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ABSTRACT
Suppose a graphG is stochastically created by uniformly sampling
vertices along a line segment and connecting each pair of vertices
with a probability that is a known decreasing function of their dis-
tance. We ask if it is possible to reconstruct the actual positions of
the vertices inG by only observing the generated unlabeled graph.
We study this question for two natural edge probability functions
— one where the probability of an edge decays exponentially with
the distance and another where this probability decays only lin-
early. We initiate our study with the weaker goal of recovering
only the order in which vertices appear on the line segment. For
a segment of length n and a precision parameter δ , we show that
for both exponential and linear decay edge probability functions,
there is an efficient algorithm that correctly recovers (up to reflec-
tion symmetry) the order of all vertices that are at least δ apart,
using only Õ( nδ2 ) samples (vertices). Building on this result, we
then show that O(n

2 logn
δ2 ) vertices (samples) are sufficient to ad-

ditionally recover the location of each vertex on the line to within
a precision of δ . We complement this result with an Ω(n1.5

δ ) lower
bound on samples needed for reconstructing positions (even by a
computationally unbounded algorithm), showing that the task of
recovering positions is information-theoretically harder than re-
covering the order. We give experimental results showing that our
algorithm recovers the positions of almost all points with high ac-
curacy.
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1 INTRODUCTION
Large graphs arise naturally in modeling many scenarios in social
interaction, natural language processing, image processing, and
recommendation systems. Nodes in these graphs represent indi-
vidual entities such as people, genes, or pixels and edges repre-
sent relationships between them. A natural goal in analyzing such
graphs is to partition the nodes into a small number of sets in such
a way that two nodes in the same set ‘behave similarly’ in terms
of their interaction. Algorithms for finding such communities are
analyzed on synthetic data generated by a stochastic model. The
stochastic block model or planted cluster model is a commonly used
generative model. This model is parametrized by (n,k, π , P) where
n is the number of vertices, k is the number of clusters, π is a k-
vector of probabilities summing to 1, and P is a k × k matrix. The
cluster that a vertex belongs to is chosen independently of other
vertices according to π . For any two vertices u and v in clusters
i and j respectively, the probability of an edge between u and v
is P[i, j]. Much work has been done in this model to understand
the information-theoretic and computational limits for achieving
exact, partial and weak recovery. For a detailed discussion of the
model, its motivation, different notions of recovery, and positive
and negative results, see the excellent survey by Abbe [1].

The stochastic block model is based on the assumption that the
entities involved can be neatly categorized into a small number
of classes, and membership in a class is the sole determinant of
how an entity interacts with others. For example, in this model,
we could regard people’s political persuasion as being binary – say,
liberal or conservative in the United States – and posit that there
is a certain probability for edges connecting two conservatives or
two liberals, and a different probability for an edge connecting a
liberal to a conservative. Many real situations are more complex.
For example, the probability of an edge between two nodes in a
social network might be a function of many different attributes of
these nodes, each of which can be discrete or continuous-valued.

Other variants of the stochastic blockmodel have been proposed
recently. [5, 10]. However, these models all share many features
with the stochastic block model, and in particular, assume that ob-
jects only belong to one of a small number of clusters, with a clear
difference in probabilities between intra-cluster and inter-cluster
edges. Just like the stochastic block model, these models do not
capture some aspects of the real situation in which relationship
graphs arise.

https://doi.org/10.1145/3366423.3380261
https://doi.org/10.1145/3366423.3380261
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In this paper, we study similar recovery problems in a differ-
ent model called the latent space model. In this model, we think of
nodes as points in a metric space, and let edges be independently
sampled with probabilities that are a decreasing function of the
distance between the endpoints. Given a large graph generated ac-
cording to this model, we seek to find (approximate) locations of
each node or entity in the metric space. The latent space model
can be seen as a generalization of the stochastic block model, by
letting the points in the same cluster be at distance 0 from each
other, and points in different clusters be at distance 1. In fact, an
intermediate model between the stochastic block model and our
model consists of a metric space with a finite number of points (or
clusters), where each entity is located at one of these points. If we
can find good enough approximations for the location of each node
in the metric space, we will exactly identify cluster membership in
these finite and discrete metric spaces.

The latent spacemodel was first introduced by Hoff et al. [8] and
extended by Handcock et al. [7].This model has been applied to po-
litical relationships [9, 14] and social networks [6]. Previous work
on this model has been focused on heuristic approaches to finding
themaximum likelihood latent positions and empirical evaluations
of these approaches [7, 8, 15]. Recently, Ke and Honorio [10, 11]
studied a particular case of the latent spacemodel where each point
belongs to one of two communities, and the points in the same
community are close to each other.

We study the basic version of the latent space model, where
the nodes are uniformly sampled on a segment. We consider both
the problem of recovering the order of the nodes and the problem
of recovering the positions of the nodes. For this simple setting
our focus is on designing algorithms with provable guarantees on
number of samples needed, running time, and quality of approxi-
mation. While maximum likelihood methods are statistically con-
sistent and converge to the right model in the limit, there are no
proofs in the literature about the convergence rate of maximum
likelihood heuristics that have been proposed for our model.

The work of Sarkar et. al [16] considers a setting that is some-
what similar to ours. They focus on the problem of estimating the
distance between a given pair of nodes in a d-dimensional latent
space, based on the observed graph. However, in their setting, the
edges obey a threshold behavior where any pair of nodes has an
edge iff they are within a specified threshold distance. Thus once
the node positions are fixed, the resulting graph is deterministic.
In contrast, in our setting, even when the node positions are fixed,
the resulting graph has high entropy as well contains a mixture
of short-range and long-range edges, making the reconstruction
problem distinctly more challenging even in the one-dimensional
case that we consider here.

In statistical mechanics and probability theory, models such as
the latent space model have been studied under the name long-
range percolation models [2, 4, 13, 17]. Most of the work in these
disciplines is focused on the problem of understanding structural
properties of the graphs that arise, rather than algorithmic recon-
struction of the locations of entities. Our paper takes a first step in
designing and analyzing efficient algorithms for this reconstruc-
tion. We focus here on reconstruction in a one-dimensional met-
ric space, namely, the real interval [0,n]. We assume that entities
are uniformly sampled (with sufficient density) from this metric

space. We also restrict attention to specific types of edge prob-
ability functions - exponentially decaying functions and linearly
decaying functions. In other words, if d is the distance between
points u and v , we consider a model where the probability of an
edge is ce−d and another model where the probability of an edge
is c

d+1 , in both cases for a constant 0 < c ≤ 1.
In the standard stochastic model a distinction is made between

fundamental (information-theoretic) limits and (efficient) compu-
tational limits for each kind of recovery and bounds for each of
them are pretty tightly pinned down. Specifically, the information-
theoretic bounds are based on the separation needed between intra-
cluster edge probabilities and inter-cluster probabilities. Since our
edge probabilities are continuous functions of distance, we cannot
hope to show these kinds of bounds. Instead, we give upper and
lower bounds for how densely entities must be sampled in order
to efficiently recover their approximate order. Since these bounds
are essentially tight, and the upper bound is by an efficient algo-
rithm, they are both information-theoretic and computational.

1.1 Problem Statement and Results
We consider the following scenario: On the segment [0,n]m points,
say v1,v2, . . . ,vm , are uniformly sampled. Let xi be the location
of vi , and let X = (x1, x2, . . . , xm ) be the location vector. A ran-
dom graph G is constructed with this vertex set; edges are sam-
pled independently as follows: for any pair of vertices vi and vj ,
an edge exists between themwith probability c · f (

��xi − x j ��), where
0 < c ≤ 1 and f is some monotone decreasing function such that
f (0) = 1 and limx→∞ f (x) = 0. For such a graph G and a po-
sition vector X , denote by PX (G) the likelihood of G given X , i.e.
PX (G) =

∏
(i , j)∈G c · f (

��xi − x j ��) ·∏(i , j)<G (1 − c · f (��xi − x j ��)).
Our goal is to design an algorithm that takes as input the (unla-

beled) graphG, and a constantδ , and outputs a vector (x̂1, x̂2, . . . , x̂m )
which is a “recovery” of the location of each point.We consider two
distinct notions of recovery: (1) recovering the order, by which we
mean that for any pair of i and j such that xi − x j > δ , x̂i > x̂ j
with high probability; (2) recovering the location, by which we
mean that for any i , |xi − x̂i | < δ with high probability. We study
both these problems for two natural choices of f , namely, the expo-
nential decay function f (x) = e−x , and the linear decay function
f (x) = 1

x+1 .
For the problem of recovering the order to within any specified

precision δ , we show that it suffices to samplem = Õ( nδ2 ) points.
Notice that Ω(n logn) points are necessary, since otherwiseG will
have isolated vertices with high probability, and it is information-
theoretically infeasible to determine the relative order of two iso-
lated vertices no matter how far apart. At a high-level, our algo-
rithms employ the following general approach. First, for each pair
of vertices, we use the number of common neighbors to approxi-
mate the distance between them. Of course the greater the number
of common neighbors between two nodes, the smaller we expect
their distance to be. But we need to precisely quantify the range
of distances that can be sufficiently accurately reconstructed us-
ing a coarse measure such as the number of common neighbors.
We prove bounds for this range under both exponential decay and
linear decay models. We then use this information to determine
spatial relationships between vertices, and recover a global order.
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For the problem of recovering the location, we focus on the case
c = 1. Building on our algorithm for recovering the order, we can
show that with m = O(n2 logn/δ2) samples, it is possible to re-
cover locations of the points to within precision δ . We also show
that the sample complexity of recovering positions is inherently
much more than the sample complexity for recovering the order.
Specifically, for any m = o(n1.5/δ ), we give two location vectors
X1 and X2 such that ∥X1 −X2∥∞ > δ and prove that it is impossi-
ble to distinguish these two vectors with large constant probability
given a random graphG generated in accordance with one of these
two vectors. This shows that Ω(n1.5/δ ) points are necessary to re-
cover locations. Matching this, givenm = Ω(n1.5 logn/δ ) samples,
we prove that we can distinguish between any two location vector
X1 andX2 such that ∥X1−X2∥∞ > δ . Note that the Õ(n1.5) upper
bound refers to the problem of distinguishing two position vectors.
The best upper bound we can prove for recovering position is still
Õ(n2).

Finally, we analyze the accuracy of our recovery algorithms on
synthetically generated datasets, and show that consistent with
our theoretical results, we are able to reconstruct the order and
positions of the underlying point set to an increasingly high preci-
sion as the sample size increases.

Organization
The remainder of the paper is organized as follows. In Section 2, we
present and analyze our algorithm for recovering the order of ver-
tices for both the exponential decay function and the linear decay
function. In Section 3, we show that we can recover approximate
positions of each vertex in bothmodels.We also establish our lower
bound on the number of samples needed for this task. We present
our empirical results in Section 4. Finally, in Section 5 we briefly
discuss the larger context for our problem and open problems.

2 RECOVERING THE ORDER
We start by proving a simple statement — that with enough sam-
ples, each segment of length δ has at least one vertex. Throughout
the paper, whenever we say 1 − o(1), we mean 1 − 1/poly(n).

Lemma 2.1. If m > 8n logn
δ2 and δ < 1, with probability 1 −

o(1), for any non-negative integer i , the interval [ iδ2 ,
(i+1)δ

2 ] on the
segment [0,n] has at least one point.

Proof. Since log( 1δ ) <
1
δ − 1, m > 8n logn+8n logn log( 1δ )

δ >
8n log( nδ )

δ . For any such segment, the probability that there is no
point on it is (1 − δ

2n )m < e−
mδ
4n = o( δn ). The assertion follows by

using the union bound over all segments. □

We will also need the following simple proposition directly im-
plied by Chernoff bound.

Proposition 2.2. Let X = x1 + x2 + · · · + xm be the sum ofm
i.i.d Bernoulli samples with probability c ·A

n . Let Â = Xn
cm . Then the

probability that
��Â −A�� ≤ δ0 is O(n−2.5) ifm > 10A

cδ2
0

n logn.

We now give the algorithm that recovers the order for each of
the 2 different choices of functions f provided there are sufficiently
many vertices. Specifically, we prove the following two theorems.

The probability of success indicated in the theorems is over the
randomness of the location of the points as well as the realization
of the graph.

Theorem 1. When f (x) = e−x , for any 0 < δ < 0.1 and m ≥
Θ

(
n logn
c2δ2

)
, there is a poly-time algorithm that recovers the order

with probability 1 − o(1).

Theorem 2. When f (x) = 1
x+1 , for any 0 < δ < 0.1 andm ≥

Θ
(
n log2 n
cδ2

)
, there is a poly-time algorithm that recovers the order

with probability 1 − o(1).

The basic idea of both algorithms is that, we first approximate
the distance between any pair of vertices. The approximation does
not need to be very precise in general – we only need the preci-
sion when the real distance is within a narrow range. When it is
outside that range, the approximation only needs to answer that
it is out of range. Since we cannot distinguish between a vector
of positions and its reflection, we find a vertex that is very close
to an endpoint, and assume that that endpoint is 0, the left end of
the segment.Then we use the distance approximations to build the
relationship between every pair of vertices that are sufficiently far
apart. In other words, for each sufficiently distant pair (u,v), we
decide which of u andv is to the left. From these pairwise relation-
ships, we recover the global order.

We define what we mean by a good approximation of the dis-
tance between two vertices.

Definition 1. A distance function d : V × V → R is refered
to as a (L,U , δ )-approximation if for any pair of vertices vi and vj ,
d(vi ,vj ) satisfies:
• If |x j − xi | < L, d(vi ,vj ) < L + δ .
• If L ≤ |x j − xi | ≤ U , |x j − xi | − δ < d(vi ,vj ) < |x j − xi | + δ
• If |x j − xi | > U , d(vi ,vj ) > U − δ .

We sayd is a good approximation if it is an (L,U , δ )-approximation
with 3δ < L < n

2 − 2δ and U > 2L + 8δ . We present the algo-
rithm that recovers the order given good approximations. We then
present algorithms that produce good approximations for each of
the probability functions.

Lemma 2.3. There is an algorithm that recovers the order of the
vertices if we are given an (L,U , δ )-approximate distance function
with 3δ < L < n

2 − 2δ andU > 2L + 8δ with probability 1 − o(1).

In Section 2.1, we describe such an algorithm. We follow this up
with good approximation schemes for f (x) = e−x in Section 2.2,
and f (x) = 1

x+1 in Section 2.3.

2.1 Order Recovery from Approximate
Distances

In this section, we give an algorithm (ALGORITHM 1) to recover
the order of vertices on the segment when we are given a (L,U , δ )-
approximate distance function d with 3δ < L < n

2 − 2δ and
U > 2L + 8δ . The algorithm works as follows: for any triple of
vertices vi , vj , and vk , if vj is in the middle, then the distance be-
tween vk and vi is larger than

��xi − x j �� and ��x j − xk ��. With a good
distance approximation, we can detect which vertex is in the mid-
dle, in all triples of vertices that are not too far or too close. We
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store these ordered triples in a set S (Lemma 2.4). For any vertex
which never occurs in the middle of an ordered triple in S , it must
be close to one of the endpoints of the segment. Arbitrarily fixing
the position of one such vertex as being near the left endpoint, we
can ‘recursively orient’ each triple in S (Lemma 2.5), which means
that we can tell the order of any vertices that are not too close
(Lemma 2.6). Finally, we use this information to give the full order
(Lemma 2.7). Lemma 2.3 immediately follows from Lemma 2.7.

ALGORITHM 1: Order Recovery
1 For any pair of points vi and vj , let d(vi ,vj ) be a (L,U , δ )

approximation of
��xi − x j �� with 3δ < L < n

2 − 2δ and
U ≥ 2L + 8δ ;

2 S ← ∅ ;
3 for any triple (vi ,vj ,vk ) do
4 if d(vi ,vj ) ∈ [L + δ , 2L + 7δ ] ∧ d(vj ,vk ) ∈

[L+δ , 2L+ 7δ ] ∧d(vi ,vk ) > |d(vi ,vj ) −d(vj ,vk )| + 3δ
then

5 S ← S ∪ {(vi ,vj ,vk )} ;

6 V ′ ← {v ∈
V |v never appears as the middle vertex in any triple in S}
;

7 Pick an arbitrary v0 ∈ V ′;
8 V0 ← {v ∈ V ′ |d(v0,v) > U − δ };
9 E ′ = {(vi ,vj )|vi ∈ V0 ∧ d(vi ,vj ) ∈ [L + δ , 2L + 7δ ]};

10 while S , ∅ do
11 for any triple (vi ,vj ,vk ) ∈ S do
12 if (vi ,vj ) ∈ E ′ then
13 E ′ ← E ′ ∪ {(vj ,vk )};
14 S ← S − {(vi ,vj ,vk ), (vk ,vj ,vi )};

15 Construct a directed graph G ′ = (V , E ′) ;
16 For any vertex v , let R(v) be the number of the vertices that

can reach v minus the number of vertices reachable from
v ;

17 Sort the vertices by R(v) in increasing order and output the
order;

Lemma 2.4. For any triple (vi ,vj ,vk ) in S , the location of vj is in
the middle of the location of vi and vk . On the other hand, for any
triple of vertices (vi ,vj ,vk ) such that vj is in the middle of vi and
vk , d(vi ,vj ) ∈ [L + δ , 2L + 7δ ] and d(vj ,vk ) ∈ [L + δ , 2L + 7δ ],
(vi ,vj ,vk ) ∈ S .

Proof. For any three vertices vi , vj , vk such that d(vi ,vj ) and
d(vj ,vk ) both in [L+δ , 2L+7δ ], we have

��xi − x j �� and ��x j − xk �� are
both between L and 2L + 8δ by the definition of (L,U , δ ) approxi-
mation. Ifvj is in themiddle, then |xi − xk | ≥ d(vi ,vj )+d(vj ,vk )−
2δ , which means d(vi ,vk ) is at least d(vi ,vj ) + d(vj ,vk ) − 3δ >
|d(vi ,vj )−d(vj ,vk )|+3δ since both ofd(vi ,vj ) andd(vj ,vk ) are at
least L > 3δ . Ifvj is not in the middle, then |xi − xk | ≤ |d(vi ,vj ) −
d(vj ,vk )|+2δ , which means d(vi ,vk ) ≤ |d(vi ,vj )−d(vj ,vk )|+3δ .
So the triple (vi ,vj ,vk ) is in S if and only ifvj is in the middle. □

By Lemma 2.1 , for any vertex vj located between [L + 3δ ,n −
L − 3δ ], there are two vertices vi and vk on its left and its right
such that

��xi − x j �� and ��x j − xk �� are both between L + 2δ , L + 3δ .
This means that d(vi ,vj ) and d(vj ,vk ) are both in [L + δ , L + 4δ ].
So (vi ,vj ,vk ) ∈ S (as L + 4δ < 2L + 7δ ), which implies vertices
in V ′ are located in [0, L + 3δ ] or [n − L − 3δ ,n]. Furthermore, for
any vertex pair (vi ,vj ) with d(vi ,vj ) ∈ [L + δ , 2L + 7δ ], there
exists a vertex vk such that (vi ,vj ,vk ) ∈ S or (vk ,vj ,vi ) ∈ S .
Without loss of generality, suppose v0 ∈ [n − L − 3δ ,n]. Then V0
contains all the vertices vj such that no vertex vi on its left with
d(vi ,vj ) ∈ [L + δ , 2L + 7δ ].

Lemma 2.5. The while loop of the algorithm always terminates.
Moreover, for any pair of vertices vi and vj , (vi ,vj ) ∈ E ′ if and only
if vi is to the left and d(vi ,vj ) ∈ [L + δ , 2L + 7δ ].

Proof. We first prove that for any pair of vertices (vi ,vj ) in E ′,
vi is to the left ofvj , using induction on the order of the pairs added
to E ′. For the base case,V0 only contains vertices with no vertex on
their left with approximate distance at least L + δ . So for any pair
(vi ,vj ) added into E ′ before the while loop,vi is to the left. Assume
inductively that this is true for all pairs added before the current
iteration of the while loop. For any pair (vi ,vj ) added into E ′ in
the current iteration, there is a vertex v ′i such that (v ′i ,vi ,vj ) ∈ S
and (v ′i ,vi ) ∈ E

′. By induction hypothesis, v ′i is on vi ’s left. So vi
is between v ′i and vj , so vi is on vj ’s left by Lemma 2.4.

We prove that the while loop terminates, i.e., that all triples
in S eventually get deleted. Suppose for contradiction that, vi is
the leftmost vertex to appear in any undeleted triple, and there
is a triple (vi ,vj ,vk ) that never gets deleted. (Note that whenever
(vk ,vj ,vi ) ∈ S , (vi ,vj ,vk ) ∈ S). If there exists a vertexv ′i to the left
ofvi withd(v ′i ,vi ) ∈ [L+δ , 2L+7δ ], then (v

′
i ,vi ,vj ) is in S andwill

be deleted sometime, then (vi ,vj ) ∈ E ′, which means (vi ,vj ,vk )
will be deleted. If there is no such vertex v ′i then vi ∈ V0, which
also means (vi ,vj ) ∈ E ′, (vi ,vj ,vk ) will be deleted in the first iter-
ation. Thus contradicts that (vi ,vj ,vk ) would never gets deleted.

Finally, we prove that any pair of vertices (vi ,vj )withd(vi ,vj ) ∈
[L+δ , 2L+7δ ]will be added into E ′. This is because by Lemma 2.1 ,
there exists a vertexvk such that (vi ,vj ,vk ) ∈ S or (vk ,vj ,vi ) ∈ S .
Since such triple was deleted in the while loop, (vi ,vj ) has been
added into E ′. □

Lemma 2.6. For any pair of vertices vi and vj , the vertex vj is
reachable from vi in G ′ if and only if d(vi ,vj ) ≥ L + δ and vi is to
the left.

Proof. If vj is reachable from vi , there is a path form vi to vj ,
and the location of any vertex on the path is to the left of the
next vertex on the path. So vi is on vj ’s left. If (vi ,vj ) ∈ E ′, by
Lemma 2.5, d(vi ,vj ) ≥ L + δ , otherwise the path has at least three
vertices. By Lemma 2.5, any neighbouring vertex has distance at
least L, which means the distance between vi and vj is at least 2L,
so d(vi ,vj ) ≥ 2L − δ > L + δ .

For any pair vi , vj with vi to the left and d(vi ,vj ) ≥ L + δ , if
d(vi ,vj ) ≤ 2L+7δ , then (ui ,vj ) ∈ E ′, which meansvj is reachable
from vi in G ′. If d(vi ,vj ) > 2L + 7δ , then the distance between
them is at least 2L + 6δ . by Lemma 2.1, there exists a sequece of
vertex vi = u1,u2, . . . ,uk = vj such that for any 1 ≤ ℓ ≤ k − 1,
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uℓ is to the left of uℓ+1, and the distance between them is between
L + 2δ and 2L + 6δ , which means d(uℓ,uℓ+1) ∈ [L + δ , 2L + 7δ ],
in other words, by Lemma 2.5, (uℓ,uℓ+1) ∈ E ′, so vj is reachable
form vi in G ′. □

Lemma 2.7. The output order of the algorithm satisfies that for any
vi and vj that are separated by a distance of at least 3δ , vi appears
prior to vj in the order if and only if vi is to the left of vj .

Proof. If vi is to the left and the distance between vi and vj is
at least 3δ , for any vertex vk on vj ’s right with d(vj ,vk ) ≥ L + δ ,
we have xk −x j ≥ L, which means xk −xi ≥ L+3δ and d(vi ,vk ) ≥
L+2δ . For any vertexvk onvi ’s leftwithd(vi ,vk ) ≥ L+δ , xi−xk ≥
L, which means x j − xk ≥ L + 3δ and d(xk , x j ) ≥ L + 2δ . So
R(xi ) ≤ R(vj ). On the other hand, by Lemma 2.1 and the fact that
L < n

2 − 2δ , there exists a vertex vk with one of the following two
properties:

• vk is on vj ’s right and xk − x j < L and xk − xi > L + 2δ .
• vk is on vi ’s left and vi −vk < L and vj −vk > L + 2δ .

In the first case, d(vj ,vk ) < L + δ while d(vi ,vk ) > L + δ , which
meansvk is reachable fromvi but notvj . In the second case,d(vi ,vk ) <
L + δ while d(vj ,vk ) > L + δ , which means vj is reachable from
vk but vi is not reachable from vk . So R(vj ) is strictly larger than
R(vi ). □

2.2 Distance Approximation for Exponential
Decay Function

In this section, we consider the case that f (x) = e−x . The proba-
bility of an edge between two vertices vi and vj , with locations xi
and x j respectively, is c · e−|xi−x j | . We first analyze the degree of
each vertex and the number of common neighbors between each
pair of vertices.

Lemma 2.8. For any vertex vi located at position xi on the seg-
ment, if we uniformly sample a vertex v on the segment, then the
edge (vi ,v) is present with probability c

n (2− e−xi − exi−n ). In other
words, this is the expected probability of an edge from vi , where the
expectation is over the choice of the other endpoint v .

Proof. The probability is the expectation of e−|xi−x | where x
is the location ofv which is uniformly sampled on the segment. So
the probability is∫ n

0

c

n
e−|xi−x |dx =

c

n

∫ xi

0
ex−xidx +

c

n

∫ n

xi
exi−xdx

=
c(2 − e−xi − exi−n )

n

□

Lemma 2.9. For any two vertices vi and vj located at xi and x j
respectively with xi < x j , if we uniformly sample a vertex v on the
segment, then v is a common neighbor of vi and vj with probability
c2
n ((x j − xi + 1)exi−x j −

1
2 (exi+x j−2n + e−xi−x j )).

Proof. Let p(x) be the probability thatv is a common neighbor
of vi and vj where x is the location of v , then

p(x) =

c2 · e2x−xi−x j , if x ≤ xi

c2 · exi−x j , if xi < x < x j

c2 · exi+x j−2x , if x ≥ x j

So the overall probability is∫ n

0

1

n
p(x)dx

=
c2

n

∫ xi

0
e2x−xi−x jdx +

c2(x j − xi )
n

exi−x j +
c2

n

∫ n

x j
exi+x j−2xdx

=
c2(x j − xi + 1)

n
exi−x j − c2(e−xi−x j + exi+x j−2n )

2n
□

By Lemma 2.9, the number of common neighbors of a pair of ver-
tices “mostly” depends on the distance between these two vertices.
We use the degree of these two vertices to eliminate the effect of
the remaining terms. We first prove that we can check if two ver-
tices are far away.

Lemma 2.10. If m > 2500n logn
c2δ2 , with probability 1 − o(1), for

any two vertices vi and vj , (a) if they have no common neighbor,
then

��xi − x j �� > 2.5, and (b) if
��xi − x j �� > n/2, then they have no

common neighbor.

Proof. If
��xi − x j �� ≤ 2.5, then one of e−xi−x j and exi+x j−2n

is O(e−n ), without loss of generality, suppose exi+x j−2n is O(e−n ).
Since−xi−x j < −

��xi − x j ��, e−xi−x j < e−|xi−x j | . By Lemma 2.9, the
probability that a random sampled vertex be a common neighbor
of vi and vj is at least c2(|xi−x j |+0.5)

n e−|xi−x j | > c2
2n e
−2.5 > c2

30n .
Sincem > 2500n logn

c2δ2 , the probability that vi and vj have no com-
mon neighbor is o(n−80).

If
��xi − x j �� > n/2, the probability that a random vertex be a

common neighbor of them is at most e−n/2. So with probaiblity
1 − o(n−100), they have no common neighbor. □

We now describe how to approximate the distance between two
vertices.

Lemma 2.11. If 0 < δ < 0.1 andm > 2500n logn
c2δ2 , then for any

pair of vertices vi and vj , with probability 1 − O(n−2.5), we can
calculate d̂ , an approximation of d =

��xi − x j �� such that:

• If d < 0.3, d̂ < 0.3 + δ .
• If 0.3 ≤ d ≤ 2.5, d − δ < d̂ < d + δ

• If d > 2.5, d̂ > 2.5 − δ .

Proof. For any number x , let д(x) = (x + 1)e−x and h(x) =
e−x+ex−n . We first prove that we can either approximateд(d)with
additive error at most 0.2d or directly output a d̂ which satisfies the
condition.

We first check ifvi andvj have common neighbors. If they have
no common neighbor, then by Lemma 2.10, d > 2.5. So we can
directly output d̂ = n. Otherwise we have d < n/2.

By Lemma 2.9 and Proposition 2.2, we can approximate д(d) +
1
2 (exi+x j−2n+e−xi−x j )with additive error δ

11 sincem > 2500n logn
c2δ2 .
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To eliminate the terms exi+x j−2n and e−xi−x j , we use the degree
of vi and vj . By Lemma 2.8 and Proposition 2.2, we can approx-
imate h(xi ) and h(x j ) with additive error δ

11 . On the other hand,
h(xi ) · h(x j ) = e−xi−x j + exi+x j−2n + e−n+xi−x j + e−n−xi+x j . The
last two terms are o(1) since

��xi − x j �� < n/2. So we can approxi-
mate e−xi−x j + exi+x j−2n with additive error 2δ

11 + o(1) <
δ
5 . We

can thus approximate д(d) with additive error at most δ
5 .

The proof is completed by the observation thatд(x) is monotone
decreasing when x ≥ 0, and the derivative д′(x) < −0.2 when
0.3 ≤ x ≤ 2.5. □

Note that if 0 < δ < 0.1, 3δ < 0.3 < n
2 − 2δ and 2.5 >

0.3 × 2 + 8δ . Theorem 1 immediately follows from Lemma 2.3 and
Lemma 2.11.

2.3 Distance Approximation for Inverse Linear
Decaying Function

In this section, we deal with the case that f (x) = c
x+1 and thus the

probability of an edge existing between two vertex vi and vj with
location xi and x j on the segment be c

|xi−x j |+1 . We first analyze
the degree of each vertex and the number of common neighbors
between each two vertices; proofs are deferred to the full version.

Lemma 2.12. Suppose a vertex vi is located at xi , if we uniformly
sample a vertex v on the segment then an edge (vi ,v) will be pre-
sented with probability c log(xi+1)+c log(n−xi+1)

n

Lemma 2.13. Suppose two verticesvi andvj are located at xi and
x j on the segment with xi < x j and d = x j − xi , if we uniformly
sample a vertexv on the segment, thenv is a common neighbor ofvi
and vj with probability

c2

n

(
log(d + 1)

(
2

d
+

2

d + 2

)
+
1

d
(log(xi + 1) − log(x j + 1)

+ log(n − x j + 1) − log(n − xi + 1))
)

We next show that it can be inferred if a vertexvi is close to one
of the endpoints. If so, we can further approximate its location to
within a multiplicative error. In the rest of this section, let ε = δ

20 .

Lemma 2.14. Ifm > 40n log2 n
cε2 and 0 < ε < 1

10 , then with prob-
ability 1 − o(1), for any vertex vi , we can output a number x̂i such
that:
• if x̄i > 9

ε − 1, then x̂i >
2
ε + 1, and

• if x̄i ≤ 9
ε − 1, then |x̂i − x̄i | < (1 + ε)(x̄i + 1).

where x̄i = min{xi ,n − xi }.

Proof. Sincem > 100n log2 n
cε2 . By Proposition 2.2 and Lemma 2.12,

we can approximate log(xi + 1) + log(n − xi + 1) = log(x̄i + 1) +
log(n − x̄i + 1) within additive error ε

3 with probability 1 − o(1).
Let a be this value, we prove that x̂i = ea−logn − 1 satisfies the
requirement.

a − logn = log( (x̄i+1)(n−x̄i+1)n ) ± ε
3 = log(x̄i + 1) + log(1 −

x̄i−1
n ) ±

ε
3 . By Proposition A.2, log(1 − x̄−1

n ) = o(1) if x̄i < 9
ε − 1

and at most 1 otherwise.

If x̄i > 9
ε − 1, a − logn > log( 9ε ) − 1 − ε

3 > log( 3ε ) −
ε
3 . So

x̂i > (1 − ε
2 ) ·

3
ε − 1 =

3
ε − 2.5 >

2
ε + 1 since ε < 1

10 .
If x̄i ≤ 9

ε − 1, a − logn = log(x̄i + 1) ± ε
2 So x̂i + 1 = (1 ±

(eε/2))(x̄i + 1) = (1 ± ε)(x̄i + 1). □

Lemma 2.15. Suppose 0 < δ < 0.1 andm > 16000n log2 n
cδ2 , with

probability 1−o(1), for any two vertexvi andvj with distance d , we
can approximate d by d̂ which satisfies:

• d̂ < d + δ if d < 0.3.
• d − δ < d̂ < d + δ if 0.3 ≤ d ≤ 2.
• d̂ > d − δ if d > 2.

Proof. For any number a, b, denote д(a,b) = log a−logb
a−b and

h(a) = log(a + 1)( 2a +
2

a+2 ). We first prove that we can either ap-
proximateh(d)with additive error at most 2ε or directly output a d̂
which satisifies the condition. By Lemma 2.13 and Proposition 2.2,
we can approximate h(d)−д(xi +1, x j +1)−д(n−xi +1,n−x j +1)
with additive error ε

c
√
logn

= o(1), Denote a as this value.
Let x̂i and x̂ j be the value given by Lemma 2.14. If x̂i and x̂ j are

both at least 1
ε , thenvi andvj are both at least 1

ε −1 far away from
both endpoints. By the argument in the proof of Proposition A.1,
д(xi + 1, x j + 1) and д(n − xi + 1,n − x j + 1) are both at most ε . So
|a − h(d)| < 2ε . If one of x̂i and x̂ j larger than 2

ε + 1 and the other
less than 1

ε , then
��x j − xi �� > 2

ε −(1+ε)
1+ε
ε > 2. So we can directly

output d̂ = n. The only case remaining is when both of x̂i and x̂ j
at most 2

ε + 1.
In this case, xi and x j are both at most 3

ε far away from one of
the endpoint. If they are close to different endpoint, then d > n/2,
which menas E [a] = O( 1n ) and a = o(1). Otherwise E [a] = Ω(1)−
o(1) and thus a = Ω(1). So we can check if vi and vj are close to
the same endpoint. If not, x j − xi > n/2 and so we can directly
output d̂ = n. Then we focus on the case that they are close to the
same endpoint. Without loss of generality, suppose both of xi and
x j are at most 3

ε .
If x̂i and x̂ j are both at most 8, then both of xi and x j are at most

9(1 + ε) − 1 < 9, which means |x̂i − xi | and
��x̂ j − x j �� are both at

most 10ε = δ
2 . Then we can output d̂ =

��x̂i − x̂ j ��. If one of x̂i and x̂ j
is at least 8 and the other is at most 5, then

��xi − x j �� > 3(1−2ε) > 2.
So we can output d̂ = n. The only case remaining is when both of
x̂i and x̂ j are at least 5. In this case, xi and x j are both larger than
4. By Proposition A.1,

��д(xi , x j ) − д(x̂i , x̂ j )�� < ε . So a − д(x̂i , x̂ j ) is
an approximation of h(d) with additive error at most ε +o(1) < 2ε .

By this point, we either already output a d̂ which satisfies the
condition or have an approximation of h(d) with additive error 2ε .
To complete the proof we observe that the function h(d) is mono-
tone decreasing when d > 0 and that the derivative of h(d) is
strictly less than −0.1 when 0.5 ≤ d ≤ 2. □

Note that if 0 < δ < 0.1, 3δ < 0.5 < n
2 and 2 > 0.5 + 8δ .

Theorem 2 immediately follows from Lemma 2.3 and Lemma 2.15.

3 RECOVERING THE POSITION
In this section, we consider the problem of recovering the positions
of the vertices on the segment. First, we prove the following simple
result, which extends the results for recovering the order.
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Theorem 3. Suppose m > 10n2 logn
δ2 . For any function f , if we

can recover the order of the vertices, then we can also recover a po-
sition vector X̂ such that for any i , |xi − x̂i | < 2δ with probability
1 − o(1).

Proof. Suppose the order output by the order recovery algo-
rithm is (v1,v2, . . . ,vm ), and their true positions are (x1, x2, . . . , xm ).
We will prove that

��xi − in
m

�� < 2δ (i.e. we can just output the po-
sition as uniformly dispersed along the segment according to the
order).

Suppose the real order is (u1,u2, . . . ,um ), and the real positions
are (y1 < y2 < · · · < ym ). We first prove |xi − yi | < δ , and then
prove that

��yi − in
m

�� < δ . The following arguments are based on the
event that the run of the order recovery algorithm is successful.

For any i , if xi −yi ≥ δ , then for any j ≤ i , xi −yj ≥ δ . By the def-
inition of recovering the order, for any j ≤ i , uj occurs beforevi in
the order output by the algorithm, which contradicts the fact that
vi appears at the ith position of the order output by the algorithm.
So xi − yi < δ . For the same reason, we also have yi − xi < δ .

On the other hand, for any 1 ≤ k ≤ 2n
δ , let Zk be the number

of vertices sampled in segment [0,kδ/2]. By the Chernoff bound,
with probability 1− o( 1n ),

���Zk − kmδ
2n

��� < m
2δn . By taking the union

bound over the complementary events, all Zk ’s are close to their
expectation with probability 1−o(1). For any i , suppose (k−1)mδ

2n <

i ≤ kmδ
2n , then there are at most i vertices sampled in the segment

[0, (k−2)δ/2] and at least i vertices sampled in the segment [0, (k+
1)δ/2], which implies (k − 2)δ/2 < yi < (k + 1)δ/2. On the other
hand, (k − 1)δ/2 < i ≤ kδ/2, so

��yi − in
m

�� < δ . □

By Theorem 3 and the results in Section 2, we can recover the
position with Ω̃(n2) vertices for both choices of f . However, there
is a huge gap compared to the number of samples necessary for
recovering the order.

Sample complexity of identifying best position vector
In the remainder of this section, we consider the following “weaker”
problem: the task is distinguishing two position vectors X and Y
where X = (x1, x2, . . . , xm ) and Y = (y1,y2, . . . ,ym ) with the
guarantee that vertices in X and Y have the same order. We fo-
cus on the exponential decay function f (x) = e−x and the case
when the number of samples is between the gap of Theorem 1 and
Theorem 3. We say that two position vectors X and Y are δ -far if
there exists a vertex vi such that |xi − yi | > δ . We prove that we
cannot distinguish two positions which are δ far away when there
are o(n1.5) samples. This shows that we cannot recover the posi-
tion of vertices with only o(n1.5) samples even if the algorithm is
given the order.

Theorem 4. For anym < 0.05n1.5

δ , if X is sampled uniformly at
random, then with probability 1 − o(1), we can construct a position
vector Y which has the same order as X and is δ -far from X such
that, for any tester Ψ that determines whether a graph is generated
from X or Y , if we randomly select a postion vector Z from {X ,Y },
and sample a graphG according to Z , there is a constant probability
that Ψ(G) , Z .

On the other hand, we prove that if m = Ω(n1.5 logn), then
we can distinguish any two position vectors which are far from

each other when one vector is sampled uniformly, which means
Theorem 4 is tight up to a O(logn) factor.

Theorem 5. For any n1.5 logn
δ < m < n2, if X is sampled uni-

formly at random, then with probability 1 − o(1), for any position
vector Y with the same vertex order as X and δ -far from X , suppose
we randomly sample a graphG according toX , then with probability
1 − o(1), PX (G) > PY (G).

We prove Theorem 4 in Section 3.1, and prove Theorem 5 in
Section 3.2.

3.1 Proof of Theorem 4
For any tester Ψ which decides whether a graph G is generated
from X or Y , let PX (Ψ(G) , X ) (resp. PY (Ψ(G) , Y )) be the prob-
ability that X (resp. Y ) generates a graph G such that Ψ(G) = Y
(resp. Ψ(G) = X ). By Le Cam’s method [12, 18], we have

PX (Ψ(G) , X ) + PY (Ψ(G) , Y ) ≥ 1 − ∆TV(PX , PY )

where ∆TV(PX , PY ) is the total variation distance between PX and
PY . On the other hand, by Pinsker’s inequality,

∆TV(PX , PY ) ≤
√

1

2
DKL(PX ∥ PY )

where DKL(PX ∥ PY ) is the Kullback–Leibler divergence between
PX and PY .Therefore, to prove that any testerΨ cannot distinguish
X and Y , we only need to prove DKL(PX ∥ PY ) is bounded away
from 2. By definition,

DKL(PX ∥ PY ) =
∑
G

PX (G)(log PX (G) − log PY (G))

= E
G∼X
[log PX (G) − log PY (G)]

From this point, we useE to simplifyEG∼X . DenoteL = log PX (G)−
log PY (G), and Li , j = log(e−|xi−x j | ) − log(e−|yi−yj | ) if (vi ,vj ) ∈ G
and Li , j = log(1 − e−|xi−x j | ) − log(1 − e−|yi−yj | ) if (vi ,vj ) < G.
Again by definition,

DKL(PX ∥ PY ) = E [L] =
∑
i , j
E

[
Li , j

]
.

Now we define the location vector Y that confuses the tester.
Without loss of generality, suppose x1 < x2 < · · · < xm . Let Y be
the position vector (y1,y2, . . . ,ym ) such that yi = (1 − 2δ

n )xi . It
is easy to see that as long as m is super constant, |xm − ym | > δ
with probability 1−o(1), which means X and Y are δ -far. To proof
Theorem 4, we only need to prove E [L] = 2 − Ω(1).

Throughout this section, we letdi , j =
��xi − x j �� andd ′i , j as ��xi − x j ��−��yi − yj ��. The following lemma gives the upper bound on E

[
Li , j

]
.

Lemma 3.1. For any pair of vertices vi ,vj ,

E
[
Li , j

]
< e−di , j (d ′2i , j +

2d ′2i , j
di , j
)

Proof. By definition ofLi , j , with probability e−di , j ,Li , j = −d ′i , j
and with probability 1 − e−di , j , Li , j = log(1 − e−di , j ) − log(1 −
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e−di , j+d
′
i , j ) = − log( 1−e

−di , j +d′i , j

1−e−di , j
). So

E
[
Li , j

]
= −d ′i , je

−di , j − (1 − e−di , j ) log(1 − e
−di , j+d ′i , j

1 − e−di , j
)

= −d ′i , je
−di , j − (1 − e−di , j ) log(1 − e−di , j (ed

′
i , j − 1)

1 − e−di , j
)

by Proposition A.3, a = e−di , j (ed
′
i , j −1)

1−e−di , j
<

d ′i , j
di , j
< 0.5. Together with

Proposition A.2,

E
[
Li , j

]
< −d ′i , je

−di , j + e−di , j (ed
′
i , j − 1)(1 + a)

< e−di , j (ed
′
i , j − d ′i , j − 1 +

d ′i , j (e
d ′i , j − 1)
di , j

)

Since d ′i , j < 1/2, ed
′
i , j < 1+d ′i , j +d

′2
i , j and e

d ′i , j < 1+ 2d ′i , j , which
means E

[
Li , j

]
< e−di , j (d ′2i , j + 2d

′2
i , j/di , j ).

□

Now we give an upper bound on E [L].

Lemma 3.2. Ifm < 0.05n3/2
δ and X is obtained by sampling each

point uniformly, then E [L] = E
[∑

i , j Li , j
]
< 1 with probability

1 − o(1).

Proof. Let the S1, S2, . . . , Sn be the set of vertices where Sk
contains all the vertices inside the interval [i, i + 1] in X . Let i ,
j be two vertices inside Sk and Sℓ where k ≤ ℓ, then E

[
Li , j

]
≤

6(ℓ − k + 1)2e−(ℓ−k−1) · δ2

n2 by Lemma 3.1 and the fact that the
distance between i and j is at least ℓ − k − 1 and at most ℓ − k + 1,��yi − yj �� = (1 − 2δ

n )
��xi − x j ��. So

E


∑
i , j

Li , j

 =
∑
k ,ℓ

∑
i ∈Sk , j ∈Sℓ

E
[
Li , j

]
≤ δ2

n2

∑
k ,ℓ

|Sk | · |Sℓ |6(ℓ − k + 1)2e−(ℓ−k−1)

=
δ2

n2

n−1∑
k=0

n−k∑
ℓ=1

|Sℓ | · |Sℓ+k |6(k + 1)2e−(k−1)

By Rearrangement inequality [19], for any k ,
∑n−k

ℓ=1
|Sℓ | · |Sℓ+k | ≤∑n

ℓ=1
|Sℓ |2. So

E


∑
i , j

Li , j

 ≤
δ2

n2
(
n∑

k=1

|Sk |2) · (
n−1∑
k=0

6(k + 1)2e−(k−1))

≤ δ2

n2
(6e +

∞∑
k=0

(6k2 + 24k + 24)e−k ))(
n∑

k=1

|Sk |2)

≤ δ2

n2
(6e + 6e(1 + e)

(e − 1)3
+

24e

(e − 1)2
+

24e

e − 1 ) · (
n∑

k=1

|sk |2)

≤ 100δ2

n2

n∑
k=1

|Sk |2

By the choice ofm, each |Sk | < 2m/n < 0.1n1/2
δ with probability

1−o(1) by Chernoff bound, so
∑n
k=1 |Sk |

2 ≤ 10−2n2

δ2 , which means
E

[∑
i , j Li , j

]
< 1. □

3.2 Proof of Theorem 5
We define Li , j and L the as in Section 3.1. To prove Theorem 5, we
need to prove Pr (L > 0) = 1−o(1). The basic idea is to prove E [L]
is large and use the concentration bound (Propostion A.4) to prove
E [L] is larger than the “concentration range”.

The main difficulty is that since the location vector Y is cho-
sen adversarily, some Li , j ’s might be “ill-behaved” and thus their
deviation is hard to control due to the choice of Y . To solve this
problem, we construct L̄i , j as follows: If

��yi − yj �� > ��xi − x j ��, then
let L̄i , j = min{2, Li , j } if (vi ,vj ) ∈ G; if

��yi − yj �� < ��xi − x j ��, then
let L̄i , j = (1 − e−Li , j ) + 1

2 (1 − e−Li , j )2; if (vi ,vj ) < G. In any
scenerio, L̄i , j is always smaller than Li , j . (This is due to Proposi-
tion A.2.) So Pr

(∑
i , j L̄i , j > 0

)
≤ Pr (L > 0). Moreover, let L̄ be the

sum of L̄i , j excluding those pairs i, j where
��xi − x j �� > 5 logn and��xi − x j �� > ��yi − yj ��. For such pairs, the probability that (vi ,vj ) <

G is 1 − O(n−5) and in that event, L̄i , j > 0. Since there are at
most m2 = o(n5) pairs of such i, j, with probability 1 − o(1), all
of these L̄i , j ’s are greater than 0. So with probability 1 − o(1),
L̄ ≤ ∑

i , j L̄i , j ≤ L. So it is sufficient to prove Pr
(
L̄ > 0

)
= 1 − o(1).

We call the unexcluded pairs as the pair contributing to L̄.Through-
out this section, let di , j =

��xi − x j �� and d ′i , j = ����xi − x j �� − ��yi − yj ����.
We first prove a simple lemma about the distance between each

pair of vertices in X .

Lemma 3.3. Ifm = Õ(n2), with probability 1 − o(1), for any pair
i, j,

��xi − x j �� > 1
n4 .

Proof. For any pair i, j, the probability that
��xi − x j �� ≤ 1

n4 is at
most (2/n

4)
n = O( 1n5 ). Since there are at mostm2 = o(n5) pairs, so

with probability 1 − o(1) there is no such pair. □

Hereafter, we assume di , j > 1
n4 for all pair of i, j. We establish

the following property of L̄i , j .

Lemma 3.4. For any pair i, j that contributes to L̄, L̄i , j is a sub-
exponential random variable with parameter (σi , j ,b) where σ2

i , j =

10 logn · E
[
L̄i , j

]
and b = 10 logn.

The proof of this lemma is technical, and is omitted here due to
limited space. Next, we analyze the expectation of L̄. The following
lemma is a byproduct of the proof of Lemma 3.4.

Lemma 3.5. For any i , j, E
[
L̄i , j

]
> 1

6e
−di , jd ′2i , j if d

′
i , j ≤ 2. Oth-

erwise E
[
L̄i , j

]
> e−di , j .

We next show that d ′i , j satisfies the triangle inequality.

Lemma 3.6. For any i , j and k , d ′i , j ≤ d ′i ,k + d
′
k , j .

Proof. Since X and Y has the same vertex order, d ′i ,k + d
′
k , j =

|xi − xk − yi + xk | +
��x j − xk − yj + yk �� ≥ ��xi − x j − yi + yj �� =

d ′i , j . □

We prove a lower bound on the expectation of L̄.
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Lemma 3.7. For any 100n1.5 logn
δ < m < n2, if X is sampled

uniformly, then with probability 1 − o(1), for any Y such that there
is a pair i, j with d ′i , j >

δ
2 , E

[
L̄
]
> 5 log2 n.

Proof. By Lemma 3.5, E
[
L̄i , j

]
≥ 0. It is sufficient to prove that

sum of someE
[
L̄i , j

]
contributed to L̄ is larger than 5 logn.We first

prove that if there is a pair i ′ and j ′ satisfies di′, j′ ≤ 1 and d ′i′, j′ >
δ
8 , then E

[
L̄
]
> 5 log2 n. By Chernoff bound, with probability 1 −

o(1) there are at least 90
√
n logn
δ vertices in each segment of length

1. So there are at least 90
√
n logn
δ vertices which is at most 1 away

from bothvi′ andvj′ . Supposevk is such a vertex, then either d ′i′,k
ord ′k , j′ is at least

δ
16 by Lemma 3.6, whichmeans eitherE

[
L̄i′,k

]
or

E
[
L̄k , j′

]
is at least δ2

256e by lemma 3.5. So L̄ > 90
√
n logn
δ · δ2

256e >

5 log2 n.
For any integer K , let SK be the set of vertex in segment [K −

1,K]. Let vi ∈ SI and vj ∈ S J . Without loss of generality, suppose
I ≤ J . Then for any vertexvk in SI (resp. Sj ), if d ′i ,k (resp. d ′k , j ) is at
least δ

8 , which means E [L] > 5 log2 n. Otherwise, we have I < J

and for any vk ∈ SI and vℓ ∈ S J , d ′k ,ℓ >
δ
4 .

For any I ≤ K ≤ J , let vkK be an arbitrary vertex in SK . We
prove that

∑
I ≤K< J E

[
L̄kK ,kK+1

]
≥ δ2

1000n . For any K , since vkK
and vkK+1 are in SK and SK+1 respectively, dkK ,kK+1 ≤ 2, which
means e−dkK ,kK+1 > e−2 > 1

10 .
If there exists a K such that d ′kK ,kK+1

> 2, then L̄kK ,kK+1 >

1
10 >

δ2

1000n by Lemma 3.7. Otherwise
∑
I ≤K< J E

[
L̄kK ,kK+1

]
≥

1
60

∑
I ≤K< J d

′2
kK ,kk+1

by Lemma 3.7.
Since d ′kI ,k J

> δ
4 ,

∑
I ≤K<j d

′
kK ,kk+1

≥ δ
4 by Lemma 3.6. By

Cauchy-Schwarz inequality,∑
I ≤K<j

d ′2kK ,kk+1
≥ 1

J − I (
∑

I ≤K<j
d ′kK ,kk+1

)2 ≥ δ2

16(J − I ) ≥
δ2

16n

which means
∑
I ≤K< J E

[
L̄kK ,kK+1

]
≥ δ2

1000n .
Let N = 90

√
n

δ and for any I ≤ K ≤ J , let vℓK1 ,vℓK2 , . . . ,vℓKN be
arbitrary N vertices in Sk . Then

E
[
L̄
]
≥

∑
I ≤K< J

N∑
i′=1

N∑
j′=1
E

[
L̄ℓKi′ ,ℓ

K+1
j′

]
=

∑
I ≤K< J

N∑
i′=1

N−1∑
j′=0
E

[
L̄ℓKi′ ,ℓ

K+1
(i′+j′) mod N+1

]
=

N∑
i′=1

N−1∑
j′=0

∑
I ≤K< J

E

[
L̄ℓK(i′+K j′) mod N+1,ℓ

K+1
(i′+(K+1)j′) mod N+1

]
≥

N∑
i′=1

N−1∑
j′=0

δ2

1000n
=

N 2δ2

1000n
> 5 log2 n

□

Nowwe are ready to use the concentration bound (PropositionA.4)
to prove Theorem 5.

Proof of Theorem 5. Let vj (resp. vk ) be the left (resp. right)
most vertex inX , then with probability 1−o(1) x j = o(1) and xk =
n − o(1). Let vi be the vertex such that |xi − yi | > δ , then either
d ′i , j > δ − o(1) or d ′i ,k > δ − o(1). Suppose d ′i , j > δ − o(1) > δ

2 . By
Lemma 3.7, E

[
L̄
]
> 5 log2 n. By Lemma 3.4 and Proposition A.4,

Pr
(
L̄ < 0

)
≤ Pr

(��L̄ − E [
L̄
] �� > E [

L̄
] )

< 2e
− E[L̄]2

20E[L̄] logn = 2e−
E[L̄]

20 logn < 2e−1.25 logn

= o(1)
□4 EMPIRICAL RESULTS

In this section, we present results on simulating our algorithms
on synthetically generated test sets. We created 5 test sets where
each set contains 30 independently generated graphs. In each test
set, the points are generated uniformly at random on the line with
length n = 25. The number of pointsm in the test sets range from
10, 000 to 20, 000.We focus on the probability function f (x) = e−x

for the probability of generating edges in each test set.
We run our algorithm in Section 2 to recover the order of points

as well as output the position by the algorithm given inTheorem 3.
We then analyze the observed error in using our algorithms for
recovering the order and recovering the position.

For the task of recovering the order, we collect all pairs of ver-
tices (vi ,vj ) such that our algorithm outputs them in inverted or-
der. We calculate the distance between each inverted pair, and con-
sider the 90th percentile, 95th percentile, 99th percentile and the
maximum distance values among the inverted pairs. For each of
these values, we use the average among the 30 tests in each test
set. The results are illustrated in Figure 1. As indicated by our the-
oretical analysis, as the sample size increases, distance between
inverted pairs decreases. For instance, the green line shows that
once the sample size exceeds 10000, more than 95% of inversions
occur among pairs that are less than 0.1 distance apart (i.e. very
close).

Figure 1: Sample size vs. distance between inverted pairs

For the task of recovering the positions, we calculate the dis-
tance between the position output by our algorithm and the actual
position for each point. Again, we look the 90th percentile, 95th
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percentile, 99th percentile and the maximum, and use the average
among the 30 tests in each test set. The results are illustrated in
Figure 2.

Figure 2: Sample size vs. error in the recovered position

5 CONCLUSIONS
We developed a framework for recovery that uses the following
high-level approach: 1) use the graph to reconstruct approximate
degrees and common neighborhood sizes for pairs of vertices; 2)
use this information to approximately identify the neighborhoods
of each vertex, and spatial relationships between vertices in each
neighborhood; and finally, 3) use the local knowledge to establish
global structure - order relations or positions. Using this frame-
work, we obtained essentially tight bounds on the number of sam-
ples required for recovering the (approximate) order of points on a
line segment under both exponential decay and linear decay mod-
els. It would be interesting to close the gap that remains between
the upper and lower bounds for recovering the location of the
points. We also empirically analyzed recovery accuracy of our al-
gorithms on synthetic data sets.

This paper can be seen as taking the first step in what should
be a promising line of research, that will include generalizing our
results to other metric spaces as well as to other edge probabil-
ity functions. As we move from one-dimensional space to higher
dimensional spaces, recovery becomes distinctly harder (as one
might expect) but our preliminary investigation suggests that the
framework described in this work continues to be of value in un-
derstanding recovery in Rk for k ≥ 2. Beyond this, a particularly
intriguing problem is to recover missing attributes. If we are given
a graph as well as some partial information about the attributes
of vertices, can we learn both the edge probability function and
values of the missing attributes? Such problems are likely to be
of interest in social science research, as well as in understanding
diverse networks such as biological and economic networks.

A MATH TOOLS
A.1 Basic Math Inequalities
In this section, we prove some math results we used.

Proposition A.1. Suppose four different numbers a, a′, b, b ′, ε
satisfy that 0 ≤ ε < 1/2, |a − a′ | < εa, |b − b ′ | < εb, and 4 < a < b,
then

��� logb−log ab−a − logb′−log a′
b′−a′

��� < ε

Proof. For any positive numbers i, j, let д(i, j) = log i−log j
j−i .

Then д(i, j) =
∫ j
i

1
x dx , which means д(i, j) is between 1

i and 1
j .

We first prove |д(a,b) − д(a′,b)| < ε
2 , and with the same argu-

ment, |д(a′,b) − д(a′,b ′)| < ε
2 , which together imply the proposi-

tion.
Case 1: a′ < a < b. д(a′,b) = b−a

b−a′д(a,b) +
a−a′
b−a′д(a,a

′), which
means |д(a′,b) − д(a,b)| = a−a′

b−a′ |д(a,a
′) − д(a,b)| < a−a′

b−a′ (
1
a′ −

1
b ) =

a−a′
a′b <

2ε
b <

ε
2 .

Case 2: a < a′ < b. д(a,b) = b−a′
b−a д(a

′,b) + a′−a
b−a д(a

′,a), which
means |д(a′,b) − д(a,b)| = a−a′

b−a |д(a,a
′) − д(a′,b)| < a′−a

b−a (
1
a −

1
b =

a′−a
ab <

ε
b <

ε
4 .

Case 3: a < b < a′, |д(a,a′) − д(b,a′)| < 1
a −

1
a′ <

ε
a′ <

ε
4 . □

Proposition A.2. If 0 < x , x + x2/2 < log(1 − x); if x < 0.5,
log(1 − x) < x + x2.

Proof. The Taylor expansion of log(1 − x) is

− log(1 − x) =
∞∑
k=1

xk

k
> x + x2/2

The inequality holds because x > 0. On the other hand,
∞∑
k=1

xk

k
< x +

1

2

∞∑
k=2

xk < x + x2

since x < 0.5. □

Proposition A.3. For any 0 < x ′ ≤ x , e
−x (ex ′−1)
1−e−x ≤ x ′

x .

Proof. Let ε = x ′
x , to prove the proposition, we only need to

prove that for any 0 < ε ≤ 1, e
−x (eεx−1)
1−e−x < ε , which is equivalent

to proving that e(ε−1)x − (1 − ε)e−x < ε
Let fε (x) be the LHS, fε (0) = ε . The derivative f ′ε (x) = (ε −

1)e(ε−1)x−(ε−1)e−x < 0when x > 0, so fε (x) < ε when x > 0. □

A.2 Sub-exponential Variables and Bernstein
Bound

In this section, we review the concept of sub-exponential variables
and Bernstein bound.

Definition 2 (Sub-exponential Variables). A random vari-
able X with mean µ is sub-exponential with parameters (σ ,b) if for
any λ with |λ | < 1/b,

E
[
eλ(X−µ)

]
≤ eσ

2λ2/2

Proposition A.4 (Bernstein bound [3]). Let X1,X2, . . . ,Xn
be independent random variables, where Xi is sub-exponential ran-
dom variable with mean µi and sub-exponential parameter (σi ,bi ).

Pr
(����� n∑
i=1
(Xi − µi )

����� ≥ t

)
≤

2e
− t2

2σ2
⋆ for 0 ≤ t ≤ σ⋆

b

2e
− t

2b⋆ for t > σ⋆
b

where σ2
⋆ =

∑n
i=1 σ

2
i and b⋆ = maxni=1 bi
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