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We introduce a combined molecular-dynamics and quantum-trajectories code to simulate the effects of
near-resonant optical fields on state-vector evolution and particle motion in a collisional system. In contrast
to collisionless systems, in which the quantum dynamics of multilevel, laser-driven particles with spontaneous
emission can be described with the optical Bloch equations (OBEs), particle velocities in sufficiently collisional
systems change on timescales comparable to those of the laser-induced, quantum-state dynamics. These transient
velocity changes can cause the time-averaged velocity dependence of the quantum state to differ from the OBE
solution. We use this multiscale code to describe laser cooling in a strontium ultracold neutral plasma. Important
phenomena described by the simulation include suppression of electromagnetically induced transparencies
through rapid velocity changing collisions and thermalization between cooled and uncooled directions for
anisotropic laser cooling.
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I. INTRODUCTION

Laser-generated forces on atoms, ions, and molecules, such
as in laser cooling [1], arise from coupling of external mo-
menta and internal quantum states of the particles of interest.
In most cases, optical forces can be calculated using the
velocity-dependent, steady-state solutions to the optical Bloch
equations (OBEs) for internal-state quantum dynamics. In
a highly collisional system, however, the particle velocities
and associated Doppler shifts can change significantly on the
timescale required for the internal quantum states to reach
steady state. These rapid velocity changes can cause the
time-averaged quantum state, and thus the calculated optical
forces, to differ from the steady-state OBE solution. One
such collisional system is ions in an ultracold neutral plasma
(UNP) [2–4]. Laser cooling of ions in a UNP was recently
demonstrated in [5].

UNPs are typically created by photoexciting laser-cooled
atoms just above the ionization threshold. The temperature of
resulting electrons (Te ∼ 1–1000 K) is set by the detuning of
the ionization laser above threshold. The ion temperature is set
by equilibration dynamics after plasma formation [3,6] and
is typically below 1 K. Ions in a UNP are strongly coupled,
meaning the average Coulomb interaction energy between
neighboring ions is larger than the thermal kinetic energy, and
standard kinetic descriptions of the evolution of the velocity
distribution become invalid [7,8]. For an accurate description
of ion dynamics in UNPs, direct molecular-dynamics (MD)
simulations must be used (see, e.g., [9]), which evolve the
motional dynamics of individual particles under the influence
of interparticle interactions. There is a long and rich history
of applying MD to study UNPs, such as studies of electron
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equilibration and recombination [10,11], disorder-induced
heating (DIH) [12,13], and antihydrogen formation in mag-
netized cold positron-antiproton plasmas [14–16].

Here, we introduce a computational code that couples a
MD simulation with a quantum-trajectories (QT) description
of internal-state dynamics [17,18]. To describe a collisional
laser-driven system, the QT algorithm evolves the internal
quantum state and calculates the optical forces for each
individual ion based on its velocity and internal state, and
the inter-ion forces are derived from the MD algorithm. The
velocities and positions of the ions evolve under the influence
of both forces. This code is used to investigate laser cooling of
ions in a UNP. The MDQT code is multiscale in the sense that
it couples the fast, internal quantum dynamics to the classical
motion of the ensemble of particles. A similar computational
tool for evolving the quantum state in a collisional system
was described in [19], but in that work optical forces were
not taken into account in particle kinematics.

The paper is structured as follows. Section II provides a
general overview of the architecture developed for simulating
the dynamics of an ensemble of particles under the influence
of classical, position-dependent forces and momentum- and
quantum-state-dependent forces. In Sec. III we describe the
application of MD to a system of ions interacting through
a screened Coulomb interaction, which is appropriate to de-
scribe the ion dynamics of interest in a UNP. In Sec. IV we
introduce the QT simulation and specific details for describing
laser-driven Sr+ ions. In Sec. V, we discuss dark-state forma-
tion in laser-driven Sr+ ions, comparing numerical solutions
of the OBEs and of the MDQT code. The latter shows the
suppression of dark states in the collisional environment of
a UNP. In Sec. VI we show the results from a MDQT
simulation of laser cooling of the UNP and compare results
with experimental data [5]. We conclude in Sec. VII.
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FIG. 1. Combined simulation for an ensemble of particles under the influence of a classical, position-dependent force ( �F MD) and a
momentum-dependent force ( �F QT) that depends upon the internal quantum state. The state vectors (|ψ〉) are evolved within a quantum-
trajectories (QT) algorithm (bottom half) with a time step �tQT, and the positions (�r) are evolved within a position-Verlet (leapfrog)
molecular-dynamics (MD) algorithm (top half), which treats the classical force with a time step �tMD = N�tQT, where N is an integer.
The momenta ( �p), however, are evolved in both the quantum and classical realms. The MD and QT algorithms share a common time axis, and
the subscript i is the particle-label index. A combined MDQT time step begins with a single MD time step, after which the initial momenta
and classical-force momentum kicks (� �pMD) for the current time step are passed to the QT code. This initiates evolution of state vectors and
momenta during the corresponding series of N QT time steps. � �pMD is spread evenly across the QT time steps to reduce error in calculations
of �F QT. Following completion of the N QT time steps, the final momenta are passed to the MD algorithm to initiate the next combined MDQT
step. Equations for the MD algorithm are indicated. The function that evolves the particle state vectors ( f ) is described in Sec. IV.

II. COMBINING CLASSICAL AND QUANTUM
SIMULATIONS

Figure 1 provides a schematic of the general architecture
for simulating the dynamics of an ensemble of particles under
the influence of classical, position-dependent forces ( �F MD)
and momentum- and quantum-state-vector-dependent forces
( �F QT). The classical forces are treated with a MD code that
uses a position-Verlet (leapfrog) integrator with time step
�tMD, while �F QT and the state-vector evolution are treated
with a QT code using a time step of �tQT. For the physical sys-
tem of interest here, the quantum state dynamics are typically
faster than the kinematics, and we assume that �tMD/�tQT ≡
N � 1, where N is an integer. Sections III and IV, respec-
tively, describe the specific MD and QT algorithms used and
how simulation parameters relate to the UNP experiment.

Particle positions (�r), momenta ( �p), and state vectors (|ψ〉)
are the fundamental quantities evolved within the combined
MDQT code. Forces calculated in the MD portion of the al-
gorithm depend on the positions of all particles, as is typically
the case for MD simulations. The state vectors are evolved
within the QT code and the positions are evolved within the
MD code. The momenta, however, are shared between both
the quantum and classical realms.

The MD and QT algorithms share a common time axis, but
they are not run simultaneously. A combined MDQT time step
begins with a MD time step, which evolves particle positions
and determines the classical-force momentum kicks (� �pMD)
according to the position-Verlet (leapfrog) equations shown
in Fig. 1. While the updated positions are stored for the next
MD time step, the initial momenta and classical momentum
kicks are passed to the QT code. This initiates a series of N

QT time steps corresponding to the same time interval as the
MD step, during which the state vectors and particle momenta
are evolved.

The initial state vector at the start of each QT time step
is taken from the output of the previous step, and this is
used to calculate the expectation value of �F QT. The state
vector evolution and quantum-force calculation are described
in Sec. IV. Each particle’s momentum is changed during each
QT time step by � �pMD/N plus the impulse resulting from
the quantum force calculated for that QT step. In this way,
the classical-force momentum kick is spread evenly across the
QT steps, reducing error in calculations of �F QT. Following
completion of the N QT time steps, the evolved momenta are
passed back to the MD code and the process repeats.

The architecture described here is multiscale in the sense
that it links numerical simulations of classical and quantum
dynamics that typically occur on different time scales. It is
well suited for a computationally expensive classical MD
component, which is often the case for a many-body classical
force (see Sec. III).

III. MOLECULAR-DYNAMICS SIMULATION

In MD simulations, one numerically solves Hamilton’s
equations of motion for an N-body system of pairwise inter-
acting particles with potential typically of the form V (ri j ), for
distance ri j between particles i and j. These techniques [20]
were first applied to hard spheres [21] and liquids interacting
through a Lennard-Jones potential [22,23], before being ap-
plied in plasmas [24]. We refer to the forces obtained with
this classical calculation as �F MD.
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The ion dynamics of interest here can be described with
a Yukawa one-component plasma (YOCP) model [25,26] in
which particles interact through a screened, repulsive 1/r
potential [Eq. (1)]:

V (ri j ) = e2

4πε0ri j
exp

(
− ri j

λD

)
. (1)

Electrons serve as a neutralizing and screening background,
introducing the Debye screening length λD =

√
kBTeε0/(ne2),

where n is the density and Te is the electron temperature. This
approach neglects electron-ion thermalization [27] and three-
body recombination [3], which are good approximations for
our conditions. These effects could in principle be added at
various levels of approximation.

The YOCP model is commonly used to describe plasmas,
especially under conditions of strong coupling [25,28,29]
such as for white dwarf stars [30], the cores of Jovian plan-
ets [31,32], plasmas produced during inertial confinement
fusion [33], dusty plasmas consisting of highly charged dust
particles [34,35], and ions in UNPs [2,6].

The MD algorithm used here evolves a YOCP of typically
N = 3500 particles in a cube of volume L3 with uniform
density and periodic boundary conditions using the minimum
image convention (MIC) [36] and a position-Verlet (leapfrog)
integrator [37] of Hamilton’s equations of motion. The natural
time step for the MD simulation is �tMD = 0.0017/ωpi, for
ion plasma oscillation frequency ωpi =

√
ne2/ε0mi with n

and mi the ion density and mass, respectively. The initial
conditions for the particles are random positions and zero
kinetic energy, simulating the initial conditions for typical
UNP experiments where the initial kinetic energies of a few
mK are negligible. More details on the MD simulation can be
found in [9,38].

When using periodic boundary conditions with the MIC,
the forces from image charges other than the nearest neighbor
are ignored. Due to the exp[−κr] term in Eq. (1), the potential
for a YOCP system depends strongly on the plasma screen-
ing parameter κ = aWS/λD, where aWS = (3/4πn)1/3 is the
Wigner-Seitz radius. Thus, it is important that the system size
be large enough such that the force exerted by image charges
other than the nearest image is negligible. In general, the
condition for MIC validity can be written as Lκ � 1. In [39],
convergence in the observed melting point of a Yukawa solid
was demonstrated for a number of particles Nconv ≈ 435/κ3.
We perform simulations for κ ≈ 0.5, for which Nconv ≈ 3500.
For typical conditions of simulations used here, energy is
conserved at better than the 10−4 level.

In a combined MDQT simulation, the traditional MD algo-
rithm is modified such that the momenta are updated by the
quantum-state-vector-dependent forces in between each MD
time step, as described in Sec. II.

IV. QUANTUM TRAJECTORIES

A. Introduction

The quantum-trajectories method [17,18] utilizes an equiv-
alence between the master equation, which describes the time
evolution of a single-particle, pure-state density matrix ρ =
|ψ〉〈ψ | in an open quantum system, and the evolution of a

wave function |ψ〉 under an equivalent non-Hermitian Hamil-
tonian. At any time step, |ψ〉 can also jump via spontaneous
emission to ground states |φ〉 with a probability proportional
to that of occupying an excited state.

The master equation for the evolution of a pure quantum
state, in its most general form, can be written

dρ

dt
= 1

ih̄
[HQT, ρ] −

∑
k

γk

2
(c†

kckρ + ρc†
kck − 2ckρc†

k )

= 1

ih̄

[
HQT

eff , ρ
] +

∑
k

γkckρ c†
k (2)

where ck are quantum jump operators with associated rates
γk (e.g., k indexes each possible decay path, so ck ≡ |β〉〈α|
if the initial and final states for decay path k are |α〉 and |β〉,
respectively), and HQT is the system Hamiltonian, which is
independent of coupling to the reservoir/vacuum and HQT

describes some process that can stimulate transitions between
internal states, such as stimulated emission and absorption due
to near-resonant laser fields. The first term on the right-hand
side of the second line of Eq. (2) corresponds to the evolution
of a pure state |ψ〉 under the non-Hermitian Hamiltonian
HQT

eff = HQT − ih̄
∑

k
γk

2 c†
kck . The second term on the right-

hand side of the second line of Eq. (2) handles quantum jumps
that change |ψ〉 into another, properly normalized state |φk〉 =√

γk�tQT/�Pkck|ψ〉, which are caused by the coupling to the
external environment that results in, for example, spontaneous
emission. Here,

�Pk (t ) = �tQTγk〈ψ (t )|c†
kck|ψ (t )〉. (3)

In the situation of interest here, HQT and thus HQT
eff contain

interactions arising from the optical fields involved in laser
cooling ions in the plasma (see the Appendix).

The evolution of the state vector during one time step
from time t to t + �tQT is numerically calculated as follows.
During each time step the state vector either jumps into one
of the |φk〉 states with probability �Pk (t ) or the state vector
evolves for time �tQT according to HQT

eff . The probability that
the wave function “jumps” during the time step is given by

�P ≡
∑

k

�Pk (t ). (4)

For numerical efficiency, we evolve the state vector in the
case of no jump using a fourth-order Runge-Kutta method.
This is implemented by approximating the evolution of the
state vector from t to t + dt with

|ψ (t + dt )〉 = 1 + HQT
eff (t )dt/ih̄√

1 − �P(t )
|ψ (t )〉 (5)

where any time-varying terms in the right-hand side of Eq. (5)
are evaluated at t .

The internal state dynamics and the time-varying classical
momentum of the particle, �p(t ), are coupled. The momentum
determines the Doppler shifts for light fields, which are taken
into account in HQT. In a time step in which there is a quantum
jump, the momentum changes due to the discrete recoil mo-
mentum kick associated with photon emission accompanying
the quantum jump transition. In a time step without a jump, the
momentum evolves under the influence of the optical force,
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(a) (b)

λ

λ

FIG. 2. (a) Sr+ level diagram including wavelengths and decay rates for transitions relevant to laser cooling. (b) Experimental schematic.
Cooling (408 nm) and repumping (1033 nm, 1092 nm) lasers are applied in counterpropagating configurations with indicated polarizations.
Propagation directions for cooling beams are indicated. (M, mirror; λ/4, quarter-wave plate). Adapted from [5].

which can be calculated at any time as

〈 �F QT(t )〉 = Tr

(
ρ

d �p
dt

)
= Tr

(
ρ

[
�p, HQT

eff

]
ih̄

)
. (6)

This treats particle momentum classically, and we find it
sufficient to evolve the momentum during a no-jump time
step �tQT with the Euler method. If there is an additional
force, not associated with the optical fields, its action on
particle momentum during time step �tQT [Eq. (A7)] can
be included by adding the resulting momentum change to
the impulse from a quantum jump or the optical force. The
classical momentum kicks (� �pMD) are treated in this fashion
as described in Sec. II.

To describe an ensemble of particles, as required to de-
scribe laser cooling of ions in a UNP, we evolve and track
the state vector and momentum for each particle, |ψi(t )〉 and
�pi(t ). As needed, for each particle, we form the density matrix,
ρi(t ) from |ψi(t )〉. For the situation of interest here, the QT
evolution is not sensitive to positions of the particles. More
details can be found in [38].

The QT algorithm was validated [38] by reproducing ana-
lytic results for simple two- and three-level systems for single-
particle phenomena such as Rabi oscillations and ensemble
properties such as the cooling rate and cooling limit for
Doppler cooling.

B. Applying quantum trajectories to the
laser cooling of 88Sr ions

To model laser cooling of ions in a UNP, HQT takes the
form appropriate for the level structure of 88Sr ions and
the laser configuration of [5]. Figure 2 shows the Sr+ level
diagram and experimental schematic for one-dimensional
laser cooling on the D2 line (2S1/2 → 2P3/2) at 408 nm in
Sr+ [5]. This transition is not closed, and repumping lasers

must be added to remove population from the 2Dj states. For
simplicity, in the simulation the repump lasers are oriented
along the axis of the cooling lasers, which we define as the
x axis, as shown in in Fig. 3(a). We define δ and δD as the
detunings of the 408- and 1033-nm lasers from resonance for
an ion at rest.

Figure 3(b) shows all the levels treated in the QT calcu-
lation including Zeeman substructure. We ignore decay into
the 2D3/2 state and the corresponding 1092-nm repump laser.
This is justified due to the small branching ratio (1:151) into
this state (compared to 1:17 for the 2D5/2 state) and because
ions that fall into the 2D3/2 state are repumped via the 2P1/2

level, not the 2P3/2 level. This is sufficient for relatively short
simulations, over which the 2D3/2 level remains largely un-
populated. For longer simulations, it is straightforward to graft
a rate equation approach onto the QT code to treat population
dynamics involving the 2D3/2 state. The resulting effective
Hamiltonian and additional details of the QT implementation
are given in the Appendix.

For simulating UNP laser cooling, the expectation value
of the laser-induced force is calculated. In the particular ge-
ometry considered here, forces are only along one dimension,
〈 �F QT

i 〉 = 〈F QT
xi 〉x̂, where

〈
F QT

xi

〉 = Tr

(
ρi

d pxi

dt

)
= Tr

(
ρi

[
pxi, HQT

eff

]
ih̄

)
(7)

is the x component of the optical force on ion i at a particular
time and pxi is the momentum along x. The explicit form of
〈F QT

xi 〉 is given in Eq. (A5), but it depends on pxi through the
Doppler shift of the laser frequencies. 〈F QT

xi 〉 is independent
of particle positions because the Coulomb interactions shift
all internal states equally. Thus collisional broadening of the
optical transitions is negligible. In addition, the electron-ion
collision energies are too low to cause transitions in the
ion [40].
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(a)

(b)

(e)

(d)

(c)

FIG. 3. (a) Counterpropagating, cross-polarized laser configuration considered in the QT simulation. Dashes indicate leftward propagating
lasers, which are Doppler shifted by +kvx . (b) Corresponding level diagram including full Zeeman substructure with the indicated laser
couplings. (c) If the states are coupled only by circularly polarized light, the 12-level system can be separated into two six-level subsystems,
making it easier to recognize dark states induced by near-resonant two-photon coupling between combinations of S and D sublevels (see
Sec. V A). (d) Decay channels from P to S (γ1 = γ6 = γ , γ2 = γ5 = 2γ /3, and γ3 = γ4 = γ /3, where γ = 1.41 × 108 s−1). (e) Decay channels
from P to D (γ7 = γ18 = 2γD/3, γ8 = γ17 = 4γD/15, γ9 = γ16 = 2γD/15, γ10 = γ11 = γ14 = γ15 = γD/15, and γ12 = γ13 = γD/5, where γD =
8.7 × 106 s−1). Numerical labels of the decay channels in (d) and (e) correspond to the labels for the jump operators in Eq. (2).

In every time step of the QT simulation, the state vector
and momentum of each particle are evolved as described in
Sec. IV A.

If a quantum jump occurs for an ion, its x momentum
receives a recoil kick of ±h̄k or ±h̄kD, where k and kD are
the wave vectors corresponding to the photon emitted during a
jump from a P state to an S state or a D state, respectively [41].
When conducting a combined MDQT simulation, the momen-
tum kicks calculated from the MD component of the code are
included in the momentum evolution as described in Sec. II.

The QT algorithmic details and values for physical pa-
rameters used in simulations presented here are given in
Appendix A 2. The natural timescale for the QT simulation
is set by the lifetime of the 2P3/2 state, γ −1, and the time step
is chosen as �tQT = 0.01γ −1.

The natural QT time step is typically smaller than the natu-
ral MD time step for typical UNP densities of 1016 m−3 or less

(�tMD
�tQT

= 0.0017ω−1
pi

0.01γ −1 = 17√
n

where n is in units of 1014 m−3). Thus,
the fundamental time step for a combined MDQT simulation
is taken as �tQT. To account for numerical mismatch, the
MD time step is taken as N = floor(�tMD/�tQT) times �tQT.
For densities greater than 1016 m−3, which are rare in the
Sr+ UNP system, 0.0017ω−1

pi < 0.01γ −1, in which case we

reset �tQT = �tMD = 0.0017ω−1
pi . The simulation code used

to produce all data within this report is made available via a
GitHub repository [42].

V. DARK STATES FOR LASER-COOLED Sr+ IONS

Dark states are eigenstates of the ion-light coupled Hamil-
tonian (HQT

eff without the decay terms) composed of superpo-

sitions of only 2S1/2 and 2D5/2 states [17,43]. A Sr+ ion in a
dark state does not scatter light, so population of these states
may limit laser-cooling efficacy.

A. Optical Bloch equations: Dark states for a single
laser-cooled Sr+ ion

We first calculate internal-state populations and optical
forces for a single ion using the optical Bloch equations. In
a highly collisional ensemble of particles, like a UNP, rapid
velocity changes may modify the time-averaged populations
and forces, but the OBEs provide important intuition and
illustrate the effect of dark states.

Solving the OBEs amounts to solving the master equation
for the evolution of the open quantum system [Eq. (2)], which
we solve numerically assuming that at t = 0 the population is
all in the ground state. After the steady state is reached, the
optical force profile FOBE(v) = Tr{ρ[px, HQT(v)]/ih̄ }, where
we explicitly indicate that HQT(v) depends on the particle x
velocity px/m ≡ v due to the Doppler shift, and populations
of different internal states are determined. As mentioned
previously, the force is only in the x direction for the laser
configuration considered here.

When 2S1/2 → 2P3/2 and 2D5/2 → 2P3/2 transitions are
driven by σ+ and σ− lasers, which we use for our simulations,
the 12-level Sr+ diagram separates into two subsystems of
six levels each [see Fig. 3(c)]. The eigensolutions of the cor-
responding six-level matrices are too complicated to include
here. Nevertheless, intuition can be gained by examining the
subsystems. Dark states typically exist when two states are
coupled by a resonant two-photon transition. For example,
a dark state is expected when the detunings of the photons
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(a) (b) (c)

FIG. 4. (a) 2P3/2 state population, Pp(v), as a function of ion velocity v from steady-state OBE solutions for various δD (δ = −γ , �0 = γ ,
and �0

D = γ for all plots). Minima in the 2P3/2 state populations, indicated with orange squares (deep) and purple circles (shallow), correspond
to velocity-dependent dark states. (Only the v < 0 states are indicated.) (b) Location of local minima in 2P3/2 state populations vs δD. Locations
closely match the velocities at which the two-photon transitions between 2S1/2 and 2D5/2 states are resonant. (c) Acceleration profile a(v) =
FOBE(v)/m obtained from the steady-state OBE solution for δ = −γ , δD = +γ , �0 = γ , and �0

D = γ . Within the range defined by the capture
velocity (|v| < vc = |δ|/k = 9 m/s), a ∝ −v.

coupling states |2〉 and |3〉 and states |12〉 and |3〉 cancel each
other out, which occurs when δ − vk = δD − vkD. Similarly,
the condition for the two-photon coupling from |2〉 to |8〉 to be
resonant is δ + vk = δD + vkD. There can also be dark states
composed solely of 2D5/2 states, which are all resonantly
coupled for v = 0. Dark states are thus expected at v = 0,
±(δ − δD)/(k − kD), and ±(δ − δD)/(k + kD).

A minimum in Pp(v), the population in the 2P3/2 level,
corresponds to significant population of a dark state. In steady
state, the velocities at which this occurs depend on the laser
detunings (Fig. 4) and agree with the expected locations
[Fig. 4(b)]. The acceleration due to laser forces [a(v) =
FOBE(v)/m] is plotted in Fig. 4(c) for δ = −γ , δD = +γ ,
�0 = γ , and �0

D = γ . In the region defined by |v| � 9 m/s,
we find a ∝ −v, as required for laser cooling. But at velocities
for which there is significant dark-state population, the laser
acceleration displays minima, which can potentially reduce
cooling effectiveness.

It is also worth considering how Pp(v) depends on time.
Figure 5(a) shows Pp(v) after the propagation of the OBEs
for various lengths of time. The different dark states de-
velop at different rates, with the v = 0 dark state taking the
longest to develop. Pp(v = 0) rises within a short time ≈
γ −1 and then decays exponentially with time (and thus the
populations of the v = 0 dark states grow) on a timescale of
tdark ∼ 370γ −1 = 2.6 μs for typical laser-cooling parameters
[Fig. 5(b)]. As we will now show (Sec. V B), this long
timescale leads to collisional suppression of the dark state
population, as ions are collisionally removed from near v = 0
before they are optically pumped into the dark state.

B. MDQT simulation: Collisional suppression of dark
states in a laser-cooled UNP

The combined MDQT code is useful for investigating the
effects of collisions on the population of dark states during

(a) (b)

FIG. 5. (a) Time dependence of OBE solutions for δ = −γ , δD = 0, �0 = γ , and �0
D = γ . The total time of the simulation in units of γ −1

is indicated in the legend. The populations of v = 0 dark states, composed solely of 2D5/2 state sublevels, develop quite slowly. (b) 2P3/2 state
population at v = 0 vs time. An exponential fit (dark) to the decay of population (light) shows the timescale for the decay of 2P3/2 population
and development of corresponding dark states is ∼2.6 μs. This is on the order of the timescale for velocity changing collisions (∼4ω−1

pi ) for a
density of 1 × 1014 m−3, and thus we may expect this state to be collisionally suppressed. The inset displays the fit results at early times.
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(a) (b)

FIG. 6. (a) Predictions from the MDQT code for population in the 2P3/2 state vs x velocity near the location of the v = 0 dark states after
7 μs of evolution performed by the MDQT code. Plasma density is indicated in the legend, and δ = −γ , δD = 0, �0 = γ , and �0

D = γ . As the
density increases beyond 1011 m−3, the dark-state populations become suppressed due to velocity changing collisions, which knock ions out
of the velocity range for these dark states more quickly than dark-state coherences can develop. (b) Population in the 2P3/2 state at v = 0 after
7 μs of evolution as a function of density. The population saturates for n � 1013 m−3, indicating full collisional suppression of the dark state.
Data are the average of 50 runs, and the widths of the line/error bars represent the standard error of the results.

laser cooling. In the absence of collisions, the dark state at
v = 0 (Fig. 5) is particularly slow to develop, with tdark ∼
2.6 μs, and also very narrow, with a velocity full width at
half maximum of δv = 0.6 m/s. The velocity change in a time
dt due to collisions is given by dv ∼ ωcollvT dt , where ωcoll

is the velocity changing collision rate and is proportional to
ωpi. In [44], ωcoll was measured to be ∼0.2ωpi for � ∼ 3, as
is the case in UNPs after equilibration. The v = 0 feature in
Pp(v) should be suppressed if ωcollvT tdark > δv, since the ion’s
velocity changes by more than δv within the 2.6-μs timeframe
in which it has to remain within δv of zero velocity in order
for it to relax into the dark state. Substituting in ωcoll = 0.2ωpi,
this is the case for n � 1011 m−3.

In order to test this, MDQT simulations were conducted
at a number of densities near this threshold with δ = −γ ,
δD = 0, �0 = γ , and �0

D = γ . The results for Pp(v) after 7 μs
(≈1000γ −1) of the simulation are shown in Fig. 6(a). This
time is long enough for the system to reach equilibrium. We
clearly see suppression of this feature for n � 3 × 1011 m−3,
as expected. Figure 6(b) shows Pp(v = 0) after 7 μs as a
function of density, which saturates for n � 1013 m−3. This is
lower than typical UNP densities used in recent laser-cooling
experiments (1013 m−3 or greater) [5], implying that v = 0
dark states had no impact on the cooling efficacy.

On the other hand, the dark states at v ∼ ±1.8γ /k for
δD = 0 (Fig. 5) develop on a timescale of t ∼ 10γ −1 = 70 ns
and have a width δv ∼ 3 m/s. Estimating the suppression
density in the same way as done for the v = 0 dark state gives
n � 2 × 1016 m−3. To test suppression of these states, MDQT
simulations were performed for a range of densities between
5 × 1014 and 5 × 1016 m−3 for the same values of δ, δD, �0,
and �0

D. The resulting Pp(v) curves after 500 ns of plasma
evolution are shown in Fig. 7(a). The features are centered
at v = ±16 m/s. Plotting Pp(v = ±16 m/s) vs density (n)
shows that as n increases these features become increas-
ingly suppressed as well, vanishing for n � 2.5 × 1016 m−3

[Fig. 7(b)]. This density is significantly higher than used in
laser-cooling experiments [5], but for the chosen parameters
the velocity of these dark states is relatively high compared
to mean ion thermal velocities (vT = √

kBT/mi = 7 m/s for
T = 0.5 K). Thus, they do not prevent laser cooling from
being effective.

VI. SIMULATING LASER COOLING IN A UNIFORM,
NONEXPANDING UNP

The MDQT simulation is well suited to describe laser cool-
ing of ions in a UNP; however, there are important limitations.
A simulation of a uniform density plasma with periodic spatial
boundary conditions maps onto a plasma with no net hydro-
dynamic flow of particles and no overall plasma expansion
with time. An experimentally realizable UNP, however, has a
nonuniform density distribution and expands into surrounding
vacuum [3,5]. For a spherical Gaussian ion-density distribu-
tion, n(r) = n(0)exp(−r2/2σ 2), where r is the distance from
the plasma center, the evolution of the plasma size and the
hydrodynamic expansion velocity are given by [3]

σ (t ) = σ (0)√
1 + t2/τ 2

exp

,

�u(�r, t ) = �r
t/τ 2

exp

1 + t2/τ 2
exp

. (8)

Here, t is the time after plasma creation and τexp =√
mσ (0)2/kBTe(0) is a characteristic timescale for the expan-

sion. The simulation thus provides an accurate and valuable
model of conditions in the center of the plasma at early times
t < τexp, for which expansion velocity is small or vanishing.
Phenomena such as adiabatic cooling and electron-ion energy
exchange [27], and the effects of expansion-induced Doppler
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(a) (b)

FIG. 7. (a) Predictions from the MDQT code for population in the 2P3/2 state vs x velocity after 500 ns of evolution. Density is indicated
in the legend. As the density increases beyond 1015 m−3, the dark states at v ∼ ±1.8γ /k = ±16 m/s become increasingly collisionally
suppressed. (b) Population in the 2P3/2 state at v = ±16 m/s after 500 ns of evolution as a function of n. The population saturates for
n � 2.5 × 1016 m−3, indicating full collisional suppression of the dark states. Data are the average of 50 runs, and the widths of the line/error
bars represent the standard error of the results.

shifts on laser-cooling efficacy, are discussed in more detail
in [5,38].

An MDQT simulation of laser cooling was run with pa-
rameters matching recent UNP experiments [5], with �0 = γ ,
�0

D = γ , δD = +γ , and δ = −γ . The density and screening
parameter were n = 2 × 1014 m−3 and κ = 0.55, respectively.
This yields ωpi = 2 × 106 s−1 and Ec/kB = e2/4πε0aWSkB =
1.6 K, which is a characteristic Coulomb energy for two ions
separated by the Wigner-Seitz radius [9].

The natural timescale for ion motional dynamics for
this plasma is ω−1

pi = 0.5 μs. The following quantities were

recorded every time interval �t = 0.14ω−1
pi : the average ion

kinetic energy along each axis, which is parametrized in
terms of an effective temperature Ti,ν = m〈v2

i,ν〉/2kB, where
ν = x, y, or z; the total interaction energy from the shielded
ion-ion potential; the velocity distribution along each axis
f (vx, vy, vz ), with a bin spacing of 0.0043aWSωpi; and the x
velocity of each particle, along with its probability of being
measured in the 2P3/2 state, which allows calculation of Pp(v).

Figure 8(a) shows the simulated ion temperature along
each axis vs time. At early times after plasma creation (t �
5 μs), DIH and kinetic-energy oscillations are evident. These

(a) (b)

FIG. 8. (a) Simulated ion temperatures, T (K), vs time for n = 2 × 1014 m−3 and κ = 0.55. For data with laser cooling, δ = −γ , δD = γ ,
�0 = γ , and �0

D = γ . Even though the laser-cooling force is only applied along x, all three axes experience cooling due to collisional energy
redistribution. Phenomenological curves for temperature decrease following T (t ) = T (0)e−2βt for T (0) = 0.5 K and two different values of β

discussed in the text are also shown. Data are the average of 50 runs, and the widths of the line/error bars represent the standard error of the
results. (b) Experimental measurements [5] of the ion temperature along the laser-cooling axis, Tx (K), vs time for the center of a UNP with
the same conditions as the above simulations.
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phenomena are characteristic of equilibration of a plasma near
or in the strongly coupled regime after a rapid quench from
noninteracting to interacting particles, which is a good model
of the photoionization plasma-creation process [3,9,45]. The
ions approach local thermal equilibrium at a temperature of
Ti ≈ 0.5 K. This equilibrium temperature is weakly dependent
on the electron screening, κ , but it most strongly depends on
ion density, and is approximately Ti ≈ Ec/3kB.

Without laser cooling, the temperature eventually stabi-
lizes. With laser cooling, the temperature decreases by a factor
of 2 on a timescale of tens of microseconds. Only motion
along the x axis is directly laser cooled, but the temperatures
along the uncooled axes decrease at a rate comparable to the
cooled axis. This is clear evidence of cross-axis collisional
thermalization.

The factor of 2 reduction in temperature observed in the
simulation after 40 μs of cooling is large enough to measure
with standard experimental probes of Sr UNPs [3,5,46]. Im-
portantly, it occurs on a reasonably short timescale compared
to the timescale for expansion of the plasma for experimen-
tally realizable plasma parameters (τexp ∼ 80 μs [5]). The
simulation results are in good qualitative agreement with
recent experimental observations of laser cooling, as shown in
Fig. 8(b). A better quantitative agreement is not expected be-
cause the numerical simulations do not include the effects of
plasma expansion or electron-ion equilibration. For example,
the experimental temperatures without laser cooling decrease
slightly at later times, which reflects the effects of adiabatic
cooling that are not included in the numerical simulation.

Cooling and thermalization rates

Data from the simulation can be fit by rate equations
in order to determine several phenomenological parameters
describing various collision and laser-cooling processes. The
rate equations, which are equivalent to an approximate kinetic
treatment [5,8,27], are

∂T‖
∂t

= −2βTx + 2ν(T⊥ − T‖) − 2

3kB

∂Uii

∂t
,

∂T⊥
∂t

= −ν(T⊥ − T‖) − 2

3kB

∂Uii

∂t
,

∂Uii

∂t
= −μ[Uii − Uii,Eq(n, T̄ , κ )].

(9)

The temperatures describing the velocity distributions par-
allel and perpendicular to the cooling axis are T‖ and T⊥,
respectively. β characterizes the laser-cooling force along
the cooling axis for small velocity according to Fx = −βmv,
which gives a temperature damping rate along that axis in the
absence of any collisional effects of Tx(t ) = Tx(0)e−2βt . The
cross-axis thermalization rate is ν.

Equations (9) include an energy source for the plasma
that is important in and near the strongly coupled regime:
the correlation energy, Uii < 0 [5,8,27], which is the poten-
tial energy compared to a system of the same density with
no spatial correlations. In strongly coupled plasmas, spatial
correlations exist that lower the potential energy. In a laser-
cooled UNP experiment, as the plasma cools, the correlations
increase, further decreasing the potential energy, and this is
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FIG. 9. Results of fitting MDQT data (Fig. 8) to Eq. (9) with β,
ν, and μ as free parameters. Data are the average of 50 runs, and
the widths of the line/error bars represent the standard error of the
results.

accounted for in the overall energy balance as an increase
in thermal energy to balance the decrease in Uii. An MD
simulation is necessary to calculate the time evolution of the
correlation energy, but its influence on plasma temperature,
averaged over a timescale long compared to ω−1

pi , can be
approximated by a model in which the correlation energy
relaxes to its equilibrium, Uii,Eq(n, Ti, κ ), with a rate μ [8].
The equilibrium correlation energy, as a function of density,
temperature, and screening parameter κ , can be taken from
tabulated values [28]. For determining Uii,Eq, we approximate
the ion temperature as the average T̄ = T‖+2T⊥

3 .
The rate equations [Eqs. (9)] do not factor into any of

the oscillatory behavior observed at early times during DIH.
Thus, we fit the simulation data for t > 5 μs. Results are
shown in Fig. 9, and the fit parameter values are β = (3.18 ±
0.01) × 104 s−1, ν = (0.112 ± 0.002) ωpi, and μ = (0.147 ±
0.005) ωpi.

Uncertainties are statistical from the fit to this data set
and do not reflect any systematic effects. A value of μ = ωpi

is typically used when describing disorder-induced heating
immediately after plasma creation [8], and the small value
found here for later evolution during laser cooling emphasizes
the phenomenological nature of this parameter.

As a check, we determine the temperature relaxation rate
for the same cooling parameters in the absence of parti-
cle interactions with a pure QT simulation of laser cooling
(data not shown). This yields a decay of the temperature
along the cooling axis following Tx(t ) = Tx(0)e−2βt , with
β = (34.8 μs)−1 = 2.9 × 104 s−1, which is close to the value
determined from the full MDQT simulation. This is also close
to an estimation of β based on a measurement of the optical
pumping rate to 2DJ states during laser cooling [5].

Note from Fig. 8 that the temperatures actually fall at
approximately one-third the rate for a one-dimensional system
in the absence of particle interactions: T (t ) = T (0)e−2βt/3,
rather than T (t ) = T (0)e−2βt . This reflects the fact that laser
cooling only acts on one degree of freedom while collisions

012710-9



G. M. GORMAN et al. PHYSICAL REVIEW A 101, 012710 (2020)

100 20 30 40

Time ( s)

-0.85

-0.8

-0.75

-0.7

-0.65

-0.6
U

ii/k
B

 (
K

)

No Cooling
Cooling

FIG. 10. Correlation energy with and without laser cooling for
conditions used in Fig. 8. When laser cooled, the ions become more
spatially correlated, and the potential energy decreases faster than
when there is no cooling. Due to energy conservation, this effect
introduces an additional heating term to the differential equations
determining the temperature evolution in a laser-cooled plasma
[Eqs. (9)]. Data are the average of 50 runs, and the widths of the
line/error bars represent the standard error of the results.

rapidly redistribute energy between perpendicular and parallel
dimensions.

The perpendicular temperature lags behind the parallel
temperature during cooling. This makes it possible to use
the temperature curves to determine the cross-thermalization
rate ν. Because UNP ions are an excellent realization of
the YOCP model used for describing high-density strongly
coupled plasmas, experimental and numerical determination
of ν in this system is of significant interest. The fitted value
for ν agrees well with direct MD simulations from [47], which
found ν ≈ 0.1 ωpi. A thorough experimental and numerical
study of cross-thermalization rates in laser-cooled UNPs is the
subject of future work.

We can also use simulation results to investigate the be-
havior of the correlation energy during laser cooling. Uii(t )
is determined from the recorded positions of the plasma ions
by calculating the difference between the potential energy at
time t and the initial potential energy (for which there were
no spatial correlations). Uii(t ) determined in this fashion with
and without laser cooling is plotted in Fig. 10. Without laser
cooling, Uii(t ) remains roughly constant after the initial DIH
equilibration phase. Decreasing temperature resulting from
laser cooling, however, increases the spatial correlations and
lowers the potential energy.

VII. CONCLUSION

We have developed a combined MDQT code for simulating
laser-driven processes in a collisional system. We have applied
this code to investigate the effect of one-dimensional laser
cooling of the ions within a UNP. The MDQT simulations
demonstrate that laser cooling can reduce the temperature by
a factor of 2 along all axes in ≈40 μs, in agreement with
recent experimental results [5]. The simulation confirms that
collisions isotropize energy across all degrees of freedom
efficiently on this laser-cooling timescale. We also observe
that collisions suppress the development of dark states, which
might otherwise inhibit laser cooling.

More generally, this code can be adapted to describe any
many-body system in which laser manipulation of internal
quantum states and velocity-changing collisions occur on
similar timescales. In UNPs, there are other important pro-
cesses that can be studied with this tool, such as the laser-
induced fluorescence probe used for thermometry [46] and
the development and relaxation of spin-velocity correlations
used for measuring collision rates, diffusion, and velocity
autocorrelation functions [48].

While this simulation is a powerful tool for the reasons
described above, it is in some sense incomplete, as it cannot
realistically describe an inhomogeneous system and does
not account for the expansion of the plasma. For example,
adiabatic cooling and density reduction associated with the
expansion are noticeably absent. The effects of laser-cooling
forces on the expansion [5], likewise, cannot be investigated
with this tool. A full simulation of laser cooling a UNP is an
exciting scientific challenge that would require a multiscale
approach in which the MDQT simulation acts at the lowest
level while either a hydrodynamic or kinetic code handles the
macroscopic expansion.
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APPENDIX : QT DETAILS

1. Effective Hamiltonian

For modeling one-dimensional laser cooling of Sr ions, the
effective Hamiltonian [Eq. (5)] is

HQT
eff = h̄ω(|3〉〈3| + |4〉〈4| + |5〉〈5| + |6〉〈6|) + h̄(ω − ωD)(|7〉〈7| + |8〉〈8| + |9〉〈9| + |10〉〈10| + |11〉〈11| + |12〉〈12|)

− h̄

2

(
|2〉〈3| + |1〉〈4|√

3
+ H.c.

)
{� exp [−i(ν + kv)t] + �∗ exp [i(ν + kv)t]}

− h̄

2

( |2〉〈5|√
3

+ |1〉〈6| + H.c.

)
{� exp [−i(ν − kv)t] + �∗ exp [i(ν − kv)t]}
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− h̄

2

(
|10〉〈3|√

15
+ |9〉〈4|√

5
+

√
2|8〉〈5|√

5
+

√
2|7〉〈6|√

3
+ H.c.

)
{�D exp [−i(νD − kDv)t] + �∗

D exp [i(νD − kDv)t]}

− h̄

2

(
|9〉〈6|√

15
+ |10〉〈5|√

5
+

√
2|11〉〈4|√

5
+

√
2|12〉〈3|√

3
+ H.c.

)
{�D exp[−i(νD + kDv)t]

+�∗
D exp[i(νD + kDv)t]} − i

18∑
k=1

γk

2
c†

kck (A1)

where v = px/m, h̄ω is the energy of the 2P3/2 state, h̄ωD

is the energy of the 2D5/2 state, and �0 is the laser-induced
Rabi frequency between states S and P for a hypothetical
transition with a Clebsch-Gordon (C-G) coefficient of 1.
�0

D is the same but for coupling between D and P. ν and
νD refer to the frequency of the coupling lasers. γk and ck

refer to the 18 decay paths indicated in Figs. 3(d) and 3(e).
We have included the relevant C-G coefficients and Doppler
shifts of magnitude kv and kDv where k is the wave number
for the 2S1/2 → 2P3/2 transition and kD is the wave number
for the 2D5/2 → 2P3/2 transition. We incorporate the spatial
dependence of the light fields as � = �0 exp[−ikx] and �∗ =
�0 exp[ikx]. The signs in the exponents are consistent with the
σ+ wave for the 2S1/2 → 2P3/2 transition propagating from
positive x to negative x. Similarly, �D = �0

D exp[−ikDx] and
�∗

D = �0
D exp[ikDx]. Figure 3(b) provides the state labels,

while Figs. 3(d) and 3(e) indicate the 18 decay paths and
decay rates described by the last term in Eq. (A1).

To eliminate the time dependence, it is customary to
transform to a basis set where wave functions are rotating
with the light field (including the Doppler shift) and neglect
resulting terms proportional to ∼ exp [2iνt], since we are not
interested in dynamics on the timescale ν−1. However, in this
case we cannot completely eliminate the time dependence.
This is because the mj = ±1/2 states in the 2D5/2 manifold
are coupled to the mj = ±1/2 states in the 2S1/2 manifold
through two different 2P3/2 states. For example, states |1〉
and |9〉 are coupled through both |6〉 and |4〉, meaning that
there is some ambiguity regarding which rotating field to
use for the transformation of these states. In this case, we
choose to transfer |9〉 and |10〉 to the frame rotating with the
σ+ 2D5/2 → 2P3/2 laser. The resulting Hamiltonian after the
unitary transformation to the rotating frame is

HQT
eff

h̄
= (−δ − vk)(|3〉〈3| + |4〉〈4|) + (−δ + vk)(|5〉〈5| + |6〉〈6|) + [−δ + δD + (k − kD)v](|7〉〈7| + |8〉〈8|)

+ (−δ + δD + (−k + kD)v)(|11〉〈11| + |12〉〈12|) + [−δ + δD + (−k − kD)v](|9〉〈9| + |10〉〈10|)

−
(

�∗

2
|2〉〈3| + �∗

2
√

3
|1〉〈4| + �∗

2
|1〉〈6| + �∗

2
√

3
|2〉〈5| + H.c.

)

−
(√

2�∗
D

2
√

3
|7〉〈6| +

√
2�∗

D

2
√

5
|8〉〈5| + �∗

D

2
√

5
|9〉〈4| + �∗

D

2
√

15
|10〉〈3| + H.c.

)

−
[

exp [2i(k + kD)vt]

(
�∗

D

2
√

15
|9〉〈6| + �∗

D

2
√

5
|10〉〈5|

)
+ H.c.

]

−
(√

2�∗
D

2
√

5
|11〉〈4| +

√
2�∗

D

2
√

3
|12〉〈3| + H.c.

)
− i

18∑
k=1

γk

2
c†

kck (A2)

where the remaining time dependence results from the differ-
ence in frequency between the chosen rotating frame and the
frame rotating with the “alternate” paths coupling the 2S1/2

and 2D5/2 states.
To determine the optical force for the one-dimensional

laser-cooling configuration, consider the application of Eq. (6)
to the |2〉〈3| and |3〉〈2| term of HQT

eff , which yields

〈
F QT

x,23

〉 = −
〈

[px, HQT,23]

ih̄

〉

= 〈ψ |
[

∂

∂x

(
h̄�∗

2
|2〉〈3| + h̄�

2
|3〉〈2|

)]
|ψ〉. (A3)

Inserting � = �0 exp[−ikx] (the minus sign is due to the fact
that the σ+ wave for the S → P transition is propagating to the
left) and �∗ = �0 exp[ikx], we get〈

F QT
x,23

〉 = ikh̄�0

2
(〈ψ |2〉〈3|ψ〉 − 〈ψ |3〉〈2|ψ〉)

= −kh̄�0Im[ρ32]. (A4)

After considering all such terms in the Hamiltonian, the
total force is written as〈

F QT
x

〉 = kh̄�0(−Im[ρ32] + Im[ρ61])

+ kh̄�0

√
3

(−Im[ρ41] + Im[ρ52])
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+
√

2kDh̄�0
D√

3
(Im[ρ67] − Im[ρ3 12])

+
√

2kDh̄�0
D√

5
(Im[ρ58] − Im[ρ4 11])

+kDh̄�0
D√

5
(Im[ρ49] − Im[ρ5 10])

+ kDh̄�0
D√

15
(Im[ρ3 10] − Im[ρ69]) (A5)

where we have suppressed the ion index i on all quantities.
In a time step �tQT during which a quantum jump has not

occurred, the momentum changes by

� �p = 〈 �F QT〉�tQT + � �pMD

N
. (A6)

〈 �F QT〉 = 〈F QT
x 〉 x̂ is the optical force on the particle, which

only has an x component given by Eq. (A5). � �pMD is the
most recent calculation of the classical-force momentum kick
passed to the QT algorithm. In a time step during which a
quantum jump has occurred, the momentum changes by

� �p = � �precoil + � �pMD

N
(A7)

where � �precoil is the appropriate photon recoil for the photon
emitted during the quantum jump.

2. Execution of the quantum-trajectories algorithm

The quantum-trajectories algorithm for evolving both the
momentum and the wave function for a single particle i

is executed as follows. Given a wave function |ψi(t )〉 and
momentum �pi(t ) we obtain |ψi(t + �tQT)〉 and �pi(t + �tQT)
in the following way.

(1) Pick a random number r between 0 and 1.
(2) Calculate �P using Eq. (4). If �P < r, there is no

jump; move to step 3a. If not, then there is a jump; move to
step 3b.

(3a) Calculate � �pi using Eq. (A6). Set �pi(t + �tQT) =
�pi(t ) + � �pi.

(4a) Using �pi(t ), calculate HQT
eff using Eq. (A2).

(5a) Use HQT
eff and Eq. (5) to determine |ψi(t + �tQT)〉 and

ρi(t + �tQT) = |ψi(t + �tQT)〉〈ψi(t + �tQT)| with a fourth-
order Runge-Kutta algorithm.

(6a) Go back to step 1.
(3b) Pick a random number r2. If �Pk=1 < r2, the k =

1 transition indicated in Fig. 3(d) occurs and the particle
state jumps to |2〉 = |ψi(t + �tQT)〉. Otherwise, if �Pk=2 +
�Pk=1 < r2, the k = 2 transition occurs, and so on. For ex-
ample, if the k = 10 jump is selected, the transition is to
the |8〉 = |ψi(t + �tQT)〉 state. [See Figs. 3(d) and 3(e) for
transition labels.]

(4b) Randomly decide the direction of the recoil kick.
(5b) If the state after the jump is either |2〉 or |1〉,

then set �pi(t + �tQT) = �pi(t ) + � �pMD
i

N ± h̄kx̂. Otherwise, set

�pi(t + �tQT) = �pi(t ) + � �pMD
i

N ± h̄kDkx̂. [See Eq. (A7).]
(6b) Go back to step 1.
Here we list numerical values used in the Sr+ laser-

coupling simulation: λ = 407.8865 nm, k = 2π/λ = 1.54 ×
105 cm−1, λd = 1033.0139 nm, kd = 6.0825 × 104 cm−1,
γ = 1.41 × 108 s−1 = (7.09 ns)−1, and γD = 8.7 × 106 s−1.
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