd′(u, ci))2 ≤ γ2
k∑
i=1

∑
u∈C∗

i

d′(u, c∗i) ≤ γ2
k∑
i=1

∑
u∈C∗

i

d(u, c∗i).

II. The proof is identical to that of Theorem 10. J

	Introduction
	Overview: Properties of Certified Algorithms
	Our Results

	Preliminaries
	Properties of Certified Algorithms
	Designing Certified Algorithms
	Iterative Improvement Algorithms
	Designing Certified Algorithms for Combinatorial Optimization Problems
	Certified Algorithm via Convex Relaxations

	Examples of Certified Algorithms for Optimization Problems
	(3+epsilon)-Certified Local Search Algorithm for k-medians
	Euclidean k-means and k-medians
	Negative Results
	Proof of Theorem 13

