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Abstract Watersheds have served as one of our most basic units of organization in hydrology for over 300
years (Dooge, 1988, https://doi.org/10.1080/02626668809491223; McDonnell, 2017, https://doi.org/10.1038/
ngeo2964; Perrault, 1674, https://www.abebooks.com/first‐edition/lorigine‐fontaines‐Perrault‐Pierre‐Petit‐
Imprimeur/21599664536/bd). With growing interest in groundwater‐surface water interactions and
subsurface flow paths, hydrologists are increasingly looking deeper. But the dialog between surface water
hydrologists and groundwater hydrologists is still embryonic, and many basic questions are yet to be posed,
let alone answered. One key question is: where is the bottom of a watershed? Knowing where to draw the
bottom boundary has not yet been fully addressed in the literature, and how to define the watershed
“bottom” is a fraught question. There is large variability across physical and conceptual models regarding
how to implement a watershed bottom, and what counts as “deep” varies markedly in different
communities. In this commentary, we seek to initiate a dialog on existing approaches to defining the bottom
of the watershed. We briefly review the current literature describing how different communities typically
frame the answer of just how deep we should look and identify situations where deep flow paths are key to
developing realistic conceptual models of watershed systems. We then review the common conceptual
approaches used to delineate the watershed lower boundary. Finally, we highlight opportunities to trigger
this potential research area at the interface of catchment hydrology and hydrogeology.

1. On the Definition of Deep

Studies have demonstrated that groundwater is an important control on runoff generation (Buttle, 1994;
Konikow & Leake, 2014; Tetzlaff et al., 2014; Zimmer & McGlynn, 2017), solute fluxes (Kirchner & Neal,
2013), transit time distributions (Hale & McDonnell, 2016; Maxwell et al., 2016; McGuire & McDonnell,
2006; Soulsby et al., 2006; Visser et al., 2019), ecohydrological processes (Fan, 2015; Horton et al., 2001;
Koirala et al., 2017; Laio et al., 2009), and the behavior of earth system models (Clark et al., 2015; Krakauer
et al., 2014). At the watershed (or catchment, used interchangeably here to refer to drainage basins) scale,
nested local to regional groundwater flow paths emerge naturally from topography, and groundwater dis-
charge is often a mix of shallow and deep flow paths (Figure 1). Yet the bulk of the effort to understand and
represent groundwater interactions is limited to the shallowest part of the groundwater system. Catchment
and land surface models commonly extend 2–3 m into the soil column and may exclude “deeper” storage or
rely on a lumped approach to groundwater storage (Clark et al., 2015; Fan et al., 2019; Sellers et al., 1996).
Recent critical zone (CZ) research extends deeper, generally looking tens of meters into the subsurface, while
integrated groundwater‐surface water models tend to cover tens to hundreds of meter depth (Figure 1).

Although 100 m may sound deep as viewed by a catchment hydrologist, this is still less than the extent of
many deep groundwater systems. Modern groundwater, as defined by the presence of tritium, is typically
found at depths extending to 250 m (Gleeson et al., 2016). Similarly, active circulation of groundwater in
mountain aquifers has been noted in the upper 100–200 m (Gleeson & Manning, 2008; Manning & Caine,
2007; Markovich, Manning, et al., 2019). We routinely pump groundwater for human usage from depths
exceeding 100 m (Ferguson, McIntosh, Perrone, et al., 2018), and there are many examples of highly produc-
tive agricultural regions that rely on deep groundwater systems (e.g., Scanlon et al., 2012).

Looking deeper, Pleistocene meteoric recharge has been found in both sedimentary and crystalline environ-
ments at depths of up to 1,000 m (McIntosh et al., 2012). More recent work has characterized most
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groundwater at depths >250 m as pre‐Holocene in age (Jasechko et al., 2017). Groundwater discharge from
these deep regional flow systems has been noted in the Colorado Plateau (Crossey et al., 2006) and the
Western Canada Sedimentary Basin (Grasby & Betcher, 2002). Below a few thousand meters, most ground-
waters are essentially stagnant over periods of millions of years due to a combination of low permeability
(Ingebritsen & Manning, 1999; Warr et al., 2018) and negative buoyancy (Ferguson, McIntosh, Grasby,
et al., 2018). The transition from fresh to saline groundwater generally occurs between 500 and 1,000 m
(Ferguson, McIntosh, Perrone, et al., 2018). Nevertheless, deeper exceptions to these generalizations exist,
particularly in mountainous regions where thermal springs with meteoric origins have circulation depths
of up to 5,000 m (Ferguson & Grasby, 2011; Grasby & Hutcheon, 2001).

2. On the Importance of Going Deep

The fact that we can often observe modern groundwater hundreds of meters deep does not necessarily mean
that every watershed study needs to extend to these depths. What defines a reasonable watershed bottom
boundary will vary depending on the research questions, hydrogeologic setting, scale, available observations
and computational resources (Ameli et al., 2018). As a first step, we advocate simply a critical assessment of
whether “deep” flow paths (in this case referring to paths that extend deeper than one's current conceptual
model) are potentially relevant in a particular place or to a given research question. To illustrate the potential
importance of including deep flowpaths, we identify three cases where deep flow paths are key to developing
a realistic conceptual model.

First, in places where deep flow paths contribute significantly to the catchment water balance, excluding
these flow paths may lead to an incorrect formulation of the water balance or a fundamentally flawed con-
ceptual model. Across larger river basins, Schaller and Fan (2009) and Fan (2019) challenged the commonly
held view that catchments are closed systems, finding instead that many are regional groundwater importers
or exporters. Similarly, multiple CZOs and other experimental sites operating at headwater scales have
found that groundwater in fractured bedrock aquifers commonly contributes to streamflow (Brantley
et al., 2017; Jin et al., 2011; Markovich, Dahlke, et al., 2019; McIntosh et al., 2017; Payn et al., 2012; White
et al., 2019). Key to this discussion is the recent recognition that even at well‐studied sites, we are only begin-
ning to detect that our “shallow views” on the hydrologic cycle maymiss large fluxes of water or oversimplify
our conceptual models of these systems. A recent study at the well‐studied Maimai catchment in New
Zealand exemplifies this by demonstrating that deep groundwater, recharged in first‐order catchments, sub-
sidizes flows to their parent watersheds (Ameli et al., 2018). This finding was all the more surprising consid-
ering the super‐humid climate, steep topography, and low permeability bedrock—characteristics that are

Figure 1. Conceptual model of watershed boundaries and examples of maximum depth extents for modeling applications
(blue) and observations (green). (a) A conceptual watershed model with insets illustrating three common approaches to
defining a bottom boundary described in section 3. (b) Maximum depth extent for most Land Surface Models (LMS),
Critical Zone Observatory (CZO) models and observations, and groundwater and integrated hydrologic models in relation
to groundwater age and salinity.
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generally cited in shallow flowpath conceptualizations (Gleeson et al., 2011; Gleeson & Manning, 2008). A
recent review by Fan (2019) suggests that such subsidies may be important in a range of watersheds settings.

Analysis of deep flow paths should not be limited to the natural interactions. Deep flow paths may be
increasingly important where groundwater pumping and management operations are accessing ground-
water, and connecting groundwater to the surface water budget through irrigation or other uses. Across
the United States there is a trend of increasing well depth as wells are being drilled deeper to counter water
scarcity (Perrone & Jasechko, 2019). This pumping represents a critical water supply for human activities but
can have adverse environmental impacts. While it is well established that groundwater pumping can result
in some stream capture (Konikow & Leake, 2014), recent, large‐scale modeling efforts have helped quantify
the total impact that widespread groundwater pumping can have on the surface water budget (Condon &
Maxwell, 2019; Konikow & Leake, 2014). Current human activities at depth may spell unknown future
impacts for surface water quantity and quality. However, the treatment of hydrostratigraphy in many
large‐scale watershed models remains simplistic and further work is needed to evaluate water quality at
depth and the effects of pumping in deeper wells. Konikow and Leake (2014) note that deeper confined aqui-
fers are less likely to result in capture of streamflow than pumping in shallower unconfined aquifers.

Second, even when deeper flowpaths contribute minimally to bulk discharge, they can still account for a dis-
proportionate amount of solute fluxes. Rumsey et al. (2017) estimated that groundwater discharge to the
Upper Colorado River accounted for 89% of the dissolved load in the river despite baseflow accounting for
less than 44% of discharge at most gauges. While there was no attempt to determine the relative importance
of groundwater and solute contributions from different depths in that study, the increase in salinity with
depth typically observed in groundwater systems emphasizes the need to characterize deeper flowpaths to
understand concentration‐discharge (C‐Q) relationships (Bluth & Kump, 1994; Grasby et al., 1999;
Wymore et al., 2017). A deeper bottom boundary may also be necessary to capture legacy contamination.
VanMeter et al. (2017) found that much of the nitrate in the Mississippi watershed was delivered as ground-
water discharge. The depth of flowpaths was not explicitly explored in that study, but other regional studies
in North America have found elevated nitrate concentrations to depths of up to 50 m (Mitchell et al., 2003;
Nolan & Hitt, 2006; Rudolph et al., 2015).

Finally, deep flow paths are critical for characterizing the shape, and particularly the tails, of water residence
time distributions (RTDs) and the transit time distributions (TTDs) of streamwater. While streamflow can be
disproportionately fed by young (<3 months old) flowpaths (Berghuijs & Kirchner, 2017; Jasechko et al.,
2016), analysis of transit times during low flow periods has shown the opposite—that substantially older
flowpaths feed rivers during these times (>20 years; Gabrielli et al., 2018; Rademacher et al., 2005).
Similarly, Maxwell et al. (2016) showed that topographically controlled groundwater systems can result in
a larger diversity in subsurface flow paths and that groundwater configuration can control RTD shape.
These shapes are linked to plant available water and streamflow generation. Exploring how Earth's CZ
shapes deep groundwater flow pathways, groundwater RTD, and stream TTD remains a fundamental chal-
lenge in the hydrologic sciences (Brooks et al., 2015).

3. Where to Draw the Line

So how to “draw the line” on the bottom watershed boundary? Figure 1a shows several basic conceptual
approaches that could be used to delineate the watershed lower boundary—each unique, but not mutually
exclusive. Also, we note that these characterizations of the bottom boundary do not take into account the
approach of land surface models, surface water models, and conceptual rainfall runoff models that generally
impose a bottom boundary at the land surface or the bottom of the soil column. Here we focus on the
approaches to defining a lower boundary based on subsurface processes.

1. Depth to low conductivity boundary: Perhaps the most straightforward conceptualization of the bottom
boundary of the watershed is a low conductivity unit that can be treated as a no‐flow boundary. As
described in one standard groundwater textbook, “the lower boundary is a real boundary; it represents
the base of the surficial soil, which is underlain by a soil or rock formation with a conductivity several
orders of magnitude lower” (Freeze & Cherry, 1979). It is common practice in catchment models to spe-
cify a soil depth and assume that the soil column terminates within unfractured bedrock that does not
contribute to streamflow. Notwithstanding, field hydrologists have been evaluating this
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conceptualization for some time, with some acknowledging this conceptual model as a hindrance to
furthering the field of catchment science (Payn et al., 2012; Tromp‐van Meerveld & Weiler, 2008;
Zimmer & McGlynn, 2017). Groundwater hydrologists generally look deeper using hydrostratigraphy,
geologic history, and/or geochemistry to identify no‐flow boundaries based on permeability contrasts.
Groundwater models commonly place a no‐flow boundary condition at the point where the lower geolo-
gic unit is more than 2 orders of magnitude less permeable, assuming that the lower permeability unit
will carry 1% of the flow of the overlying unit if thickness and hydraulic gradients are equal (Anderson
et al., 2015). It is also interesting to note that the same 2‐order‐of‐magnitude contrast has been used to
define the soil‐bedrock interface condition to induce lateral flow at the hillslope scale (Hopp &
McDonnell, 2009).Many research watersheds are located in fractured rock settings. Identifying low con-
ductivity boundaries in these systems is a challenge. At depths beyond surface weathering controls on
bedrock (Holbrook et al., 2014; St. Clair et al., 2015), fractures become less dense due to compaction,
metamorphism, and/or mineralization (Saar & Manga, 2004). This transition is commonly treated as
the boundary between active and inactive groundwater flow (Mayo et al., 2003), and studies have placed
this boundary at roughly 100–200 m, most often in fractured granitic bedrock (Welch & Allen, 2014).
However, this boundary is highly heterogeneous within and between systems, owing to bedrock type
and tectonic stress. Observations of this boundary are often limited by the small number of boreholes
completed in this low conductivity zone.

2. Active circulation depth: The bottom boundary does not necessarily need to correspond with a geologic
boundary. Indeed, nested flow systems can occur purely as a result of topography (Toth, 1963). An alter-
nate approach is to define the bottom based on the flowpaths that are relevant to the question being
asked. From a hydrogeological perspective, the active circulation depth encompasses all flowpaths that
originate and terminate either at the ground surface or a surface water body. Such flowpaths often occur
at much greater depths than those considered in catchment‐scale studies. Alternatively, catchment
hydrologists may define active circulation depth as “active zones,” akin to CZ approaches, which encom-
pass soil and groundwater stores that contribute water or solutes to the surface on timescales relevant to
annual fluxes (McNamara et al., 2011) or active storage that contributes to streamflow and recession
(Pfister et al., 2017).Notably, CZ conceptualizations can fall into either of the above definitions. The
CZ community often defines the lower system boundary as the bottom of groundwater (Brantley et al.,
2007; Council, 2001; Grant & Dietrich, 2017), but where that bottom resides or what it represents is
poorly defined. Groundwater that drains seasonally from soil and saprolite and contributes to streamflow
is most often considered in CZ conceptual models (Brantley et al., 2007), while groundwater movement
through deeper, unweathered bedrock is often assumed to be negligible and excluded from catchment
water balances (Kirchner, 2009). Thus, the extent of the CZ (and “groundwater”) has been defined as
the depth to unweathered bedrock, or depth to the regional water table, or sometimes as deep as actively
circulating groundwater (Keller, 2019).

3. Depth to saline water: The bottom boundary of the watershed can also be delineated as the bottom of the
freshwater system. One rule of thumb used in the groundwater community is to define the freshwater
bottom as that having total dissolved solids less than 3,000 mg/L (Hem, 1959), which varies in depth
depending on the aquifer of interest (Ferguson, McIntosh, Perrone, et al., 2018).

4. Observing the Bottom of a Watershed

While defining the watershed bottom boundary is one thing, “seeing it” is quite another. Defining a lower
watershed boundary in real systems is complicated by lack of deep subsurface data and often complex hydro-
stratigraphy. In major aquifer systems the frequency of observations allows for higher confidence in subsur-
face configuration; however, in most catchment studies existing observations are not sufficient for
observational guidance on what constitutes the system base. In many catchment hydrology studies, depth
to bedrock is observed by hand‐auger well installation to a “refusal” depth or by excavating soil pits down
to bedrock across headwater catchments (Jencso et al., 2009; Zimmer & McGlynn, 2017). In the CZOs, deep
(tens of meters) drilling campaigns and installation of bedrock monitoring wells have helped characterize
deeper groundwater stores and the dynamic hydraulic connections to streamflow (White et al., 2019).
Still, there are only a few deep groundwater monitoring wells in CZOs with maximum depths greater than
~50 m (Küsel et al., 2016).
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More recently, hydrogeophysical methods have been used to estimate deep CZ hydrostratigraphy, fracture
density, and water content distribution (Flinchum et al., 2018; Holbrook et al., 2014; Parsekian et al.,
2015; St. Clair et al., 2015) as well as depth to bedrock (Lane et al., 2008), or to the “base‐of‐aquifer”
(Abraham et al., 2012) in various hydrological settings. Above ground, advances in airborne geophysics
and other geophysical methods have great promise for advancing our ability image the CZ across spatial
scales (Parsekian et al., 2015; Seyfried et al., 2018), as do developments with ground‐based gravitometers
and other new measurement and sensing devices (Tauro et al., 2018). Many hundreds of kilometers up, data
collected from the Gravity Recovery and Climate Experiment (GRACE) has expanded perspectives on how
much water catchments can store, although this approach cannot provide depth specific information by
itself (Alley & Konikow, 2015).

Gridded hydrogeology datasets may also provide useful information in data sparse regions. Recent efforts
provide global maps of lithological classes and their hydrologic properties (e.g., permeability and porosity;
Gleeson et al., 2011; Gleeson et al., 2014; Hartmann & Moosdorf, 2012). These datasets offer unprecedented
information on subsurface properties below the soil but still introduce some challenges and uncertainties.
For example, they focus on depth‐averaged near surface (roughly 100 m) properties, and they do not provide
information on hydrostratigraphy. Previous maps of depth to bedrock focused on shallow bedrock (less than
2 m; Miller & White, 1998), though new global products are now emerging that estimate the total depth to
bedrock extending tens to hundreds of meters (Pelletier et al., 2016; Shangguan et al., 2017).

5. Summary and Vision for Moving Forward
This commentary highlights the disparate treatment of the watershed bottom across the hydrologic commu-
nity. Though there are several paths forward, the first step may simply be a (vertical) shift in the depth we
consider when building our conceptual models. We see three key opportunities to improve our representa-
tions and understanding of this fundamental watershed characteristic:

1. Actually “observing” the bottom of a watershed remains a major challenge, but an important need. To
this end, we need more observations at depth to characterize the vertical distribution of permeability.
For example, CZ and other catchment studies often have too few wells below the interface of weathered
and unweathered bedrock to adequately capture spatial variability of deep groundwater. There have been
some advances in small borehole installation that have allowed for important discoveries related to resi-
dence time and active circulation depths in fractured rock systems (Gabrielli & McDonnell, 2012), but
these generally extend to only 10m or so. Additional deep well drilling and greater application of geophy-
sical methods (e.g., White et al., 2019) are needed to provide spatial characterization of hydrostratigraphy
down to 100–200 m. New 3‐D gridded datasets that make use of existing permeability data and data from
a range of other sources are needed to improve modeling efforts at large scales.

2. We need new tools to characterize deep flow paths as well as the vertical storage and release of deep
groundwater. The stable isotopes of hydrogen and oxygen have been workhorse tracers in water studies
for decades. However, variability in flowpath lengths can be masked by similar isotopic signatures, and
the tails of TTDmay be truncated with these methods (Stewart et al., 2010). Collecting stable isotope data
for both streamflow and precipitation with high frequency (e.g., von Freyberg et al., 2017) has led to
insights in catchment response and is a novel area of development (Kirchner, 2019). Across the board,
we advocate for additional tracer studies as well as the implementation of novel tracers, such as synthetic
DNA (Dahlke et al., 2015), and tracers representing longer transit times, such as Argon‐39 (Loosli, 1983)
to inform this important question.

3. Finally, we acknowledge that perfect information of subsurface architecture and permeability is prob-
ably unobtainable, especially outside heavily instrumented catchments. This means that we will
always need to rely on numerical models of the subsurface. Within these numerical investigations,
we need additional research to evaluate the sensitivity of simulated results to bottom boundary con-
ceptualization and to characterize the systems and questions most sensitive to our representation and
spatial configuration of the bottom. This is vital for large‐scale land surface and earth systems models
where we are still iterating how best to represent the subsurface (Clark et al., 2015; Fan et al., 2019).
We therefore advocate additional modeling and observational work across a more diverse set of sys-
tems, including catchments in distinct climates (e.g., Tetzlaff et al., 2015), those with complex CZs
(e.g., Buss et al., 2013; Hahm et al., 2019; Shi et al., 2013; Zimmer & McGlynn, 2017), and those
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experiencing human stressors and management (e.g., Bhaskar & Welty, 2015; Condon & Maxwell,
2019; McDonnell et al., 2018; Perrone & Jasechko, 2017; White et al., 2019).

Above all, we need to critically interrogate our existing conceptual models of watershed systems and allow
for more dialog on what the bottom of a watershed truly represents. Such interrogations may bring rethink-
ing the water balance alongside our basic definition of watersheds into closer focus, accelerating the poten-
tial for a new conceptual model of catchments to emerge. By improving our conceptualizations of this lower
boundary, we are likely to bring hydrogeology and hydrology into closer contact, creating opportunities for
the coevolution of knowledge and refining our perceptions of watershed functioning from a lateral as well as
vertical lens—redefining watershed hydrology from the bottom‐up.
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