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Scattering phenomena between charged particles and highly excited Rydberg atoms
are of critical importance in many processes in plasma physics and astrophysics.
While a Maxwell–Boltzmann (MB) energy distribution for the charged particles is
often assumed for calculations of collisional rate coefficients, in this contribution
we relax this assumption and use two different energy distributions, a bimodal MB
distribution and a κ-distribution. Both variants share a high-energy tails occurring with
higher probability than the corresponding MB distribution. The high-energy tail may
significantly affect rate coefficients for various processes. We focus the analysis to
specific situations by showing the dependence of the rate coefficients on the principal
quantum number of hydrogen atoms in n-changing collisions with electrons in the
excitation and ionization channels and in a temperature range relevant to the divertor
region of a tokamak device. We finally discuss the implications for diagnostics of
laboratory plasmas.
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1. Introduction
Collisions of electrons and ions with neutral atoms are relevant in studies of stellar

atmospheres (Mashonkina 1996), radio emission in recombination processes of H-II
clouds, primordial cosmological recombination of hydrogen (Chluba, Vasil & Dursi
2010) and plasma fusion (Janev et al. 1987; Janev, Reiter & Samm 2003). Initial
studies have focused on scattering and excitation of ground state or low-lying states,
in particular for hydrogen atoms. More challenging is the extension to high-lying
Rydberg states, for which ab initio quantum calculations become prohibitively
untenable. This results in the use of various approximation schemes with unavoidable
systematic errors which at times can be, in some observable quantities, of order
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100 % (Rolfes et al. 1993; Nagesha & MacAdam 2003; Przybilla & Butler 2004;
Vrinceanu, Onofrio & Sadeghpour 2014).

Among the various assumptions in these models, the fact that colliding particles may
not share energies according to a Maxwell–Boltzmann (MB) probability distribution,
as far as we know, has never been systematically scrutinized in the context of plasma
fusion, apart from the possible impact in terms of nuclear fusion reactivities (Onofrio
2018). This is at variance with the astrophysical plasmas for which deviations from
MB have been discussed (Nicholls, Dopita & Sutherland 2012; Nicholls et al. 2013;
Storey & Sochi 2014, 2015; Draine & Kreisch 2018). Deviations from the MB
distributions are expected in a tokamak-confined plasma both in the scrape-off layer
(SOL), and in the divertor region, due to the lower densities and temperatures
experienced by electrons and ions with respect to the core confinement region. The
lowest density in these regions (1013–1014 cm−3) implies that the many-body dynamics
is closer to the collisionless regime, and therefore there can be deviations from MB
due to lack of thermal equilibration. Moreover, edge localized modes (ELMs) in the
SOL region can suddenly release suprathermal particles spoiling a pre-existing MB
distribution.

In this work, we undertake a quantitative analysis of the electron-Rydberg hydrogen
n-changing excitation and ionization processes with non-MB distributions, with n the
principal quantum number. The rate coefficient for generic collisional processes can
be written as

kif = 〈vσif 〉 =
∫

f (v) v σif (v) dv =
√

2
m

∫
P(E)E1/2σif (E) dE, (1.1)

where σ is the cross-section for the given process, f (v) is the probability distribution
of the velocities of the projectile particles and P(E) is the corresponding probability
energy distribution. The goal is to evaluate changes in the rate coefficients when
distributions f (v) and P(E) in (1.1) deviate from MB.

Deviations from a MB distribution are investigated within two classes, a mixture of
two MB distributions at different temperatures, and the so-called κ-distribution. These
two examples of non-Boltzmann distributions have in common qualitative features,
such as the presence of a substantial high-energy tail, and it is therefore interesting
to study their quantitative impact with respect to a MB distribution for instance in
collisions where the particles share the same low-energy distribution, or total internal
energy.

The range of energies and densities is chosen in order to characterize plasmas
around the scrape-off layer of a tokamak machine and the divertor region, with
electron densities, ρe ∼ 1013 cm−3 and energies, E ∼ 0.5–20 eV (Anderson et al.
2002). We describe in detail the two non-MB distributions in § 2, and then proceed
to discuss the results for excitation and ionization of hydrogen atoms of high n in
§§ 3 and 4, respectively. In the concluding section, we relate the results to the atomic
physics in the tokamak divertor region.

2. Non-Maxwellian energy distributions

We have chosen energy distributions differing from MB having in mind examples
already available in various physical contexts which possess pronounced, ‘hard’, high-
energy tails. This feature can sensibly change the rate coefficients for processes with
energy dependent cross-sections. In general, we expect formation of distributions with
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high-energy tail whenever there is an energy inflow into the system which is large
enough to not be dissipated into all the modes during the typical relaxation time scales
in the system (Livadiotis & McComas 2011; Livadiotis 2018a).

The first example is provided by a mixture of two Maxwell–Boltzmann distributions
(bMB) with different inverse temperatures β1 = 1/(kBT1) and β2 = 1/(kBT2)

PbMB(E) = 2

√
E
π

[p1β
3/2
1 exp(−β1E) + p2β

3/2
2 exp(−β2E)], (2.1)

where p1 and p2 are the statistical weights of the two distributions, i.e. the probability
that a given particle will belong to the distribution with β1 or β2 (where we assume,
for instance, β1 > β2), respectively. Since p1 + p2 = 1, the probability distribution
is characterized by three independent parameters, β1, β2 and either one of p1 or p2.
Having in mind cases in which the high-temperature component is not dominant, we
choose p2 such that in the p2 = 0 case, the MB distribution is recovered at β1.

Such distributions appear in fusion plasma for instance after ion cyclotron resonance
heating, as discussed in Bhatnagar et al. (1993). The neutral hydrogen flux energy
distribution was measured, during heating, to contain a high-energy MB tail with a
temperature of 48 keV on top of the pre-existing MB distribution at a temperature
of 3 keV. Another example is provided by temperature anisotropy driven instabilities
in the solar wind, for which the velocity distribution of the involved particles is
adequately fitted by bMB distributions (Klein & Howes 2015; Yoon 2017; Klein
et al. 2018). Shocks and winds affect the electron velocity distribution in collisionally
ionized plasmas, producing low-energy electrons with power-law tails (Hahn &
Savin 2015; Cui et al. 2019). The rate coefficients corresponding to these bMB
distributions are linear combinations of MB rate coefficients for temperatures T1 and
T2, with weights given by p1 and p2.

More intriguing is the case of the κ-distributions. These are generalizations of
Lorentzian distributions which were first introduced for applications in space plasma
physics (Vasyliunas 1968). The characterization of these κ-distributions requires two
parameters determining the shape and the corresponding temperature that can be
associated with a probability distribution in a sense that is explained below.

The energy probability density is defined by

Pκ,η(E) = 2

√
E
π

β3/2 C(κ, η)(
1 + βE

κ + η

)κ+1 , (2.2)

where C(κ, η) = Γ (κ + 1)/[Γ (κ − 1/2)(κ + η)3/2], κ > 3/2 and η > −κ . The MB
distribution is recovered as κ → ∞. According to a semiqualitative analysis presented
in Livadiotis (2018b), see in particular figure 3, any distribution with κ > 20 can
be well approximated with an equilibrium MB distribution, while typical values for
genuine κ-distributions out of thermal equilibrium require κ in the range between
about 2 and 10. Our choice of κ-parameters in the following considerations is based
on this criterion.

Notice that we have introduced a parameter η which allows us to treat various
κ-distributions differing in their average energy content. Indeed, the κ-distribution
has a maximum at energy Emax = (κ + η)/[(1 + 2κ)β] and an average energy
〈E〉 = 3(κ + η)/[2(κ − 1)β]. This allows for various interpretations of the temperature
associated with a κ-distribution. For example, by setting η = 1/2, the distribution
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(a) (b) (c)

(d) (e) (f)

FIGURE 1. Absolute (a–c) and relative (d–f ) comparison of bMB and κ-distributions
to MB distributions. The solid lines in the top panels represent the limiting cases
for the MB distributions, i.e. p2 = 0, and κ → ∞ for the κ-distributions: (a) bMB
distributions with increasing weight p2 of the high-temperature component, and T2 = 10 T1;
(b) κ-distributions for η = 1/2 have maxima at 〈E〉 = 1

2 kBT , indicated by vertical dashed
lines; (c) κ-distributions for η =−3/2 have average energy given by 〈E〉= 3

2 kBT , indicated
by vertical dashed lines. Panels (d–f ) show more clearly the relative deviations from a MB
energy distribution for the corresponding top panels, especially in the high-energy tails.
Notice that the κ-distributions for η = 1/2 resemble more closely the bMB distributions,
compared to the corresponding κ-distributions for η = −3/2. In the latter, the deviations
from a MB distribution at high energy are less pronounced, while significant deviations
instead occur at low energy. The case of η = 0, not depicted for graphical reasons, has a
behaviour close to the η = 1/2 case.

peaks at Emax = 1/(2β) = kBT/2 independently of κ and therefore in practical
applications its temperature can be derived as T =2Emax/kB. For η=−3/2, the average
energy 〈E〉 is independent of κ , and temperature can be obtained as T = 2〈E〉/3kB.
Another interesting case is η = 0 for which the κ-distribution of velocities has a
κ-independent maximum corresponding to the most probable velocity vmax =√

2kBT/m
(see appendix A for details). While from an operative standpoint, the values of η and
β can be extracted by looking at the behaviour around the peak of the distribution,
the value of κ can be obtained by fitting the high-energy tail.

Figure 1 illustrates the main features of bMB and κ-distributions. They all have only
one maximum and exhibit strong tails at large energies, particularly manifest in the
lower plots, showing the relative difference from the corresponding MB distribution.
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For η = 1/2, the maximum of the distribution is at the same position, showing a
significant fraction of particles with higher energy, as compared to MB distributions.
At the other extreme, for η = −3/2, the average energy is the same for various
values of κ , pushing a large number of particles towards energies lower than what
would be expected for a MB distribution, thereby counterbalancing the still significant
population in the high energy tail.

3. Electron-Rydberg atom excitation rate coefficients

Rydberg atom excitations due to electron scattering have been studied with different
techniques and in various physical contexts, ranging from cold atomic plasmas in
the laboratory (Rolfes et al. 1993; Nagesha & MacAdam 2003) to the primordial
cosmological recombination (Chluba et al. 2010). Since the pioneering experiment of
Frank and Hertz, excitation by electron bombardment has been studied extensively
for low-lying atomic states. However, there has been much more limited success, in
terms of overall accuracy, in the case of Rydberg atomic states. This is not surprising
because there is a vast gap between the case of low n, for which exact quantum
mechanical computations are still feasible, and the case of high n for which, based
on the correspondence principle, classical trajectory Monte Carlo (CTMC) simulations
are adequate to describe the processes. More specifically, CTMC calculations (Pohl,
Vrinceanu & Sadeghpour 2008) demonstrated that while previous rate coefficients
obtained by Mansbach and Keck (Mansbach & Keck 1969) are correct for large
energy transfers, significant corrections, singular in 1/�E, have to be introduced for
the proper description of collisions at small energy transfer.

For collisional excitation, the proposed rate formula is (Pohl et al. 2008)

kif = k0ε
3/2
f

[
22

(εi + 0.9)7/3
+ 9/2

ε
5/2
i �ε4/3

]
eεf −εi, (3.1)

where k0 = βe4/
√

mR (k0 expressed in cm3 s−1 in the cgs system with the electric
charge in Gaussian units), εi =βEi, εf =βEf , with Ei =R/ni

2, Ef =R/nf
2 the absolute

values of the initial and final energies, R the Rydberg constant and �ε = β(Ef − Ei).
Equation (3.1) does not describe correctly the β → 0 limit, because it has a

power-like βs behaviour as opposed to the much slower log(β) dependence expected
by the Born approximation. This suggests incorporating the expected Born-like
behaviour in the classical formula (3.1) to adequately describe the collision rate
coefficients over the whole range of temperatures. By replacing the exponential
factor exp(εf − εi) in (3.1) with the ‘quantum factor’ �ε Γ (0, �ε), where we have
introduced the incomplete gamma function as

Γ (0, �ε) =
∫ +∞

�ε

e−x

x
dx, (3.2)

we obtain an expression for the rate coefficient that has the correct behaviour at both
low and high temperatures, and maintains its validity even at large n. Moreover, the
formula may be extended to low n by introducing a simple fitting factor that is in
the range of unity uniformly across all parameters, and that can be found by direct
comparison with the accurate R-matrix results of Pryzbilla and Butler, for transitions
between low n (Wigner & Eisenbud 1947; Przybilla & Butler 2004).
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(a) (b)

FIGURE 2. Rate coefficients for H(n = 10 → n′ = 11) Rydberg excitation as a function of
temperature, in the 500–5000 K range, for bMB distribution with different weights for the
two components and T2 = 10T1 (a) and for κ distributions with various κ parameters and
η = 0 (b). Rate coefficients are scaled by the corresponding MB rates, obtained for p2 = 0
for the bMB distribution, and κ → ∞ for the κ-distribution. Notice the suppression of
the rate coefficient for bMB occurring at high temperature with a progressively increasing
high-temperature (T2) component, as the high-energy tail of this component becomes
ineffective for the transition due to the 1/E dependence of the collision cross-section.

The resulting expression is (Vrinceanu et al. 2014)

kif = k0

(
εf

εi

)3/2 [ 22
(εi + 0.9)7/3

+ 9/2

ε
5/2
i �ε4/3

](
3.5 + 0.18n2

f

1 + 1/ε
5/2
i

)
�ε Γ (0, �ε). (3.3)

In Vrinceanu et al. (2014), a comparison between this interpolating formula and
many analytical models valid at low n is carried out for various transitions and in a
temperature range 2500 < T < 250 000 K. Although both plots and tables in Vrinceanu
et al. (2014) show disagreement between various models even by a factor two in some
cases, it is still worth to explore the effect of bMB and κ-distributions within the same
model especially considering that the cross-section is quite sensitive to the details of
the high-energy population.

The evaluation of the rate coefficients for the bMB distribution is easily expressed
as k(bMB)

if = p1k(1)
if + p2k(2)

if , denoting with k(1)
if and k(2)

if the rate coefficients for MB
probability distributions at β1 and β2. In figure 2(a), we plot the rate coefficients
for electron–hydrogen scattering versus temperature for the bMB distribution with
different weights, all normalized to the analogous rate coefficients for a single MB
distribution without the high-temperature component (p2 = 0).

The evaluation of the rate coefficients for the κ-distribution is considerably more
involved, requiring extensive CTMC simulations similar to the ones carried out in
Pohl et al. (2008), but starting from κ-distributed configurations. The initial positions
and velocities for the Rydberg electrons are generated according to a microcanonical
distribution corresponding to the H(n = 10) energy level, and a continuous distribution
of angular momenta. The initial conditions for the incoming electrons are sampled
with random impact parameters and velocities from a κ-distribution in (2.2) with η=0.
The temperature can then be related to the most probable velocity, independent of κ ,
thereby allowing for a fair comparison between the different κ distributions.
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To obtain κ-distributed velocities, it is most straightforward to first sample a random
number u from a Fisher–Snedecor F-distribution (Abramowitz & Stegun 1972),
u ∼ F(3, 2κ − 1), and then assign the velocity as v = vT

√
3u(κ + η)/(2κ − 1),

with vT = √
2kBT/m. Most numerical packages have routines for dealing with the

F-distribution (Press et al. 1992). Alternatively, κ-distributed random numbers can be
obtained by inverting the cumulative distribution function, as detailed in appendix A.

In figure 2(b), results of the CTMC simulations are also shown, each simulation
consisting of 4 × 105 complete trajectories, with random initial conditions generated
according with the rules explained above, classified according to the observed
outcome, and repeated for each combination of parameters κ and temperature T .
As κ increases, the probability distribution of velocities for the electrons approaches
a MB distribution and the rate coefficients scaled by the corresponding MB values,
approach unity.

The most pronounced deviation is observed at low temperatures, when the
rate coefficients can be as much as 2.5 times larger than the MB ones. In this
specific example, the 10 → 11 transition for hydrogen corresponds to 28.3 meV,
i.e. approximately 280 K. In order to remain in a scattering state, the impinging
electron producing the transition should have an energy much larger than the excited
electron. This implies that MB-distributed electrons in the low-temperature range
around 500 K are disadvantaged with respect to κ-distributed electrons with a
larger high-energy population. As the temperature is increased, this disadvantage
is progressively compensated. In the case of a bMB distribution as in figure 2(a),
the use of a high-temperature component progressively results in even lower rate
coefficients with respect to a single MB distribution as the temperature is increased.
This result is reasonable considering that the collision cross-sections decrease as 1/E,
and therefore too large energies for the impinging electrons are ineffective in causing
the atomic transitions.

4. Electron-Rydberg atom ionization rate coefficients
We now analyse the case of ionization of the Rydberg atoms, employing the

generalized ionization cross-sections for Rydberg atoms introduced in Rost & Pattard
(1997)

σ(E) = (1 + 1/α)α+1 EMEα

(E + EM/α)α+1
σM, (4.1)

where E is the excess energy, i.e. the difference between the absolute energy and
the ionization threshold energy, and α is the Wannier threshold exponent (Wannier
1953) characteristic of each target–projectile system at low energies (α = 1.127 for the
electron–hydrogen collision). This parameterization of the cross-section has the proper
low-energy Wannier threshold behaviour, σ(E → 0) ∼ Eα, the expected behaviour
σ ∼ 1/E for E → ∞, and peaks for E = EM such that σ(EM) = σM. Notice that the
1/E asymptotic behaviour is reminiscent of a classical approximation, and therefore
does not account for the logarithmic quantum corrections, as would be expected in
the Born approximation.

In figure 3(a) we plot the ratio between the rate coefficient for a mixture of bMB
distributions with different values for p2, and the corresponding rate coefficient for
p2 = 0 versus temperature. The calculations were repeated for κ-distributions with
η = 0 and the outcome is depicted in figure 3(b). In addition to the analysis based on
Rost & Pattard (1997), we have also evaluated the rate coefficients based on the same
CTMC simulations performed for the excitation analysis. We have chosen an energy
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(a) (b)

FIGURE 3. Ionization rate coefficients, normalized to the corresponding MB rates, for
various bMB distributions with T2 = 10 T1 (a), and for various κ-distributions (b).
The dots in the right plot originate from CTMC simulations, including their statistical
errors, while the lines are from the numerical integration of (1.1) with the model
ionization cross-section of (4.1) taken from the Rost and Pattard (RP) parameterization.
The parameters used are: n = 10, η = 0, α = 1.127, and EM = 2In, where In is the binding
energy of the Rydberg atom in state with quantum number n. The RP rate coefficients
for the κ distributions strongly depend on the EM/In ratio since a resonance occurring at
higher energies has better overlap with the enhanced high-energy tail of the κ distribution.
For instance, by choosing EM = 5In we obtain RP rate coefficients larger by a factor 1.8
with respect to the EM = 2In case for the κ = 2 distribution.

for the peak of the cross-section EM = 2In as suggested by numerical simulations
(Vrinceanu 2005). This is also in line with various parameterization of experimental
data showing that the peak of the ionization cross-section is of the order of 5–10
times the ionization energy for low n, thereafter approaching a value of 2–3 times
the ionization energy at higher n quantum numbers (Janev et al. 1987).

The agreement between the simulations and the analytical interpolation based on
Rost & Pattard (1997) is remarkably good, and yet not completely surprising because
they both share the classical behaviour at high energy, omitting Born-like logarithmic
corrections to the cross-section. There are large (up to an order of magnitude at the
lowest κ) deviations at low temperature, in a range of interest for plasma diagnostics
in the scrape-off layer region and in the divertor region of a tokamak.

The effect of a more pronounced high-energy tail becomes minimal at high
temperature, as expected for phenomena in which a cross-section with a resonant
behaviour appears. However, it is worth remarking that we expect suppression of
the rate coefficient in some region of the parameter space for both bMB and κ

distributions. This behaviour is emphasized by a side to side comparison for two
κ distributions, corresponding to different η parameters, in figure 4. Notice that for
η = 1/2, a slight suppression occurs, in the discussed temperature range, only for
the κ = 2 case and at the highest temperature. In the case of η = −3/2 instead
the suppression is visible for all values of κ , reaching almost a factor of two for
κ = 2 at approximately 2000 K. The suppression is not monotonic, an effect already
observed in figure 5 in Nicholls et al. (2012). This effect is easy to explain in terms
of mismatching between the resonance of the cross-section of the process and the
energy probability distribution. This is more evident in the case of η = −3/2 and
small κ , as the energy probability distribution has a large excess at both low and
high energies, as visible in figure 1(c, f ), i.e. far from the resonance condition for the
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(a) (b)

FIGURE 4. Evidence for the suppression of the ionization rate coefficients with the κ
distributions. The rate coefficients are normalized to the corresponding MB rates, for
η = 1/2 (a) and η = −3/2 (b), for various values of κ .

cross-section. The same suppression is also present in bMB distributions, as barely
evident in figure 3(a). In appendix B, we discuss an analytical model based on a
convenient parameterization of the resonant cross-section, leading to a simple formula
showing enhancement and suppression of the corresponding rate coefficient in the
opposite temperature limits.

5. Conclusions
We have discussed the sensitivity of the rate coefficients for excitation and

ionization in electron–atom collisions to deviations from Maxwell–Boltzmann
distributions. The outcome indicates that the rate coefficients may differ significantly
from those derived from MB distributions especially at low temperatures, in the
range of 1000 K. The results readily translate into rate coefficients for proton-atom
collisions, since there is an approximate scaling with the square mass ratio in the
excitation case, and analogous parameterization of the cross-section with the Rost
and Pattard approach, using different Wannier exponents, for the ionization case.

Our discussion is of interest to tokamak physics for two main reasons. First, an
accurate knowledge of the kinetics of the involved ions and atoms in the plasma-
edge region is a crucial element for the correct working of ITER and related fusion
reactors, and for this reason a dedicated facility, DTT, is under construction in Frascati
(Albanese et al. 2017) with the aim of guiding the divertor design for the ITER
facility. In the plasma-edge region the plasma is colder than in the core of the reactor,
and contains impurities due to the interactions with the materials of the vessel wall.
Detailed models of this region are important because these boundary effects regulate
the amount of impurities penetrating the core, determining the plasma heat load on
the divertor target plates, and therefore the overall performance of the reactor (Reiter
1992; Winter 2000). Second, the extraction of the temperature and fluxes for plasma
components can be affected by this systematic effect, since so far all calculations
for the flux of charge-exchanged fast neutrals escaping from a plasma assume MB
distributions (Turaginov et al. 1994; Hollmann et al. 2006).

We believe that the κ distributions may play a major role in the atomic physics
around the plasma-edge region, since the conditions for local thermal equilibrium are
not easily met due to the steep drop in plasma density. While our study is limited to
two specific atomic processes, a more general programme should also be implemented
for charge exchange and recombination processes (Takamura et al. 2002).
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Appendix A. Cumulative functions for generating κ-distributed velocities

Monte Carlo classical trajectory simulations require κ-distributed velocities
corresponding to the energy probability density (2.2), and we summarize here some
of their properties and how to generate them from uniform random numbers. The
normalized velocity probability density in three dimensions is defined by

f3D(v; κ, η) = 4√
π

(
βm/2
κ + η

)3/2
Γ (κ + 1)

Γ (κ − 1/2)

v2(
1 + βmv2/2

κ + η

)κ+1 , (A 1)

where β is the inverse temperature and m is the particle mass. The parameter η

allows for selecting different classes of κ-distributions that have special properties
and interpretations, as explained below. The conventional MB distribution is obtained
from (A 1) in the κ → ∞ limit.

The κ-distribution in (A 1) peaks at a velocity given by vp = √
2(κ + η)/(κβm).

This shows that the class of κ-distributions with η = 0 have the maximum at a
κ-independent velocity. Therefore for this class of distributions the temperature can
be defined in a κ-independent way as T = mv2

p/(2kB), with vp the most probable
velocity.

The mean and mean square velocities for κ-distributions respectively are

〈v〉 = 2

√
2(κ + η)

πβm
Γ (κ − 1)

Γ (κ − 1/2)
and 〈v2〉 = 3(κ + η)

2κ − 3
2

βm
. (A 2a,b)

For the class of distributions with η = −3/2 the temperature can be defined in
a κ-independent way as T = m〈v2〉/(3kB). For a general κ-distribution, the ‘core’
temperature, obtained from the most probable velocity, and the ‘kinetic’ temperature
that results from the mean square velocity are different, and depend on the specific
κ and η parameters. Only for the special values η = 0, and η = −3/2, does the
interpretation of temperature become straightforward. Another important class of
distributions is η = 1/2 where the most probable energy in the distribution (2.2)
relates with the temperature regardless of κ , essentially the same as in the MB
distribution obtained for κ → ∞.

The cumulative distribution function related to (A 1) can be calculated exactly as

F(x; κ, η) =
∫ x

0
f3D(t; κ, η) dt = 1

x

√
κ + η

π

Γ (κ + 1)

Γ (κ + 3/2)

1
(1 + x2/(κ + η))κ

×
[

2F1

(
1, −κ − 1

2
,

1
2
; − x2

κ + η

)
− 1 − 2κ + 1

κ + η
x2

]
, (A 3)
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where x2 = βmv2/2, and 2F1 is the ordinary hypergeometric function. Starting from
uniformly distributed random numbers u and using the inverse of the cumulative
distribution function (A 3) one obtains κ-distributed velocities using v = F−1(u)√

2/(βm). A practical way to solve the transcendental equation F(x) = u is to create
a two-way table for x and u, and then use an interpolation to obtain x for any
0 < u < 1.

For one-dimensional problems a κ-distribution of velocities has a probability density
function

f1D(v; κ, η) =
√

βm
2π(κ + η)

Γ (κ + 1)

Γ (κ + 1/2)

1(
1 + βmv2/2

κ + η

)κ+1 . (A 4)

This distribution has a maximum at v = 0, with zero average 〈v〉 = 0 and variance
σ 2 = 〈v2〉 = (κ + η)/(βm(κ − 1/2)). The special class of κ distributions with
η = −1/2 has a κ-independent variance, which leads to a direct interpretation of
temperature as T =m〈v2〉/kB. As expected, for large κ the distribution becomes normal,
limκ→∞ f1D(v; κ, η) = √

βm/(2π) exp(−βmv2/2). The corresponding cumulative
distribution function can be expressed as

F1D(x; κ, η) =
∫ x

−∞
f1D(t; κ, η) dt

= 1
2

+ x√
(κ + η)π

Γ (κ + 1)

Γ (κ + 1/2)
2F1

(
1
2
, κ + 1,

3
2
, − x2

κ + η

)
, (A 5)

with x2 = βmv2/2. An alternative method to generate one-dimensional (1-D)
κ-distributed velocities uses random variates of the Student t distribution, as described
in Abdul & Mace (2014). This distribution is not useful to generate configurations
in three dimensions because the magnitude of the sum of three squares of 1-D
κ-distributed velocities

√
v2

1 + v2
2 + v2

3 is not κ-distributed. This does not happen for
MB distributions since a three-dimensional MB distribution is factorizable into three
one-dimensional normal distributions.

Appendix B. Enhancement and suppression of scattering rates in non-MB
distributions: an analytical example

As visible in figure 2(a) and, to a smaller extent, in the analogous one in figure 3,
the rate coefficients for bMB distributions can be enhanced or suppressed depending
on the temperature range. Intuitively this depends on the overlap between the energy
distribution and the cross-section dependence on energy. In particular, for resonant
cross-sections, one expects that at high temperature the overlap in the presence
of enhanced high-energy tails is smaller with respect to the corresponding MB
distribution thereby suppressing the rate coefficient. In order to show this analytically
we discuss the case of a simple cross-section parameterized as

σ(E) = σM

(
E

EM

)λ
exp[−βλ(E − EM)], (B 1)

where EM = λ/βλ is the value of the energy for which the cross-section peaks, and
βλ,λ> 0. While this cross-section is not encountered in concrete physical applications,
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it has the same features of many realistic cross-sections, with a peak value at some
intermediate energy and tails falling at lower and higher energies. Its advantage is that
it allows us to get a simple expression for the rate coefficient when convoluted with
a MB energy distribution at inverse temperature β1

PMB(E) = 2

√
E
π

β
3/2
1 exp(−β1E), (B 2)

obtaining a rate coefficient, based on (1.1)

k1 =
√

8
πm

σM exp (βλEM)

EλM
β

3/2
1 (β1 + βλ)

−λ−2Γ (λ+ 2). (B 3)

For a bMB mixture involving another inverse temperature β2 and weights p1 and
p2 we then obtain, by defining the common factor C = √

8/(πm)σM exp(βλEM)/EλMΓ

(λ+ 2)

kbMB = C[p1β
3/2
1 (β1 + βλ)

−λ−2 + p2β
3/2
2 (β2 + βλ)

−λ−2]. (B 4)

By taking the ratio between (B 4) and (B 3), with β2/β1 = ξ = const. < 1 the rate
coefficient ratio is written as

kbMB

kMB
= p1 + (1 − p1)ξ

3/2

(
ξβ1 + βλ

β1 + βλ

)−λ−2

. (B 5)

In the (low-temperature) limit β1 → ∞ we have kbMB/kMB → p1 + (1 − p1)ξ
−λ−1/2 > 1.

In the opposite limit, β1 → 0, the rate coefficient ratio instead tends to kbMB/kMB →
p1 + (1 − p1)ξ

3/2 < 1.
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