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a b s t r a c t

This paper discusses the problem of reconstructing the state of a linear time invariant system when
some of its actuators and sensors are compromised by an adversarial agent. In the model considered
in this paper, the adversarial agent attacks an input (output) by manipulating its value arbitrarily, i.e.,
we impose no constraints (statistical or otherwise) on how control commands (sensor measurements)
are changed by the adversary other than a bound on the number of attacked actuators and sensors In
the first part of this paper, we introduce the notion of sparse strong observability and we show that
is a necessary and sufficient condition for correctly reconstructing the state despite the considered
attacks. In the second half of this work, we propose an observer to harness the complexity of
this intrinsically combinatorial problem, by leveraging satisfiability modulo theory solving. Numerical
simulations illustrate the effectiveness and scalability of our observer.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Cyber–Physical Systems (CPS) are characterized by the tight
interconnection of cyber and physical components. CPS are not
only prone to actuator and sensor failures but also to adversarial
attacks on the control and sensing modules. Security of CPS is no
longer restricted to the cyber domain, and recent incidents such
as the StuxNet malware (Langner, 2011) and the security flaws re-
ported on modern cars (Greenberg, 2015; Kelion, 2016) motivated
the recent interest in security of CPS, (see for example, Amin,
Schwartz, & Hussain, 2013; Cárdenas, Amin, & Sastry, 2008; Mo
et al., 2012; Sundaram, Pajic, Hadjicostis, Mangharam, & Pappas,
2010 and references therein). During the last decade, a number of
security problems have been tackled by the control community,
e.g., denial-of-service (De Persis & Tesi, 2015; Gupta, Langbort, &
Basar, 2010; Senejohnny, Tesi, & De Persis, 2016; Zhu & Martinez,
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2014), replay attacks (Mo & Sinopoli, 2009), man-in-the-middle
attacks (Smith, 2015), false data injection (Mo, Garone, Casavola,
& Sinopoli, 2010), etc.

This paper addresses the problem of state reconstruction when
several sensors and actuators are under attack. We broadly refer
to state reconstruction in the adversarial environment as secure
state reconstruction. Our attack model is quite general and we
impose no constraints on the magnitude, statistical properties, or
temporal characteristics of the signals manipulated by the adver-
sary other than a bound on the number of attacked actuators and
sensors.

The problem of secure state reconstruction has been investi-
gated by the control community over the past decade (Giraldo
et al., 2018). In one line of work, the problem of state recon-
struction and control under sensor attacks is investigated and the
authors derived necessary and sufficient conditions under which
reconstruction and stabilization are possible (Fawzi, Tabuada, &
Diggavi, 2014). Shoukry and Tabuada (2016) further refined this
condition and called it sparse observability. Chong, Wakaiki, and
Hespanha (2015) found an equivalent condition for continuous-
time systems and called it observability under attack. Nakahira
and Mo (2015) investigated a similar problem while allowing for
asymptotic reconstruction of the state rather than reconstruc-
tion in finite time. The authors relaxed the sparse observability
condition to sparse detectability and showed it is a necessary
and sufficient condition for asymptotic reconstruction. Noisy ver-
sions of this problem have also been investigated (Bai, Gupta
and Pasqualetti, 2017; Bai, Pasqualetti and Gupta, 2017; Mishra,
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Shoukry, Karamchandani, Diggavi, & Tabuada, 2017; Mo, Chabuk-

swar, & Sinopoli, 2014; Mo & Sinopoli, 2016). In particular, Mishra

et al. (2017) derived the optimal solution for Gaussian noise.

In this paper, we solve the more general problem of actuator

and sensor attacks that includes, as a special case, sensor attacks.

Under the attack model in which an adversary can only target a

bounded number of actuators and sensors, state reconstruction

is intrinsically a combinatorial problem. In the case where only

sensors are attacked, Shoukry et al. (2017) proposed a novel se-

cure state observer using the Satisfiability Modulo Theory (SMT)

paradigm, called Imhotep-SMT, that offers a computationally ef-

ficient solution to this problem. In this paper, we generalize the

SMT approach to handle sensor and actuator attacks.

In another line of work, the problem of secure state recon-

struction has been studied when the exact model of the system

is not available (Pajic et al., 2014; Yong, Foo, & Frazzoli, 2016). Ti-

wari et al. (2014) proposed an online learning method by building

so-called safety envelopes as it receives attack-free data to detect

abnormality in the data when the system is prone to attacks.

In Showkatbakhsh, Tabuada, and Diggavi (2016a, 2016b) the au-

thors considered system identification under sensors attacks. In

all of these works, the adversarial agent is restricted to only

attacking sensors.

Pasqualetti, Dorfler, and Bullo (2013) is one of the few ref-

erences considering attacks to both sensor and actuators. They

studied the problem of attack detection and identification and

related undetectable and unidentifiable attacks to the zero-

dynamics of the underlying system. They also proposed an attack

identification mechanism consisting of a number of fault-monitor

filters that provide formal guarantees for the existence of an

attack. The number of filters, however, grows exponentially with

the number of attacked sensors/actuators, and therefore hinders

scalability. In another work (Sandberg & Teixeira, 2016), the

authors investigated detectability and identifiability of attacks

in the presence of disturbances and generalized the concept of

security index to dynamical systems. The proposed algorithms are

inherently combinatorial and do not scale well with the number

of attacked sensors and actuators. In this paper, by leveraging the

SMT paradigm, we design a state observer that scales well with

the number of sensors and actuators.

In a recent work (Harirchi & Ozay, 2016), Harirchi et al. pro-

posed a novel fault detection approach using techniques from

model invalidation. The authors pursued a worst-case scenario

approach and therefore their framework is suitable for security.

However, necessary and sufficient conditions for state recon-

struction in a general adversarial setting were not investigated

in Harirchi and Ozay (2016). In this paper, we precisely char-

acterize the class of systems, by providing necessary and suffi-

cient conditions, for which state reconstruction is possible despite

sensor and/or actuator attacks.

The contributions of this paper can be summarized as follows:

• We introduce the notion of sparse strong observability by

drawing inspiration from sparse observability (Fawzi et al.,

2014; Shoukry & Tabuada, 2016) and the classical notion of

strong observability (Hautus, 1983). We show that sparse

strong observability is necessary and sufficient to correctly

reconstruct the state in the presence of actuator and sensor

attacks.

• We propose an observer by leveraging the SMT approach

to harness the exponential complexity of the secure state

reconstruction problem. Our observer consists of two blocks

interacting iteratively until the true state is found (see

Section 4 for a detailed explanation of the observer’s archi-

tecture).

• We propose two methods to further decrease the running
time of the aforementioned algorithm by reducing the num-
ber of iterations of the observer. The first method exploits
heuristics that can be efficiently computed at each itera-
tion. The second method is inspired by the QuickXplain

algorithm (Junker, 2001) that efficiently finds an irreducibly
inconsistent set (see Section 4 for a detailed discussion on
the aforementioned methods). We illustrate the scalability
of our proposed observer by several numerical simulations.

A preliminary version of some of the results in this paper was pre-
sented in Showkatbakhsh, Shoukry, Chen, Diggavi, and Tabuada
(2017) where we introduced the notion of sparse strong observ-
ability and drew the connection to secure state reconstruction.
However, the formal proofs were not provided due to space lim-
itations. Furthermore, we propose in this paper a new observer
that outperforms the observer introduced in Showkatbakhsh et al.
(2017).

This paper is organized as follows. Section 2 introduces no-
tation followed by the attack model and the precise problem
formulation. In Section 3, we introduce the notion of sparse
strong observability and relate this notion to the problem of
state reconstruction when some of the inputs and outputs are
under adversarial attacks. This section concludes with the main
theoretical contribution of this paper that is Theorem 8. Section 4
is devoted to designing an observer by exploiting the SMT
paradigm. Section 5 provides the simulation results followed by
Section 6 that concludes the paper.

2. Problem definition

2.1. Notation

We denote the sets of real, natural and binary numbers by R,
N and B. We represent vectors and real numbers by lowercase
letters, such as u, x, y, and matrices with capital letters, such as A.
Given a vector x ∈ R

n and a set O ⊆ {1, . . . , n}, we use x|O to de-
note the vector obtained from x by removing all elements except
those indexed by the set O. Similarly, for a matrix C ∈ R

n1×n2 we
use C |(O1,O2) to denote the matrix obtained from C by eliminating
all rows and columns except the ones indexed by O1 and O2,
respectively, where Oi ⊆ {1, . . . , ni} with ni ∈ N for i ∈ {1, 2}.
In order to simplify the notation, we use C |(.,O2):= C |({1,...,n1},O2)

and C |(O1,.):= C |(O1,{1,...,n2}). We denote the complement of O by

O := {1, . . . , n} \ O. We use the notation {x(t)}T−1t=0 to denote the
sequence x(0), . . . , x(T − 1), and we drop the sub(super)scripts
whenever it is clear from the context.

A Linear Time Invariant (LTI) system is described by the fol-
lowing equations:

x(t + 1) = Ax(t)+ Bu(t),

y(t) = Cx(t)+ Du(t), (1)

where u(t) ∈ R
m, x(t) ∈ R

n and y(t) ∈ R
p are the input, state and

output variables, respectively, t ∈ N ∪ {0} denotes time, and A,
B, C and D are system matrices with appropriate dimensions. We
use (A, B, C,D) to denote the system described by (1). The order
of an LTI system is defined as the dimension of its state space.
A trajectory of the system consists of an input sequence with its
corresponding output sequence. For an LTI system:

O(A,C) :=
[

CT ATCT . . . (AT )n−1CT
]T

, (2)

N(A,B,C,D) :=









D 0 . . . 0
CB D . . . 0
...

. . .

CAn−2B CAn−3B . . . D









, (3)
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Fig. 1. The generic attack model considered in this paper.

are the observability and invertibility matrices, respectively, where
n is the order of the underlying system. In this paper, we often
work with subsets of inputs and outputs. For a subset of outputs
Γy ⊆ {1, . . . , p}, we use the notation OΓy := O(A,C |(Γy,.)) to denote

the observability matrix of outputs in the set Γy. For a set of
inputs Γu ⊆ {1, . . . ,m}, we use the notation NΓu→Γy to denote
N(A,B(.,Γu),C(Γy,.),D(Γy,Γu))

. For x ∈ R
n, we define its support set

as the set of indices of its non-zero components, denoted by
supp(x). Similarly, we define the support of the sequence {x(t)}
as supp({x(t)}) := ∩t supp(x(t)). The observer proposed in this
paper uses batches of inputs and outputs in order to reconstruct
the state. We reserve capital bold letters to denote these batches:

Yτ (t) :=
[

y(t − τ + 1)T . . . y(t)T
]T

, (4)

Uτ (t) :=
[

u(t − τ + 1)T . . . u(t)T
]T

, (5)

where τ ≤ n. Whenever τ is the order of the underlying system,
we may drop the superscript for ease of notation. For a subset of
outputs (inputs), denoted by Γy ⊆ {1, . . . , p} (Γu ⊆ {1, . . . ,m}),
we use the notation Yτ |Γy (t) (U

τ |Γu (t)) for the batches of length
τ that only consists of outputs (inputs) in the set Γy (Γu). For a
vector x ∈ R

n, we denote an arbitrary norm, l2-norm and l1-norm
of x by ‖x‖, ‖x‖2 and ‖x‖1.

2.2. System and attack model

This work is concerned with the problem of state reconstruc-
tion of LTI systems. We consider the scenario in which sensors
and actuators are both prone to adversarial attacks. The ultimate
goal is to reconstruct the state despite these attacks. In this part,
we define the attack model and conclude this section with the
precise problem statement. The system S, is described by the
following equations:

x(t + 1) = Ax(t)+ BuS(t),

yS(t) = Cx(t)+ DuS(t). (6)

Without loss of generality we assume
[

BT DT
]T

to be of full
column rank.

Each actuator (sensor) corresponds to one input (output) and
we use input (output) instead of actuator (sensor) in the rest of
this paper. In this set up the adversary can attack both inputs and
outputs. We model these attacks by the additive terms:
{

uS(t) = u(t)+ w(t)

y(t) = yS(t)+ a(t),
(7)

where u(t) ∈ R
m and y(t) ∈ R

p are the controller-designed
input and the observed output, respectively, and w(t) ∈ R

m and
a(t) ∈ R

p are signals injected by the malicious agent. We note that
an actuator attack changes the plant model since uS in (6) is given
by (7) and may be different from u. However, a sensor attack does
not. Instead, a sensor attack changes the input y to the controller
that may become different from yS according to (7). In the rest of

this paper, we refer to the signals (w (t) , a(t)) as the attack of the
adversarial agent. We use the subscript S for signals that directly
come from/to the system. The controller can only observe y(t) and
compute the input u(t). This generic attack model is depicted in
Fig. 1.

When the adversary attacks an input (output) it can change
its value to any arbitrary number without explicitly revealing its
presence. The only limitation that we impose on the power of the
malicious agent is the maximal number of inputs and outputs that
can be attacked.

Assumption 1 (Bound on the Number of Attacks). The number of
inputs and outputs under attack is bounded by r and s, respec-
tively.

Therefore, the malicious agent can attack a subset of inputs
and outputs denoted by Γu ⊆ {1, . . . ,m} and Γ y ⊆ {1, . . . , p},

1

respectively, with |Γu| ≤ r and |Γ y| ≤ s, such that supp({w(t)}) ⊆
Γu and supp({a(t)}) ⊆ Γ y. Note that these sets are not known
to the controller and only upper bounds on their cardinality are
given. Once the adversary chooses these sets, inputs and outputs
outside these sets remain attack-free. This assumption is realistic
when the time it takes for the adversarial agent to attack new
inputs and outputs is large compared to the time scale of the
system.

We now precisely define the main problem we tackle in this
paper.

Problem 2 (Secure State Reconstruction). For the linear system
defined by (6) under the attack model defined by (7), what are
necessary and sufficient conditions under which the state of the
compromised system (6) can be reconstructed with bounded
delay?

It is well-known that the secure state reconstruction problem,
when only outputs are under adversarial attacks, is combinatorial
and belongs to the class of NP-hard problems (Pasqualetti et al.,
2013; Shoukry et al., 2017). Therefore we are motivated to design
an observer that harness the complexity of this problem.

Problem 3 (Secure Observer Design). Assuming conditions in
Problem 2 are satisfied, how can we design an observer that
reconstructs the state of the compromised system?

3. Conditions for secure state reconstruction

In this section, we solve Problem 2, i.e., we provide conditions
on the system described by (6) under which state reconstruc-
tion (with bounded delay) is possible. We first develop the no-
tion of sparse strong observability. This section concludes with
Theorem 8 that relates this notion to the solution of Problem 2.

In the absence of attacks, the problem of reconstructing the
state of a system without the knowledge of some of its inputs
has been investigated and its solution characterized by the notion
of strong observability (Hautus, 1983). In the case of an attack,
we can think of unknown inputs as the signals injected by an
adversary in a sensor attack. We now recall the notion of strong
observability.

Definition 4 (Strong Observability). An LTI system, given by (1), is
called strongly observable if for any initial state x(0) ∈ R

n and any
input sequence {u(t) ∈ R

m}∞t=0 there exists an integer τ ∈ N∪{0}
such that x(0) can be uniquely recovered from {y(t)}τt=0.

1 For ease of exposition, we use Γu to denote under-attack inputs while using

Γy for the set of attack-free outputs, i.e., the set of under-attack outputs is

represented by Γ y := {1, . . . , p} \ Γy in this paper.
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Note that τ is always upper-bounded by the order of the
system. Linearity of the system implies the following lemma.

Lemma 5. An LTI system, given by (1), is strongly observable if and

only if y(t) = 0 ∀t ∈ N ∪ {0} implies that x(0) = 0.

Proof. Please refer to Appendix.

It is straightforward to conclude the following corollary.

Corollary 6. An LTI system, given by (1), is not strongly observable

if and only if there exist a non-zero initial state and an input

sequence such that y(t) = 0 for t ∈ N ∪ {0}.

Proof. Follows directly from Lemma 5.

It is well-understood that when the adversary is restricted to
attacking outputs, state reconstruction is possible only if there
is enough redundancy in the outputs of the system. This redun-
dancy can be stated in terms of observability of the system while
removing a number of outputs. This property has been formalized
in Fawzi et al. (2014) and is called sparse observability (Shoukry
& Tabuada, 2016). By analogy with sparse observability, we define
the notion of (r, s)-sparse strong observability as follows:

Definition 7 ((r, s)-sparse Strong Observability). An LTI system
(A, B, C,D) with m inputs and p outputs, given by (1), is (r, s)-
sparse strongly observable if for any Γu ⊆ {1, . . . ,m} and
Γy ⊆ {1, . . . , p} with |Γu| ≤ r and |Γy| ≥ p − s, the system
(A, B(.,Γu), C(Γy,.),D(Γy,Γu)) is strongly observable.

Note that in Definition 7, the value of r and s are upper
bounded by the number of inputs and outputs, respectively. This
modified notion of strong observability is the key for formalizing
redundancy across inputs and outputs. We show that a necessary
and sufficient condition for secure state reconstruction can be
stated using this property. Note that (0, s)-sparse strong observ-
ability is equivalent to the notion of s-sparse observability that
was introduced before in the literature (Fawzi et al., 2014; Mishra
et al., 2017; Shoukry & Tabuada, 2016). The following theorem is
the main theoretical result in this paper.

Theorem 8. Consider an LTI system, given by (1), subject to sensor

and actuator attacks according to the attack model (7) and let

the number of attacked inputs and outputs be bounded by r and

s, respectively. The state of the LTI system can be reconstructed

(possibly with delay) if and only if the LTI system is (2r, 2s)-sparse
strongly observable.

Remark 9. It is worth mentioning that the maximum number
of attacked outputs, s, cannot be greater than

⌊

p

2

⌋

and it is an
inherent limitation of LTI systems with p outputs (Fawzi et al.,
2014). However the maximum number of attacked inputs is
not inherently restricted by

⌊

m
2

⌋

and can take values up to m,
depending on the specific system under the consideration.

Remark 10. Pasqualetti et al. (2013) addressed the problem of
attack detection and identification in the presence of adversarial
inputs and outputs for continuous-time LTI systems. They showed
that attack identification is possible if and if for any Γu ⊆
{1, . . . ,m} and Γy ⊆ {1, . . . , p} with |Γu| ≤ 2r and |Γy| ≥ p− 2s,
the system (A, B(.,Γu), C(Γy,.),D(Γy,Γu)) does not have any invariant
zeros.

If one is able to correctly reconstruct the state despite an
attack, then using the dynamics we can also reconstruct the
signals injected by the adversary. Hence, solvability of the se-
cure state reconstruction problem implies attack detectability and

identifiability. Conversely, if one is able to reconstruct the signals
injected by the adversary, then it is possible to reconstruct the
state. Hence, the problem of reconstructing the attacks and the
problem of reconstructing the state are equivalent. Technically,
the characterization of attack identifiability in Pasqualetti et al.
(2013) is based on the absence of invariant zeros and it is known
(see, for example Theorem 1.8 in Hautus, 1983) that strongly
observable LTI systems do not have invariant zeros. Therefore, an
alternative proof of Theorem 8 could be given in terms of attack
identifiability. Here, however, we give a direct proof without
resorting to attack identifiability.

Proof. First we show that (2r, 2s)-sparse strong observability is
a sufficient condition for correctly reconstructing the state. For
the sake of the contradiction, assume that the state cannot be re-
constructed, i.e., there exist two different (initial) states, denoted
by x(1) and x(2), that cannot be distinguished under this attack
model. More precisely, there exist two attack strategies that
will lead to the same exact (observed) trajectories. We reserve
superscripts .(1) and .(2) for variables across those scenarios. Let
us denote the adversarial additive terms by {w(1)(t)}, {a(1)(t)} and
{w(2)(t)}, {a(2)(t)}. We represent the corresponding inputs and

outputs of the system by {u
(1)
S (t)}, {y

(1)
S (t)} and {u

(2)
S (t)}, {y

(2)
S (t)},

and the common (corrupted) measured output and the controller
input sequences are denoted by {y(t)} and {u(t)}, respectively.

By the assumption of the attack model (7), there exist Γ
(i)
u , Γ

(i)

y

for i ∈ {1, 2} with bounded cardinality such that:

supp({w(i)(t)}) ⊆ Γ (i)
u , supp({a(i)(t)}) ⊆ Γ

(i)

y , (8)

for i ∈ {1, 2}. Note that:
{

u
(1)
S (t) = u(t)+ w(1)(t)

u
(2)
S (t) = u(t)+ w(2)(t),

(9)

where u(t) is the controller designed input. Therefore:

supp({u
(1)
S (t)− u

(2)
S (t)}) = supp({w(1)(t)− w(2)(t)})

⊆ Γ (1)
u ∪ Γ (2)

u . (10)

Similarly, it is straightforward to conclude the inclusion

supp({y
(1)
S (t) − y

(2)
S (t)}) ⊆ Γ

(1)

y ∪ Γ
(2)

y . We are ready to reach

the contradiction. The underlying system is LTI, thus the in-

put sequence {u
(1)
S (t) − u

(2)
S (t)} with the initial state x(1) − x(2)

generates the output sequence {y
(1)
S (t) − y

(2)
S (t)}. The underlying

system is (2r, 2s)-sparse strongly observable so the sub-system
(A, B(.,Γu), C(Γy,.),D(Γy,Γu)) is strongly observable for any |Γu| = 2r
and |Γy| = p−2s. Let us choose Γu and Γy as any set of 2r inputs
and p− 2s outputs such that:

Γ (1)
u ∪ Γ (2)

u ⊆ Γu, Γy ⊆ Γ (1)
y ∩ Γ (2)

y . (11)

Note that {y
(1)
S (t)|Γy−y

(2)
S (t)|Γy} is a zero sequence, hence by

Lemma 5 we conclude that the corresponding initial state (x(1) −
x(2)) is zero, which contradicts the assumption of x(1) 6= x(2). Now
we prove that (2r, 2s)-sparse strong observability is a necessary
condition. For the sake of contradiction, suppose that the sys-
tem described by (6) is not (2r, 2s)-sparse strongly observable,
however, reconstructing the state (possibly with delays) is still
possible. We construct two system trajectories with different
(initial) states that have exactly the same input and output
sequences under suitable attack strategies (additive terms). This
implies that reconstructing the correct state is indeed impossible
thereby establishing the desired contradiction.

By the assumption of the contradiction, the underlying system
is not (2r, 2s)-sparse strongly observable, so there exist subsets of
inputs and outputs denoted by Γu with |Γu| = 2r and Γy with
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|Γy| = p − 2s, respectively, such that (A, B(.,Γu), C(Γy,.),D(Γy,Γu))
is not strongly observable. Corollary 6 implies that there exist
an initial condition ∆x and an input sequence {∆u(t)} (with
its support lying inside Γu) that generates an output sequence
{∆y(t)} with supp({∆y(t)}) ⊆ Γ y. One can rewrite ∆u(t) and
∆y(t) as sum of two sparse signals, more precisely:

∆u(t) = ∆u(1)(t)+∆u(2)(t), (12)

∆y(t) = ∆y(1)(t)+∆y(2)(t), (13)

where cardinality of supp({∆u(i)(t)}) and supp({∆y(i)(t)}) are
upper-bounded by r and s for i ∈ {1, 2}, respectively. For example,

we can rewrite Γ y = Γ
(1)

y ∪ Γ
(2)

y where |Γ
(i)

y | ≤ s for i ∈ {1, 2}.
Then we define:
{

∆y(i)(t)|
Γ

(i)
y
:= ∆y(t)|

Γ
(i)

∆y(i)(t)|
Γ

(i)
y
:= 0,

for i ∈ {1, 2}.

Now consider the following two different trajectories of the sys-
tem:
{

u
(1)
S (t) = ∆u(t)

y
(1)
S (t) = ∆y(t),







u
(2)
S (t) = 0

y
(2)
S (t) = 0,

(14)

with their initial states:
{

x(1)(0) = ∆x

x(2)(0) = 0,
(15)

and their corresponding attack strategies:
{

w(1)(t) = ∆u(1)(t)

a(1)(t) = −∆y(1)(t),

{

w(2)(t) = −∆u(2)(t)

a(2)(t) = ∆y(2)(t).
(16)

It is straightforward to verify that {y(1)(t)} = {y(2)(t)} and {u(1)(t)}
= {u(2)(t)}, i.e., under the attack model (7) the controlled in-
puts and the observed outputs are exactly the same for both
trajectories while having different states, therefore the proof is
complete.

4. Secure observer design

In this section, we seek solutions to Problem 3. In the first
part, we explain the intuition behind the proposed algorithm
that reconstructs the state despite attacks on inputs and outputs.
We give formal guarantees that the algorithm reconstructs the
state correctly. In the second part, we introduce the observer
by leveraging the SMT paradigm followed by two methods that
enhance the run time of state reconstruction.

Based on the attack model (7), the input to the system is
decomposed into two additive terms, the controller-designed
input u(t) and the adversarial input w(t). The underlying system
(6) is linear and therefore we can easily exclude the effect of
the controller-designed input from the output by subtracting its
effect. Hence, without loss of generality we assume that the true
u(t) is zero.

The proposed algorithm is based on the following proposition.

Proposition 11. Consider an LTI system, given by (1), assume it is

(2r, 2s)-sparse strongly observable, and that the number of attacked

inputs and outputs is bounded by r and s, respectively. Given any

subset of inputs and outputs denoted by Γu and Γy with |Γu| ≤ r

and |Γy| ≥ p− s, the first statement below implies the second:

(1) There exist Û ∈ R
n|T | and x̂ ∈ R

n such that

Y|Γy (t) = OΓy x̂+NΓu→Γy Û. (17)

(2) The reconstructed state x̂, is equal to the actual state of the

LTI system at time t−n+1, x(t−n+1), where n is the order

of the LTI system.

Remark 12. The LTI system is (2r, 2s)-sparse strongly observable
therefore (A, B(.,Γu), C(Γy,.),D(Γy,Γu)) is strongly observable. If (17)

has a solution, then x̂ would be the unique solution for x (see
section III-B of Yoshikawa & Bhattacharyya, 1975).

Proof. Let us denote the set of attack-free outputs and under-
attack inputs by Γ ∗y and Γ ∗u . At most s outputs are under attack,
therefore |Γy ∩ Γ ∗y |≥ p− 2s. Note that Y|Γy∩Γ

∗
y
can be written as

follows:

Y|Γy∩Γ
∗
y
=OΓy∩Γ

∗
y
x(t − n+ 1)

+NΓu→Γy∩Γ
∗
y
W|Γu +NΓ ∗u \Γu→Γy∩Γ

∗
y
W|Γ ∗u \Γu

, (18)

where W is the sequence of inputs used to generate Y. On
the other hand, we can rewrite (17) by taking only outputs in
Γy ∩ Γ ∗y :

Y|Γy∩Γ
∗
y
= OΓy∩Γ

∗
y
x̂+NΓu→Γy∩Γ

∗
y
Û+NΓ ∗u \Γu→Γy∩Γ

∗
y
0, (19)

where 0 is a zero vector with appropriate dimensions. The un-
derlying system is (2r, 2s)-sparse strongly observable, therefore

we conclude that the sub-system Ŝ := (A, B(.,Γu∪Γ
∗
u ), C(Γy∩Γ

∗
y ,.),

D(Γy∩Γ
∗
y ,Γu∪Γ

∗
u )) is strongly observable. One can reinterpret both

equations as two (possibly different) valid trajectories of the sys-

tem Ŝ that share the same output sequence. Strong observability

of Ŝ implies that x̂ = x(t − n+ 1) which completes the proof.

The main algorithm in this paper builds upon this proposition.
We search for a set of inputs and outputs that satisfies equality

(17), i.e., we check if there exist Û and x̂ that make equality (17)
hold. Based on Proposition 11, we define a consistency check as
follows,

Test 1 (Consistency Check). Given subsets of inputs and outputs

denoted by Γu and Γy, TEST(Γu, Γy) returns true if:

min
Û,x̂

‖Y|Γy−OΓy x̂−NΓu→Γy Û‖ ≤ ε, (20)

where ε > 0 is the solver tolerance, due to numerical errors.

However, for the sake of clarity, we focus in this paper on the case

when ε is negligible.2

Finding the right subset of inputs and outputs that satisfies
this test is a combinatorial problem in nature and requires ex-
haustive search. It is well-known that secure state reconstruction
under this attack model is in general NP-hard (Pasqualetti et al.,
2013; Shoukry et al., 2017). This test is depicted in Algorithm 2.

In the rest of this section, we introduce an architecture for our
observer followed by methods to improve its computational per-
formance. For each input (output), we assign a Boolean variable
bi ∈ B (ci ∈ B) that indicates if the corresponding input (output)
is under attack or not, i.e., bi = 1 (ci = 1) if the ith input (output)
is under attack. In the rest of this paper, we use the bold letters
(b and c) to denote these Boolean variables and we reserve non-
bold type face (b and c) as instances of them. Finding the right
assignment of these Boolean variables is combinatorial in nature
and in order to efficiently decide which set of inputs and outputs
satisfies the TEST in (20), we design an observer using the lazy
SMT paradigm (Barrett, Sebastiani, Seshia, & Tinelli, 2009).

2 Note that the minimum always exists for (20) as the cost function is a

semi-definite quadratic function.
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Fig. 2. The lazy SMT paradigm.

4.1. Overall architecture

The observer consists of two blocks that interact with each
other, a propositional satisfiability (SAT) solver and a theory
solver. A SAT solver is an algorithm that, given a propositional
logic formula, finds an assignment to the truth values of the
formula’s atomic propositions so as to make the formula true.
In this paper we consider solvers that can also handle pseudo-
Boolean constraints/formulas, such as a counting the number of
atomic propositions that are true or false. In the remainder of the
paper we refer to atomic propositions as Boolean variables. The
SAT solver will be used to produce an instance of b ∈ B

m and
c ∈ B

p that will be checked for consistency, by the theory solver,
using the consistency test. When the test fails, the inconsistency
is encoded in a pseudo-Boolean constraint that is returned to the
SAT solver. The general architecture is depicted in Fig. 2 and we
now describe each of the steps in more detail.

The initial pseudo-Boolean constraint only bounds the number
of attacked inputs and outputs, i.e.:

ΦB := (

m
∑

i=1

bi ≤ r)
∧

(

p
∑

j=1

ci ≤ s). (21)

Initially, the SAT solver generates instances of b and c that satisfy
ΦB. The theory solver checks whether Γu := supp(b) and Γy :=

supp(c) satisfies the consistency check. If the test is satisfied, then
the algorithm terminates and returns the (delayed) reconstructed
state. Otherwise, the theory solver outputs UNSAT and generates
a reason for the conflict, a certificate, or a counterexample that is
denoted by Φcert. This counterexample encodes the inconsistency
among the chosen inputs and outputs. The following always
constitutes a (naive) certificate:

Φnaive-cert :=
∑

i∈supp(b)

bi +
∑

j∈supp(c)

cj ≥ 1. (22)

On the next iteration, the SAT solver updates the constraint by
conjoining Φcert to ΦB, and generates another feasible assignment
for b and c. This procedure is repeated until the theory solver
returns SAT as illustrated in Algorithm 1.

Algorithm 1. Secure state observer

Require: A, B, C,D (system), Y (output), r, s (bounds)
1: status← UNSAT
2: Φcert ← True
3: ΦB ← (

∑

i∈{1,...,m}

bi ≤ r)
∧

(
∑

i∈{1,...,p}

ci ≤ s)

4: while status = UNSAT do

5: ΦB ← ΦB

∧

Φcert

6: (b, c)← SAT-solver(ΦB)
7: (status, x)← T-solver.check(supp(b), supp(c))
8: Φcert ← T-solver.Certificate(supp(b), supp(c))

9: return (x, b, c)

Note that Proposition 11 implies that the SAT solver eventually
produces an assignment that satisfies the consistency test and
therefore Algorithm 1 always terminates. The size of the cer-
tificate plays an important role in the overall execution time of
the algorithm (Shoukry et al., 2017). Note that the attack model
considered in Shoukry et al. (2017) is restricted to outputs, and
the major contribution of our work is to handle both input and
output attacks. In the next section, we focus on constructing
shorter counterexamples to improve the run time.

Algorithm 2. T-solver.check

Require: Γu, Γy

1: Solve: (x̂, Û) = argminx,U‖Y|Γy−OΓyx−NΓu→ΓyU‖

2: if ‖Y|Γy−OΓy x̂−NΓu→Γy Û‖ ≤ ε then

3: status = SAT
4: else

5: status = UNSAT
6: return (status, x̂)

4.2. SAT certificate

In this part, we improve the efficiency of Algorithm 1 by
constructing a shorter certificate (counter-example or conflicts).
As it was discussed before, the naive certificate only excludes
the current assignment of b and c from the search space of the
SAT solver, however, by exploiting the structure of the underlying
system, we show that we can further decrease the size of the
certificate and therefore prune the search space more efficiently.

One of the main results of this paper is to show that we can
always find a smaller conflicting subset of inputs and outputs. We
propose two methods for generating shorter certificates. The first
method reduces the size of the counterexample by at least s− 1,
we explain this method in Lemma 13 and give a formal proof of
the existence of such shorter certificate. In practice, however we
observe the reduction in the length of conflicts is much larger
than this theoretical bound. The second method is inspired by the
QuickXplain algorithm. This method generates counter-examples
that are irreducible, meaning that we cannot reduce the size of
the counter-example by removing some of it’s entries. We also
note that by generating multiple certificates at each iteration we
can further enhance the execution time. At the end of this section
Lemma 15 states that for a generic LTI system the size of the
certificate cannot be smaller than m+ 1.

Let us assume the SAT solver hypothesized Γ SAT
u := supp(b)

and Γ SAT
y := supp(c) as the set of compromised inputs and safe

outputs, respectively. The main intuition behind both methods is
to look for Γ cert

u ⊇ Γ SAT
u and Γ cert

y ⊆ Γ SAT
y that would not satisfy

the consistency test. Note that the certificate consists of inputs in

Γ
cert

u and outputs in Γ cert
y .

4.3. Method I based on heuristics

Method I reduces the size of the certificate by increasing
the size of (supposedly under attack) inputs (Γ cert

u ) followed
by decreasing the size of (supposedly safe) outputs (Γ cert

u ). The
summary of the above procedure of shortening certificates is
illustrated in Algorithm 3. We begin by adding inputs to Γ SAT

u

while making sure TEST still returns false and the number of
inputs is bounded by 2r . Let us denote this new set of inputs by
Γ cert
u .
At the second step, we shrink the set of conflicting outputs in

order to further shorten the size of the counterexample. Let us
denote a subset of Γ SAT

y of size p − 2s by Γ
temp
y . The following

lemma shows we can reduce the size of conflicting outputs at
least by s− 1.
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Algorithm 3. T-solver.Certificate 1

Require: Γ SAT
u , Γ SAT

y

step 1: Conduct a linear search in the input set

1: Sort Γ
SAT

u

2: status← UNSAT, j← ∅, Γ cert
u ← Γ SAT

u

3: while status == UNSAT and |Γ cert
u |< 2r do

4: Γ cert
u ← Γ cert

u ∪ {j}

5: pick another input j ∈ Γ
SAT

u

6: (status, x)← T-Solver.check(Γ cert
u ∪ {j}, Γ SAT

y )

step 2: Conduct a linear search in the output set
7: Sort Γ SAT

y

8: Pick a subset of size p− 2s: Γ
temp
y ⊆ Γ SAT

y

9: status← SAT, i← ∅
10: while status == SAT do

11: Γ cert
y ← Γ

temp
y ∪ {i}

12: (status, x)← T-Solver.check(Γ cert
u , Γ cert

y )

13: Pick another output i ∈ Γ SAT
y \ Γ

temp
y

14: Φ1
cert ←

∑

j∈Γ
cert
u

bj +
∑

i∈Γ cert
y

ci ≥ 1

15: return Φ1
cert

Lemma 13. Consider an LTI system, given by (1), assume it is
(2r, 2s)-sparse strongly observable, and that the number of attacked
inputs and outputs is bounded by r and s, respectively. Pick any sub-
set of inputs and outputs denoted by Γ cert

u and Γ SAT
y with |Γ cert

u | ≤

2r and |Γ SAT
y | ≥ p−s, that do not satisfy the consistency check (20).

Given any subset of at most p−2s outputs denoted by Γ
temp
y ⊆ Γ SAT

y ,
one of the following is true:

(1) TEST(Γ cert
u , Γ

temp
y ) returns false,

(2) There exists an output i ∈ Γ SAT
y \ Γ

temp
y such that TEST(Γ cert

u ,

Γ
temp
y ∪ {i}) returns false.

Proof. Please refer to Appendix.

We denote this smaller set of conflicting outputs Γ
temp
y (if

TEST(Γ cert
u , Γ

temp
y ) returns false, otherwise Γ

temp
y ∪ {i}) by Γ cert

y .
Lemma 13 gives formal guarantees of the existence of shorter
certificates which hold no matter how the subsets of inputs and
outputs (Γ

temp
u and Γ

temp
y ) are chosen. This lemma shows that

Method I reduces the size of the certificate by at least s− 1.
In practice, we choose these subsets based on heuristics that

have for objective a decrease in the overall running time. We
assign slack variables to inputs and outputs similarly to Shoukry
et al. (2017) and Showkatbakhsh et al. (2017), and sort them
based on the structure of the system. Recall that Algorithm 3
shortens the certificate by reducing the number of inputs fol-
lowed by the reduction in the number of outputs, i.e., we simul-
taneously reducing both inputs and outputs in the certificate. We
observe that by generating two counterexamples, we can prune
the search space of the SAT solver more efficiently. Similarly to
Algorithm 5, we can find two counterexamples by reducing the
number of inputs following a reduction in the number of outputs
and vice-verse.

Sorting Γ
SAT

u and Γ SAT
y :

Assuming TEST(Γ SAT
u , Γ SAT

y ) returns false, we assign slack vari-

ables to inputs in Γ
SAT

u and outputs in Γ SAT
y , denoted by slacku(j)

and slacky(i), respectively. Let us denote a solution to the opti-

mization (20) inside TEST(Γ SAT
u , Γ SAT

y ) by x̂ and Û.

We define slacku(j) for j ∈ Γ
SAT

u as the norm of the projec-

tion of Y|
Γ SAT
y
−O

Γ SAT
y

x̂ − N
Γ SAT
u →Γ SAT

y
Û onto the column space of

Nj→Γ SAT
y

:

slacku(j) := (23)

‖ Nj→Γ SAT
y

N
†

j→Γ SAT
y

(

Y|
Γ SAT
y
−O

Γ SAT
y

x̂−N
Γ SAT
u →Γ SAT

y
Û

)

‖ .

This slack variable measures how much of the residual can be
justified by considering j in addition to Γ SAT

u . Note that we want
to append inputs to Γ SAT

u while having a false TEST. We first
normalize these slack variables by the norm of the correspond-

ing invertibility matrix, and Γ
SAT

u is obtained by sorting slack
variables in ascending order.

We define slacky(i) as the residual of each output:

slacky(i) := ‖Y|i−Oix̂−N
Γ SAT
u →{i}U‖, i ∈ Γ SAT

y . (24)

Note that:
∑

i∈Γ SAT
u

slacky(i) = min
Û,x̂

‖Y|
Γ SAT
y
−O

Γ SAT
y

x̂−N
Γ SAT
u →Γ SAT

y
Û‖. (25)

We first normalize each slack variable by the norm of the cor-
responding observability matrix. Recall that we aim to find a
smaller subset of Γ SAT

u while ensuring TEST returns false. We pick
the output with the highest slack variable as the first element
of Γ SAT

u . We sort the rest based on the dimension of the kernel
of each observability matrix, following the intuition provided
in Shoukry et al. (2017).

4.4. Method II based on QuickXplain

The second method (Algorithm 5) is inspired by QuickXplain

and generates a counter-example by pruning the naive-certificate
(22) to make it irreducible. We formally define this property as
follows.

Definition 14 (Irreducible Certificate). A certificate consisting of
inputs Γ u and outputs Γy is irreducible, if no other subset of it

can generate a conflict, i.e., for all subsets denoted by Γ
′

u ⊆ Γ u

and Γ ′y ⊆ Γy the following are equivalent:

(1) Γ
′

u and Γ ′y generate a conflict.

(2) Γ
′

u = Γ u and Γ ′y = Γy.

One cannot prune irreducible certificates and each element
is necessary for the set to remain a counter-example. Let ∆SAT

be the elements (consisting of inputs Γ
SAT

u and outputs Γ SAT
y )

of the naive certificate. For ease of exposition we slightly abuse
notation to denote TEST(Γ SAT

u , Γ SAT
y ) by TEST(∆SAT). We denote

the output of this algorithm by ∆cert which consists of inputs Γ
cert

u

and outputs Γ cert
y .

This method consists of an exploration phase in which it finds
an element (input or output) that belongs to an irreducible certifi-
cate. Let us denote an enumeration of ∆SAT by e1, . . . , ek, and the
internal state by ∆temp ← ∅. This method begins by adding step-
by-step elements of ∆SAT to ∆temp. The first element (ei ∈ ∆SAT)
that fails TEST(∆temp) is part of an irreducible certificate, and
therefore is added to ∆cert.

In order to find further elements of this certificate, we keep ei
in the background and the first element that fails the consistency
check is added to ∆cert. This repeated process can be implemented
efficiently by using the divide and conquer paradigm as depicted
in Algorithm 4. When an element ei of ∆SAT is detected we
divide the remaining elements into two disjoint subsets ∆1 :=
{e1, . . . , ej} and ∆2 := {ej+1, . . . , ei−1}. We can now recursively
apply the algorithm to find a conflict ∆2

cert among ∆2 by keeping
the set ∆1 in the background and a conflict ∆1

cert among ∆1 by
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keeping the set ∆2
cert in the background. This method of finding

an irreducible subset is depicted in Algorithm 4
Note that the resulting counter-example depends on the initial

enumeration of elements in ∆SAT. If all the inputs (outputs) are
ahead of outputs (inputs), then the resulting counter-example
mostly consists of inputs (outputs). In order to have the maximal
reduction in the search space of the SAT solver at each iteration,
we produce three certificate using this method, putting inputs
first, outputs first and mixing both inputs and outputs.

In the last part of this section, we look at the certificate size for
a generic LTI system. We observe that the certificate size cannot
be smaller that the number of inputs which is stated formally in
the following lemma.

Algorithm 4. T-solver.QuickXplain

Require: ∆0
cert, ∆0

1: if T-solver.check(∆0
cert) = UNSAT or ∆0 == ∅ then

2: return ∅
Let e1, · · · , ek be an enumeration of ∆0

3: i← 0, ∆temp ← ∆0
cert,

4: while T-solver.check(∆temp) = SAT and i ≤ k do

5: i← i+ 1
6: ∆temp ← ∆temp ∪ ei
7: ∆i

cert ← ∆temp

8: ∆cert ← ei, j← ⌊
i
2
⌋

9: ∆1 ← {e1, · · · , ej}

10: ∆2 ← {ej+1, · · · , ei−1}

11: ∆cert ← ∆cert∪ T-solver.QuickXplain(∆
j
cert ∪∆cert, ∆2)

12: ∆cert ← ∆cert∪ T-solver.QuickXplain(∆0
cert ∪∆cert, ∆1)

13: return ∆cert

Algorithm 5. T-solver.Certificate 2

Require: Γ SAT
u , Γ SAT

y

1: ∆cert ← T-solver.QuickXplain(∅, Γ
SAT

u ∪ Γ SAT
y )

2: Divide ∆cert to inputs Γ
cert

u and outputs Γ cert
y

3: Φ2
cert ←

∑

j∈Γ
cert
u

bj +
∑

i∈Γ cert
y

ci ≥ 1

4: return Φ2
cert

Lemma 15. For an LTI system, given by (1), the size of the certificate
is always lower bounded by m+1, where m is the number of inputs.

Proof. Please refer to Appendix.

5. Simulation results

We implemented our SMT-based observer in Matlab while in-
terfacing with the SAT solver SAT4J (Le Berre & Parrain, 2010) and
assessed its performance in two case studies, randomly generated
LTI systems and a chemical plant. We report the overall running
time by using the two proposed methods, Algorithms 3 and 5.

5.1. Random systems

We randomly generate systems with a fixed state dimension
(n = 40) and increase the number of inputs and outputs. Each
system is generated by drawing entries of (A, B, C,D) according
to uniform distribution, when necessary we scale A to ensure that
the spectral radius is close to one. In each experiment, twenty
percent of inputs and outputs are under adversarial attacks, and
we generate the support set for the adversarial signals uniformly

Fig. 3. Number of calls to the SAT solver in Algorithm 1 using Φ1
cert , Φ

2
cert versus

the number of outputs (p) for a fixed number of inputs. Green dotted and green

dashed lines are upper-bounds for the number of the SAT solver calls when

using the naive certificate for m = 5 and m = 10, respectively.

Fig. 4. Execution time of Algorithm 1 using Φ1
cert , Φ2

cert versus the number of

outputs (p) and inputs (m).

at random. Attack signals and the initial states are drawn accord-

ing to independent and normally distributed random variables

with zero mean and unit variance. All the systems under exper-

iment satisfy a suitable sparse strong observability condition as

described in Section 3.

Figs. 3 and 4 report the results of the simulations, each point

represents the average of 20 experiments. All the experiments

run on an Intel Core i5 2.7 GHz processor with 16 GB of RAM.

We verify the run-time improvement resulting from using the

shorter certificates, Φ1
cert and Φ2

cert, compared to the theoretical

upper-bound of the brute-force approach in Fig. 3. For instance,

consider the scenario with p = 24 and m = 10 in Figs. 3 and 4.

In the brute-force approach, we require to check all
(

24

4

)

×
(

10

2

)

≈ 4.8 × 105 different combinations of inputs and outputs, how-

ever, by exploiting either Φ1
cert or Φ2

cert we observe a substantial

improvement. We observe that although Φ2
cert gives a worse run

time for systems with smaller number of outputs, it scales better

compared to Φ1
cert when the number of inputs and outputs grow.

5.2. Chemical plant

In this part, we use the proposed observer to detect attacks on

inputs and outputs of a simplified version of the Tennessee East-

man control challenge problem (Downs & Vogel, 1993). Ricker

(1993) derived a continuous time LTI model of the plant in-

teraction in its steady state. This system consists of 4 control

inputs and 10 measured outputs and the linearized model has 8
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Table 1

Average performance of the proposed observer.

Overall execution time Number of calls to the SAT solver

Φ1
cert 0.22 s 20.05

Φ2
cert 0.21 s 7.95

state variables. The structure of the continuous-time dynamics is
reported below.

dx

dt
=





















∗ ∗ ∗ ∗ ∗ ∗ ∗ 0
∗ ∗ ∗ ∗ ∗ 0 ∗ 0
∗ ∗ ∗ ∗ ∗ 0 ∗ 0
∗ ∗ ∗ ∗ 0 0 0 ∗
0 0 0 0 ∗ 0 0 0
0 0 0 0 0 ∗ 0 0
0 0 0 0 0 0 ∗ 0
0 0 0 ∗ 0 0 0 ∗





















x+





















0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
∗ 0 0 0
0 ∗ 0 0
0 0 ∗ 0
0 0 0 ∗





















u,

y =





























0 0 0 0 ∗ 0 0 0
0 0 0 0 0 ∗ 0 0
∗ ∗ ∗ ∗ 0 0 ∗ 0
∗ ∗ ∗ ∗ 0 0 0 ∗
∗ ∗ ∗ ∗ 0 0 0 0
0 0 0 ∗ 0 0 0 0
∗ ∗ ∗ 0 0 0 0 0
∗ ∗ ∗ 0 0 0 0 0
∗ ∗ ∗ 0 0 0 0 0
∗ ∗ ∗ 0 0 0 ∗ ∗





























x,

where ∗ represents a non-zero entry,3 and x ∈ R
8, u ∈ R

4 and
y ∈ R

10 are state, input and output variables, respectively. The
only known limitation of this LTI model is the system should
operate close to its steady-state. We obtain a discrete-time model
by discretizing the continuous-time model assuming a zero-order
hold for the input u, with a time-step of 5s. The attacker can
read all the inputs and outputs and manipulate one control
input and two measured outputs. The discrete-time model is
(2, 4)-sparse strongly observable, therefore our observer can cor-
rectly reconstruct the state under this attack model.

We randomly generate attack signals and the initial state
according to independent and normally distributed random vari-
ables. The support set of attacks are drawn uniformly at random,
and in each experiment one input and two outputs are under
adversarial attacks.

The proposed observer in this paper can correctly reconstruct
the (delayed) state after 8 samples, and the average performance
of 20 experiments, by using Φ1

cert and Φ2
cert is reported in Table 1.

The overall execution time is the run time of the observer after
receiving all the required samples from the plant, and it does not
take the sampling time of the plant into account. We observe that
the execution time of the observer to reconstruct the state and to
detect attacks is much smaller compared to the sampling time of
the plant.

6. Conclusion

In this paper, we considered the problem of secure state
reconstruction when inputs and/or outputs are under adversarial
attacks. In this set-up, there is no restriction on how the adversary
manipulates inputs and outputs. By introducing the notion of
sparse strong observability, we derived necessary and sufficient
conditions under which state reconstruction is possible given
bounds on the number of attacked outputs and inputs. Further-
more, we demonstrated the scalability and effectiveness of the
proposed observer with numerical simulations.

3 For the exact dynamics of the LTI model, see Ricker (1993).

Appendix

Proof of Lemma 5. We first prove the sufficiency part. For the
sake of contradiction, suppose that the underlying system is not
strongly observable but the property of Lemma 5 is true. If the
underlying system (6) is not strongly observable, it means there
exist two initial conditions, denoted by x(1)(0) and x(2)(0) possibly
with different input sequences denoted by {u(1)(t)} and {u(2)(t)},
respectively, that correspond to the same output sequence {y(t)}.
The underlying system is linear, therefore the nonzero initial
condition of x(1)(0) − x(2)(0) with the input sequence {u(1)(t) −
u(2)(t)} produces the zero output sequence which contradicts the
property given in Lemma 5. The necessity can be concluded using
the similar argument. For the sake of contradiction let us assume
this property does not hold, i.e., there exists a non zero initial
state x(0) 6= 0 that corresponds to the zero output sequence.
This contradicts the strong observability since the zero output
sequence can be generated from both zero and x(0) 6= 0 as initial
conditions under (possibly different) input sequences.

Proof of Lemma 13. We prove this lemma with contradiction.
We show that if TEST(Γ cert

u , Γ
temp
y ∪ {i}) returns true for all

i ∈ Γ SAT
y \ Γ

temp
y then TEST(Γ cert

u , Γ SAT
y ) would also return true,

which contradicts the assumption of the lemma. By applying the
following lemma successively, the result follows directly.

Lemma 16. Consider an LTI system, given by (1), and assume it

is (2r, 2s)-sparse strongly observable. Pick any subset of inputs and

outputs denoted by Γ cert
u and Γ

temp
y with |Γ cert

u | ≤ 2r and |Γ
temp
y | ≥

p− 2s. Then for any subsets of outputs denoted by Γ 1
y and Γ 2

y , the

first statement implies the second:

(1) TEST(Γ cert
u , Γ

temp
y ∪ Γ 1

y ) and TEST(Γ cert
u , Γ

temp
y ∪ Γ 2

y ) return

true.

(2) TEST(Γ cert
u , Γ

temp
y ∪ Γ 1

y ∪ Γ 2
y ) returns true.

Proof. Without loss and generality we can assume Γ 1
y , Γ 2

y and

Γ
temp
y are all disjoint sets. Since TEST(Γ cert

u , Γ
temp
y ∪ Γ i

y ) returns
true for i ∈ {1, 2}, therefore we have:
[

Y|
Γ

temp
y

Y|
Γ 1
y

]

=

[

O
Γ

temp
y

O
Γ 1
y

]

x̂1 +

[

N
Γ cert
u →Γ

temp
y

N
Γ cert
u →Γ 1

y

]

Û1, (A.1)

[

Y|
Γ

temp
y

Y|
Γ 2
y

]

=

[

O
Γ

temp
y

O
Γ 2
y

]

x̂2 +

[

N
Γ cert
u →Γ

temp
y

N
Γ cert
u →Γ 2

y

]

Û2, (A.2)

where x̂1, x̂2 ∈ R
n are states that T-solver.check returns, Û1, Û2

are matrices with appropriate dimensions that satisfy TEST. Note
that the underlying system is (2r, 2s)-sparse strongly observable,

|Γ cert
u | ≤ 2r and |Γ

temp
y | ≥ p − s therefore Ŝ := (A, B(.,Γ cert

u ),

C
(Γ

temp
y ,.)

,D
(Γ

temp
y ,Γ cert

u )
) is strongly observable. One can reinterpret

(Û1,Y|
Γ

temp
y

) and (Û2,Y|
Γ

temp
y

) as two (possibly different) valid

trajectories of a strongly observable system Ŝ with identical out-
put sequences. Strong observability implies that the state can be
uniquely determined from the output with a delay bounded by n,
therefore x̂1 = x̂2. Furthermore, the equality of right hand sides
of (A.1) and (A.2) implies that:

N
Γ cert
u →Γ

temp
y

(Û2 − Û1) = 0, (A.3)

i.e., Û2 − Û1 is a zero dynamic of Ŝ. By (2r, 2s)-sparse strongly

observability of S, we conclude that Û2−Û1 is also a zero dynamic
of S, and therefore,

N
Γ cert
u →Γ 1

y
(Û2 − Û1) = 0, N

Γ cert
u →Γ 2

y
(Û2 − Û1) = 0. (A.4)
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Putting (A.1), (A.2) and (A.4) together with x̂1 = x̂2, we conclude
that:






Y|
Γ

temp
y

Y|
Γ 1
y

Y|
Γ 2
y






=







O
Γ

temp
y

O
Γ 1
y

O
Γ 2
y






x̂1 +







N
Γ cert
u →Γ

temp
y

N
Γ cert
u →Γ 1

y

N
Γ cert
u →Γ 2

y






Û1, (A.5)

i.e., TEST(Γ cert
u , Γ

temp
y ∪ Γ 1

y ∪ Γ 2
y ) returns false.

Proof Sketch of Lemma 15. Let us revisit the optimization (20)
inside the consistency check TEST(Γu, Γy):

min
x̂,Û

∥

∥

∥

∥

Y|Γy−
[

OΓy , NΓu→Γy

]

[

x̂

Û

]∥

∥

∥

∥

. (A.6)

For a generic LTI system, the matrix
[

OΓy , NΓu→Γy

]

∈

R
n|Γy|×n(1+|Γu|) is of full rank, where n is the order of the LTI

system. If
[

OΓy , NΓu→Γy

]

∈ R
n|Γy|×n(1+|Γu|) is of full row rank, then

TEST(Γu, Γy) is satisfied irrespectively of the actual values of Y|Γy .
Therefore in order to have a certificate constructed by inputs in
Γ u and outputs in Γy,

[

OΓy , NΓu→Γy

]

∈ R
n|Γy|×n(1+|Γu|) should be

a full column rank matrix, therefore:

n|Γy| ≥ n(1+ |Γu|). (A.7)

The certificate consists of inputs in Γ u and outputs in Γy, there-
fore the length of certificate is:

|Γ u| + |Γy| = m− |Γu| + |Γy| ≥ m+ 1. (A.8)
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