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Abstract—The rapid advancement of social media and commu-
nication technology enables video chat to become an important
and convenient way of daily communication. However, such
convenience also makes personal video clips easily obtained and
exploited by malicious users who launch scam attacks. Existing
studies only deal with the attacks that use fabricated facial masks,
while the liveness detection that targets the playback attacks
using a virtual camera is still elusive. In this work, we develop a
novel video chat liveness detection system, LiveScreen, which can
track the weak light changes reflected off the skin of a human
face leveraging chromatic eigenspace differences. We design an
inconspicuous challenge frame with minimal intervention to the
video chat and develop a robust anomaly frame detector to verify
the liveness of the remote user in the video chat using the response
to the challenge frame. Furthermore, we propose resilient defense
strategies to defeat both naive and intelligent playback attacks
leveraging spatial and temporal verification. We implemented
a prototype over both laptop and smartphone platforms and
conducted extensive experiments in various realistic scenarios.
We show that our system can achieve robust liveness detection
with accuracy and false detection rates 97.7% (94.8%) and 1%
(1.6%) on smartphones (laptops), respectively.

I. INTRODUCTION

Due to the rapid development of social media and commu-
nication technology, recent years have witnessed video chat
gradually becoming a convenient and indispensable means
for people’s daily communication. However, such convenience
also makes personal images and videos easily obtained and
exploited by malicious users to launch impersonation scam
attacks as shown in Figure 1. For example, relatives or friends
of international students have been victims of video scam
attacks [1], [2] due to their lack of instant means to contact
the students living abroad. The attacker usually obtains video
footages of an international student from social media or a
stolen smartphone and invites the victim (i.e., student’s relative
or friend) to engage in an appealingly genuine video chat
with a muted voice using the stolen video footage. If the
victims are convinced, the attackers will claim to run into some
financial difficulties or emergencies and ask for money, which
would result in irreparable economic damage for the victims.
Similarly, there have been online romance scams [3], [4] that
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Fig. 1. A video scam attacker uses a pre-recorded video to impersonate a
user in a video chat.
reach out to the victims on their social media accounts (e.g.,
Facebook and WhatsApp) and lure the victims into performing
obscene acts in a live video chat while the victims never
actually chat with the attacker but a pre-recorded video of
someone else. All these video scams are usually premeditated,
organized crimes that steal millions, potentially billions, of
dollars from vulnerable or lonely people over the internet.
Intuitively, video scam attacks may be thwarted by request-
ing the person in chatting with to respond in accordance
with some specific challenges (e.g., blinking, reading words
or numbers aloud, head movements, etc.). However, the short
video playback used for impersonation attacks may end before
the victims are aware of its malicious intent, and the attackers
also usually ignore or reject the challenges with reasonable
excuses (e.g., broken microphone), which reassures the victims
that this is a live video conversation. Existing methods [5]—
[9], which benefit from the explosive advancement of image
processing and machine learning techniques, can detect media-
based facial forgery or impersonation attack leveraging fabri-
cated 2D/3D facial masks [10]-[13]. However, if the attacker
impersonates someone by playing a prerecorded video through
a virtual camera, existing approaches, even human eyes, are
failing to verify the liveness of people appearing in the video
chat window. Our paper aims to deal with this challenging
problem on liveness detection. Recently, Face Flashing [14]
exploits flash frames on the screen to create special reflection
light off human faces for user authentication. However, the
huge training efforts with respect to each individual is not
achievable for common video chat. Moreover, the users have
to stay static and have their face very close to screen during
the detection process, making it inapplicable for video chat
scenarios. Instead, we seek a generic and robust liveness
detection solution that can be easily integrated into mobile
devices to defend against scam attacks during the video chat.
Towards this end, we propose a low-cost video chat live-
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Fig. 2. Challenge-response process of LiveScreen leveraging the inconspic-
uous light reflected off the human face for video liveness detection.

ness detection system, LiveScreen, for various video chat
terminals (e.g., smartphones and computers) with different
chatting window sizes. Our system is low-cost and easy to
integrated into existing video chat terminals because it only
requires a screen and a camera, which are essential in the
video chat. Unlike existing solutions, LiveScreen leverages the
chromatic eigenspace difference to capture the minute changes
of the light reflected off the human face, enabling robust
video liveness detection under various practical scenarios with
complex environmental light conditions, head movements, and
non-stationary video background.

The liveness detection process of LiveScreen is shown
in Figure 2. The local user customizes some video frames
captured by the local camera with a special light pattern. The
light pattern works as a challenge that will be displayed at
the screen of the remote user and projected onto the remote
user’s face. The reflected light off remote user’s face will
be captured by the remote camera and sent back to the
local user as a response along with other normal video chat
frames. Thus, LiveScreen can detect the video liveness by
examining the change of the light pattern without requiring
active participation of the remote user, and thus verify the
liveness of the remote user.

To develop such a video liveness detection system, it
is critical to detect the response reflected off the human
face and determine whether the reflection resulting from
the challenge or not. However, the response is usually too
weak to be detected, especially under strong ambient light
interference and low skin reflectance. Inspired by the remote
photoplethysmogram (rPPG) technology [15], we propose to
extract chromatic eigenspace difference features from captured
video frames to capture the subtle light intensity changes on
the human face and achieve accurate response detection in
real video chat scenarios. In addition, the challenges should
be carefully designed to ensure high signal-to-noise ratio of
response while keeping the intervention to the video chat at a
minimum. Furthermore, to enable resilient liveness detection,
reliable verification strategy is required to defend the system
against the naive and intelligent playback attackers.

The main contribution of this work is listed as follows:

+ We devise a non-invasive, low-cost and lightweight liveness
detection system, which can be easily integrated into exist-
ing video chat applications without additional devices.

« We extensively explore the light reflected off human skin
and design an inconspicuous challenge that can minimize
the interference to the users’ viewing experience in video
chat.

o Our unique chromatic eigenspace difference feature is ca-
pable of tracking the light intensity changes regardless of
various impact factors.

« We propose resilient defense strategies that leverage the spa-
tial and temporal verification on the light intensity changes
in video chat frames to defend our system against types of
attacks.

« We build a prototype video chat application integrating Live-
Screen. Extensive experiments on laptops and smartphones
demonstrate that our system can accurately detect the video
scam attacks under practical scenarios (e.g., different chat-
ting window sizes, light conditions, and body movements).

II. RELATED WORK

Many liveness detection methods have been proposed to
defend against various types of scam attacks. Some existing
liveness detection methods [16]-[21] can identify fabricated
face masks/3D head model based on representative facial
features. However, no matter how realistic the fabrication of
forged faces are, these fabrications either look unnatural in a
video chat or incur high cost on materials and manufacturing,
making them easily detected by real people. Dynamic attackers
can prepare a video beforehand and then either play the video
in front of a real webcam or stream the video through a
virtual webcam [22]. To detect such attacks, existing solutions
rely on texture analysis [23]-[26] and depth-characteristics [7],
[27], [28] to detect a forged face displayed on a screen, but
the computational cost is usually high. If the prerecorded
video is streamed via a virtual webcam by attackers, the
prior solutions will fail. Intuitive solutions [29], [30] require
explicit real-time interaction among the participants in a video
chat (i.e., blinking, reading words or numbers aloud, hands
movements, etc.). However, the attackers can ignore or reject
the challenges to verify themselves with reasonable excuses,
or carefully prepared video playbacks that include required
interactions. Some approaches [31]-[33] propose to integrate
different biometric traits collected from multiple sensors at the
attacker’s end for consistency check. For example, Biggio [31]
proposed to fuse fingerprint and face recognition techniques
to determine the liveness of the remote user; FaceLive [32]
defends against the video playback attacks by performing
consistency check between built-in inertial sensor readings
and the head-pose changes inferred from the video frames.
However, the above studies either need to access inertial
sensors or require the cooperation of the remote user. Even
worse, the attackers can fake the sensor data transmitted along
with the video playback, and fail FaceLive.

To overcome the above limitations, researchers recently
proposed to achieve liveness detection by leveraging reflection
light off human faces. Patrick et al. [34] proposed to perform
liveness detection based on the face reflectance resulting from
a flashlight, but this approach requires the assistance of a
flashlight, which may not be readily available or uncontrollable
by local user. Face Flashing [14] exploits dedicated flash
frames on the screen instead of an additional flashlight to
create special reflection light off human faces and then per-
form liveness detection leveraging deep learning techniques.
However, the success of this method is built upon huge
training efforts on the face reflection pattern with respect to
individual people to be authenticated, which is unachievable
in common video chat scenarios. Moreover, the people to be
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Fig. 3. Comparison of video frames showing no observable light intensity
change in the volunteer’s face when it is affected by the challenge.

authenticated have to stay static during the process of liveness
detection, making it inapplicable for video chat. Therefore, a
more generic and robust liveness detection system without the
cooperation of remote user is highly required.

III. ATTACK MODELS & FEASIBILITY STUDY
A. Attack Models

This work focuses on two types of impersonation scam
attacks in a video chat: Naive Playback Attack and Intelligent
Playback Attack. In both attacks, the attacker invites a local
user to a video chat in the name of a person who is close
to the user. During the video chat, the attacker replaces the
live video stream with a pre-recorded video clip of the person
and communicates with the user using text. Once the user is
convinced that this is a live video chat, the attacker cheats the
user for money or something else of value. We assume that
the attacker does not use voice communication as it exposes
the fraudulent nature. The attacker also ignores or rejects the
user’s challenges (e.g., making a facial expression, blinking,
or nodding) with reasonable excuses (e.g., broken microphone
or distracting the user by changing the topic of conversation).
Neither type of attack has access to the local user’s device or
software.

Naive Playback Attack (NA). The naive attacker does not
have the capability to process the video frames from the user or
modify the video frames that are sent to the user. To launch the
attack, the attacker can either (1) play the pre-recorded video
frames in front of the camera with a smartphone or laptop
(denoted as NA-1) or (2) stream the pre-recorded video frames
instead of the video frames from the real webcam through a
virtual camera [22] to emulate a live video chat (denoted as
NA-2).

Intelligent Playback Attack (IA). Compared to the naive
attacker, the intelligent attacker has full knowledge of the
proposed system. In addition, the attacker has the capability
to process the video frames from the user and modify the
video frames that are sent to the user. Therefore, the attacker
can detect the challenges embedded in the video frames and
synthesize a valid response to the challenges by modifying
the pixel intensity, for example, increasing the red-channel
intensity of the facial area in the prerecorded video.

B. Feasibility Study

Model of Reflected Light. The image sensors on a digital
camera consist of a set of pixels, which capture the reflected
light of the object to form an image. Each pixel represents
the intensity response of the sensor to the incoming reflected
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Fig. 4. RGB histogram variance of video frames showing clear changes when
the volunteer’s face is affected by the challenge.

light from a point  in a scene. For simplicity sake, the per-
pixel light intensity response can be approximated with a linear
diagonal map based on Von Kries model [35] as:

I.(z) = E.(x) X Re(x),c € {r,g,b}, (1)

where FE.(x) and R.(z) are the illuminant spectral power
and reflectance of a specific color channel c. Note that the
light intensity response E. of pixel x is a mixture of the light
intensity response resulted from multiple illuminant sources.

Considering a typical scene of a live video chat, where a
user usually has his/her face in front of a screen and camera,
the image of the user’s face captured by the camera has the
light intensity response for each pixel x as follows:

Io(z) = E(z) x Re(w) + E¢(z) x Re(x),c € {r,g,b}, (2)
where E? is the illuminant source from the screen and EY
is the mixture of all the environmental illuminant sources
excluding the screen. Given two adjacent frames capturing
the same scene, there should be little difference in the light
intensity due to the transient time interval between them in a
video stream. Equation 2 implies that if we could adjust £ to
emit a special light pattern that is captured by one of the two
adjacent frames, the original light intensity distribution 1. will
be overrode. Since the skin usually reflects more light from
the screen than other objects in the scene do due to its close
distance to the screen, it is possible to detect the liveness of a
video chat by comparing the intensity distribution of the light
reflected off human faces between two adjacent frames.

To validate the feasibility of the proposed idea, we conduct
preliminary studies on the light reflected off the human face
by varying the light intensity of the video frames displayed
on the screen of a laptop. Specifically, a volunteer sits in front
of a laptop with a distance of 40cm to the screen and built-in
camera. The laptop plays a video clip on the screen containing
the frames with modified light intensity (i.e., for every 50
frames, set the light intensity of the red channel to its 150%)
to imitate a video chat with challenges. Meanwhile, the built-in
camera is recording a video of the volunteer’s face. Figure 3
shows that the response is unnoticeable, no obvious change
of light intensity on the volunteer’s face when comparing
the frames with and without challenge. We further manually
identify the skin area in the volunteer’s face in the recorded
video and calculate the variance of RGB histogram [36]
based on all the pixels in the skin area. Figure 4 clearly
shows that the RGB histogram of video frames has significant
changes when a challenge is projected onto the volunteer’s
face, and provides strong evidence on the feasibility of using
light intensity changes on human faces to perform video chat
liveness detection.
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Fig. 5. Overview of LiveScreen.

IV. SYSTEM DESIGN AND CHALLENGES

The goal of this work is to protect users from scam attacks
by enabling liveness detection in a video chat. Towards this
end, we develop a system that can automatically initiate
challenges and detect responses by leveraging the frames in
video chat. Specifically, we utilize the frames in video chat
as a medium to carry the challenge (i.e., challenge frame),
which is designed to create a special light intensity pattern,
while keeping the minimum intervention to the video chat.
On the remote screen, the challenge frame is projected onto
the remote user’s face, resulting in a significant change in
the intensity of the light reflected off the remote user’s face.
The remote camera captures the reflected light as the response
to the challenge and then sends it back to the user along
with the normal video frames in the video chat. Our system
can effectively identify the video frames with significant light
intensity change caused by the challenge and determine the
liveness of the video chat.

The architecture of our system is shown in Figure 5. The
system first sends the challenge to the remote chatting end,
which plays the challenge on its screen and sends the video
frames captured by its camera back to the system. Our system
continuously takes the video frames from the remote chatting
end as the input. For each frame, the system first performs
the Face Identification using Convolutional Neural Network
to locate the human face in the frame by using a pre-trained
convolutional neural network model. The human face is the
region of interest (ROI) in the video frame that concentrates
most of the response, which would facilitate the robustness of
our liveness detection. Then to further boost the detection ac-
curacy, we employ the Facial-landmark-based Skin Extraction
to exclude the non-skin parts on the identified face area and
extract the skin-related pixels. Next, the system performs the
Chromatic Eigenspace Difference Feature Extraction to derive
the chromatic eigenspace difference feature, which utilizes
eigenspace distance in the RGB color space to capture the
minute light intensity changes caused by the challenge. Last,
we conduct Video Liveness Determination Using Anomaly
Detection to identify valid response based on the time series of
the eigenspace difference features and determine the liveness
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Fig. 6. Response detection accuracy using the challenge with different levels
of light intensity.

of a video chat. Furthermore, in order to defend against the
attacks launched at the remote end, we also adopt two defense
strategies, Spatial Verification and Temporal Verification. The
Spatial Verification examines the light intensity distribution
on human face and background behind the human face in
the received frames to defeat the naive playback attacks.
The Temporal Verification monitors the round-trip delay time
(RTT) between two video chat users and detects the intelligent
attacker based on the statistics of the time intervals between
consecutive video frames.

V. CHALLENGE FRAME DESIGN

Inconspicuous Light Intensity Design. To enable incon-
spicuous challenge-response-based liveness detection, we need
to design the challenge frame to not contain noticeable artifacts
but still facilitate reliable liveness detection. In this work, we
seek to generate the challenge frame by enhancing the light
intensity of the selected video chat frames in the RGB color
space. Note that this approach is easy to implement and does
not incur extra network overhead. We find that the challenge
frame with an enhanced red channel is particularly effective for
our liveness detection because human skin generally has higher
reflectance to the red light (i.e., light with the wavelength
between 630nm-700nm) [37]. Along with this direction, we
explore the feasibility of liveness detection using the challenge
frames with different light intensities of the red channel and
our response detection method introduced in Section VI. Fig-
ure 6 presents the percentile of accurately detected responses
(i.e., accuracy introduced in Section VIII) when we increase
the intensity of the red channel of the challenge frame. We
can see that even when the light intensity is increased as low
as 10%, the detection accuracy is over 80%. Note that the
challenge frame has no obvious difference from the original
frame when the light intensity is no more than 50%. The
results indicate that our system can detect the liveness of a
video chat using inconspicuous challenges. If not mentioned
otherwise, we increase the intensity of the original frame’s red
channel by 50% to generate the challenge frames.

Robustness Design. After the light intensity of the in-
conspicuous challenge frame is determined, it is essential
to add more redundancy of the challenge frame to enhance
its robustness due to the security concern and hardware
limitations. Specifically, we have multiple challenge-frame
transmissions during video chat for reliable liveness detection,
and each transmission is allocated at a random time slot,
which aims to avoid the arrival time of the challenge frame
being predicted by an attacker. Furthermore, due to the limited
frame rate of the camera during video chat, the expected
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response frame may not be captured if the challenge frame
has a short retention period on the screen at the responder end.
To overcome this limitation, we extend the length of challenge
frame by covering several consecutive frames to avoid missing
the expected response frame.

Impact of Network Condition. We note that network con-
dition also has a significant impact on our liveness detection.
When a live video chat application detects that the network
condition is poor (e.g., low bandwidth or long latency), it
usually switches to high compression ratio with lossy video
compression algorithm or low frame resolution. In either case,
it will result in low-quality video frames with approximated
pixel values, which lead to significantly reduced light intensity
in the response and lower liveness detection accuracy. There-
fore, we design our system to keep monitoring the network
conditions by using python psutil tools [38]. If a poor network
condition is detected, the system will automatically suspend
the challenge-frame transmission until the network condition
becomes better.

VI. EIGENSPACE LIVENESS DETECTION

Given the received frames, our system first identifies the
human face with a pre-trained Convolutional Neural Network
(CNN) model based on Labelled Faces in the Wild (LFW)
dataset [39], and then extracts the skin area with face land-
marking method [36] based on iBUG 300-W dataset [40] to
remove the ambient light interference. Next, we introduce a
novel chromatic eigenspace difference feature and response
detection method that can capture minute light intensity
changes caused by the challenges and detect the video chat
liveness in practical environments, respectively.

A. Chromatic Eigenspace Difference Feature Extraction

After the face identification and skin extraction, we need
to determine whether the light reflected off the human face
is affected by the challenge or not. This is a nontrivial task
because the light reflected off human faces is affected by
various factors, such as ambient light, head orientations, and
skin colors. Therefore, a simple comparison on the light
intensity (e.g., using histogram) of skin-related pixels between
adjacent frames is not effective and robust enough to detect
the valid response to the challenge.

To overcome the above impacts, we propose to use a
new feature, named chromatic eigenspace difference, extracted
from the skin-related pixels between adjacent video frames.
The proposed chromatic eigenspace difference feature is well
fitted to our problem because (1) it is robust for different skin
tones and light interference; and (2) it utilizes skin-related pix-
els without any averaging operation, and each pixel contributes
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to the extracted feature. The intuition behind using this feature
for liveness detection is that the colors of skin-related pixels
gather into certain clusters in the RGB color space due to the
similarity of skin-related pixels. We can decompose the RGB
color of the skin-related pixels into three primary eigenvectors,
which represent the most significant characteristics of the light
reflected off the human face. A similar feature has been used
to extract the remote photoplethysmogram (rPPG) signals [15]
from human faces under various scenarios (e.g., head motions
and skin colors), suggesting its effectiveness in extracting
target light signals reflected off human faces regardless of
various impact factors.

Specifically, the chromatic eigenspace difference feature is
obtained through measuring the distance between the eige-
nspaces of two adjacent video frames, which is derived from
the light intensity of skin-related pixels. We first calculate the
auto-correlation of the skin-related pixels in a video frame
as C = STS/p, where p is the total number of skin-related
pixels, S is a p x 3 matrix vectorized from RGB channels of
the skin-related pixels, and 1" denotes the transpose operation
on matrix. Then, we obtain the eigenvectors of skin-related
pixels through the eigen decomposition of C' as shown below:

C-U=A-U st. |[C—A-1I=0, 3)
where U and A denote the eigenvectors and eigenvalues,
respectively, I is an identity matrix, and |-| denotes the

matrix determinant. The eigenvectors in U are orthogonal
to each other and are used to construct the eigenspace of
the skin-related pixels. Intuitively, the frames with different
color distributions have a set of eigenvectors with different
orientations, resulting in different eigenspaces. Figure 7 shows
the eigenspaces of two video frames (i.e., Frame 2 contains
the valid response to the challenge while Frame 1 does not).
The red and green marks and lines in the figure correspond
to the skin-related pixel intensities in RGB color space and
corresponding eigenvectors U of the two frames. We can
clearly observe the differences in orientation between the two
sets of eigenvectors, suggesting that we can detect the valid
response by comparing the eigenspaces between two adjacent
frames.

We next derive the chromatic eigenspace difference fea-
ture in a time series of video frames. Given two adjacent
frames at time ¢ and ¢/, the corresponding eigenspaces are
U = [uf,uf,u}] and Uy = [u},u},u} ], each entry in
the eigenspace corresponding to one color channel in RGB
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Fig. 9. Illustration of the effectiveness of anomaly frame detection.

color space. o’ = cos(67) is defined as the eigenspace dis-
tance measuring the difference between two adjacent frames,
where 67 represents the angle between u!, in Uy and u] in
Ui, v =1,2,3. When there is minute light intensity difference
between two adjacent frames, it will cause subtle angular
changes (e.g., §) in the eigenspace. Because u!, and u! are
linearly correlated to each other in eigenspace (i.e., 6 ~ 0°),
the eigenspace distance «;" only slightly varies around 1 with
small angular changes due to the gentle changes of cos(-)
function when 6 is around 0°. Since the response embedded
in the received frame is usually weak, ;" is not suitable
for response detection. Then we resort to the eigenspace
distance between the orthogonal eigenvectors of two adjacent
frames, ai’”&z, where 6 is around 90°. Comparing to «;’,
subtle angular changes will result in significant variations
on o/’7" due to the steep changes of cos(-) function at
90°. Our preliminary study as shown in Figure 8 finds that
a%’Q, comparing to a%’?’ and af’?’, has the most significant
difference when a valid response is contained in one of the
two adjacent frames. Thus, we choose a; = oz%"z as the
chromatic eigenspace difference feature based on any two
adjacent frames in a time series of video frames for response
detection.

B. Response Detection

Next, we detect the response based on the time series
of extracted chromatic eigenspace differences. Specifically,
we adopt Hodrick-Prescott filter [41] to remove the cyclical
component and ambient interferences for a smoothed-curve
representation of the time series, and then use Median Abso-
lute Deviation (MAD) test to detect the response frames.

Let oy = 7 +¢; fort = 1,2,---, N, denote the time
series of chromatic eigenspace differences consisting of a trend
component 7; and a cyclical component c;, where 7; can be
used to locate the abnormal changes in time series, and ¢,
reflects the irrelevant scene variation. The trend component is
obtained by solving the following minimization problem:

N N-1
min <Z (e —16)° + A Z (Te+1 — 27 + Tt1)2> )
t=1 t=2

where the first term is the sum of the squared deviations of
oy from the trend and the second term, which is the sum
of squared second differences in the trend, is a penalty for
changes in the trend’s growth rate. The larger the value of the
positive parameter A, the greater the penalty and the smoother
the resulting trend will be.

Given the filtered chromatic eigenspace difference mea-
surements 7, we adopt Median Absolute Deviation (MAD)
test [42] to detect response. Our empirical study finds that the
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chromatic eigenspace difference extracted from video frames
does not follow Gaussian distribution due to the complex
environmental impacts. Thus, MAD, as a robust measure
of variability for Non-Gaussian signals, is a more suitable
detector with less impact from anomaly measurements. Ad-
ditionally, since the round-trip time starting from challenge
emission to response reception is usually very short, so the
detection process is restricted within a short time window W
after the challenge frame is sent. Figure 9 shows the detection
results on a short video footage containing the valid responses,
indicating our method accurately detect the responses based on
the time series of chromatic eigenspace differences.

VII. SPATIAL & TEMPORAL VERIFICATION

We design the spatial and temporal verification methods
based on the spatial and temporal distribution of valid response
to defend against the playback attacks.

Spatial Verification. Since users usually face to their cam-
eras during a video chat, the valid response should only appear
in the human face and no other area (e.g., the background)
in the video frame should have the similar response to the
challenge. Therefore, with the presence of naive playback
attacks, if the attacker utilizes virtual camera to transmit the
prerecorded video, no valid response should appear in the
received video frame, including the human face; if the attacker
utilizes a playback device (e.g., a tablet or smartphone) to play
the pre-recorded video in front of the camera, the entire frame
(i.e., including the human face and the background) should
contain the response because the flat screen of the playback
device has the same distance to the video chat screen and
camera. Thus, we seek to examine the spatial distribution of
light intensity in the face area and non-face area to detect the
naive playback attacks. In particular, let Z7 and Z;° denote the
modified Z-score measurements with respect to the face area
and non-face area in the received frames, respectively. Thus, a
successful detection of the naive playback attacks (NA-1 and
NA-2) should satisfy the following conditions:

NA-1:Z7 >, 3te (T, T + W],

NA-2: Z7 <y, Vt e (T, T+ W],
where T is the timestamp when the challenge is sent, W is the
window size for expected valid response and + is the empirical
threshold for anomaly frame detection in Section VI-B. The
system tries to detect the response in both facial and non-
facial (i.e., background) areas in each frame. If the response

is detected in the non-facial area, the system determines there
is a naive attack.

(&)
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Fig. 11. Feasibility of using the temporal verification to detect intelligent
playback attacks.

Temporal Verification. In order to defend against the
intelligent playback attacks, we develop a temporal verification
scheme, which determines whether the response is legitimate
or not based on the time delay between consecutive frames.
Intuitively, when there is no intelligent playback attack, the
response is naturally captured by the camera at the responder
and then streamed to the challenger without any obvious
delay. Therefore, the challenger should observe stable intervals
between every two adjacent frames. When the intelligent
playback attack is launched, the attacker inevitably needs
to perform the following operations: 1) detect the challenge
frame, 2) generate the synthetic responses, and 3) encode
the synthetic responses into the video stream sent to the
challenger. Such operations introduce non-negligible extra
processing time and temporarily increase the interval between
the synthetic response frame and its following frame. Inspired
by the above analysis, we develop the temporal verification
method to detect the intelligent playback attack by examining
the variation of the time interval between frames. Specifically,
we detect the intelligent playback attacks (IA) if the following
condition is satisfied:

IA:t>T+W,if Z°>~. (6)

Figure 11 shows the frame intervals before and after the re-
sponder starts the intelligent playback attacks. We can clearly
observe that the frame intervals have significant large peaks
after the 1200th frame when the responder begins attacking,
each peak corresponds to the occurrence of the intelligent
playback attacks. Figure 11(b) shows there are significant
differences between the CDFs of the frame intervals affected
by the intelligent playback attacks and those obtained from a
typical on-campus WiFi network (i.e., 72 hours), confirming
that we can detect the intelligent playback attacks using the
proposed temporal verification.

Note that LiveScreen continuously performs the spatial and
temporal verification on every received frame in a separated
thread. The user will be notified when the system detects a
scam attack with a very short delay (i.e., less than 200ms)
after sending a challenge frame, which is negligible compared
to the time that the attacker needs to cheat the user (ie., more
than ten seconds).

VIII. PERFORMANCE EVALUATION

A. Experimental Setup

Prototype. To evaluate the effectiveness and robustness of
our LiveScreen system, we build a prototype system on both
laptop and smartphone platforms with Python. Specifically,
a video chat application is developed to incorporate our

Fig. 12. Tllustration of the real-life experimental environments.

challenge-response process between two mobile devices. The
connection between devices is established through the built-
in Python socket interface on wired or wireless local area
network. The liveness detection process is implemented by
leveraging Python image processing and machine learning
libraries (i.e., OpenCYV, dlib, etc.).

Hardware. Our experiments involve two laptops and three
smartphones as the responder, which include Laptops: a
Lenovo Thinkpad E430 (14” screen, 3MP camera), a Dell
Latitude E6430 (14” screen, 1.3MP camera) and a cobra
CDR 840 5MP external camera; Smartphones: a Nexus 6
(5.96” screen, 2MP camera), a VIVO XI+ (6.2” screen and
16MP camera), and a Sony Xperia XA2 (5.2” screen, SMP
camera). We use another laptop (i.e., Dell Latitude E6430) as
the challenger to send a challenge for every 50 frames to the
responder during a video chat. The responder is set to record
at 20FPS on laptops and 30FPS on smartphones, respectively.

Participants and Scenarios. We recruit 30 volunteers with
different ages (i.e., 20 to 40 years) and skin colors, including
21 brown, 4 white, 5 dark skin individuals. The experiments
are carried out in both static and dynamic scenarios. In the
Static Scenarios, the responder device is fixed on a desk
and volunteers are asked to sit still in front of the responder
with a default distance of 40cm and 20cm to a laptop and
a smartphone, respectively. In the Dynamic Scenarios, we
consider both head and device dynamics. For head dynamics
study, the volunteers sit in front of a fixed responder and turn
their heads =+ 30° horizontally at moderate speed (i.e., 2s
per round) and fast speed (i.e., 1s per round) to mimic the
movements of looking around during a video chat. For device
dynamics study, the volunteers hold a smartphone and walk
around while keeping their faces at the default distance to the
smartphone. We also evaluate the system under different real-
life environments as shown in Figure 12. For all the scenarios,
we record the video from the responder for about 1min/person,
and in total over 780min of video data are collected.

B. Evaluation Metrics

We use Accuracy and False Detection Rate (FDR) to
evaluate our system performance. Accuracy is defined as the
ratio between the number of correctly detected responses and
the total number of challenge frames. FDR is defined as the
ratio between the number of incorrectly detected responses
and the total number of challenge frames.

C. Static Scenario Results

Impact of Skin Colors. Since different colored skins have
different reflectance, we study the impact of skin colors on
the performance of LiveScreen by focusing on three different
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colors, namely brown, light, and dark. Figure 13 presents the
average accuracy and FDR for the liveness detection results
on the three skin colors using smartphones and laptops. We
find that the overall performance on brown and light skin is
better than that of the dark skin. This is because dark skin
has stronger spectral absorption in the visible light spectrum,
resulting in reduced reflection of light. Overall, the above
results indicate that LiveScreen is effective and robust for
different skin colors.

Impact of Face-to-Screen Distances. To study the impact
of the distance between the face and screen, we set the
distances as: Laptops - 30cm, 40cm and 80cm; Smartphones -
20cm, 30cm and 40cm, which are inline with the normal dis-
tances in most daily video chats. We compare the performance
of using chromatic eigenspace difference feature (denoted
as Eigenspace) in our system with two other features, the
histogram of RGB channels (denoted as Histogram) and the
average intensity of red channel (denoted as ARC). As shown
in Figure 14, on the smartphone platform, our eigenspace
feature can achieve over 98% median accuracy with lower
than 2% false detection rate at different distances, while the
median accuracy of histogram-based decreases from 96.7% to
86.25% as the distance increases. Moreover, the interquartile
ranges for our eigenspace feature are 0.035, 0.018 and 0.052
when the distance is 20cm, 30cm and 40cm, respectively,
which indicates the high stability of our system under different
distance settings. A similar observation is also found on
laptops at different distances in Figure 15, indicating that
eigenspace-based method is more robust to ambient light
interference than the other two methods.

Impact of Ambient Light. To study the impact of different
ambient light intensities, we place a LED light (Philips Energy
Light HF3418) in front of the user in a video chat and
set 3 light intensity levels (i.e., low, medium and high) to
emulate different signal-to-noise-ratios. As the light intensity
increases, we can observe a decreasing trend on the detection
accuracy for eigenspace (i.e., from 95% to 90%), histogram-
based method (i.e., from 90% to 80%) and ARC method(i.e.,
from 90% to 80%) in Figure 16. But eigenspace method
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always outperforms histogram-based method and ARC method
under different ambient light intensities. The aforementioned
observations confirm that eigenspace method is more accurate
and robust in the scenarios with lower signal-to-noise-ratio.

Impact of Video Frame Dimensions. The video frame
dimension is also a key factor affecting the liveness detection
capability of LiveScreen, as the smaller video frame dimension
that we use, the lower light intensity is introduced by the
challenge on the screen. We examine the performance with
different video frame dimensions on a laptop (i.e., 1280x720,
960x720 and 640x480). As shown in Figure 17, our liveness
detection performance improves as the video frame dimension
increases. In particular, as the video frame changes from
640x480 to 1280x720, the average accuracy increases from
88.9% to 97.5% and FDR decreases from 8.9% to 0.8%, re-
spectively. The results demonstrate that our system is capable
to capture subtle face reflections and robust to different video
frame dimensions.

Real-Life Environments Study. To validate the scalability
of LiveScreen, we carry out the experiments under six com-
mon real-life environments (i.e., library, coffee store, home,
lobby, home, outdoor) and compare the results in Figure 18.
For all the indoor environments, our system always achieves
high detection accuracy of 94.5% on both smartphone and
laptop platforms with less than 2.5% FDR. For outdoor envi-
ronments, our method still maintains over 90% detection ac-
curacy but relative high FDR of 4% and 10% on smartphones
and laptops, respectively. We notice that the higher FDR
happens when there is strong sunlight projected on the human
face, which creates strong interference on detecting valid
response. Since people usually do not have video chat under
strong sunlight, our system still achieve high effectiveness and
scalability on liveness detection in most real-life scenarios.

D. Dynamic Scenario Results

Impact of Head Movement. For dynamic status, we first
study how head movement affects the detection performance
on laptop platform. The reflection pattern on human face
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changes as head moves, thus undesired light intensity vari-
ations will be involved in the captured frames and bring
about the ambiguity on detecting the response. Note that our
system may lose track of the skin due to the incomplete facial
landmarks when user’s face turns to one side. So we also
compare the detection performance with and without facial
landmarking. As shown in Figure 19 (a), our system performs
better without facial landmarking than with landmarking (i.e.,
94% vs 89% for moderate movement and 95% vs 84% for
fast movement) and has lower FDR (i.e., 2% vs 40% for
moderate movement and 7% vs 50% for fast movement).
Such observation indicates that poor skin extraction with facial
landmarking poses a negative impact on system performance,
but our system can still gain high accuracy regardless of head
movement during video chatting by automatically switching
between using facial landmarking or not.

Impact of User Motion. It is common that people may
use their smartphones for video chat while in motion, which
will result in video frame jitter and thereby affect the detec-
tion performance. Therefore, it is also critical to study how
user motion affects the detection performance of our system.
Specifically, we conduct the experiments under four motion
status (i.e., stationary, low-speed, normal-speed and fast-speed
walking) while keeping default distance between smartphone
screen and user’s face in Figure 19(b). Specifically, when the
walking speed is relatively slow, our system maintains a high
accuracy of 97.67%, which is only a little bit worse than that
of stationary status. For normal speed, although frame jitter is
more obvious, our method stills perform well with an accuracy
of 95.83%. Even under fast-speed walking, an accuracy above
95% still holds. The encouraging results indicate that our
method is robust under various motion status.

E. Performance on Attack Detection

Finally, we evaluate the performance of LiveScreen’s de-
fense mechanism under the naive and intelligent playback
attacks. To facilitate the evaluation, we define the Afttack
Detection Rate (ADR) as the ratio between the number of
accurately detected attacks and the total number of effective

B ADR
0.8 [MDR

ADR/MDR

NA-1 NA-2 1A

Fig. 20. Performance of attack detection.

attacks (i.e., the total number of challenges frames), and Miss
Detection Rate (MDR) as the ratio between the number of
incorrectly detected attacks and the total number of effective
attacks. We conduct the experiments with each of the three
attackers (i.e., NA-1, NA-2, and [A) performing attacks on
200 challenges sent in a video chat protected by LiveScreen.
Note that we use a smartphone to playback a victim’s pre-
recorded video in front of the camera to launch the NA-1.
As shown in Figure 20, our system can achieve high
accuracy and low miss rate on detecting NA-1, NA-2, and
IA. In particular, the ADR for detecting the three attackers
are 93%, 98%, and 94%, and the MDR for detecting the
three attackers are 5%, below 1%, and 5%, respectively. The
detection accuracy for NA-1 is a bit worse than that of NA-2.
This is because the smartphone screen that we used to perform
NA-1 may create the mirror-like reflection not pointing to the
camera, which results in weak reflected light in the entire
frame, including the face area and non-face area. However, in
such cases, our system still detects the attacks but considers
them as NA-2 attack as there is no response detected in the
face area. Overall, the results confirm the effectiveness of our
defense strategy levering spatial & temporal verifications.

IX. CONCLUSIONS AND FUTURE WORK

In this paper, we addressed the problem of liveness detection
in a video chat with the presence of video playback attacks.
Specifically, we propose a novel video chat liveness detection
system, LiveScreen, to protect the users from impersonation
scams. The proposed system can track the inconspicuous light
changes reflected off the skin of a human face leveraging
chromatic eigenspace difference features and determine the
liveness of video chat with a robust anomaly detector. We
also propose inconspicuous challenge design with minimal
intervention to the video chat. Furthermore, a resilient defense
strategy is developed to defeat both naive and intelligent
playback attacks leveraging spatial and temporal verification.
We implement a prototype video chat application to integrate
LiveScreen on both laptop and smartphone platforms. Exten-
sive experiments involving 30 volunteers show that LiveScreen
achieves high detection accuracy with low false detection rate
in various real scenarios. In addition, a comprehensive study
of different impacts (e.g., distance, skin color, user motion,
etc.) further confirms the robustness of the proposed system.
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