
Data Encoding Methods for Byzantine-Resilient

Distributed Optimization

Deepesh Data

University of California, Los Angeles

CA 90095, USA

Email: deepeshdata@ucla.edu

Linqi Song

City University of Hong Kong

Hong Kong SAR

Email: linqi.song@cityu.edu.hk

Suhas Diggavi

University of California, Los Angeles

CA 90095, USA

Email: suhasdiggavi@ucla.edu

Abstract—We consider distributed gradient computation,
where both data and computation are distributed among m

worker machines, t of which can be Byzantine adversaries,
and a designated (master) node computes the model/parameter
vector for generalized linear models, iteratively, using proximal
gradient descent (PGD), of which gradient descent (GD) is a
special case. The Byzantine adversaries can (collaboratively)
deviate arbitrarily from their gradient computation. To solve
this, we propose a method based on data encoding and (real)
error correction to combat the adversarial behavior. We can
tolerate up to t ≤ ⌊m−1

2
⌋ corrupt worker nodes, which is

information-theoretically optimal. Our method does not assume
any probability distribution on the data. We develop a sparse
encoding scheme which enables computationally efficient data
encoding. We demonstrate a trade-off between the number of
adversaries tolerated and the resource requirement (storage and
computational complexity). As an example, our scheme incurs
a constant overhead (storage and computational complexity)
over that required by the distributed PGD algorithm, without
adversaries, for t ≤ m

3
. Our encoding works as efficiently in

the streaming data setting as it does in the offline setting, in
which all the data is available beforehand.

I. INTRODUCTION

Map-reduce architecture [1] is implemented in many dis-

tributed learning tasks, where there is one designated machine

(called the master) that computes the model iteratively, based

on the inputs from the worker machines, at each iteration,

typically using descent techniques, like (proximal) gradient

descent, the Newton’s method, etc. The worker nodes per-

form the required computations using local data, distributed

to them [2].

In several applications of distributed learning, including the

Internet of Battlefield Things (IoBT) [3], federated optimiza-

tion [4], the recruited worker nodes might be partially trusted

with their computation. Therefore, an important question is

whether we can reliably perform distributed computation in

the presence of (Byzantine) adversaries, which can arbitrarily

deviate from their pre-specified programs. The problem of

distributed computation with Byzantine adversaries has a

long history [5], and there has been recent interest in applying

this model to large-scale distributed learning [6]–[8].

In this paper, we propose a Byzantine-resilient distributed

optimization algorithm based on data encoding and error

correction (over real numbers). Our proposed algorithm

differs from existing Byzantine-resilient distributed learning

algorithms in one or more of the following aspects: (i) it does

not make statistical assumptions on the data or Byzantine

attack patterns; (ii) it is information-theoretically optimal

and can tolerate up to a constant fraction (< 1/2) of the

worker nodes being Byzantine; (iii) it enables a trade-off (in

terms of storage and computation overhead in worker nodes)

with Byzantine adversary tolerance, without compromising

the efficiency at the master node.

Our algorithm encodes the data used by the m worker

nodes, using ideas from real-error correction to enable toler-

ance to Byzantine workers. It develops an efficient “decod-

ing” scheme at the master node, to process the inputs from

the workers, to compute the true gradient. It uses a two-

phase approach at each iteration of the gradient calculation.

The main result (summarized in Theorem 1) demonstrates a

trade-off between the Byzantine resilience (in terms of the

number of adversarial nodes) and the resource requirement

(storage and computational complexity). We can also handle

streaming data, where data arrives in batches, rather than

being available at the beginning of the computation. Finally,

the scheme can handle both Byzantine attacks and missing

updates (e.g., caused by delay and asynchrony of worker

nodes). Though data encoding is a one-time process, it

has to be efficient to harness the advantage of distributed

computation. We design a sparse encoding process, based on

real-error correction [9], which enables efficient encoding,

and the worker nodes alternatively locally encode using the

sparse structure. This allows encoding with multiplicative

storage redundancy of 2m/(m − 2t) (which is constant,

even if t is a constant fraction of m), and one-time total

computation cost for encoding is O((1 + 2t)nd), where n is

the number of data points each in dimension d.

Paper organization. Our problem formulation and the

main result are stated in Section II, which includes related

work. We present our scheme in Section III. Due to space

constraints, we give omitted details including an extension

of our encoding procedure to the data streaming model and

details of our numerical experiments in the full version [10].

Notation. We denote vectors by bold small letters (e.g., x,y,

etc.) and matrices by bold capital letters (e.g., A,F, etc.).

Let |X| denote the total space required to store the matrix

X. For any n ∈ N, we denote the set {1, 2, . . . , n} by [n].
The support of a vector u ∈ R

n is defined by supp(u) :=
{i ∈ [n] : ui 6= 0}.

�✁✂✄✄✁☎✆✂✆✝✞☎✟✆✄�✄✂✆�✠✂✄✠✡✞✂☛☞☞ ✌�☞✂✄ ✍✎✎✎ ✍✏✍✑ �☞✂✄

Authorized licensed use limited to: UCLA Library. Downloaded on August 23,2020 at 06:27:26 UTC from IEEE Xplore. Restrictions apply.

II. PROBLEM SETTING AND OUR RESULTS

Given a dataset consisting of n data points xi ∈ R
d, i ∈

[n], we want to learn a generalized linear model w ∈ R
d,

which is a minimizer of the following convex optimization

problem:

min
w∈Rd

f(w) + h(w) :=

(

1

n

n
∑

i=1

ℓ(〈xi,w〉)

)

+ h(w), (1)

where the loss function ℓ : R → R is convex and differ-

entiable, the regularizer h : R
d → R is convex but not

necessarily differentiable, and 〈xi,w〉 is the dot product of

xi and w. Note that f(w) + h(w) is a convex function. We

can solve (1) using Proximal Gradient Descent (PGD) [11].

This is an iterative algorithm, in which we choose an initial

w0 and then update the parameter vector according to the

following update rule:

wt+1 = proxh,αt
(wt − αt∇f(wt)), t = 1, 2, 3, . . . (2)

where αt is the step size or the learning rate at step t,
determining the convergence behavior. For any h and α, the

proximal operator proxh,α : Rd → R is defined as

proxh,α(w) = arg min
z∈Rd

1

2α
‖z−w‖22 + h(z). (3)

Observe that if h = 0, then proxh,α(w) = w for every

w ∈ R
d, and PGD reduces to the gradient descent (GD). For

example logistic regression, linear regression, etc. If h(w)
is convex and differentiable, then we can solve (1) simply

using GD. For example, ridge regression. Even if h(w) is not

convex, it turns out that the corresponding prox operator has

a closed form expression for several important optimization

problems related to learning. For example, Lasso, SVM dual,

constrained minimization, etc. Please see the full version [10]

for details.

Let X ∈ R
n×d denote the data matrix, whose i’th row is

equal to the i’th data point xi. For simplicity, assume that m
divides n, and let Xi denote the n

m
× d matrix, whose j’th

row is equal to x(i−1) n
m

+j . In a distributed setup, all the data

is distributed among m worker machines (worker i has Xi)

and master updates the parameter vector using the update

rule (2). At iteration t, master sends wt to all the workers;

worker i computes the gradient (denoted by ∇if(wt)) on its

local data and sends it to the master; master aggregates all

the received m local gradients to obtain the global gradient

∇f(wt) =
1

m

m
∑

i=1

∇if(wt). (4)

Now, master updates the parameter vector according to (2)

and obtains wt+1. Repeat the process until convergence. We

want to perform this computation under an adversarial attack,

where the corrupt worker nodes may provide erroneous

vectors. Our adversarial model is described next.

Adversary model. In our adversarial model, the adversary

can corrupt t of the worker nodes1, and the compromised

nodes may collude and arbitrarily deviate from their pre-

specified programs. If a worker i is corrupt, then instead

of sending the true vector, it may send an arbitrary vector

to disrupt the computation. We refer to the corrupt nodes as

erroneous or under the Byzantine attack. We can handle asyn-

chronous updates, by dropping the straggling nodes beyond

a specified delay, and still compute the correct gradient due

to encoding. Therefore we treat updates from these nodes as

being “erased”. We refer to these as erasures/stragglers. For

every worker i that sends a message to the master, we can

assume, without loss of generality, that the master receives

ui + ei, where ui is the true vector, and ei = 0 if the i’th
node is honest, otherwise can be arbitrary. We denote the set

of nodes under the Byzantine attack by A1 and straggling

nodes by A2, where A1,A2 ⊂ [m], |A1| ≤ t, |A2| ≤ s, for

some s, t that we will decide later. We propose a method that

mitigates the effects of both of these anomalies.

Remark 1. A well-studied problem is that of asynchronous

distributed optimization, where the workers can have different

delays in updates [12]. One mechanism to deal with this is to

wait for a subset of responses, before proceeding to the next

iteration, treating the others as missing (or erasures) [13].

Byzantine attacks are quite distinct from such erasures, as

the adversary can report wrong local gradients, requiring the

master node to create mechanisms to overcome such attacks.

If the master node simply aggregates the collected updates as

in (4), the computed gradient could be arbitrarily far away

from the true one, even with a single adversary [14].

A. Our Approach

Let f ′(w) denote the n-length vector whose j’th entry is

equal to the differentiation of ℓ at 〈xj ,w〉, i.e., (f ′(w))j =
ℓ′(u)|u=〈xj ,w〉. With this notation, we can write

∇f(w) = XT f ′(w), ∀w ∈ R
d. (5)

A natural approach for computing the gradient ∇f(w) is

to compute it in two rounds: (i) compute f ′(w) in the

1st round by first multiplying X with w and then locally

obtaining f ′(w) from Xw (we can do this locally, because

for every j ∈ [n], (Xw)j = 〈xj ,w〉 and (f ′(w))j =
ℓ′(u)|u=〈xj ,w〉); and (ii) compute ∇f(w) = XT f ′(w) in

the 2nd round by multiplying XT with f ′(w). So, the

task of each gradient computation reduces to two matrix-

vector (MV) multiplications, where the matrices are fixed

and vectors may be different each time. To combat against

the adversarial worker nodes, we do both of these MV

multiplications using data encoding and error correction (over

R); see Figure 1 for a pictorial description of our approach.

More specifically, for the 1st round, we encode X using

1Our results also apply to a slightly different adversarial model, where
the adversary can adaptively choose which of the t worker nodes to attack
at each iteration. However, in this model, the adversary cannot modify the
local stored data of the attacked node, as otherwise, over time, it can corrupt
all the data, making any defense impossible.

�✁�✂

Authorized licensed use limited to: UCLA Library. Downloaded on August 23,2020 at 06:27:26 UTC from IEEE Xplore. Restrictions apply.

w

M broadcasts w

M Dec

W1

S
(1)
1 X

W2

S
(1)
2 X

W3

S
(1)
3 X

Wm

S
(1)
m X

S
(1
)

1
X
w

S
(1
)

2
X
w

+
e
2

S
(1)3

X
w

S (1)m
X
w
+
e
m

Xw Compute
f ′(w)

f ′(w)
M broadcasts f ′(w)

M Dec

W1

S
(2)
1 X

T

W2

S
(2)
2 X

T

W3

S
(2)
3 X

T

Wm

S
(2)
m X

T

S
(2
)

1
X

T
f

′ (w
)

S
(2
)

2
X

T
f
′ (
w
)

S (2)3
X
T
f
′(w

)
+
e
3

S (2)m
X T

f ′(w) +
e
m

∇f(w) = X
Tf ′(w)

w←− proxh,α(w − α∇f(w))

Fig. 1 This figure shows our 2-round approach to the Byzantine-resilient distributed optimization given in (1). Since gradient is equal to ∇f(w) =
XT f ′(w), we compute it in 2 rounds, using the matrix-vector (MV) multiplication as a subroutine in each round. In the 1st round, first we compute Xw,
and then compute f ′(w) from Xw – since (Xw)j = 〈xj ,w〉, we can compute f ′(w) from Xw (see Section II-A). In the 2nd round we compute

XT f ′(w), which is equal to ∇f(w). For a matrix A and a vector v, to make our distributed MV multiplication Av Byzantine-resilient, we encode
A using a sparse matrix S = [ST

1
ST
m . . . ST

m]T and distribute SiA to worker i (denoted by Wi). The adversary can corrupt at most t workers (the
compromised ones are denoted in red colour), potentially different sets of t workers in different rounds. The master node (denoted by M) broadcasts v to
all the workers. Each worker performs the local MV product and sends it back to M. If Wi is corrupt, then it can send an arbitrary vector. Once the master
has received all the vectors (out of which t may be erroneous), it sends them to the decoder (denoted by Dec), which outputs the correct MV product Av.

a sparse encoding matrix S(1) = [(S
(1)
1)T , . . . , (S

(1)
m)T]T

and store S
(1)
i X at the i’th worker node; and for the 2nd

round, we encode XT using another sparse encoding matrix

S(2) = [(S
(2)
1)T , . . . , (S

(2)
m)T]T , and store S

(2)
i XT at the

i’th worker node. Now, in the 1st round of the gradient

computation at w, the master node broadcasts w and the

i’th worker node replies with S
(1)
i Xw (a corrupt worker may

report an arbitrary vector); upon receiving all the vectors,

the master node applies error-correction procedure to recover

Xw and then locally computes f ′(w) as described above;

in the 2nd round, the master node broadcasts f ′(w) and

similarly can recover XT f ′(w) (which is equal to the gradi-

ent). Our main result for the Byzantine-resilient distributed

gradient computation is as follows:

Theorem 1 (Main Result). Let X ∈ R
n×d denote the data

matrix. Let m denote the total number of worker nodes. We

can compute the gradient exactly in a distributed manner in

the presence of t corrupt worker nodes and s stragglers, with

the following guarantees, where ǫ > 0 is a free parameter.

• (s+ t) ≤
⌊

ǫ
1+ǫ
· m2

⌋

.

• Total storage requirement is roughly 2(1 + ǫ)|X|.

• Computational complexity for each gradient computa-

tion:

– At each worker node is O((1 + ǫ)nd
m
).

– At the master node is O((1 + ǫ)(n+ d)m).

• Total encoding time is O
(

nd
(

ǫ
1+ǫ

m+ 1
))

.

Remark 2. The statement of Theorem 1 allows for any s

and t, as long as (s+ t) ≤
⌊

ǫ
1+ǫ
· m2

⌋

. As we are handling

both erasures and errors in the same way2 the corruption

threshold does not have to handle s and t separately. To

simplify the discussion, for the rest of the paper, we consider

only Byzantine corruption, and denote the corrupted set by

I ⊂ [m] with |I| ≤ t, with the understanding that this can

also work with stragglers.

Remark 3. Let m be an even number. Note that we can get

the corruption threshold t to be any number less than m/2,

but at the expense of increased storage and computation.

For any δ > 0, if we want to get δ close to m/2, i.e.,

t = m/2 − δ, then we must have (1 + ǫ) ≥ m/2δ. In

particular, at ǫ = 2, we can tolerate up to m/3 corrupt nodes,

with constant overhead in the total storage as well as on

the computational complexity. Our encoding is also efficient

and requires O
(

nd
(

ǫ
1+ǫ

m+ 1
))

time. Note that O(nd) is

equal to the time required for distributing the data matrix

X among m workers (for running the distributed gradient

descent algorithms without the adversary); and the encoding

time in our scheme (which results in an encoded matrix that

provides Byzantine-resiliency) is a factor of (2t+ 1) more.

Remark 4. On comparing the resource requirements of our

method with the plain distributed PGD with no adversarial

2When there are only stragglers, one can design an encoding scheme
where both the master and the worker nodes operate oblivious to encoding,
while solving a slightly altered optimization problem [13], in which gradients
are computed approximately, leading to more efficient straggler-tolerant GD.

�✁�✂

Authorized licensed use limited to: UCLA Library. Downloaded on August 23,2020 at 06:27:26 UTC from IEEE Xplore. Restrictions apply.

protection3, we have that, in our scheme (i) the total storage

requirement is O(1+ǫ) factor more (which is just a constant

overhead); (ii) the amount of computation at each worker

node is O(1+ǫ) factor more (which, again, is just a constant

overhead); and (iii) the amount of computation at the master

node is O((1+ ǫ)(1+ n
d
)) factor more, which is comparable

in cases where n is not much bigger than d.

Remark 5. Our scheme is not only efficient (both in terms

of computational complexity and storage requirement), but

it can also tolerate up to ⌊m−1
2 ⌋ corrupt worker nodes (by

taking ǫ = m − 1 in Theorem 1). It is not hard to prove

that this bound is information-theoretically optimal, i.e., no

algorithm can tolerate ⌈m2 ⌉ corrupt worker nodes, and at the

same time correctly computes the gradient.

B. Related Work

There has been significant recent interest in using coding-

theoretic techniques to mitigate the well-known straggler

problem [12], including gradient coding [15]–[18], encoding

computation [19], [20], data encoding [13]. However, one

cannot directly apply the methods for straggler mitigation

to the Byzantine attacks case, as we do not know which

updates are under attack. Distributed computing with Byzan-

tine adversaries is a richly investigated topic since [5], and

has received recent attention in the context of large-scale

distributed optimization and learning [6]–[8], [21]. These can

be divided into two categories, one which have statistical

analysis/assumptions (either explicit statistical models for

data [8], [21], or through stochastic GD [6]. Our method

gives deterministic guarantees, distinct from these works, but

similar in spirit to [7], which is the closest related work.4

Our storage redundancy factor is 2m/(m − 2t), which is

constant, even if t is a constant fraction of m. In contrast,

the storage redundancy factor required in [7] is 2t + 1,

growing linearly with the number of corrupt worker nodes.

This significantly reduces the computation time at the worker

nodes in our scheme compared to the scheme in [7], without

sacrificing on the computation time required by the master

node. Their coding in [7] is restricted to data replication

redundancy, as they encode the gradient as done in [15],

enabling application to convex problems; in contrast, we

encode the data enabling significantly smaller redundancy,

and apply it to learn generalized linear models, and is

also applicable to MV multiplication. A two-round approach

for gradient computation has been proposed for straggler

mitigation [19], but our method for MV multiplication differs

from that, as we have to provide adversarial protection. Data

encoding proposed in [13] applies only to stragglers, and has

3In plain distributed PGD without any adversarial protection, all the data
points are evenly distributed among the m workers. In each iteration, master
sends the parameter vector to all the workers; they compute the gradients
on their local data in O(nd/m) time (per worker) and send them to the
master; master aggregates them in O(md) time to obtain the global gradient
and then updates the parameter vector using (2).

4In an invited presentation [22], we gave a preliminary version of the
results for distributed Byzantine-resilient quadratic unconstrained optimiza-
tion.

low-redundancy and complexity, by allowing convergence to

an approximate, rather than exact solution.

III. OUR SOLUTION

In the section, we give an overview of the core technical

part of our two round gradient computation approach – a

method of performing distributed matrix-vector (MV) multi-

plication in the presence of a malicious adversary. Given a

fixed matrix A ∈ R
nr×nc and a vector v ∈ R

nc , we want

to compute Av in a distributed manner in the presence of at

most t corrupt worker nodes; see Section II for details on the

model. Our method is based on data encoding and real error

correction, where the matrix A is encoded and distributed

among all the worker nodes, and the master recovers the

MV product Av using real error correction; see Figure 1.

A trivial approach. Take a generator matrix G of any real

error correcting linear code. Encode A as ATG =: B and

disperse the columns of B among the worker nodes. Master

broadcasts v; responses from the workers are combined as

vTB+ eT , where |supp(e)| ≤ t. Since every row of B is a

codeword, vTB = vTATG is also a codeword. Therefore,

one can take any off-the-shelf decoding algorithm for the

code whose generator matrix is G, and obtain vTAT . Note

that we need fast decoding, as it is performed in every

iteration of the gradient computation by the master. As

far as we know, any off-the-shelf decoding algorithm (over

real numbers) requires at least a quadratic computational

complexity, which leads to Ω(n2 + d2) decoding complex-

ity per gradient computation, which could be impractical.

The trivial scheme does not exploit the block error pattern

which we crucially exploit in our coding scheme to give a

∼ O((n + d)m) time decoding per gradient computation,

which could be a significant improvement over the trivial

scheme, since m typically is much smaller than n and d. We

also want encoding to be efficient (otherwise it defeats the

purpose of data encoding) and our sparse encoding matrix

achieves that, but any off-the-shelf error correcting codes

(over reals) may not give efficient encoding procedure. Now

we explain our coding scheme.

We will think of our encoding matrix as S =
[ST

1 ST
2 , . . . ,S

T
m], where each Si is a p × nr matrix and

pm > nr. We will determine the value of p and the entries

of S later. For i ∈ [m], we store the matrix SiA at the worker

node i. As described in Section II, computation proceeds as

follows: For all i ∈ [m], master sends v to worker i and

receives SiAv+ei back from it. Let ei = [ei1, ei2, . . . , eip]
T .

Note that ei = 0 if the i’th node is honest, otherwise can be

arbitrary. In order to find the corrupt worker nodes, master

equivalently writes {SiAv + ei}
m
i=1 as p systems of linear

equations.

h̃i(v) = S̃iAv + ẽi, i ∈ [p] (6)

where, for every i ∈ [p], ẽi = [e1i, e2i, . . . , emi]
T with

|supp(ẽi)| ≤ t, and S̃i is an m × nr matrix whose j’th

row is equal to the i’th row of Sj , for every j ∈ [m].
Observe that S̃i’s constitute the encoding matrix S, which

we have to design. In the following, we will design these

�✁��

Authorized licensed use limited to: UCLA Library. Downloaded on August 23,2020 at 06:27:26 UTC from IEEE Xplore. Restrictions apply.

matrices S̃i’s (which in turn will determine the encoding

matrix S), with the help of another matrix F, which will

be used to find the error locations, i.e., identities of the

compromised worker nodes. We will design F (of dimension

k ×m, where k < m) and S̃i’s such that

C.1 FS̃i = 0 for every i ∈ [p].
C.2 For any u ∈ R

m such that |supp(u)| ≤ t, we can

efficiently find all the non-zero locations of u from Fu.

C.3 For any T ⊂ [m] such that |T | ≥ (m−t), let ST denote

the |T |p × nr matrix obtained from S by restricting it

to all the Si’s for which i ∈ T . We want ST to be of

full column rank.

If we can find such matrices, we can recover the desired MV

multiplication Av exactly as follows. Multiplying (6) by F

and using C.1 yield fi := Fh̃i(v) = Fẽi, for every i ∈ [p],
where |supp(ẽi)| ≤ t. A crucial observation: Since the non-

zero entries of all the error vectors ẽi’s occur in the same

set I =
⋃p

i=1 supp(ẽi), a random linear combination of ẽi’s

has support equal to I with probability one, if the coefficients

αi’s of the linear combination are chosen from an absolutely

continuous probability distribution, for example, the Gaussian

distribution. Let f̃ = αi (
∑p

i=1 fi) = αi (
∑p

i=1 Fẽi) =
F (
∑p

i=1 αiẽi) = Fẽ, where ẽ =
∑p

i=1 αiẽi. Note that,

with probability 1, supp(ẽ) = I. C.2 allows us to find this

set efficiently. There are many choices for F that can handle

different levels of sparsity with varying decoding complexity.

We can choose any of these matrices depending on our

need, and this will not affect the design of our encoding

matrix S. Specifically, the choice of F may only affect the

non-zero entries of S, neither their repetitive format, nor

their locations; see (7). Note that such an F gives an error-

correcting code over R and we can use any such code. In

particular, we can use a 2t ×m Vandermonde matrix along

with the Reed-Solomon decoding, which can correct up to t
errors and has decoding complexity of O(m2) [23].

Once we have found the corrupt nodes, we can discard

all the information received from them. This yields ST Av,

where T is the set of all honest worker nodes. Since ST

is of full column rank (by C.3), we can recover Av from

ST Av exactly. For this, instead of computing S+
T , the pseudo

inverse of ST (such that S+
T ST is an identity matrix), which

is computationally very expensive, we leverage the sparse

and repetitive structure of S to recover Av efficiently.

Designing the encoding matrix S. Let N (F) ⊂ R
m denote

the null-space of F. Since rank(F) = 2t, dimension of

N (F) is q = (m − 2t). Let {b1,b2, . . . ,bq} be a basis

of N (F), and let bi = [bi1 bi2 . . . bim]T , for every i ∈ [q].
The encoding matrix for the i’th worker is the following:

Si =

b1i . . . bqi

. . .

b1i . . . bqi

b1i . . . bli

p×nr

(7)

Here q = (m− 2t) and l = nr − (p− 1)q, where p = ⌈nr

q
⌉.

All the unspecified entries of Si are zero.

ACKNOWLEDGEMENTS

The work was partially supported by the Army Research Laboratory
under Cooperative Agreement W911NF-17-2-0196, by the UC-NL grant
LFR-18-548554, by the NSF award 1740047, 1527550, 1514531, and by
the City University of Hong Kong grant (No. 7200594). The views and
conclusions contained in this document are those of the authors and should
not be interpreted as representing the official policies, either expressed or
implied, of the Army Research Laboratory or the U.S. Government. The
U.S. Government is authorized to reproduce and distribute reprints for
Government purposes notwithstanding any copyright notation here on.

REFERENCES

[1] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, Jan. 2008.

[2] M. Zinkevich, M. Weimer, L. Li, and A. J. Smola, “Parallelized
stochastic gradient descent,” in Advances in Neural Information Pro-

cessing Systems, 2010, pp. 2595–2603.
[3] T. F. Abdelzaher et al., “Will distributed computing revolutionize

peace? the emergence of battlefield IoT,” in ICDCS 2018, 2018, pp.
1129–1138.

[4] J. Konecný, “Stochastic, distributed and federated optimization for
machine learning,” Ph.D. dissertation, University of Edinburgh, 2017.

[5] L. Lamport, R. Shostak, and M. Pease, “The byzantine generals
problem,” ACM Trans. Program. Lang. Syst., vol. 4, no. 3, pp. 382–
401, Jul. 1982.

[6] P. Blanchard, E. M. E. Mhamdi, R. Guerraoui, and J. Stainer, “Machine
learning with adversaries: Byzantine tolerant gradient descent,” in Adv.

in Neural Information Processing Systems, 2017, pp. 118–128.
[7] L. Chen, H. Wang, Z. B. Charles, and D. S. Papailiopoulos, “DRACO:

byzantine-resilient distributed training via redundant gradients,” in
International Conference on Machine Learning, 2018, pp. 902–911.

[8] Y. Chen, L. Su, and J. Xu, “Distributed statistical machine learning
in adversarial settings: Byzantine gradient descent,” POMACS, vol. 1,
no. 2, pp. 44:1–44:25, 2017.

[9] E. J. Candès and T. Tao, “Decoding by linear programming,” IEEE

Trans. Information Theory, vol. 51, no. 12, pp. 4203–4215, 2005.
[10] D. Data, L. Song, and S. N. Diggavi, “Data encoding for byzantine-

resilient distributed optimization,” [Available Online].
[11] R. Tibshirani, “Convex optimization notes,” http://www.stat.cmu.edu/

~ryantibs/convexopt-S15/scribes/08-prox-grad-scribed.pdf, 2015.
[12] J. Dean and L. A. Barroso, “The tail at scale,” Commun. ACM, vol. 56,

no. 2, pp. 74–80, Feb. 2013.
[13] C. Karakus, Y. Sun, S. N. Diggavi, and W. Yin, “Straggler mitigation

in distributed optimization through data encoding,” in In Advances in

Neural Information Processing Systems, 2017, pp. 5440–5448.
[14] E. M. E. Mhamdi, R. Guerraoui, and S. Rouault, “The hidden vulnera-

bility of distributed learning in byzantium,” in International Conference

on Machine Learning, 2018, pp. 3518–3527.
[15] R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis, “Gradient

coding: Avoiding stragglers in distributed learning,” in International

Conference on Machine Learning, 2017, pp. 3368–3376.
[16] N. Raviv, R. Tandon, A. Dimakis, and I. Tamo, “Gradient coding from

cyclic MDS codes and expander graphs,” in International Conference

on Machine Learning, 2018, pp. 4302–4310.
[17] Z. B. Charles and D. S. Papailiopoulos, “Gradient coding using

the stochastic block model,” in IEEE International Symposium on

Information Theory, 2018, pp. 1998–2002.
[18] W. Halbawi, N. A. Ruhi, F. Salehi, and B. Hassibi, “Improving

distributed gradient descent using reed-solomon codes,” in IEEE In-

ternational Symposium on Information Theory, 2018, pp. 2027–2031.
[19] K. Lee, M. Lam, R. Pedarsani, D. S. Papailiopoulos, and K. Ramchan-

dran, “Speeding up distributed machine learning using codes,” IEEE

Trans. Information Theory, vol. 64, no. 3, pp. 1514–1529, 2018.
[20] S. Dutta, V. R. Cadambe, and P. Grover, “Short-dot: Computing large

linear transforms distributedly using coded short dot products,” in Adv.

in Neural Information Processing Systems, 2016, pp. 2092–2100.
[21] D. Yin, Y. Chen, K. Ramchandran, and P. Bartlett, “Byzantine-robust

distributed learning: Towards optimal statistical rates,” in International

Conference on Machine Learning, 2018, pp. 5636–5645.
[22] D. Data, L. Song, and S. N. Diggavi, “Data encoding methods for

byzantine-resilient distributed gradient descent,” Invited presentation
at Allerton 2018.

[23] M. Akçakaya and V. Tarokh, “A frame construction and a universal
distortion bound for sparse representations,” IEEE Trans. Signal Pro-

cessing, vol. 56, no. 6, pp. 2443–2450, 2008.

�✁�✂

Authorized licensed use limited to: UCLA Library. Downloaded on August 23,2020 at 06:27:26 UTC from IEEE Xplore. Restrictions apply.

