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Abstract. The existence and uniqueness of Gevrey regularity solutions for
the functionalized Cahn-Hilliard (FCH) and Cahn-Hilliard-Willmore (CHW)
equations are established. The energy dissipation law yields a uniform-in-time
H2 bound of the solution, and the polynomial patterns of the nonlinear terms
enable one to derive a local-in-time solution with Gevrey regularity. A careful
calculation reveals that the existence time interval length depends on the H3

norm of the initial data. A further detailed estimate for the original PDE
system indicates a uniform-in-time H3 bound. Consequently, a global-in-time

solution becomes available with Gevrey regularity.

The Cahn-Hilliard (CH) equation, which describes spinodal decomposition in a
binary alloy, has been one of the most well-known gradient flow-type equations. In
a bounded domain Ω ⊂ R

d (with d = 2 or d = 3), the standard Cahn-Hilliard (CH)
energy [2, 6, 7] is given by

F0(φ) =

∫

Ω

{

1

4
φ4 − 1

2
φ2 +

ε2

2

∣

∣

∣
∇φ
∣

∣

∣

2
}

d~x, (1)

for any φ ∈ H1(Ω). The variable φ : Ω → R stands for the phase parameter, and ε
is the width of interface. Here and throughout the manuscript, we will assume that

2010 Mathematics Subject Classification. Primary: 35K35, 35K55.
Key words and phrases. Functionalized Cahn-Hilliard equation, Gevrey regularity solution,

global-in-time existence.
C. Wang was supported by NSF grant DMS-1418689. S.M. Wise was supported by NSF grants

DMS-1418692 and DMS-1719854.
∗ Corresponding author: swise1@utk.edu.

2211



2212 KELONG CHENG, CHENG WANG, STEVEN WISE AND ZIXIA YUAN

Ω is a cuboid and that φ is Ω–periodic. According to F0, the lowest energy “pure
phase states” are φ = ±1. The Cahn-Hiliard chemical potential is the variational
derivative of F0,

µ0 := δφF0 = φ3 − φ− ε2∆φ, (2)

and the standard Cahn-Hilliard equation is

∂tφ = ∆µ0. (3)

The Cahn-Hilliard equation (3) has been extensively studied in the existing lit-
erature, at both the theoretical and numerical levels. In particular, the Gevrey
regularity solution has been proven by [35] for the Cahn-Hilliard equation with di-
mensions d = 1 to d = 5; a more recent work [40] gives a further analysis with
a rough initial data. On the other hand, it is observed that the standard CH en-
ergy (1) is most appropriate for single layer interfaces, with an essential feature
that two dissimilar phases are separated and can not be merged. Therefore, if one
uses single layers to model open vesicles, an additional order parameter has to be
introduced to indicate the inside and outside of the vesicle [39], since single layers
can not be punctured. On the other hand, bilayer interfaces separate two identical
phases by a thin region of a second phase, so that they can be punctured, and can
have free edges, forming open structures.

To address this well-known difficulty, the Functionalized Cahn-Hilliard (FCH)
model has been used to model phase separation of an amphiphilic mixture in [22];
also see related works [13, 14, 20, 21, 36, 37]. In particular, the FCH equations
were extended to describe membrane bilayers [13, 14], membranes and networks
undergoing pearling bifurcations [14, 37], the formation of pore-like and micelle
network structures [20, 21, 37], et cetera. In more details, a dimensionless energy
of a binary mixture is considered, with the following expansion:

F(φ) =
ε−2

2

∫

Ω

µ2
0d~x− ηF0(φ)

=

∫

Ω

(

ε−2

2
φ6 −

(

ε−2 +
η

4

)

φ4 +
ε−2 + η

2
φ2 +

ε2

2
(∆φ)2

−
(

1 +
η

2
ε2
)

|∇φ|2 + 3φ2|∇φ|2
)

d~x, (4)

where η ∈ R is a parameter. For η > 0, (4) represents the FCH energy [14, 25,
36]; when η ≤ 0, (4) is the Cahn-Hilliard-Willmore (CHW) energy [41, 42, 44].
In particular, (4) represents the strong FCH energy when η = O(ε−1) and weak
FCH energy when η = O(1) [14]. We will assume that η > 0 for the following
presentation. The FCH chemical potential is the variational derivative of F :

µ := δφF = a6φ
5 − a4φ

3 + a2φ+ ε2∆2φ+ a1,2∆φ+ 6φ |∇φ|2 − 6∇ ·
(

φ2∇φ
)

,

with the positive constants

a6 = 3ε−2, a4 = 4ε−2 + η, a2 = ε−2 + η, a1,2 = 2 + ηε2.

This corresponds to the energy

F(φ) =

∫

Ω

(

a6

6
φ6 − a4

4
φ4 +

a2

2
φ2 +

ε2

2
(∆φ)2 − a1,2

2
|∇φ|2 + 3φ2|∇φ|2

)

d~x. (5)
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Finally, the FCH equation is the conserved H−1 gradient flow with respect to the
energy (5) [14, 36]:

∂tφ = ∆µ

= ∆
(

a6φ
5 − a4φ

3 + a2φ+ a1,2∆φ+ 6φ|∇φ|2 − 6∇ · (φ2∇φ) + ε2∆2φ
)

. (6)

For simplicity of presentation, we assume that Ω = (0, 1)3; recall that φ is Ω-
periodic. It is obvious that the FCH equation (6) is mass conservative, i.e.,

dt

∫

Ω

φ(x, t) d~x = 0.

In addition, the FCH energy is dissipated at the rate

dtF = −
∫

Ω

|∇µ|2d~x ≤ 0.

Herein we analyze only the FCH equation. The CHW equation is obtained when
η ≤ 0 and does not add any serious difficulties. Similar results will hold for the
CHW equation.

The FCH equation (6) is a sixth-order, highly nonlinear parabolic equation.
While there have been extensive numerical works for the given model [9, 11, 12,
16, 17, 24, 43], a theoretical justification of the smoothness and analyticity for the
PDE solution has been limited. To obtain a PDE solution with real analytic reg-
ularity, the Gevrey norm has been a widely-used tool for the analysis for many
time-dependent nonlinear PDEs; see the related works for 2-D and 3-D incompress-
ible Navier-Stokes equation [4, 19], Kuramoto-Sivashinsky equation [3], nonlinear
parabolic equation [8, 18], 3-D Navier-Stokes-Voigt equation [26], porous media
flow [34]. Other than the Gevrey regularity solutions, a more general class of an-
alytic solutions for different models of incompressible fluid have been discussed
in [5, 23, 27, 28, 29, 30, 31, 32], etc. For the gradient flows with variational en-
ergy formulation, the Gevrey regularity solution has been proven for Cahn-Hilliard
equation [35, 40], and certain extensions to the Cahn-Hilliard-fluid models have been
reported in [15, 33]. In addition to these Cahn-Hilliard type problems, equations
with p-Laplacian type nonlinearities has been analyzed in a more recent article [10],
with an establishment of a global-in-time well-posedness.

Meanwhile, it is observed that, the physical energy (5) greatly differs from the
standard Cahn-Hilliard one (1), due to the highly nonlinear nature in the expansion.
And also, such an energy could not be classified in the p-Laplacian type gradient
equations, since the last term in the energy expansion (5), namely,

∫

Ω
3φ2|∇φ|2dx,

is neither convex nor concave. All these features have made the analysis for the
FCH equation (6) highly challenging.

In this paper, we prove a global-in-time existence of Gevrey regularity solution
for (6). The paper is organized as follows. Some notations associated with Gevrey
space and some preliminary inequalities are outlined in Sec. 1. In Sec. 2 we construct
the approximate solution, using the standard Galerkin procedure, and give the
leading order H2 estimate. In Sec. 3 we prove the existence and uniqueness of a
local in time Gevrey regularity solution for (6), with the existence time interval
length dependent on the initial data through A3/2φ0, where A = −∆ with periodic
boundary conditions on Ω. Finally, a uniform in time H3 bound of the solution is
presented in Sec. 4, so that a global in time Gevrey regularity solution is obtained.
Finally, some concluding remarks are given in Sec. 5.
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1. Notation and preliminaries. We use the standard symbols for Lebesgue and
Sobolev spaces of complex-valued functions and their norms. To begin, for u, v ∈
L2(Ω,C) = L2(Ω), we set (u, v) :=

∫

Ω
u(~x)v∗(~x) d~x, where z∗ = a−ib is the complex

conjugate of z = a + ib. The L2(Ω) norm is denoted ‖u‖ =
√

(u, u). Let us also
define the following function spaces:

L̊2(Ω) :=
{

u ∈ L2(Ω)
∣

∣ (u, 1) = 0
}

,

Cm
per(Ω) :=

{

u ∈ Cm(Rd)
∣

∣ u is Ω-periodic
}

,

C̊m
per(Ω) := Cm

per(Ω) ∩ L̊2(Ω),

Wm,p
per (Ω) :=

{

u ∈W
m,p
loc (Rd)

∣

∣ u is Ω-periodic
}

,

W̊m,p
per (Ω) :=Wm,p

per (Ω) ∩ L̊2(Ω),

Hm
per(Ω) :=Wm,2

per (Ω),

H̊m
per(Ω) := W̊m,2

per (Ω),

H−m
per (Ω) :=

(

Hm
per(Ω)

)∗
,

H̊−m
per (Ω) :=

{

v ∈ H−m
per (Ω)

∣

∣ 〈v, 1〉 = 0
}

,

where 〈 · , · 〉 is the duality pairing between H−m
per and Hm

per. Specifically, for v ∈
H−m

per (Ω), uk ∈ Hm
per(Ω),

〈

v,

n
∑

k=1

ckuk

〉

:=
n
∑

k=1

c∗kv(u
∗
k) =

n
∑

k=1

c∗k〈v, uk〉.

We denote the standard semi-norm and norm on Wm,p(Ω) by | · |m,p,Ω = | · |m,p

and ‖ · ‖m,p,Ω = ‖ · ‖m,p, respectively, dropping the subscript m whenever m = 0.

Since the domain Ω = (0, 1)d is understood in our discussion, we usually also drop
the subscript Ω in referencing the (semi-)norms.

Define the operator A to be −∆ paired with Ω–periodic boundary conditions.
We define the range of A as R(A) := L̊2(Ω). The domain of A is simply D(A) =

H̊2
per(Ω), and A : D(A) → R(A) is a positive, self-adjoint linear operator that

admits a compact inverse. The eigenfunctions of A may be chosen as Φ~α(~x) =

exp(2πi ~α · ~x) ∈ C̊∞
per(Ω), for all ~α ∈ Z

d \
{

~0
}

=: Zd
⋆, in which case the eigenvalues

are λ~α = (2π)2|~α|2 > 0. Set B̊ :=
{

Φ~α

∣

∣ ~α ∈ Z
d
⋆

}

; this is an orthonormal basis for

L̊2(Ω). We can increase B̊ so the resulting set is an orthonormal basis for all of

L2(Ω); in particular, B := B̊ ∪
{

Φ~0 ≡ 1
}

serves this purpose.
Since A is symmetric and positive, we can define the following Hilbert spaces:

for any s ≥ 0, define

D(As) :=
{

u ∈ L̊2(Ω)
∣

∣

∣

∑

~α∈Zd
⋆

(2π)4s|~α|4s|û~α|2 <∞,
}

,

and equip this space with the inner product

(u, v)D(As) :=
∑

~α∈Zd
⋆

(2π)4s|~α|4sû~α v̂∗~α,
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where û~α := (u,Φ~α) =
∫

Ω
u(~x)e−2πi ~α·~xd~x are the Fourier coefficients of u. For

u ∈ D(As), we define

Asu :=
∑

~α∈Zd
⋆

(2π)2s|~α|2sû~αΦ~α.

Then, of course, (u, v)D(As) = (Asu,Asv) and ‖u‖D(As) = ‖Asu‖, and it is not

difficult to show that, in general, D(As) = H̊2s
per(Ω). It is possible to define the

exponential operator exp(τAs) = eτA
s

, for any τ, s ≥ 0. To do so we introduce the
Hilbert space

D
(

eτA
s)

:=
{

u ∈ L̊2(Ω)
∣

∣

∣

∑

~α∈Zd
⋆

e2τ(2π)
2s|~α|2s |û~α|2 <∞

}

.

For any u ∈ D
(

eτA
s)

, define

eτA
s

u :=
∑

~α∈Zd
⋆

eτ(2π)
2s|~α|2s û~α Φ~α.

We introduce the Gevrey space Gτ := D
(

eτA
1/2)

. This is a Hilbert space with the
inner product and norm denoted by

(u, v)τ :=
(

eτA
1/2

u, eτA
1/2

v
)

=
∑

~α∈Zd
⋆

e2τ2π|~α|û~α v̂
∗
~α, |u|τ :=

√

(u, u)τ .

Observe that, for any u ∈ Gτ ,

|u|2τ =

∞
∑

m=0

(2τ)m

m!

∑

~α∈Zd
⋆

(2π)m|~α|m|û~α|2 =

∞
∑

m=0

(2τ)m

m!
‖u‖2D(Am/4) .

Since |u|τ is finite, it follows that every Hk norm of u is also finite. These spaces
can be increased trivially to contain functions that are not of mean zero, in which
case, the sums are taken over Zd.

Set GM := span ({Φ~α | |~α| ≤M}). The operator PM : L2(Ω) → GM is the
canonical orthogonal projection:

PMu :=
∑

|~α|≤M

û~α Φ~α. (7)

Of course, if u ∈ L̊2(Ω), then û~0 = 0. One can extend the domain of definition PM

to H̊−r
per(Ω), for any r ∈ (0,∞), as follows: if u ∈ H̊−r

per(Ω), then

PMu :=
∑

|~α|≤M

u (Φ∗
~α) Φ~α =

∑

|~α|≤M

〈u,Φ~α〉Φ~α,

which implies that

(PMu, v) := 〈u,PMv〉, ∀v ∈ H̊r
per(Ω).

Recall that
(

H̊−r
per(Ω), ‖ · ‖H̊−r

per

)

is a Hilbert space using the standard operator norm.

We have the following basic properties of the orthogonal projection that we state
without proof [38]:

Lemma 1.1. Let X = H̊−r
per(Ω), or D(As), for any r, s ≥ 0. Then, for any u ∈ X,

‖PMu‖X ≤ ‖u‖X , and ‖u− PMu‖X
M→∞−−−−→ 0. (8)
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The results can be modified in a trivial way to accommodate functions that are not

of mean zero.

We have the following interpolation inequalities [1]:

Lemma 1.2. Let r, k, j ∈ R, with 0 ≤ k < j < r. Then, for any ψ ∈ H̊r
per(Ω) =

D(Ar/2),
∥

∥

∥
Aj/2ψ

∥

∥

∥
≤ C

∥

∥

∥
Ak/2ψ

∥

∥

∥

r−j
r−k

∥

∥

∥
Ar/2ψ

∥

∥

∥

j−k
r−k

. (9)

For integer values of the indices, we have

∥

∥∇jψ
∥

∥ ≤
∥

∥∇kψ
∥

∥

r−j
r−k ‖∇rψ‖

j−k
r−k , (10)

where a constant of 1 suffices.

Frequent use will be made of following Gagliardo-Nirenberg-type interpolation
inequality [1]:

Theorem 1.3. Let j,m ∈ N, q, r, θ ∈ R. Suppose 1 ≤ q, r ≤ ∞, j
m ≤ θ ≤ 1, and

1

p
− j

d
=

(

1

r
− m

d

)

θ +
1− θ

q
. (11)

If ψ ∈ Lq(Ω) ∩ Wm,r
per (Ω), then ψ ∈ W j,p

per(Ω), and there exists a constant C =
C(d, j,m, p, q, r,Ω) > 0 such that

|ψ|j,p ≤ C
(

|ψ|θm,r ‖ψ‖
1−θ
q + ‖ψ‖q

)

. (12)

2. Approximate solutions and an energy estimate. Consider the following
Galerkin approximation problem: Suppose that φ0 ∈ L2(Ω), and φ0M = PM (φ0).

Find coefficients φ̃~α,M : [0, T ] → R, for |~α| ≤M , in the representation

φM (t) =
∑

|~α|≤M

φ̃~α,M (t)Φ~α

such that φM (0) = φ0M , and for t ∈ (0, T ],

∂φM

∂t
= ∆µM (13)

where

µM := PM

(

6φM |∇φM |2 − 6∇ · (φ2M∇φM ) + a6φ
5
M − a4φ

3
M

)

+ a2φM + a1,2∆φM + ε2∆2φM .

Lemma 2.1. Let φ0 ∈ L2(Ω). The solution to the Galerkin approximation problem

exists for some T⋆ = T⋆(M,φ0) > 0, such that φ̃~α,M ∈ C1([0, T⋆]), for all |~α| ≤M ,

and
∫

Ω

(

φM (~x, t)− φ0(~x)
)

d~x = 0, for all t ∈ [0, T⋆]. Furthermore, the following

energy stability is valid: F(φM (t)) ≤ F(φM (0)), for any t ∈ [0, T⋆].

Proof. The approximation problem can be recast as a system of nonlinear ODE’s;
it has a unique solution up to some finite time T⋆, such that φ̃~α,M ∈ C∞([0, T⋆]),
for all |~α| ≤ M . It is clear that

∫

Ω

(

φM (~x, t)− φ0(~x)
)

d~x = 0, for all t ∈ [0, T⋆].
Observe µM ∈ GM . Testing this with the Equation (13) and integrating, we arrive
(after a standard energy variation calculation) at the result

(∂tφM , µM ) = dtF(φM (t)) = −
∫

Ω

|∇µM (t)|2d~x.
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Integrating this in time, we have, for any T ∈ [0, T⋆],

F(φM (T )) +

∫ T

0

‖∇µM (t)‖2 dt = F(φM (0)). (14)

Meanwhile, the following energy estimate is valid.

Proposition 1. Let F be the energy given by (5). There is a constant C0 > 0,
such that for all φ ∈ H2

per(Ω),

F(φ) ≥ ε−2

4
‖φ‖66 +

ε2

4
‖∆φ‖2 − C0 =

a6

12
‖φ‖66 +

ε2

4
‖∆φ‖2 − C0. (15)

The constant C0 only depends on ε, η and |Ω|.

Proof. We begin with an application of integration-by-parts and the Cauchy-Schwarz
inequality:

∫

Ω

a1,2

2
|∇φ|2dx = −a1,2

2

∫

Ω

φ ·∆φdx ≤ a1,2

2
‖φ‖ · ‖∆φ‖

≤ ε2

4
‖∆φ‖2 + a21,2ε

−2

4
‖φ‖2. (16)

Define

C1 :=
a21,2ε

−2

4
− a2

2
=
ε−2 + η

2
+
η2ε2

4
> 0. (17)

A careful application of Young’s inequality reveals that, at a point-wise level,

a4

4
φ4 ≤ a6

24
φ6 + C2 =

ε−2

8
φ6 + C2, with C2 :=

1

3

(

(

3

16

)− 2
3

ε
4
3
a4

4

)3

, (18)

and

C1φ
2 ≤ a6

24
φ6 + C3 =

ε−2

8
φ6 + C3, with C3 :=

2

3

(

(

3

8

)− 1
3

ε
2
3C1

)

3
2

. (19)

Therefore, a substitution of (16)-(19) into (5) leads to (15), with C0 = (C2+C3)|Ω|.
The proof is complete.

As a consequence of Lemma 2.1 and Proposition 1, the following result is valid.

Corollary 1. Suppose that φ0 ∈ H2
per(Ω). Then φM and µM , defined as in

Lemma 2.1, exist for all time, and, moreover, for any T > 0,

max
0≤t≤T

‖φM (t)‖2H2 +

∫ T

0

‖∇µM (t)‖2 dt ≤ C4, (20)

where C4 depends on the initial data and the equation parameters, but is independent

of M and T .

Proof. A combination of Lemma 2.1 and Proposition 1 indicates that, for any 0 <
t ≤ T⋆,
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ε2

4
‖∆φM (t)‖2 − C0 +

∫ t

0

‖∇µM (τ)‖2 dτ ≤ F(φM (t)) +

∫ t

0

‖∇µM (τ)‖2 dτ

= F(φM (0))

≤ C5 ‖φM (0)‖6H2 + C6

≤ C7

∥

∥φ0
∥

∥

6

H2 + C6, (21)

where Lemma 1.1 (stability of the projection) was employed in the last step. By
regularity, there is a constant, C8 > 0 such that

‖ψ‖H2 ≤
∥

∥ψ − ψ
∥

∥

H2 +
∥

∥ψ
∥

∥

H2 ≤ C8 ‖∆ψ‖+ |ψ|
√

|Ω|, (22)

for any ψ ∈ H2
per(Ω), where ψ is the Ω–average of ψ. Motivated by the fact that

φM (t) = φ0, for all t ∈ [0, T⋆], we are able to prove estimate (20) for T = T⋆. But,
since C4 is independent of the final time T , the Galerkin approximate solutions do
not blow-up and can be extended up to any final time T > 0 [38].

Definition 2.2. Suppose T > 0 and φ, µ : Ω× [0, T ] → R are Ω–periodic in space.
We say that the pair (φ, µ) is a weak solution of (6) on the time interval [0, T ] if
and only if

φ ∈ L∞
(

0, T ;H2
per(Ω)

)

∩ C0
(

0, T ;L2(Ω)
)

,

µ ∈ L2
(

0, T ;H1
per(Ω)

)

,

∂tφ ∈ L2
(

0, T ; H̊−1
per(Ω)

)

, (23)

and, for almost all t ∈ [0, T ],

〈∂tφ, ν〉+ (∇µ,∇ν) = 0, ∀ ν ∈ H1
per(Ω), (24)

a6
(

φ5, ψ
)

− a4
(

φ3, ψ
)

+ a2 (φ, ψ)

+ε2 (∆φ,∆ψ)− a1,2 (∇φ,∇ψ)
+6
(

φ|∇φ|2, ψ
)

+ 6
(

φ2∇φ,∇ψ
)

− (µ, ψ) = 0, ∀ ψ ∈ H2
per(Ω), (25)

with φ(0) = φ0 ∈ L2(Ω).

Theorem 2.3. Suppose that φ0 ∈ H2
per(Ω). Then a weak solution to (6) exists on

any time interval [0, T ], however large the final time T may be.

Proof. Since the bound (20) is uniform in M , there exist subsequences φMm
and

µMm and limit points φ ∈ L∞
(

0, T ;H2
per(Ω)

)

and µ ∈ L2
(

0, T ;H1
per(Ω)

)

, such that
φMm converges weakly to φ, µMm converges weakly to µ, and

‖φ‖L∞(0,T ;H2
per(Ω)) + ‖µ‖L2(0,T ;H1

per(Ω)) ≤ C9, (26)

where C9 > 0 is independent of T . Passing to limits, one can prove that the pair
(φ, µ) is a weak solution to the FCH equation (6). The details are standard and are
skipped for brevity.

3. A local in time Gevrey regularity solution. In this section, we establish
an estimate of the Gevrey norm of the solution for (6). We must analyze the
Galerkin approximate solution, that is the solution of (13), and pass to limits,
because we do not know a priori the weak solution is sufficiently regular to perform
the computations. However, we will often drop the lower index M for the sake
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of notational convenience, and we skip the details of the passage to limits on the
Galerkin approximations.

3.1. A preliminary estimate for the nonlinear term. We choose the highest
order part in the nonlinear expansion of the chemical potential

N1(φ) := 6φ |∇φ|2 − 6∇ ·
(

φ2∇φ
)

= −6φ |∇φ|2 − 6φ2∆φ,

and the corresponding expansion in ∆µ becomes

B1(φ) :=∆(N1(φ))

= − 6∆φ · |∇φ|2 − 12∇φ · ∇(|∇φ|2)− 6φ∆(|∇φ|2)
− 6φ2∆2φ− 6∆(φ2) ·∆φ− 12∇(φ2) · ∇∆φ

= − 6∆φ · |∇φ|2 − 12∇φ · (2∇φ · ∇∇φ)− 6φ(2∇φ · ∇∆φ+ 2|∇∇φ|2)
− 6φ2∆2φ− 6(2φ∆φ+ 2|∇φ|2) ·∆φ− 12 · 2φ∇φ · ∇∆φ

= − 18B11(φ)− 24B12(φ)− 12B13(φ)− 6B14(φ)− 12B15(φ)− 36B16(φ),

(27)

where

B11(φ) := |∇φ|2 ∆φ, B12(φ) := ∇φ · (H(φ)∇φ),
B13(φ) := φ |H(φ)|2, B14(φ) := φ2∆2φ,

B15(φ) := φ(∆φ)2, B16(φ) := φ(∇φ · ∇∆φ),

(28)

and H(φ) is the (symmetric) Hessian matrix of φ. We use the notation |H(φ)|2 :=
H(φ) : H(φ). In the following lemma, we analyze B11(φ) in the Gevrey space with
inner product (·, ·)τ .

Lemma 3.1. Let u(1), u(2), v, w ∈ D(A3eτA
1/2

) be given, with τ > 0. Define the

trilinear operator

D11(u
(1), u(2), v) := (∇u(1) · ∇u(2))∆v.

Then the following inequality is valid in space dimension d = 3: for some constant

C > 0, independent of the input functions,
∣

∣

∣

(

eτA
1/2

D11(u
(1), u(2), v), eτA

1/2

A3w
)
∣

∣

∣
≤ C|A 3

2u(1)|τ · |A 3
2u(2)|τ · |A 3

2 v|τ · |A3w|τ .
(29)

As a direct consequence, by setting u(1) = u(2) = v = w = φ, we obtain the following

estimate:
∣

∣

∣

(

eτA
1/2

B11(φ), e
τA1/2

A3φ
)
∣

∣

∣
≤ C|A 3

2φ|3τ · |A3φ|τ . (30)

Proof. The following notation is introduced:

v(~x) =
∑

~p∈Z3

v̂~p e
2πi~p·~x, ˇ̂v~p := eτ2π|~p|v̂~p, v̌(~x) :=

∑

~p∈Z3

ˇ̂v~p e
2πi~p·~x

with analogous notation for u(1), u(2), and w. Observe that (u, v)τ = (ǔ, v̌). Then
we see that

(

eτA
1/2

D11(u
(1), u(2), v), eτA

1/2

A3w
)
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= (2π)10
∑

~j1+~j2+~p=~ℓ

û
(1)
~j1
û
(2)
~j2

(~j1 ·~j2) v̂~p|~p|2ŵ∗
~ℓ
|~ℓ|6e2τ2π|~ℓ|

= (2π)10
∑

~j1+~j2+~p=~ℓ

ˇ̂u
(1)
~j1

ˇ̂u
(2)
~j2

(~j1 ·~j2) ˇ̂v~p|~p|2 ˇ̂w∗
~ℓ
|~ℓ|6 · eτ2π(|~ℓ|−|~j1|−|~j2|−|~p|),

where ∗ indicates complex conjugation, and |~p| = √
~p · ~p . For the summation in-

dices, due to the simple vector inequality

|~ℓ| − |~j1| − |~j2| − |~p| = |~j1 +~j2 + ~p| − |~j1| − |~j2| − |~p| ≤ 0,

we get
∣

∣

∣

(

eτA
1/2

D11(u
(1), u(2), v), eτA

1/2

A3w
)∣

∣

∣

≤ (2π)10
∑

~j1+~j2+~p=~ℓ

|ˇ̂u(1)~j1
| |~j1| |ˇ̂u(2)~j2

| |~j2| |ˇ̂v~p| |~p|2 | ˇ̂w~ℓ| |~ℓ|6

=

∫

Ω

ξ1(~x)ξ2(~x)ψ(~x)θ(~x) d~x,

where

ξr(~x) :=
∑

~jr∈Zd

|ˇ̂u(r)~jr
| |~jr|e2πi~jr·~x,

ψ(~x) :=
∑

~p∈Zd

|ˇ̂v~p| |~p|2e2πi~p·~x,

θ(~x) := (2π)10
∑

~ℓ∈Zd

| ˇ̂w~ℓ| |~ℓ|6e−2πi~ℓ·~x.

Careful applications of Sobolev inequalities imply that

‖ξr‖∞ ≤ C‖A 3
2 eτA

1/2

u(r)‖, r = 1, 2,

‖ψ‖ = (2π)−2‖AeτA1/2

v‖ ≤ C‖A 3
2 eτA

1/2

v‖,
‖θ‖ = (2π)4‖A3eτA

1/2

w‖.

(31)

A substitution of (31) into (31) yields the estimate (29). Subsequently, (30) is a
direct consequence of (29), by setting u(1) = u(2) = v = φ. This completes the
proof of the Lemma.

Using similar arguments, we are able to derive the following estimates for the
other nonlinear terms: for B12,

∣

∣

∣

(

eτA
1/2

B12(φ), e
τA1/2

A3φ
)∣

∣

∣
=
∣

∣

∣

(

eτA
1/2

(∇φ · (H(φ)∇φ)), eτA1/2

A3φ
)∣

∣

∣

≤ C‖∇(eτA
1/2

φ)‖∞ · ‖∇(eτA
1/2

φ)‖∞ · ‖H(eτA1/2

φ)‖ · ‖A3eτA
1/2

φ‖
≤ C‖A 3

2 eτA
1/2

φ‖3 · ‖A3eτA
1/2

φ‖,

(32)

for B13,
∣

∣

∣

(

eτA
1/2

B13(φ), e
τA1/2

A3φ
)
∣

∣

∣
=
∣

∣

∣

(

eτA
1/2

(φ|H(φ)|2), eτA1/2

A3φ
)
∣

∣

∣

≤ C‖eτA1/2

φ‖∞ · ‖H(eτA1/2

φ)‖4 · ‖H(eτA
1/2

φ)‖4 · ‖A3eτA
1/2

φ‖
≤ C‖A 3

2 eτA
1/2

φ‖3 · ‖A3eτA
1/2

φ‖,

(33)
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for B14,
∣

∣

∣

(

eτA
1/2

B14(φ), e
τA1/2

A3φ
)
∣

∣

∣
=
∣

∣

∣

(

eτA
1/2

(φ2∆2φ), eτA
1/2

A3φ
)
∣

∣

∣

≤ C‖eτA1/2

φ‖2∞ · ‖A2eτA
1/2

φ‖ · ‖A3eτA
1/2

φ‖
≤ C‖A 3

2 eτA
1/2

φ‖2 · ‖A 3
2 eτA

1/2

φ‖ 2
3 · ‖A3eτA

1/2

φ‖ 1
3 · ‖A3eτA

1/2

φ‖
≤ C‖A 3

2 eτA
1/2

φ‖ 8
3 · ‖A3eτA

1/2

φ‖ 4
3 ,

(34)

for B15,
∣

∣

∣

(

eτA
1/2

B15(φ), e
τA1/2

A3φ
)
∣

∣

∣
=
∣

∣

∣

(

eτA
1/2

(φ(∆φ)2), eτA
1/2

A3φ
)
∣

∣

∣

≤ C‖eτA1/2

φ‖∞ · ‖AeτA1/2

φ‖4 · ‖AeτA
1/2

φ‖4 · ‖A3eτA
1/2

φ‖
≤ C‖A 3

2 eτA
1/2

φ‖3 · ‖A3eτA
1/2

φ‖,

(35)

and for B16,
∣

∣

∣

(

eτA
1/2

B16(φ), e
τA1/2

A3φ
)
∣

∣

∣
=
∣

∣

∣

(

eτA
1/2

(φ(∇φ · ∇∆φ)), eτA
1/2

A3φ
)
∣

∣

∣

≤ C‖eτA1/2

φ‖∞ · ‖eτA1/2

(∇φ)‖∞ · ‖eτA1/2

(∇∆φ)‖ · ‖A3eτA
1/2

φ‖
≤ C‖A 3

2 eτA
1/2

φ‖3 · ‖A3eτA
1/2

φ‖.

(36)

Here we have made repeated use of 3-D Sobolev embedding and interpolation in-
equalities. A combination of inequality (30) and inequalities (32) – (36) gives the
following estimate.

Lemma 3.2. Suppose that φ ∈ D(A3eτA
1/2

), τ > 0. Then there is some constant

C > 0, independent of φ, such that
∣

∣

∣

(

eτA
1/2

B1(φ), e
τA1/2

A3φ
)∣

∣

∣
≤ C‖A 3

2 eτA
1/2

φ‖3 · ‖A3eτA
1/2

φ‖

+ C‖A 3
2 eτA

1/2

φ‖ 8
3 · ‖A3eτA

1/2

φ‖ 4
3 .

(37)

In addition, there are two other nonlinear terms in the chemical potential, namely
a6φ

5 and −a4φ3, and the corresponding nonlinear terms that must be analyzed
in (6) are

B2(φ) := ∆(a6φ
5) = a6(5φ

4∆φ+ 20φ3|∇φ|2),
B3(φ) := −∆(a4φ

3) = −a4(3φ2∆φ+ 6φ|∇φ|2).
(38)

For these nonlinear terms, we are able to obtain the following estimates in a style
similar to that used before:
∣

∣

∣

(

eτA
1/2

(φ4∆φ), eτA
1/2

A3φ
)∣

∣

∣
≤C‖eτA1/2

φ‖4∞ · ‖AeτA1/2

φ‖ · ‖A3eτA
1/2

φ‖

≤C‖A 3
2 eτA

1/2

φ‖5 · ‖A3eτA
1/2

φ‖,
(39)

∣

∣

∣

(

eτA
1/2

(φ3|∇φ|2), eτA1/2

A3φ
)
∣

∣

∣
≤C‖eτA1/2

φ‖3∞ · ‖∇(eτA
1/2

φ)‖24 · ‖A3eτA
1/2

φ‖

≤C‖A 3
2 eτA

1/2

φ‖5 · ‖A3eτA
1/2

φ‖,
(40)

∣

∣

∣

(

eτA
1/2

(φ2∆φ), eτA
1/2

A3φ
)∣

∣

∣
≤C‖eτA1/2

φ‖2∞ · ‖AeτA1/2

φ‖ · ‖A3eτA
1/2

φ‖

≤C‖A 3
2 eτA

1/2

φ‖3 · ‖A3eτA
1/2

φ‖,
(41)
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∣

∣

∣

(

eτA
1/2

(φ|∇φ|2), eτA1/2

A3φ
)
∣

∣

∣
≤C‖eτA1/2

φ‖∞ · ‖∇(eτA
1/2

φ)‖24 · ‖A3eτA
1/2

φ‖

≤C‖A 3
2 eτA

1/2

φ‖3 · ‖A3eτA
1/2

φ‖.
(42)

Therefore, the following results become available.

Lemma 3.3. Let φ ∈ D(A3eτA
1/2

), τ > 0. Then there is a constant C > 0,
independent of φ, such that

∣

∣

∣

(

eτA
1/2

B2(φ), e
τA1/2

A3φ
)
∣

∣

∣
≤ C‖A 3

2 eτA
1/2

φ‖5 · ‖A3eτA
1/2

φ‖,
∣

∣

∣

(

eτA
1/2

B3(φ), e
τA1/2

A3φ
)
∣

∣

∣
≤ C‖A 3

2 eτA
1/2

φ‖3 · ‖A3eτA
1/2

φ‖.
(43)

3.2. A local-in-time solution with Gevrey regularity. The following theorem
is the main result of this section.

Theorem 3.4. Assume that φ0 = ψ + φ0, where ψ ∈ D(A
3
2 ) and φ0 ∈ R. Then

there exists T⋆ that depends upon the D(A
3
2 ) norm of φ0 and the parameters, such

that (6) possesses a unique, regular solution on (0, T⋆) , such that τ → eτA
1/2

φ(τ)
is analytic on (0, T⋆).

Proof. Consider the Galerkin approximate solution φM of (13). To simplify the

calculations, let us assume that φ0 = 0. The more general case is easily handled.
In this case, φM (t) = 0, for all t ≥ 0. At time τ we test (13) with A3φM (τ) in

D(eτA
1/2

) inner product:
(

eτA
1/2

φ′M (τ), A3eτA
1/2

φM (τ)
)

+ ε2
(

eτA
1/2

A3φM (τ), A3eτA
1/2

φM (τ)
)

= −a2
(

eτA
1/2

AφM (τ), A3eτA
1/2

φM (τ)
)

+ a1,2

(

eτA
1/2

A2φM (τ), A3eτA
1/2

φM (τ)
)

+

3
∑

j=1

(

eτA
1/2

Bj(φM ), A3eτA
1/2

φM (τ)
)

.

(44)

The above terms are evaluated as follows: the time-derivative term,
(

eτA
1/2

φ′M (τ), A3eτA
1/2

φM (τ)
)

=

(

A
3
2

(

eτA
1/2

φM (τ)
)′

−A2eτA
1/2

φM (τ), eτA
1/2

A
3
2φM (τ)

)

=
1

2

d

dτ
‖A 3

2 eτA
1/2

φM (τ)‖2 −
(

A2eτA
1/2

φM (τ), A
3
2 eτA

1/2

φM (τ)
)

=
1

2

d

dτ
|A 3

2φM (τ)|2τ − (A2φM (τ), A
3
2φM (τ))τ

≥ 1

2

d

dτ
|A 3

2φM (τ)|2τ − ε2

4
|A2φM (τ)|2τ − 1

ε2
|A 3

2φM (τ)|2τ

≥ 1

2

d

dτ
|A 3

2φM (τ)|2τ − ε2

4
|A 3

2φM (τ)|
4
3
τ · |A3φM (τ)|

2
3
τ − 1

ε2
|A 3

2φM (τ)|2τ

≥ 1

2

d

dτ
|A 3

2φM (τ)|2τ −
(

ε2

6
+

1

ε2

)

|A 3
2φM (τ)|2τ − ε2

12
|A3φM (τ)|2τ ;

(45)
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the surface diffusion term,

ε2
(

eτA
1/2

A3φM (τ), A3eτA
1/2

φM (τ)
)

= ε2|A3φM (τ)|2τ ; (46)

the first lower-order linear term,

a2

∣

∣

∣

(

eτA
1/2

AφM (τ), A3eτA
1/2

φM (τ)
)∣

∣

∣

≤ a2‖eτA
1/2

A
3
2φM (τ)‖ · ‖A3eτA

1/2

φM (τ)‖

≤ 3a22ε
−2|A 3

2φM (τ)|2τ +
ε2

12
|A3φM (τ)|2τ ;

(47)

and the second lower-order linear term,

a1,2

∣

∣

∣

(

eτA
1/2

A2φM (τ), A3eτA
1/2

φM (τ)
)
∣

∣

∣

≤ a1,2‖eτA
1/2

A2φM (τ)‖ · ‖A3eτA
1/2

φM (τ)‖
≤ a1,2‖eτA

1/2

A
3
2φM (τ)‖ 2

3 · ‖A3eτA
1/2

φM (τ)‖ 1
3 · ‖A3eτA

1/2

φM (τ)‖
= a1,2‖eτA

1/2

A
3
2φM (τ)‖ 2

3 · ‖A3eτA
1/2

φM (τ)‖ 4
3

= a1,2|A
3
2φM (τ)|

2
3
τ · |A3φM (τ)|

4
3
τ

≤ 1

3
· 82ε−4a31,2|A

3
2φM (τ)|2τ +

ε2

12
|A3φM (τ)|2τ .

(48)

Notice that we have used Lemma 1.2 in the last estimate and Young’s inequality in
several places.

For the nonlinear terms, a combination of Lemmas 3.2 and 3.3 yields

3
∑

j=1

(

eτA
1/2

Bj(φM (τ)), A3eτA
1/2

φM (τ)
)

≤ C(‖A 3
2 eτA

1/2

φM (τ)‖5 + ‖A 3
2 eτA

1/2

φM (τ)‖3)‖A3eτA
1/2

φM (τ)‖
+ C‖A 3

2 eτA
1/2

φM (τ)‖ 8
3 · ‖A3eτA

1/2

φM (τ)‖ 4
3

= C(|A 3
2φM (τ)|5τ + |A 3

2φM (τ)|3τ )|A3φM (τ)|τ
+ C|A 3

2φM (τ)|
8
3
τ · |A3φM (τ)|

4
3
τ

≤ C10ε
−2(|A 3

2φM (τ)|10τ + |A 3
2φM (τ)|6τ ) + C11ε

−4|A 3
2φM (τ)|8τ

+
ε2

4
|A3φM (τ)|2τ ,

(49)

for some constants C10, C11 > 0, using Young’s inequality in the last step.
Subsequently, a substitution of (45) – (49) into (44) leads to

1

2

d

dτ
|A 3

2φM (τ)|2τ +
ε2

2
|A3φM (τ)|2τ

≤ C10ε
−2(|A 3

2φM (τ)|10τ + |A 3
2φM (τ)|6τ )

+ C11ε
−4|A 3

2φM (τ)|8τ + C12|A
3
2φM (τ)|2τ ,

(50)

where

C12 := (3a22 + 1)ε−2 +
1

3
· 82ε−4a31,2 +

ε2

6
.
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This in turn gives

1

2

d

dτ
|A 3

2φM (τ)|2τ ≤ C13|A
3
2φM (τ)|10τ + C12|A

3
2φM (τ)|2τ , (51)

with C13 = C(C11ε
−2 + C12ε

−4 + 1). By setting y = 1 + |A 3
2φM (τ)|2τ , we obtain

the differential inequality

y(τ)′ ≤ C14y(τ)
5,

where C14 > 0 depends on C12 and C13. The following estimate is then valid:

y(τ) ≤
(

1

1− 4C14τy4(0)

)
1
4

y(0), for all τ ∈ [0, T1), (52)

where T1 := (4C14y
4(0))−1. This implies that

1 + |A 3
2φM (τ)|2τ = y(τ) ≤ 2y(0)

= 2 + 2‖A 3
2φM (0)‖2

≤ 2 + 2‖A 3
2φ0‖2, for all τ ∈ [0, T2],

using stability of the L2 projection, where

T2 :=
15

64C14
(1 + ‖A3/2φ0‖2)−4 ≥ 15

64C14
(1 + ‖A3/2φM (0)‖2)−4.

We can now extract a further subsequence of φM and pass to limits to obtain
our estimates for the limit point φ, which is observed to be Gevrey regular on the
time interval (0, T2). The uniqueness analysis of the Gevrey regularity solution is
straightforward, due to the high order regularity. The details are left to interested
readers. The theorem is proven with T⋆ = T2.

4. Existence of a global-in-time solution with Gevrey regularity. Note
that the existence time interval length T⋆ in Theorem 3.4 for the Gevrey regularity
solution depends on the initial data through A

3
2φ0. To obtain a global in time

solution with Gevrey regularity, we have to establish a uniform-in-time bound for
‖A 3

2φ(t)‖, i.e., ‖∇∆φ(t)‖, so that the constructed solution can be extended to any
time.

We have already obtained a global in time bound of ‖Aφ‖, as given by (20). The
global in time H3 estimate is stated in the following proposition.

Proposition 2. Assume that φ0 = ψ+ φ0, where ψ ∈ D(A
3
2 ) and φ0 ∈ R. For the

FCH equation (6), the following a-priori estimate is valid:

‖∇∆φ(t)‖ ≤ C15, for all t > 0, (53)

where the constant C15 > 0 is independent of t.

Proof. Once again, we assume, for simplicity of notation, that φ0 = 0. Also for
simplicity, let us work directly with the limit point, φ rather the smooth Galerkin
approximation, φM . Strictly speaking, we must prove the estimate for φM before
passing to the limit to show that the calculations hold true for the limit function.
We skip these steps for brevity.
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Taking an inner product with (6) by −∆3φ gives
(

φt,−∆3φ
)

+ ε2‖∆3φ‖2 = −a2
(

∆φ,∆3φ
)

− a1,2
(

∆2φ,∆3φ
)

−
3
∑

j=1

(

Bj(φ),∆
3φ
)

. (54)

The time derivative term can be treated using integration by parts:

(

∂tφ,−∆3φ
)

= (∂t∇∆φ,∇∆φ) =
1

2
∂t‖∇∆φ‖2. (55)

The lower order linear diffusion terms could be bounded as follows:

−a2
(

∆φ,∆3φ
)

≤ a2‖∆φ‖ · ‖∆3φ‖
≤ a2C9‖∆3φ‖

≤ 2a22C
2
9ε

−2 +
ε2

8
‖∆3φ‖2, (56)

−a1,2
(

∆2φ,∆3φ
)

≤ a1,2‖∆2φ‖ · ‖∆3φ‖
≤ a1,2‖∆φ‖1/2 · ‖∆3φ‖1/2 · ‖∆3φ‖
≤ a1,2C

1/2
9 · ‖∆3φ‖3/2

≤ Ca41,2C
2
9ε

−6 +
ε2

8
‖∆3φ‖2, (57)

in which a Sobolev interpolation inequality and Young’s inequality have been re-
peatedly applied. Note that C9 is given by (26). (If we were working with the
Galerkin approximation, we would use C4 from (20).)

For the nonlinear terms, we apply regularity estimates, the Gagliardo-Nirenberg
inequality, and interpolation inequalities to get

‖φ‖∞ ≤ C‖φ‖H2 ≤ CC9, (58)

‖∇φ‖4 ≤ C‖∆φ‖ ≤ CC9, (59)

‖∇φ‖∞ ≤ C(‖∆φ‖+ ‖∆φ‖7/8 · ‖∆3φ‖1/8)
≤ C(C9 + C

7/8
9 · ‖∆3φ‖1/8), (60)

‖∆φ‖∞ + ‖H(φ)‖∞ ≤ C(‖∇∆φ‖+ ‖∇∆φ‖5/6 · ‖∆3φ‖1/6)
≤ C(‖∆φ‖3/4 · ‖∆3φ‖1/4 + ‖∆φ‖5/8 · ‖∆3φ‖3/8)
≤ C(C

3/4
9 · ‖∆3φ‖1/4 + C

5/8
9 · ‖∆3φ‖3/8), (61)

‖∆φ‖4 + ‖H(φ)‖4 ≤ C‖φ‖
H

11
4

≤ C‖∆φ‖ 13
16 · ‖∆3φ‖ 3

16

≤ CC
13
16

9 · ‖∆3φ‖ 3
16 , (62)

‖∇∆φ‖ ≤ ‖∆φ‖3/4 · ‖∆3φ‖1/4 ≤ C
3/4
9 · ‖∆3φ‖1/4, (63)

‖∆2φ‖ ≤ ‖∆φ‖1/2 · ‖∆3φ‖1/2 ≤ C
1/2
9 · ‖∆3φ‖1/2. (64)

Then we get

‖B11(φ)‖ = ‖∆φ(∇φ · ∇φ)‖ ≤ ‖∆φ‖ · ‖∇φ‖2∞
≤ CC9(C

2
9 + C

7/4
9 · ‖∆3φ‖1/4), (65)

‖B12(φ)‖ = ‖∇φ · (H(φ)∇φ)‖
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≤ ‖H(φ)‖ · ‖∇φ‖2∞ ≤ CC9(C
2
9 + C

7/4
9 · ‖∆3φ‖1/4), (66)

‖B13(φ)‖ = ‖φ|H(φ)|2‖ ≤ ‖φ‖∞ · ‖H(φ)‖24 ≤ CC
21
8

9 · ‖∆3φ‖ 3
8 , (67)

‖B14(φ)‖ = ‖φ2∆2φ‖ ≤ ‖φ‖2∞ · ‖∆2φ‖ ≤ CC
5/2
9 · ‖∆3φ‖1/2, (68)

‖B15(φ)‖ = ‖φ(∆φ)2‖ ≤ ‖φ‖∞ · ‖∆φ‖24 ≤ CC
21
8

9 · ‖∆3φ‖ 3
8 , (69)

‖B16(φ)‖ = ‖φ(∇φ · ∇∆φ)‖ ≤ ‖φ‖∞ · ‖∇φ‖∞ · ‖∇∆φ‖
≤ CC9(C9 + C

7/8
9 · ‖∆3φ‖1/8)C3/4

9 · ‖∆3φ‖1/4

≤ CC9(C
2
9 + C

13
8

9 · ‖∆3φ‖ 3
8 ). (70)

Then we arrive at

‖B1(φ)‖ ≤
16
∑

j=11

‖Bj(φ)‖ ≤ C16(‖∆3φ‖ 1
4 + ‖∆3φ‖ 3

8 + ‖∆3φ‖ 1
2 + 1), (71)

where C16 > 0 depends on C9 (C4 in the case of the Galerkin approximation).
The terms in B2(φ) and B3(φ) can be bounded in an even more straightforward

way:

‖φ4∆φ‖ ≤ ‖φ‖4∞ · ‖∆φ‖ ≤ CC5
9 , (72)

‖φ3|∇φ|2‖ ≤ ‖φ‖3∞ · ‖∇φ‖24 ≤ CC5
9 , (73)

‖φ2∆φ‖ ≤ ‖φ‖2∞ · ‖∆φ‖ ≤ CC3
9 , (74)

‖φ|∇φ|2‖ ≤ ‖φ‖∞ · ‖∇φ‖24 ≤ CC3
9 . (75)

Consequently, we obtain the following estimate

3
∑

j=1

‖Bj(φ)‖ ≤ C17(‖∆3φ‖ 1
4 + ‖∆3φ‖ 1

2 + ‖∆3φ‖ 3
8 + 1), (76)

so that the following inequality could be derived:

−
3
∑

j=1

(

Bj(φ),∆
3φ
)

≤
3
∑

j=1

‖Bj(φ)‖ · ‖∆3φ‖

≤ C17(‖∆3φ‖ 5
4 + ‖∆3φ‖ 11

8 + ‖∆3φ‖ 3
2 + ‖∆3φ‖)

≤ C18 +
ε2

4
‖∆3φ‖2,

(77)

in which the Young’s inequality has been applied in the last step, using the fact
that all three power indices are less than 2.

Finally, a substitution of (55), (56), (57), (77) into (54) results in

d

dt
‖∇∆φ‖2 + ε2‖∆3φ‖2 ≤ C19. (78)

By denoting Ê(t) = ‖∇∆φ‖2 and making use of the elliptic regularity estimate

‖∇∆φ‖2 ≤ C‖∆3φ‖2, (79)

we arrive at

∂tÊ(t) + C20Ê(t) ≤ C19. (80)

This differential inequality implies that

Ê(t) = ‖∇∆φ(t)‖2 ≤ e−C20tÊ(0) +
C19

C20
≤ Ê(0) +

C19

C20
=: C21. (81)
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Therefore, a global bound of ‖A 3
2φ(t)‖ is available, since C21 > 0 is time indepen-

dent. This completes the proof of Prop. 2.

As a consequence of Theorem 3.4 and Proposition 2, we arrive at the following
theorem, the main result of this paper.

Theorem 4.1. Assume that φ0 ∈ H3
per. Then the FCH equation (6) has a unique,

global-in-time regular solution, such that τ → eτA
1/2

φ(τ) is analytic on (0, T⋆), for
any T⋆ > 0.

5. Concluding remarks. The Gevrey regularity of solutions for the functional-
ized Cahn-Hilliard (FCH)/Cahn-Hilliard-Willmore (CHW) equations have been an-
alyzed in this article. It was proved that, for any H3

per initial data, there is a unique
Gevrey regularity solution for the highly nonlinear equation, and the existence of
such a solution is global-in-time.
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