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ABSTRACT. The existence and uniqueness of Gevrey regularity solutions for
the functionalized Cahn-Hilliard (FCH) and Cahn-Hilliard-Willmore (CHW)
equations are established. The energy dissipation law yields a uniform-in-time
H? bound of the solution, and the polynomial patterns of the nonlinear terms
enable one to derive a local-in-time solution with Gevrey regularity. A careful
calculation reveals that the existence time interval length depends on the H3
norm of the initial data. A further detailed estimate for the original PDE
system indicates a uniform-in-time H? bound. Consequently, a global-in-time
solution becomes available with Gevrey regularity.

The Cahn-Hilliard (CH) equation, which describes spinodal decomposition in a
binary alloy, has been one of the most well-known gradient flow-type equations. In
a bounded domain Q C R? (with d = 2 or d = 3), the standard Cahn-Hilliard (CH)
energy [2, 6, 7] is given by

1 1 e? 2]
Foo) = | {4¢4 - 58°+ S|V }dw, M
Q
for any ¢ € H(€2). The variable ¢ : Q — R stands for the phase parameter, and &
is the width of interface. Here and throughout the manuscript, we will assume that
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Q is a cuboid and that ¢ is Q—periodic. According to Fy, the lowest energy “pure
phase states” are ¢ = +1. The Cahn-Hiliard chemical potential is the variational
derivative of Fy,

po == 63Fo = ¢° — ¢ — e°Ag, (2)
and the standard Cahn-Hilliard equation is

The Cahn-Hilliard equation (3) has been extensively studied in the existing lit-
erature, at both the theoretical and numerical levels. In particular, the Gevrey
regularity solution has been proven by [35] for the Cahn-Hilliard equation with di-
mensions d = 1 to d = 5; a more recent work [40] gives a further analysis with
a rough initial data. On the other hand, it is observed that the standard CH en-
ergy (1) is most appropriate for single layer interfaces, with an essential feature
that two dissimilar phases are separated and can not be merged. Therefore, if one
uses single layers to model open vesicles, an additional order parameter has to be
introduced to indicate the inside and outside of the vesicle [39], since single layers
can not be punctured. On the other hand, bilayer interfaces separate two identical
phases by a thin region of a second phase, so that they can be punctured, and can
have free edges, forming open structures.

To address this well-known difficulty, the Functionalized Cahn-Hilliard (FCH)
model has been used to model phase separation of an amphiphilic mixture in [22];
also see related works [13, 14, 20, 21, 36, 37]. In particular, the FCH equations
were extended to describe membrane bilayers [13, 14], membranes and networks
undergoing pearling bifurcations [14, 37], the formation of pore-like and micelle
network structures [20, 21, 37], et cetera. In more details, a dimensionless energy
of a binary mixture is considered, with the following expansion:

—2

F(9) = =5 | bz —nFo(o)
7 g2 Py e2 47 g2
= /Q<2¢6 (5 2+Z)¢4+T¢2+5(A¢)Q
— (14+32) Vol + 3¢2|V¢|2> 7, (4)

where € R is a parameter. For > 0, (4) represents the FCH energy [14, 25,
36]; when n < 0, (4) is the Cahn-Hilliard-Willmore (CHW) energy [41, 42, 44].
In particular, (4) represents the strong FCH energy when n = O(¢~!) and weak
FCH energy when n = O(1) [14]. We will assume that > 0 for the following
presentation. The FCH chemical potential is the variational derivative of F:

(= 0pF = agd® — asg® + asd + 2020 + a1 2A¢ + 66 |Vo|* — 6V - (0°V9),
with the positive constants
ag =372, as=4e 2 4n, as=¢ 2+, ar2 =2+ ne?.

This corresponds to the energy

2
F(¢) = /Q<if¢6 - %qﬁ“ + %af + %(AQS)Q - %IWIQ + 3¢>2|v¢|2> dz. (5)
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Finally, the FCH equation is the conserved H ! gradient flow with respect to the
energy (5) [14, 36]:

O = Ap
= A(ag9° — asd® + az¢ + a12A¢ + 66| Vo[> — 6V - (9°V) +£2A%¢).  (6)

For simplicity of presentation, we assume that Q = (0,1)3; recall that ¢ is Q-
periodic. It is obvious that the FCH equation (6) is mass conservative, i.e.,

dt/ o(x,t)dz = 0.
Q
In addition, the FCH energy is dissipated at the rate
diF = —/ |Vul?dz < 0.
Q

Herein we analyze only the FCH equation. The CHW equation is obtained when
1 < 0 and does not add any serious difficulties. Similar results will hold for the
CHW equation.

The FCH equation (6) is a sixth-order, highly nonlinear parabolic equation.
While there have been extensive numerical works for the given model [9, 11, 12,
16, 17, 24, 43], a theoretical justification of the smoothness and analyticity for the
PDE solution has been limited. To obtain a PDE solution with real analytic reg-
ularity, the Gevrey norm has been a widely-used tool for the analysis for many
time-dependent nonlinear PDEs; see the related works for 2-D and 3-D incompress-
ible Navier-Stokes equation [4, 19], Kuramoto-Sivashinsky equation [3], nonlinear
parabolic equation [8, 18], 3-D Navier-Stokes-Voigt equation [26], porous media
flow [34]. Other than the Gevrey regularity solutions, a more general class of an-
alytic solutions for different models of incompressible fluid have been discussed
in [5, 23, 27, 28, 29, 30, 31, 32|, etc. For the gradient flows with variational en-
ergy formulation, the Gevrey regularity solution has been proven for Cahn-Hilliard
equation [35, 40], and certain extensions to the Cahn-Hilliard-fluid models have been
reported in [15, 33]. In addition to these Cahn-Hilliard type problems, equations
with p-Laplacian type nonlinearities has been analyzed in a more recent article [10],
with an establishment of a global-in-time well-posedness.

Meanwhile, it is observed that, the physical energy (5) greatly differs from the
standard Cahn-Hilliard one (1), due to the highly nonlinear nature in the expansion.
And also, such an energy could not be classified in the p-Laplacian type gradient
equations, since the last term in the energy expansion (5), namely, [, 3¢*|V¢|?dx,
is neither convex nor concave. All these features have made the analysis for the
FCH equation (6) highly challenging.

In this paper, we prove a global-in-time existence of Gevrey regularity solution
for (6). The paper is organized as follows. Some notations associated with Gevrey
space and some preliminary inequalities are outlined in Sec. 1. In Sec. 2 we construct
the approximate solution, using the standard Galerkin procedure, and give the
leading order H? estimate. In Sec. 3 we prove the existence and uniqueness of a
local in time Gevrey regularity solution for (6), with the existence time interval
length dependent on the initial data through A3/2¢°, where A = —A with periodic
boundary conditions on . Finally, a uniform in time H? bound of the solution is
presented in Sec. 4, so that a global in time Gevrey regularity solution is obtained.
Finally, some concluding remarks are given in Sec. 5.
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1. Notation and preliminaries. We use the standard symbols for Lebesgue and
Sobolev spaces of complex—valued functions and their norms. To begin, for u,v €
L?(Q,C) = L?(Q), we set ( = [ u( Z) d¥, where z* = a—ib is the complex
conjugate of z = a + ib. The LQ(Q) norm is denoted [lu]l = v/ (u,u). Let us also
define the following function spaces:

L*Q) == {ue L*(Q) | (u,1) =0},

Cr () := {u € C™RY) | u is Q-periodic} ,
Cen(Q) = O () N L2(9),

WinP(Q) == {u € WiwP(RY) | u is Q-periodic}
WisP(Q) = WisP(Q) N L2 (),

He (Q) = Ws(9),

Hy () = W2 (),

Hoot'(Q) = (Hp ()"

HM(Q) = {v e Hy ()| (v, 1) = 0},

where (-, -) is the duality pairing between H_ " and H[; . Specifically, for v €
Ho(90), w, € HIL (@),

per
n n n
<U,chuk> = ZCZU(UZ) = ZcZ(v,uQ.
k=1 k=1 k=1

We denote the standard semi-norm and norm on W™P(Q) by | - [mpo =1 |mp
and || - Hm,p,@ =|- ||m7p, respectively, dropping the subscript m whenever m = 0.
Since the domain Q = (0,1)? is understood in our discussion, we usually also drop
the subscript  in referencing the (semi-)norms.

Define the operator A to be —A paired with Q—periodic boundary conditions.
We define the range of A as R(A) := L2(€). The domain of A is simply D(A) =
ngr( ), and A : D(A) — R(A) is a positive, self-adjoint linear operator that

admits a compact inverse. The eigenfunctions of A may be chosen as Oz(%) =

exp(2mid - ¥) € ngr( ), for all @ € Z¢\ {O} =: 74, in which case the eigenvalues
are Ay = (2m)2|d@|2 > 0. Set B := {®s | @€ Z¢}; this is an orthonormal basis for
LQ(Q) We can increase B so the resulting set is an orthonormal basis for all of
L?(2); in particular, B := BU {<I>6 = 1} serves this purpose.

Since A is symmetric and positive, we can define the following Hilbert spaces:
for any s > 0, define

D)= {ue 2@ | 3 @n* sl <, |,
acLd

and equip this space with the inner product

(u,’U)D(As) = Z (27T)4S|@‘45ﬂ52 @(’;,

aczd
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where g = (u, ®g) = [, u(@)e > TFdT are the Fourier coefficients of u. For
u € D(A?), we define

Ay = Z (27T)25|07|2s7l07(1>52.

aeczd
Then, of course, (u,v)p(as) = (A°u, A%) and [lul|p 4o = [[A%ul], and it is not
difficult to show that, in general, D(A®) = ﬁ[g;(ﬁ). It is possible to define the

exponential operator exp(TA®) = e™" for any 7,5 > 0. To do so we introduce the
Hilbert space

D(e-rAb‘) — {u c EQ(Q) ‘ Z eQT(zﬂ)23|&|25|a&|2 < OO}
aezd
For any u € D(eTAS), define
ey = Z SECORNC Y
ac

1
We introduce the Gevrey space G, := D(eTA /2). This is a Hilbert space with the
inner product and norm denoted by
1 1 P
(u,v), == (eTA u,emd zv) = Z 2T g 0% July =/ (u, ),
aczd

Observe that, for any u € G,

fo%e) oo

2y . @r)" o

w2 = 3 EO0 S mymlalmaal = 30 S fuld e,
m=0 aezd m=0

Since |u|, is finite, it follows that every H* norm of u is also finite. These spaces
can be increased trivially to contain functions that are not of mean zero, in which
case, the sums are taken over Z¢.

Set Gy = span ({®4 | |@] < M}). The operator Py : L2(2) — Gy is the
canonical orthogonal projection:

PMU = Z ﬁ@f@&. (7)
l&|<m

Of course, if u € L2 (€2), then 45 = 0. One can extend the domain of definition Py,
to H;;Tr(Q)7 for any r € (0,00), as follows: if u € H3" (), then

per
Puui= > u(@3)Pz= > (u,05)Pqs,
l&|<M || <M
which implies that

(Paru,v) := (u, Pyv), Yo € f[;er(Q).
Recall that (Hp’e’;(Q), Il H;J.) is a Hilbert space using the standard operator norm.
We have the following basic properties of the orthogonal projection that we state
without proof [38]:
Lemma 1.1. Let X = HI;eTr(Q), or D(A®), for any r,s > 0. Then, for any u € X,

M—o00
IPaullx < llulx, and  fu—Parul x = 0. (8)
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The results can be modified in a trivial way to accommodate functions that are not
of mean zero.

We have the following interpolation inequalities [1]:

Lemma 1.2. Let r,k,j € R, with 0 < k < j <r. Then, for any ¢ € per(Q) =
D(A™/?),
43720 < || a2y | sy | 9)
For integer values of the indices, we have
[l < 9= 19" (10

where a constant of 1 suffices.

Frequent use will be made of following Gagliardo-Nirenberg-type interpolation
inequality [1]:

Theorem 1.3. Let j,m € N, q,r,0 € R. Suppose 1 < q,r < o0, = L <9<1, and

L J 1 m 1-6

g\ g) it 11

p d (7" d> + q ( )
If ¢ € LYQ) N WL (), then ¢ € WIE(Q), and there exists a constant C =
C(d>j7 m,p,q,T, Q) > 0 such that

9
0 < © (1l Il + ) (12)

2. Approximate solutions and an energy estimate. Consider the following
Galerkin approximation problem: Suppose that ¢ € L*(Q), and ¢9, = Pa(¢°).
Find coefficients ¢z p : [0,7] — R, for |&] < M, in the representation

Z ban ()P

la|l<m
such that ¢,(0) = ¢%,, and for ¢ € (0,77,
0
% = Apnm (13)

where
piag = Pas (660 |Vrr|® — 6V - (63, Vonr) + agdiy — asdis)
+ azdar + a1,2A¢n + 2 APy

Lemma 2.1. Let ¢ € L?(Q)). The solution to the Galerkin approzimation problem
exists for some T, = T,.(M,¢") > 0, such that qga’M € CY([0,Ty]), for all |&@] < M,
and fQ (gZ)M(:E', t) — ¢>O(f)) dZ = 0, for all t € [0,T,]. Furthermore, the following
energy stability is valid: F(¢n(t)) < F(oar(0)), for any t € [0,T,].

Proof. The approximation problem can be recast as a system of nonlinear ODE’s;
it has a unique solution up to some finite time T}, such that (;55,1\4 € C>=([0,Ty)),
for all || < M. It is clear that [, (¢a(Z,t) — ¢°(Z)) dZ = 0, for all ¢ € [0, T3]
Observe pupr € Gyr. Testing this with the Equation (13) and integrating, we arrive
(after a standard energy variation calculation) at the result

(Ocpms ) = dp F /|VMM )|?dz.
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Integrating this in time, we have, for any T € [0, T}],

T
Féar(T)) + / IV par (02 dt = F(or (0)). (1)

Meanwhile, the following energy estimate is valid.

Proposition 1. Let F be the energy given by (5). There is a constant Cy > 0,
such that for all ¢ € HZ. (),

_ 2
€ €2 a €
> S 6 < 2 _ _ 496 6 < 2 _ 0. 1
F@) = 1018+ SIAGR - Co = Lol + SIAd ~ o (15
The constant Cy only depends on e, n and |Q|.

Proof. We begin with an application of integration-by-parts and the Cauchy-Schwarz
inequality:

a a a
| “2vokax =22 [ 6. aodx < 2] A0
Q Q

e af pe?
< —|Ag|? ’ 2, 16
< S ag)? + 2| (16)
Define

2 _—2 —2 2.2

a1,2€ ay € °4+mn N
C —_——_— e = O 17
! 1 2 2 i 7 (17)

A careful application of Young’s inequality reveals that, at a point-wise level,

and

-

-2
Ol¢2 S ;%dﬁ + 03 = %(ZSG + 03, Wlth 03 =

C}J\l\:)

> 3
—2 1 75 4
¢4 2065 4+ Cy = ?dﬁ +Cy, with Cp:= 3 ( 53:) , (18)

- 24
B ) (19

Therefore, a substitution of (16)-(19) into (5) leads to (15), with Cy = (C2+C3)|Q].
The proof is complete. O

As a consequence of Lemma 2.1 and Proposition 1, the following result is valid.

Corollary 1. Suppose that ¢° € H2,(Q). Then ¢pr and pynr, defined as in

per
Lemma 2.1, exist for all time, and, moreover, for any T > 0,

T
2 2
s o @+ [ 19 (0)1® e < €, (20)

where Cy depends on the initial data and the equation parameters, but is independent
of M and T.

Proof. A combination of Lemma 2.1 and Proposition 1 indicates that, for any 0 <
t S T*7



2218 KELONG CHENG, CHENG WANG, STEVEN WISE AND ZIXIA YUAN

52 2 ¢
— ||A t|° — C \Y dr < F( \Y% > d
180w 01 = Cot [ V()| dr < Flou /n ()|
= F(om(0
< C5H¢M( )||H2+06
< Cr [|6°|I%= + Co, (21)

where Lemma 1.1 (stability of the projection) was employed in the last step. By
regularity, there is a constant, Cs > 0 such that

16l g < |0 = || o + [0 1o < Cs 1AW + 9]/, (22)

for any ¢ € per(Q), where 1) is the Q-average of 1. Motivated by the fact that
dar(t) = @9, for all t € [0,T,], we are able to prove estimate (20) for T' = T,. But,
since Cy is independent of the final time 7', the Galerkin approximate solutions do
not blow-up and can be extended up to any final time 7' > 0 [38]. O

Definition 2.2. Suppose T > 0 and ¢, : Q x [0,7] — R are Q—periodic in space.
We say that the pair (¢, i) is a weak solution of (6) on the time interval [0, 7] if
and only if

¢ € L (0,T; H,(2)) N C° (0, T; L*())

per

pe L?(0,T; H) ()
8t¢ S L2 (O T; Hper( )) ) (23)

and, for almost all ¢ € [0, 77,
(O, vy + (Vu,Vv) =0, Vve H;er(Q) (24)
ag (¢°,0) — as (¢°,0) + a2 (¢,)
e2 (Ap, AY) — ay 2 (V, V)
6 (3IVeI, ¥) +6 (*Vh, V) — (u,9) =0, V¢ € Hp (), (25)
with ¢(0) = ¢° € L?(Q).
Theorem 2.3. Suppose that ¢° € H2,.(Q). Then a weak solution to (6) exists on

any time interval [0, T], however large the final time T may be.

Proof. Since the bound (20) is uniform in M, there exist subsequences ¢y, and

m

f,, and limit points ¢ € L (0,T; H2..()) and p € L* (0, T; H.,.(Q)), such that

per per
o, converges weakly to ¢, pny,, converges weakly to p, and

H(bHLOQ(O,T;ngr(Q)) + H/’CHL?(O,T;Héer(Q)) < Gy, (26)

where Cy > 0 is independent of T. Passing to limits, one can prove that the pair
(¢, ) is a weak solution to the FCH equation (6). The details are standard and are
skipped for brevity. O

3. A local in time Gevrey regularity solution. In this section, we establish
an estimate of the Gevrey norm of the solution for (6). We must analyze the
Galerkin approximate solution, that is the solution of (13), and pass to limits,
because we do not know a priori the weak solution is sufficiently regular to perform
the computations. However, we will often drop the lower index M for the sake
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of notational convenience, and we skip the details of the passage to limits on the
Galerkin approximations.

3.1. A preliminary estimate for the nonlinear term. We choose the highest
order part in the nonlinear expansion of the chemical potential

Ni(¢) := 60 |Vo|* — 6V - (6°V) = —60|Ve|* — 64 A¢,
and the corresponding expansion in Ay becomes
Bi(¢) :=A(N1(¢))
—6A¢ - [Vo|* — 12V6 - V([V4|*) — 66A(|V|*)
—60°A%) — 6A(¢%) - Ag — 12V(4%) - VA
—6A¢ - |Vo|> —12V¢ - (2Ve - VV @) — 66(2V - VAS 4 2| VV|?)
— 62A%p — 6(20A¢ + 2|Ve|?) - Ap — 1220V - VAP

= — 18B11(¢) — 24B12(¢) — 12B13(¢) — 6B14(¢) — 12B15(¢) — 36 B16(9),
(27)

where

Bi(9) = VoI’ Mg, Bia(¢) := V- (H(6) V),
Bi3(9) = ¢[H(@)*,  Bua(e) := ¢*A%¢, (28)
Bis(¢) := ¢(A9)%,  Bis(9) := ¢(V¢ - VAG),

and H(¢) is the (symmetric) Hessian matrix of ¢. We use the notation |H(¢)|? :=

H(¢) : H(¢). In the following lemma, we analyze Bj;(¢) in the Gevrey space with
inner product (-, ).

Lemma 3.1. Let u™, u® v, w e D(AgeTAl/z) be given, with T > 0. Define the
trilinear operator
D1y (uM, u® v) = (VuD) - V@) Av.

Then the following inequality is valid in space dimension d = 3: for some constant
C > 0, independent of the input functions,

‘(eTAl/QDu(u(l),u(2)7v),eTAl/2A3w)‘ < ClAZuY|, - |ATu®)|, - |A3 v, - |APw),.

(29)

As a direct consequence, by setting u® = u® = v = w = @, we obtain the following
estimate:

FAL/2 TAL/2 3
(74 Bu(9), ™4 %) | < ClaTof2 - | 4%, (30)
Proof. The following notation is introduced:
(@) = Z by 2T b 1= em 2Pl (%) = Z Oy 2P E
pEL? pEZL?

with analogous notation for u"), u(?) and w. Observe that (u,v), = (i,©). Then
we see that

(cTA1/2D11 (u(l)7 u®, v), cTAl/zABw)
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:(27r)10 Z (1) ()(]1 ]72) |17|2@Z~\[|662T2ww
F1tjetp=t

1) x(2 2 2 X% 716 eT2m 0—171|—|72|—|P]
=@ Y ;1> <>(jl - Jo) Bl 2|76 - er2m (-1 =IT2l -1,

Ji+ietp=0
where * indicates complex conjugation, and |p] = /p-p. For the summation in-
dices, due to the simple vector inequality

0] = 151] = |72 = |B] = |72 + Jo + B — [j1] — |72| — |B] < 0,
we get

‘ (eTA1/2 Dll(u(l), u®), v), eTA1/2A3w>

X(1 - X(2 - X X it
< @0 > [N E] ol lig) [P g |£1°
;1+;2+5:Z

- /Q £ ()T (D) dF,

where

)= Y ][l

jrezd
)= Y [igl [pPe™ 77,
peL
6(F) == (2m)'0 Y iyl {2,

fezd
Careful applications of Sobolev inequalities imply that
léloo < ClAZT A 0, = 1,2,
[ll = (2m) 247 ]| < Ol AT (31)
611 = (2m)* A% .

A substitution of (31) into (31) yields the estimate (29). Subsequently, (30) is a
direct consequence of (29), by setting u(Y) = u(® = v = ¢. This completes the
proof of the Lemma. O

Using similar arguments, we are able to derive the following estimates for the
other nonlinear terms: for Bjo,

(4 Bia(9), ™" 4%) | = | (74" (V6 - (H(6)V9)), 7" 4%
< CIVE " B)loo - V(™ D)l - IHE™ )| - [|A%74 g (32)
< At )P A% A g
for Bis,
(e Bua(9), 74" 4%) | = | (7 (elH(0) ), 74 4% |
< Clle™ plloe - [HEA " G)lla - [HE™A " 9) |- A% gl (33)
< At )P A% A g
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for By,
’(eTAl/QBM(QS)’eTAl/?AsQS)‘ _ ‘(eTA1/2(¢2A2¢)7eTA1/2A3¢)’

1/2 1/2 1/2
< Olle™ Tl - [[A%eTH gl - [[A%T g

3 A1/2 2 3 A1/2 2 3 A1/2 1 3 A1/2 (34)
< CIAZT A g2 | AZeT A g3 | A% A g5 - A% A g
< Ol AT g||5 - || A% g3,
for Bl5,
FAL/2? FAL/2? FAL/2 FAL/2?
(e Bis(0), 4 4%0) | = | (74" (0(80)2), 74" 4%
FAL/2 FAL/2? FAL/2 FAL/2?
< Clem " Glloe - AT Bl - | AT By - A3TA g (35)
< O Az || A3 g,
and for Blﬁ,
AL/ FAY/? FAL/? FAL/2?
(e Bio(9), ™4 4%) | = | (74 (6(V o - VA9)), e 4% )|
FAL/2 FAL/2 rAL/2 FAY/2
<O pllos - €74 (VD) oo - €74 (VAP)|| - [[A%e74 7 g (36)

< Cflaze ||| A% g).
Here we have made repeated use of 3-D Sobolev embedding and interpolation in-
equalities. A combination of inequality (30) and inequalities (32) — (36) gives the
following estimate.

Lemma 3.2. Suppose that ¢ € D(ASeTAl/Z), 7 > 0. Then there is some constant
C > 0, independent of ¢, such that

‘(eTA1/2Bl(¢),eTA1/2A3¢>‘ < Ol AzeTA g | A% A

all

3 rAY/? 8 3 rAL/2 4 (37)
+CO[[Aze™ gl - [[A%T0 95

In addition, there are two other nonlinear terms in the chemical potential, namely
ag®® and —ays¢>, and the corresponding nonlinear terms that must be analyzed
in (6) are

Ba(¢) == A(acs”) = as(5¢" Ag + 200°|Vo?),

Bs(¢) = — A(aad”) = —aa(3¢*A¢ + 66| Vo|*).
For these nonlinear terms, we are able to obtain the following estimates in a style
similar to that used before:

T AL/2 FALY/2 FAL/2 FAL/2 FAL/2
(e (6*a0), 4 %6 )| <Ol gL, - 474 ) - A% g

(38)

3 1/2 1/2 (39)
<Ol Az g7 - A% g,

FAL/2 FAL/2 FAL/2 FAL/2 FAY/2
(4 @IV o), 7 a%0) | <Cllem ol - IV (e 9) - 4% g
<CfATe g - A% g,

T 1/2 T 1/2 T 1/2 T 1/2 T 1/2
(e (@200), 7" A% )| <Cllem )% - 14T ] - [ A%
<COl|aBem A g [ A% g,
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FAL/2 FAL/2 FAL/2 FAL/2 FAL/2
(74 (@l0f), e %) | <Cllem™ blloc - [V (74 R)113 - | 4% )
<ClART TGP 4% g
(42)
Therefore, the following results become available.

Lemma 3.3. Let ¢ € D(A3eTA1/2), 7 > 0. Then there is a constant C' > 0,
independent of ¢, such that

AL/2

9l
FAL/2 r 1/2 g 1/2 FAL/2
(e Ba(9), ™" A% )| < At g - || 4% g

(7 Ba(e), ™" a%) | < At g - A%

3.2. A local-in-time solution with Gevrey regularity. The following theorem
is the main result of this section.

Theorem 3.4. Assume that ¢° = 1) + ¢0, where ¢ € D(A%) and ¢° € R. Then
there exists T, that depends upon the D(A%) norm of ¢° and the parameters, such
that (6) possesses a unique, reqular solution on (0,Ty) , such that T — eTAl/qu(T)
is analytic on (0,T%).

Proof. Consider the Galerkin approximate solution ¢ of (13). To simplify the
calculations, let us assume that ¢9 = 0. The more general case is easily handled.
In this case, ¢pr(t) = 0, for all + > 0. At time 7 we test (13) with 43¢y (7) in

D(eTAl/Q) inner product:
T 1/2 T 1/2 T 1/2 T 1/2
(e s (), A% 60s (1)) 42 (74 As (1), A% s (1))
1/2 1/2
= —az (" Agur(r), A% g4 (7))

+ay 2 (eTA1/2A2¢M(T)’ASGTA1/2¢M(T)) (44)
3

3 () A ).
Jj=1

The above terms are evaluated as follows: the time-derivative term,

(eTAl/z(ZS/A/[(T)7ABGTAl/Qd)Jw(T))
_ <A3 (7 ou()) ~ A%TA%M(T),eTA”QA%M(T))

1d 3 Lal/2 FAL/2 3 ;Al/2
= S AR o ()2 = (A2 g (), AR 6y (7))
1 d

= 5 ol4 ¢M<T>|3—<A2¢M<T> A3 (7)) (45)
1d 1 s
25;\A2¢M< 2 - |A2¢ (N2 = |43 ou (72
3 4 2 1 3
> §d—\A2¢M( IEE 7|A§¢M(7—)‘7§ Ao ()7 - g\AéQﬁM(T”z
1d, s 2 1 ’
2 garaionC— (G + 5 ) Wdou il — A%l
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the surface diffusion term,
2 (eTA”ZA?’qu(T),ASeTA1/2¢M(T)) = 2| A3 (1) 2
the first lower-order linear term,
as ’ (eTAl/ZAd)M (1), ABGTAI/Z(bM(T)) ‘

< aslle™ " A3 g (7)] - | A% pa (7)]

< Bade AT ou (P2 + S A0 ()
and the second lower-order linear term,

ai ‘ (eTA1/2A2¢M(T)7 A?’@TAI/z(ZﬁM(T)) ‘
< anafle™" A2pu (7)] - A% pa ()]

aralle™ AT u ()| - A% g (7))
aralle™ AT our ()| - A% g (7))
= a12| A3 o (1)) - | A% (7)]2

1
< Z.
-3

Wl

N

3 rAL/2
A% g (7|

ol

2
— 3 3
8%t o AL o () + S| A6 () 2

2223

(46)

(48)

Notice that we have used Lemma 1.2 in the last estimate and Young’s inequality in

several places.
For the nonlinear terms, a combination of Lemmas 3.2 and 3.3 yields

3
(eTAl/ZBj (éa (7)), A?’eTAl/?(bM(T))

1

< O(| A2 ppr(r)° + | AZem A pas (1P| 4% gy (7))
+C AR gy (1|5 - | A% (1)

= C(IAR g ()2 + [A2 s (7)2)| A1 ()]
+ CIA3Grr ()3 - [ AP (7|3

< Croe 2(JAZ oar ()12 + | A2 9ar (7)) + Crae ™4[ A% gar (7))

J

ol

e 3 2
+ S0 (),

for some constants C1g, C11 > 0, using Young’s inequality in the last step.
Subsequently, a substitution of (45) — (49) into (44) leads to

1d 3 2 g2 3 2
55'14 on ()7 + §|A onm(7)7
< Croe (| A2 o ()20 + |A% par (1)]9)
+ Crie A2 p (1) + Cral A% d(7)[2,

where
2 B S e
Ci2 :=(3a5 + 1)e +§~8 € a1’2+g.



2224 KELONG CHENG, CHENG WANG, STEVEN WISE AND ZIXIA YUAN

This in turn gives
]. d 3 3 3
57147 om(T)I7 < CislAZ o (7)1 + Cral A2 o (7)), (51)

with Ci3 = C(Crie~2 + Croe~* +1). By setting y = 1 + |A2¢p(7)|2, we obtain
the differential inequality

y(T)/ S Cl4y(7—)57
where C14 > 0 depends on C5 and C13. The following estimate is then valid:

y(r) < (1_401147_114(0))4 y(0), forall 7 €[0,T1), (52)

where Ty := (4C14y*(0))~!. This implies that

L4 |42 g (7)]2 = y(7) < 29(0)
= 2+2[ 4260 (0)]
<242A%¢°)2, forall T€[0,T3],

using stability of the L? projection, where

1
T2 : 0

B ( 15
" 64C

L (|40 = == (1 + (| A 2o (0)*)
64C14
We can now extract a further subsequence of ¢5; and pass to limits to obtain
our estimates for the limit point ¢, which is observed to be Gevrey regular on the
time interval (0,7%). The uniqueness analysis of the Gevrey regularity solution is
straightforward, due to the high order regularity. The details are left to interested
readers. The theorem is proven with T, = T5. O

4. Existence of a global-in-time solution with Gevrey regularity. Note
that the existence time interval length T in Theorem 3.4 for the Gevrey regularity
solution depends on the initial data through A%¢O. To obtain a global in time
solution with Gevrey regularity, we have to establish a uniform-in-time bound for
|A2p(t)]], i.c., |[VAG(t)]], so that the constructed solution can be extended to any
time.

We have already obtained a global in time bound of || A¢||, as given by (20). The
global in time H? estimate is stated in the following proposition.

Proposition 2. Assume that ¢° = ¢ + ¢0, where ¢y € D(A%) and ¢0 € R. For the
FCH equation (6), the following a-priori estimate is valid:

IVAG(t)|| < Cis,  forall ¢>0, (53)
where the constant Cv5 > 0 is independent of t.

Proof. Once again, we assume, for simplicity of notation, that ¢ = 0. Also for
simplicity, let us work directly with the limit point, ¢ rather the smooth Galerkin
approximation, ¢s. Strictly speaking, we must prove the estimate for ¢, before
passing to the limit to show that the calculations hold true for the limit function.
We skip these steps for brevity.
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Taking an inner product with (6) by —A3¢ gives
(61, —A%¢) +2|A%¢|1> = —ag (A, A%¢) — a1z (A%), A%9)

3

- Z (B]((/l))v As(b) .

The time derivative term can be treated using integration by parts:

(016, ~2%9) = (AVAS, VAG) = L0 [VAG.

The lower order linear diffusion terms could be bounded as follows:

—az (A¢7 A3¢)

—a1,2 (A2¢7 A3¢)

< arflAg] - A%
< axCy|| A%
2
< 203037+ S A%)?,

< a1 A% A%
< ana]| A2 (A2 || A%
< araCy’? - ||A%g) P
2
< Cal 037+ SIIA%|?,

2225

(57)

in which a Sobolev interpolation inequality and Young’s inequality have been re-
peatedly applied. Note that Cg is given by (26). (If we were working with the
Galerkin approximation, we would use Cy4 from (20).)

For the nonlinear terms, we apply regularity estimates, the Gagliardo-Nirenberg
inequality, and interpolation inequalities to get

16]loc
IVlla
IVl

[1A¢]loo + [H(¢) ]l

[A¢la + [[H(¢)lla

IVAS||
1A%

Then we get
| B11(9)]|

[B12(0)]]

(VAR VANV

ININ TN

(VAN VAN VAN VAN VAN

IN

Cllgll g2 < CC,

CllAg|| < CC,

C(|l A + [Agl™/® - (A5

C(Co + Cg/% - | A%17%),

C(IV A + [VAG|/ - || A3g||H/°)
Ol AP/ A%V + | Ag]P/ - || A3g]>/%)
OOy - | A%g| M4+ O5/® - || A% >/%),
Cllgll 1 < ClAG]IT - |A%g||5

ele M INFIES

IAG]/4 - [[A%p) M4 < C3* - || A3g||M/4,
IAG]M2 - [[A%H]1/2 < Cg/® - || A3 ||/,

1AG(Vé- V)| < | Ag]l - [IVe]2
CCy(C2 + Cg/" - || A%,
IV - (H(¢)V)|

(58)
(59)
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< H@) - V]2 < CCo(C2 + CT/* - | A3g| /1), (66)
1Bis@)] = I6IH@)2] < 1]l - IH@)|2 < CCyF - | A3)12,  (67)
1B = [6*°A%] < lIgl% - |A%0] < CCy/? - || A% 2, (68)
IBis(@)l = [6(A8)]| < |8lloc - |A]13 < CCy* - | A9, (69)
IBis(@)| = [6(Vé- VAR < [8lloc - [Vl - [[VAS]

< CCy(Cy+Cy/% - | A% V3)CH™ - | A%/

< CCH(CE+Cy - |A%]F). (70)

Then we arrive at
IB1(¢)]| < ZHB O < Cra(|A%B]|T + |A3G||E + [A3g)2 +1),  (71)
Jj=11

where C16 > 0 depends on Cy (Cy in the case of the Galerkin approximation).
The terms in Bs(¢) and B3(¢) can be bounded in an even more straightforward
way:

lp*Adll < él% - 1Ad] < CCs, (72)
12°IVel |l < llel% - IVelli < CCs, (73)
lp*Ad]l < [0]1% - 1Ad] < CCs, (74)
leIVel* |l < Il - IV9IlZ < CCs. (75)
Consequently, we obtain the following estimate
Z 1B (9)|| < Crr(IA%]|5 + [|A%]2 + | A%]1F + 1), (76)
so that the follovvlng inequality could be derived:
3 3
=3 (Bi(9),A%) < 3B (9)ll - 1A%
j=1 j=1
(77)

< 017<|\A3¢||% A3 5 + A2 + A3

<Cig+ = ||A3¢>||2

in which the Young’s inequahty has been applied in the last step, using the fact
that all three power indices are less than 2.
Finally, a substitution of (55), (56), (57), (77) into (54) results in

d
ZIVAGI? + A% < Cho. (78)
By denoting E(t) = [[VA¢||> and making use of the elliptic regularity estimate
IVAg|* < Cl|a%g|?, (79)
we arrive at
OE(t) + CooE(t) < Cho. (80)

This differential inequality implies that

E(t) = [[VA(t)|? < e C2E(0) + Cio < E(0) + G _, Cay. (81)
Cao Cao
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Therefore, a global bound of | A2 ¢(t)|| is available, since Cy; > 0 is time indepen-
dent. This completes the proof of Prop. 2. O

As a consequence of Theorem 3.4 and Proposition 2, we arrive at the following
theorem, the main result of this paper.

Theorem 4.1. Assume that ¢° € H3

per*

Then the FCH equation (6) has a unique,

global-in-time regular solution, such that T — 6TA1/2¢(T) is analytic on (0,T}), for
any Ty, > 0.

5. Concluding remarks. The Gevrey regularity of solutions for the functional-
ized Cahn-Hilliard (FCH)/Cahn-Hilliard-Willmore (CHW) equations have been an-
alyzed in this article. It was proved that, for any Hg’er initial data, there is a unique
Gevrey regularity solution for the highly nonlinear equation, and the existence of
such a solution is global-in-time.
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