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Abstract. This paper shows how to systematically and efficiently improve a reduced-order model (ROM) to
obtain a better ROM-based estimate of the Conditional Value-at-Risk (CVaR) of a computationally
expensive quantity of interest (QoI). Efficiency is gained by exploiting the structure of CVaR, which
implies that a ROM used for CVaR estimation only needs to be accurate in a small region of
the parameter space, called the ε-risk region. Hence, any full-order model (FOM) queries needed to
improve the ROM can be restricted to this small region of the parameter space, thereby substantially
reducing the computational cost of ROM construction. However, an example is presented which
shows that simply constructing a new ROM that has a smaller error with the FOM is in general not
sufficient to yield a better CVaR estimate. Instead a combination of previous ROMs is proposed
that achieves a guaranteed improvement, as well as ε-risk regions that converge monotonically to the
FOM risk region with decreasing ROM error. Error estimates for the ROM-based CVaR estimates
are presented. The gains in efficiency obtained by improving a ROM only in the small ε-risk region
over a traditional greedy procedure on the entire parameter space are illustrated numerically.
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1. Introduction. In this paper we develop an approach to systematically and efficiently
improve a reduced-order model (ROM) to obtain a better ROM-based estimate of the Condi-
tional Value-at-Risk (CVaR) of a computationally expensive quantity of interest (QoI). This
paper builds on our recent work [3], where we analyzed uses of ROMs to substantially decrease
the computational cost of sampling-based estimation of CVaR. Our previous paper used the
approximation properties of a ROM, but the ROMs could have been computed separately.
This paper integrates the ROM generation into the estimation process. Efficiency is gained
by exploiting the structure of CVaR, which implies that a ROM used for CVaR estimation
only needs to be accurate in a small region of the parameter space. Hence, any expensive
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full-order model (FOM) queries needed to improve a given ROM can be restricted to this
small region of the parameter space, thereby substantially reducing the computational cost
of ROM construction. CVaR and related risk measures have been used to quantify risk in
a variety of applications ranging from portfolio optimization [18, 8, 11], to engineering de-
sign [16, 23, 21, 19], to partial differential equation (PDE)–constrained optimization [7, 25].
While in special cases the CVaR for some random variables with known distributions can be
computed analytically [12], for most science and engineering applications the distribution of
the QoI is not known analytically. Instead, this distribution depends on the distribution of
the random variables entering the system and on the dependence of the system state (often
the solution of a PDE) on these random variables. In this situation CVaR must be estimated
by sampling the QoI, and each sample requires a computationally expensive solution of the
FOM system of equations. The ROM approach proposed in this paper provides sequences
of CVaR estimates with guaranteed error bounds, and decreasing errors with substantially
reduced total number of expensive FOM evaluations.

Estimating the CVaR of a QoI requires sampling in the tail of the distribution of the
QoI, and these samples lie in a small region, called the risk region, of the parameter space.
Unfortunately, as indicated earlier, this risk region is not known analytically, but must be
estimated from samples of the QoI. In [3] we have shown how to use a ROM for which an
error estimate is available to construct a so-called ε-risk region that contains the true risk
region of the original computationally expensive FOM QoI, and an estimate of the CVaR
of the FOM QoI that only requires ROM evaluations. The error between the CVaR of the
FOM QoI and this ROM-based CVaR estimate depends only on the ROM error in the ε-risk
region. Therefore, we need to improve the ROM only in the ε-risk region. This is typically
achieved by evaluating the FOM. Since these FOM queries are now restricted to the small
ε-risk region and not the entire parameter space, our tailored process of improving the ROM is
computationally substantially more efficient than traditional approaches. However, we present
a simple example which shows that simply constructing a new ROM that has a smaller error
with the FOM is in general not sufficient to yield a better CVaR estimate. Instead we propose
a combination of the previously used ROM with the new ROM that achieves a guaranteed
improvement in the CVaR estimate of the FOM QoI. We present error estimates for our
ROM-based CVaR estimates, and we numerically demonstrate the gains in efficiency that can
be obtained by improving a ROM only in the small ε-risk region over a traditional greedy
procedure on the entire parameter space.

ROMs play a role in multifidelity methods for uncertainty quantification and optimization;
see, e.g., the survey [13]. However, this survey focuses on the risk neutral expected value
estimation. The use of ROMs for CVaR estimation and risk averse optimization is more
recent and more limited. As we have already stated in [3], “Proper orthogonal decomposition
based ROMs have recently been used in [21] to minimize CVaRβ for an aircraft noise problem
modeled by the Helmholtz equation. However, they do not adaptively refine the ROMs,
nor analyze the impact of ROMs on the CVaRβ estimation error. The design of an ultrahigh-
speed hydrofoil by using CVaRβ optimization is considered by Royset et al. [19]. They propose
building surrogates of the CVaR of their QoI and model these surrogates as random variables
‘due to unknown error in the surrogate relative to the actual value’ of the CVaR of their
QoI. This randomness in the CVaR surrogate is then incorporated into the design process by
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applying CVaR again, but with a different quantile level to the surrogate. Ultimately, they
use a surrogate for the QoI that combines high-fidelity and low-fidelity QoI evaluations into
a polynomial fit model. Our work does not require additional stochastic treatment of model
error and focuses on the efficient and accurate sampling of CVaR using ROMs of the QoI that
satisfy the original governing equations.”

Zahr, Carlberg, and Kouri [22] extend the adaptive sparse-grid trust-region method of
Kouri et al. [6] to include ROMs in optimization under uncertainty. The algorithm allows
differentiable risk measures, such as a smoothed CVaR, but the numerical example in [22]
considers risk neutral optimization using the expected value. While sparse grids can be very
efficient for the integration of QoIs that are smooth in the random variables, numerical results
[20, sec. 3.2.4] indicate that they may not be much more efficient than plain Monte Carlo
sampling when applied to CVaR and other risk measures. Thus improving the efficiency of
Monte Carlo sampling by integrating ROMs, CVaR structure, and Monte Carlo sampling as
proposed in this paper seems beneficial for risk averse optimization.

Chen and Quarteroni [1] integrate ROMs into the evaluation of failure probabilities. An
adaptive approach [1, Alg. 3] refines the ROM by a greedy method based on a criterion
that tends to place snapshots near the boundary of the failure region in parameter space.
However, no error estimates or improvement guarantees are given. The approach introduced
in this paper could be integrated into [1, Alg. 3].

The paper by Zou, Kouri, and Aquino [26], which is an extension of [24], is closest to our
paper in spirit. They compute estimates of general risk measures including CVaR based on a
ROM and on error estimates that take into account the structure of the risk measure. However,
their analysis is tied to their ROM approach, which uses a piecewise linear approximation over
a Voronoi tessellation of the parameter space. To improve their ROM the Voronoi tessellation
is refined as necessary. Their error estimates, which are tailored to the structure of the risk
measure, tend to refine Voronoi tessellation primarily in subregions of the parameter space
roughly corresponding to what we referred to earlier as the risk region. In contrast, our basic
analysis is based on a generic ROM for which an error estimate is available, and we propose
a combination of ROMs that leads to a guaranteed improvement of the ROM-based CVaR
estimate. We then tailor our general framework to a class of widely used projection-based
ROMs; see, e.g., [2], [4], or [15].

This paper is organized as follows. Section 2 introduces the problem formulation and
reviews results from [3] that are needed for the integration of ROM construction. Section 3
presents our new adaptive ROM strategy for CVaR computation and gives a complete al-
gorithm. Section 4 discusses practical aspects of the algorithm implementation as well as
construction and error estimation for projection-based ROMs. In section 5 we present nu-
merical results to support our theoretical findings and show the computational savings of our
proposed adaptive ROM approach.

2. Problem formulation and background. This section introduces the basic problem
setting and notation and reviews some results on CVaR. Specifically, in subsection 2.1 we
define the state equation and the QoI. Subsection 2.2 defines the CVaR and its corresponding
risk region, and subsection 2.3 briefly reviews the sampling-based computation of CVaR.
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2.1. The state equation and quantity of interest. Given a random variable ξ with
values ξ ∈ Ξ ⊂ RM and with density ρ, we are interested in the efficient approximation of risk
measures of the random variable

(2.1) ξ 7→ s(y(ξ)),

where s : RN 7→ R is a quantity of interest (QoI) which depends on y : Ξ 7→ RN , which is
implicitly defined as the solution of the state equation

(2.2) F (y(ξ), ξ) = 0 for almost all ξ ∈ Ξ,

with F : RN × Ξ 7→ RN . For now we assume that (2.2) has a unique solution y(ξ) for almost
all ξ ∈ Ξ. Later we will verify this assumption for the specific applications we consider.

For many results in this paper, the specific structure (2.1), (2.2) of the QoI is not impor-
tant. Therefore, we define

(2.3) X = s(y(·)).

We assume that X ∈ L1
ρ(Ξ). The expected value of a random variable X is E[X] =∫

ΞX(ξ)ρ(ξ)dξ.

2.2. Conditional Value-at-Risk. We review basic properties of the Conditional Value-at-
Risk (CVaR) at level β, denoted as CVaRβ , that are required within this paper. The CVaRβ is
based on the Value-at-Risk (VaRβ). For a given level β ∈ (0, 1) the VaRβ [X] is the β-quantile
of the random variable X,

(2.4) VaRβ [X] = min
t∈R

{
Pr
[
{ξ ∈ Ξ : X(ξ) ≤ t}

]
≥ β

}
.

We often use the shorthand notation {X ≤ t} = {ξ ∈ Ξ : X(ξ) ≤ t} and the indicator func-
tion

IS(ξ) =

{
1 if ξ ∈ S,
0 else.

Different equivalent definitions of CVaRβ exist. The following definition is due to Rock-
afellar and Uryasev [17, 18]. The CVaRβ at level β ∈ (0, 1) is

(2.5) CVaRβ [X] = VaRβ [X] +
1

1− β
E
[
(X −VaRβ [X])+

]
.

The representation (2.5) of CVaRβ [X] motivates the following definition.

Definition 2.1. The risk region corresponding to CVaRβ [X] is given by

(2.6) Gβ [X] := {ξ ∈ Ξ : X(ξ) ≥ VaRβ [X]} .

As mentioned before, VaRβ [X] and CVaRβ [X] depend only on the values of X that lie

in the upper tail of the cumulative distribution function (c.d.f.). In particular, for any set Ĝ
with

(2.7) Gβ [X] ⊂ Ĝ ⊂ Ξ
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we can write the VaRβ in (2.4) as

VaRβ [X] = min
t∈R

{
Pr
[{

ξ ∈ Ĝ : X(ξ) ≤ t
}]
≥ β

}
(2.8)

and the CVaRβ (2.5) as

CVaRβ [X] = VaRβ [X] +
1

1− β

∫
Ĝ

(X(ξ)−VaRβ [X])+ ρ(ξ)dξ.(2.9)

These representations show that we only need values of X in a subdomain Ĝ of the parameter
space that includes the risk region. In section 3 we will use ROMs to compute approximations
Ĝ of the risk region with the property (2.7), and for parameters ξ ∈ Ĝ we will approximate
the FOM QoI X by the ROM approximation. However, before we introduce ROMs, we
briefly discuss sampling-based estimation of CVaRβ , upon which practical ROM-based CVaRβ

estimators are based.

2.3. Sampling-based estimation of VaRβ and CVaRβ. Algorithm 2.1 below is used to
obtain sampling-based estimates of VaRβ [X] and CVaRβ [X]. The algorithm is standard; see,
e.g., [18]. For additional information, see [3].

Algorithm 2.1 Sampling-based estimation of VaRβ and CVaRβ .

Input: Set Ξm = {ξ(1), . . . , ξ(m)} ⊂ Ξ of finitely many parameters and corresponding proba-
bilities p(1), . . . , p(m), risk level β ∈ (0, 1), and random variable X : Ξ→ R.

Output: Estimate V̂aRβ [X] and ĈVaRβ [X].
1: Evaluate X at the parameter samples: X(ξ(1)), . . . , X(ξ(m)).
2: Sort values of X in descending order, relabel the samples so that

(2.10) X(ξ(1)) > X(ξ(2)) > · · · > X(ξ(m)),

and reorder the probabilities accordingly (so that p(j) corresponds to ξ(j)).
3: Compute an index kβ such that

kβ−1∑
j=1

p(j) ≤ 1− β <
kβ∑
j=1

p(j).

4: Set

V̂aRβ [X] = X(ξ(kβ)),(2.11)

Ĝβ [X] =
{
ξ ∈ Ξm : X(ξ) ≥ V̂aRβ [X]

}
,(2.12)

ĈVaRβ [X] =
1

1− β

kβ−1∑
j=1

p(j)X(ξ(j)) +
1

1− β

(
1− β −

kβ−1∑
j=1

p(j)

)
V̂aRβ [X].(2.13)

We note that the second term on the right-hand side of (2.13) in Algorithm 2.1 is nonzero

for the case
∑kβ−1

j=1 p(j) 6= 1 − β and is based on the idea of splitting the probability atom
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at VaRβ [X] (see [18]). An important observation is that the estimates (2.11) and (2.13)

depend only on the parameters in the sample risk region Ĝβ [X] (2.12) and their corresponding

probabilities. Thus Algorithm 2.1 called with a parameter set Ξm and a parameter set Ξ̃ such
that Ĝβ [X] ⊂ Ξ̃ ⊂ Ξm gives the same estimates V̂aRβ [X] and ĈVaRβ [X].

As discussed in [3, p. 1418], we can also compute confidence intervals using the asymptotic
results in [5, sec. 2.1, 2.2]. Since we will use it in our computations, we note that the 100(1−
α)% confidence interval (CI) for CVaRβ [X] is

(2.14)

[
ĈVaRβ [X]− zα

κ̂β√
m
, ĈVaRβ [X] + zα

κ̂β√
m

]
,

where zα = Φ−1(1−α/2), Φ is the c.d.f. of the standard normal variable, and κ̂β = ψ̂β/(1−β)
with

(ψ̂β)2 =
1

m

m∑
j=1

IĜβ [X]
(ξ(j))

(
X(ξ(j))− V̂aRβ [X]

)2
−

 1

m

m∑
j=1

IĜβ [X]
(ξ(j))

(
X(ξ(j))− V̂aRβ [X]

)2

.

3. Adaptive surrogate-based CVaRβ approximation. For our target application, FOM
(2.2) is a large-scale system that arises from the discretization of a PDE. For given ξ the
solution of (2.2) for y(ξ) is expensive, and therefore sampling the QoI (2.1) for CVaRβ com-
putations is expensive. In this section, we propose a method that combines adaptive ROM
refinement with knowledge of the CVaRβ computation to generate efficient approximation of
the CVaRβ of the QoI (2.1).

We review ROM-based CVaRβ computation in subsection 3.1. In subsection 3.2 we pro-
pose our new method that adaptively refines surrogate models to achieve monotonically
converging risk regions. Subsection 3.3 then presents our complete algorithm for adaptive
surrogate-based CVaRβ approximation.

3.1. Reduced-order models for CVaRβ computation. A ROM of (2.2) is a model of
small dimension, i.e.,

(3.1) Fk(yk(ξ), ξ) = 0 for almost all ξ ∈ Ξ,

with Fk : RNk × Ξ 7→ RNk , Nk � N , and an sk : RNk 7→ R such that

(3.2) ξ 7→ sk(yk(ξ))

is a good approximation of (2.1). We will provide a more detailed discussion of projection-
based ROMs in subsection 4.1. For now, let Xk : Ξ→ R, k = 1, . . . , denote an approximation
of the QoI X. We refer to Xk as a model of X. At this point it is not important that the
evaluation of X requires the solution of a computationally expensive system (2.2)–(2.1), nor is
it important how the models Xk are computed. However, we assume that we have an estimate
for the errors between Xk and X, namely

(3.3) |Xk(ξ)−X(ξ)| ≤ εk(ξ) for almost all ξ ∈ Ξ, k = 1, . . . .
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We next show how to construct estimates of the risk region that satisfy (2.7) from approx-
imations Xk of X, and we derive approximations of VaRβ [X] and CVaRβ [X] based on Xk;
for more information see our previous work in [3]. Recall the risk region of the QoI X from
(2.6). The ε-risk region associated with Xk is defined as

(3.4) Gk
β =

{
ξ : Xk(ξ) + εk(ξ) ≥ VaRβ [Xk − εk]

}
.

Note that if the error εk is constant, then the translation equivariance of VaRβ implies
VaRβ [Xk − εk] = VaRβ [Xk]− εk. Since

Xk(ξ) + εk(ξ) ≥ X(ξ) ≥ Xk(ξ)− εk(ξ),

the monotonicity of VaRβ gives

VaRβ [X] ≥ VaRβ [Xk − εk].

Hence Xk(ξ) + εk(ξ) ≥ X(ξ) ≥ VaRβ [X] ≥ VaRβ [Xk− εk] for almost all ξ ∈ Gβ [X]. Similarly,
Xk(ξ) + εk(ξ) ≥ Xk(ξ) ≥ VaRβ [Xk] ≥ VaRβ [Xk − εk] for almost all ξ ∈ Gβ [Xk]. The previous
inequalities imply

(3.5) Gβ [X] ⊂ Gk
β and Gβ [Xk] ⊂ Gk

β .

Here and in the following we still use the set inclusion S1 ⊂ S2 if Pr
[
S1 \ S2] = 0.

We have shown in [3, Thm. 3.3] that if (3.3) holds, then

(3.6)
∣∣∣CVaRβ [X]− CVaRβ [Xk]

∣∣∣ ≤ 1

1− β

∫
Gkβ
|X(ξ)−Xk(ξ)|ρ(ξ)dξ

and

(3.7)
∣∣∣CVaRβ [X]− CVaRβ [Xk]

∣∣∣ ≤ (1 +
1

1− β

)
ess supξ∈Gkβ

εk(ξ).

We note that under continuity conditions on the c.d.f.’s of X and Xk, which often hold,
the factor 1 + 1/(1− β) on the right-hand side of (3.7) can typically be replaced by 1; see [3,
Thm. 3.3] for details. Moreover, the first inequality (3.6) appears in the proof of [3, Thm. 3.3].

We see from (3.6)–(3.7) that for the accurate estimation of CVaRβ [X] with a surrogate
model, we need a model Xk that is accurate in the ε-risk region Gk

β . Moreover, applying (2.8)

and (2.9) with X and Ĝ replaced by Xk and Gk
β shows that we only need to evaluate Xk in

the ε-risk region Gk
β to evaluate CVaRβ [Xk].

3.2. Improving CVaRβ computation with adaptive reduced-order models. What hap-
pens if CVaRβ [Xk] is not a good enough approximation of CVaRβ [X]? In that case, we would
like to generate a new model Xk+1, so that CVaRβ [Xk+1] is a better estimate of CVaRβ [X]
than CVaRβ [Xk], or at least so that the upper bound (3.6) for the error is reduced. The
upper bound (3.6) for the CVaRβ approximation error is nonincreasing if the ε-risk region is



ADAPTIVE ROM CONSTRUCTION FOR CVAR ESTIMATION 675

nonexpanding, Gk+1
β ⊂ Gk

β , and the approximation error is nonincreasing, εk+1(ξ) ≤ εk(ξ) for

ξ ∈ Gk+1
β , since then

(3.8) ess supξ∈Gk+1
β

εk+1(ξ) ≤ ess supξ∈Gk+1
β

εk(ξ) ≤ ess supξ∈Gkβ
εk(ξ).

The CVaRβ approximation error is reduced if Gk+1
β ⊂ Gk

β , Pr
[
Gk
β \ G

k+1
β

]
> 0, and

εk+1(ξ) ≤ εk(ξ)− δk for ξ ∈ Gk+1
β and some δk > 0.

In general, however, a model Xk+1 with a smaller error εk+1 < εk a.e. in Ξ alone does not
guarantee that Gk+1

β ⊂ Gk
β , as the following example shows.

Example 3.1. Let X ≥ 0 be a nonnegative random variable, and consider the surrogate
model Xk = X + 1

k (−1)kX with error εk(ξ) = |X(ξ)−Xk(ξ)| = 1
kX. For k = 1, . . . the ε-risk

regions are

G2k−1
β = {ξ : X2k−1 + ε2k−1 ≥ VaRβ [X2k−1 − ε2k−1]}

=

{
ξ : X(ξ) ≥ VaRβ

[
X − 2

2k − 1
X

]}
=

{
ξ : X(ξ) ≥ 2k − 3

2k − 1
VaRβ [X]

}
,

G2k
β = {ξ : X2k + ε2k ≥ VaRβ [X2k − ε2k]}

=

{
ξ : X(ξ) +

1

k
X(ξ) ≥ VaRβ [X]

}
=

{
ξ : X(ξ) ≥ k

k + 1
VaRβ [X]

}
.

We have the inclusions

G2k
β ⊂ G2k−1

β ,

since (2k − 3)/(2k − 1) < k/(k + 1), but

G2k
β ⊂ G2k+1

β ,

since (2(k + 1)− 3)/(2(k + 1)− 1) < k/(k + 1). Thus, there is no monotonicity (in the sense
of inclusion) of the ε-risk regions. Note that the ε-risk regions are based on the models Xk.
While the models Xk become more accurate, the lack of monotonicity of the ε-risk regions
is due to the fact that here the εk neighborhoods around the Xk are alternatingly below or
above the true X.

When does the use of a new model Xk+1 improve the approximation of CVaRβ [X]? A
sufficient condition for improvement is the monotonicity condition
(3.9)
Xk(ξ) + εk(ξ) ≥ Xk+1(ξ) + εk+1(ξ) ≥ X(ξ) ≥ Xk+1(ξ)− εk+1(ξ) ≥ Xk(ξ)− εk(ξ) a.e. in Ξ.

In fact, monotonicity of VaRβ gives VaRβ [X] ≥ VaRβ [Xk+1 − εk+1] ≥ VaRβ [Xk − εk]. These
inequalities and (3.9) yield

Xk(ξ) + εk(ξ) ≥ Xk+1(ξ) + εk+1(ξ) ≥ X(ξ) ≥ VaRβ [X]

≥ VaRβ [Xk+1 − εk+1] ≥ VaRβ [Xk − εk] a.e. in Gβ [X]
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and

Xk(ξ) + εk(ξ) ≥ Xk+1(ξ) + εk+1(ξ) ≥ VaRβ [Xk+1 − εk+1] ≥ VaRβ [Xk − εk] a.e. in Gk
β ,

which imply

(3.10) Gβ [X] ⊂ Gk+1
β ⊂ Gk

β .

Unfortunately, models Xk, k = 1, . . . , typically do not satisfy the monotonicity relations
(3.9), as the simple Example 3.1 shows. However, we can combine the models Xk, k = 1, . . . ,
into models X̃k, k = 1, . . . , that satisfy (3.9). We define these new models X̃k in the next
lemma.

Lemma 3.2. If the models Xk and error functions εk satisfy (3.3), k = 1, . . . , then the
models X̃k and corresponding error functions ε̃k defined by X̃1 = X1, ε̃1 = ε1, and

X̃k+1 =
1

2

(
max

{
Xk+1 − εk+1, X̃k − ε̃k

}
+ min

{
Xk+1 + εk+1, X̃k + ε̃k

})
,(3.11a)

ε̃k+1 =
1

2

(
min

{
Xk+1 + εk+1, X̃k + ε̃k

}
−max

{
Xk+1 − εk+1, X̃k − ε̃k

})
(3.11b)

for k = 1, . . . , satisfy the monotonicity relations (3.9).

The model construction (3.11) is illustrated in Figure 1.

Figure 1. Illustration of the model construction (3.11). The true function X is contained in the intervals

[X̃k − ε̃k, X̃k + ε̃k] and [Xk+1 − εk+1, Xk+1 + εk+1]. While the second interval is smaller, it is not contained

in the first. The model (3.11) is constructed so that [X̃k+1 − ε̃k+1, X̃k+1 + ε̃k+1] includes the true model and is
nested.

Proof. The proof is by induction. We have initialized X̃1 = X1, and ε̃1 = ε1, so X̃1, ε̃1
satisfy (3.3), since by assumption, X1, ε1 satisfy (3.3).

Now, suppose that (X̃1, ε̃1), . . . , (X̃k, ε̃k) satisfy the monotonicity relations (3.9). Since
(X̃k, ε̃k) and (Xk+1, εk+1) satisfy (3.3),

max
{
Xk+1 − εk+1, X̃k − ε̃k

}
≤ X ≤ min

{
Xk+1 + εk+1, X̃k + ε̃k

}
.
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By construction of X̃k+1 and ε̃k+1,

X̃k − ε̃k ≤ max
{
Xk+1 − εk+1, X̃k − ε̃k

}
= X̃k+1 − ε̃k+1

≤ X ≤ X̃k+1 + ε̃k+1 = min
{
Xk+1 + εk+1, X̃k + ε̃k

}
≤ X̃k + ε̃k;

i.e., the monotonicity relations (3.9) are satisfied for (X̃1, ε̃1), . . . , (X̃k+1, ε̃k+1).

The error (3.11b) satisfies

(3.12) ε̃k+1 ≤ min{ε̃k, εk+1} a.e. in Ξ.

Let G̃k
β be the ε-risk region (3.4) associated with X̃k, ε̃k. The estimate (3.12) implies that to

achieve

(3.13) ε̃k+1(ξ) < ε̃k(ξ) a.e. in G̃k
β

we only need to improve the model Xk+1 in the small ε-risk region G̃k
β—not in the entire

parameter region Ξ—i.e., we only need that

(3.14) εk+1(ξ) ≤ ε̃k(ξ)− δk a.e. in G̃k
β

for some δk > 0. We summarize the improvement result in the following theorem.

Theorem 3.3. If X̃k, k = 1, . . . , are the models with corresponding error functions ε̃k,
k = 1, . . . , defined in (3.11a), (3.11b), and G̃k

β, k = 1, . . . , are the ε-risk regions (3.4) associated

with X̃k, ε̃k, then

(3.15)
∣∣∣CVaRβ [X]− CVaRβ [X̃k]

∣∣∣ ≤ (1 +
1

1− β

)
ess sup

ξ∈G̃kβ
ε̃k(ξ), k = 1, 2, . . . ,

and

(3.16) Gβ [X] ⊂ G̃k+1
β ⊂ G̃k

β , k = 1, 2, . . . .

Moreover, if εk+1(ξ) ≤ ε̃k(ξ)− δk a.e. in G̃k
β for some δk > 0, then

(3.17) ess sup
ξ∈G̃k+1

β
ε̃k+1(ξ) ≤ ess sup

ξ∈G̃kβ
ε̃k(ξ)− δk.

Proof. Since the models X̃k, k = 1, 2, . . . , satisfy the monotonicity relations (3.9), the
error estimate (3.15) is just (3.7); see [3, Thm. 3.3]. The inclusions (3.16) follow from the
arguments used to derive (3.10). The error reduction (3.17) follows from (3.12)–(3.14) and
(3.16).

Having defined new models X̃k and errors ε̃k, we revisit Example 3.1. We show that for
this example problem, the monotonicity of the ε-risk regions is now indeed satisfied.
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Example 3.4. Recall the setup from Example 3.1, where X ≥ 0 is a nonnegative random
variable and a surrogate model is Xk = X+ 1

k (−1)kX with error εk(ξ) = |X(ξ)−Xk(ξ)| = 1
kX.

We now construct X̃k, ε̃k following Lemma 3.2. We have

X̃1 = X1 = X + 1(−1)1X = 0, ε̃1 = ε1 = X,

and with X ≥ 0 and evaluating equations (3.11a)–(3.11b), we find that, for this particular ex-
ample, X̃k = X, ε̂k = 0 for k ≥ 2. Moreover, the first risk region is G̃1

β = {ξ : X ≥ VaRβ [−X]}
= Ξ and the subsequent risk regions are G̃k

β = {ξ : X(ξ) ≥ VaRβ [X]} = Gβ [X], the true risk
region of the full order model X, for k ≥ 2. Consequently,

G̃1
β ⊃ G̃2

β = G̃k
β = Gβ [X], k ≥ 2;

i.e., the risk regions are shrinking monotonically and contain the true risk region, as guaranteed
by Theorem 3.3. The fact that the second adjusted risk region is already identical to the true
risk region of the FOM X is particular to this artificial example.

3.3. Algorithm for surrogate-based CVaRβ approximation. The previous results lead to

the following Algorithm 3.1 that adaptively constructs models Xk based on estimates G̃k
β of

the risk region Gβ [X]. As noted earlier, applying (2.8) and (2.9) with X and Ĝ replaced by

X̃k and G̃k
β ⊃ Gβ [X̃k] shows that we only need to evaluate X̃k in the ε-risk region G̃k

β ⊂ G̃k−1
β

to evaluate CVaRβ [X̃k]. Furthermore, Xk+1 only needs to improve upon X̃k in the ε-risk

region G̃k
β ; i.e., we only need (3.14). Since G̃k

β tend to be small (in probability) subsets of the
parameter space Ξ, the adaptive generation of the models by the previous algorithm can lead
to large computational savings.

Algorithm 3.1 Surrogate-based CVaRβ estimation.

Input: Desired error tolerance TOL, maximum number of iterations kmax, risk-level β ∈
(0, 1).

Output: CVaRβ [X̃k] and ε̃Gk such that |CVaRβ [X̃k]−CVaRβ [X]| ≤ ε̃Gk ≤ TOL or k = kmax.

1: Set k = 1 and generate model X̃1 = X1, ε̃1 = ε1 with (3.3).
2: Compute CVaRβ [X̃1] and εG1 = ess sup

ξ∈G̃1
β
ε̃1(ξ).

3: while ε̃Gk > TOL and k < kmax do
4: Compute model Xk+1 and error function εk+1 with (3.3) and (3.14).
5: Compute model X̃k+1 and error function ε̃k+1 as in (3.11a) and (3.11b).
6: Compute VaRβ [X̃k+1], CVaRβ [X̃k+1], ε-risk region G̃k+1

β , and error in ε-risk region

ε̃Gk = ess sup
ξ∈G̃k+1

β
ε̃k+1(ξ).

7: Set k = k + 1 and continue.
8: end while

Before we address several implementation details that are important for the realization of
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Algorithm 3.1 in combination with ROMs, we comment on the extension of our idea to the
estimation of probability of failure from a QoI X.

Remark 3.5. There is a close relationship between probability of failure and the Value-at-
Risk. If failure of a system is defined as X(ξ) ≥ X0, then the probability of failure is Pr

[
F[X]

]
,

where F[X] := {ξ ∈ Ξ : X(ξ) ≥ X0} is the failure region. If (3.3) holds and Xk(ξ)− εk(ξ) ≥
X0, then

X(ξ) ≥ Xk(ξ)− εk(ξ) ≥ X0.

Similarly, if ξ ∈ F[X], then

εk(ξ) +Xk(ξ) ≥ X(ξ) ≥ X0.

Hence, the failure region F[X] can be estimated as

{ξ ∈ Ξ : Xk(ξ)− εk(ξ) ≥ X0} ⊂ F[X] ⊂ {ξ ∈ Ξ : Xk(ξ) + εk(ξ) ≥ X0} .

This can be used in the estimation of failure probability, as, e.g., in [1]. Since the models X̃k

and corresponding error functions ε̃k satisfy the monotonicity relations (3.9), we have that{
ξ ∈ Ξ : X̃k(ξ)− ε̃k(ξ) ≥ X0

}
⊂
{
ξ ∈ Ξ : X̃k+1(ξ)− ε̃k+1(ξ) ≥ X0

}
⊂ F[X],

F[X] ⊂
{
ξ ∈ Ξ : X̃k+1(ξ) + ε̃k+1(ξ) ≥ X0

}
⊂
{
ξ ∈ Ξ : X̃k(ξ) + ε̃k(ξ) ≥ X0

}
.

Thus, the models X̃k and error bounds ε̃k can be used for failure probability estimation as
well and yield monotonely converging failure regions.

4. Implementation. This section discusses an implementation of Algorithm 3.1 to esti-
mate the CVaRβ of a QoI defined via (2.3) and a linear version of the state equation (2.2).
The implementation uses projection-based ROMs and sampling-based estimation of VaRβ and
CVaRβ for the ROMs. We begin by reviewing the basic form of projection-based ROMs and
error estimates in subsection 4.1. The standard greedy sampling strategy and differences from
our proposed adaptive sampling strategy are discussed in subsection 4.2. The combination of
ROM adaptation and sampling-based CVaRβ computation is then presented in subsection 4.3.

4.1. Error estimation for projection-based ROMs. We summarize results on error esti-
mation for projection-based ROMs for linear parametric systems. These results are by now
standard and can be found in, e.g., [9, 4, 15, 2]. Given A(ξ) ∈ RN×N , b(ξ) ∈ Rn, parameters
ξ ∈ Ξ, and s : RN → R, we consider the FOM

(4.1) A(ξ)y(ξ) = b(ξ) for ξ ∈ Ξ,

and corresponding QoI

(4.2) X(ξ) = s(y(ξ)) ∈ R.

This fits the framework of section 2.1 with F (y, ξ) = A(ξ)y − b(ξ). We assume that

(4.3) ‖A(ξ)‖ ≤ γ, ‖A(ξ)−1‖ ≤ α−1.
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We use α−1 to denote the upper bound for the inverse, since this notation is closer to what is
used, e.g., in [9, 4, 15, 2], where (4.1) arises from the discretization of an elliptic PDE and α
is related to coercivity constants of the PDE.

The ROM is specified by a matrix Vk ∈ RN×Nk of rank Nk and is given by

(4.4) V T
k A(ξ)Vkyk(ξ) = V T

k b(ξ) for ξ ∈ Ξ,

and corresponding QoI

(4.5) Xk(ξ) = s(Vkyk(ξ)) ∈ R.

We assume that the matrix Vk is such that (4.4) has a unique solution for all ξ ∈ Ξ. To
simplify the presentation we also assume that the computation of quantities like V T

k A(ξ)Vk,
A(ξ)Vk, and A(ξ)TVk for ξ ∈ Ξ is computationally inexpensive, which is the case if A(ξ)
and b(ξ) admit an affine parametric dependence; see, e.g, [2, sec. 2.3.5], [4, sec. 3.3], or [15,
sec. 3.4].

The equations (4.1) and (4.4) imply the basic error estimate for the state

(4.6) ‖y(ξ)− Vkyk(ξ)‖ ≤ α−1 ‖A(ξ)Vkyk(ξ)− b(ξ)‖ for ξ ∈ Ξ.

If s is Lipschitz continuous, i.e., |s(y)−s(z)| ≤ L‖y−z‖ for all y, z ∈ RN , then the basic error
estimate

(4.7) |X(ξ)−Xk(ξ)| ≤ εk(ξ) :=
L

α
‖A(ξ)Vkyk(ξ)− b(ξ)‖ for ξ ∈ Ξ

holds for the QoI. This is the realization of the bound (3.3). Improved error estimates for
linear QoIs can be obtained based on solutions of a dual or adjoint equation; see, e.g, [2,
sec. 2.3.4], [4, sec. 4], [9], or [15, sec. 3.6].

4.2. Greedy ROM construction and estimation of CVaRβ. In a standard greedy al-
gorithm, the ROM specified by Vk is updated by computing the FOM solution (4.1) at
ξ(k) = arg maxξ∈Ξ εk(ξ) and setting Vk+1 = [Vk, y(ξ(k))]. In practice, one often does not simply

add the FOM solution y(ξ(k)) as a column to Vk, but instead computes an orthonormal basis
(see, e.g., [4, sec. 3.2.2] or [15, Chapter 7]).

In our recent work [3] we have used this greedy procedure and the resulting ROMs without
adjustment. That is, we have used X̃k = Xk and ε̃k = εk, which implies G̃k

β = Gk
β and ε̃Gk = εGk .

While for each ROM a CVaRβ error bound holds, this approach has two deficiencies. First, as
discussed in subsection 3.2, the ROM CVaRβ estimation error is not guaranteed to decrease
as we go from ROM Xk to ROM Xk+1. Second, the standard greedy procedure seeks the
maximum of εk(ξ) over the entire parameter space. Even though computation of εk(ξ) only
requires ROM (4.4) solutions and FOM residual evaluations, these evaluations at a large
number of points ξ ∈ Ξ are still expensive. Moreover, the ROM error over the ε-risk region
determines the ROM CVaRβ estimation error; see Theorem 3.3. Limiting the greedy approach
to this smaller set tends to decrease this error faster.

Our adaptive approach corrects these deficiencies: It uses the modified ROMs X̃k and
error bounds ε̃k introduced in Lemma 3.2 to guarantee monotonicity of the resulting ROM
CVaRβ estimation error, and it selects FOM snapshots by maximizing the current ROM error

bound ε̃k only over the small ε-risk region G̃k
β . The details are specified in the next section.
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4.3. Adaptive ROM construction and estimation of CVaRβ. The sampling-based ver-
sion of Algorithm 3.1 is presented in Algorithm 4.1 below. In each step k of the algorithm
a projection-based ROM (4.4) of size Nk × Nk is computed, as well as the corresponding
ROM QoI (4.5). To improve the ROM, snapshots of the FOM are computed using the greedy
approach limited to the current estimate G̃k

β of the risk region. As (3.13) and (3.14) show,

we only need to improve Xk+1 in G̃k
β in order to improve the estimate of CVaRβ . Since we

work with a discrete sample space Ξm, (3.13) implies (3.14) with some δk > 0. Furthermore,
we can easily check whether the condition max

ξ∈G̃βk
ε̃k+1 < ε̃Gk holds, which is sufficient for

ε̃Gk+1 to be less than ε̃Gk , and is weaker than condition (3.13). We recommend using this last
condition in practice because it can sometimes be achieved with fewer FOM snapshots than
are needed to enforce (3.13). In Algorithm 4.1 we limit the number of snapshots that are
added in each iteration by `max. Even though the (possibly pessimistic) error bound may not
be reduced, the actual error may reduce. Finally, in Algorithm 4.1 we simply add the FOM
solution y(ξ(`)) to the current ROM basis, but in practice we compute orthogonal bases.
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Algorithm 4.1 Adaptive construction of ROMs for CVaRβ estimation.

Input: Linear FOM (4.1) with (4.3) and Lipschitz continuous QoI (4.2). Parameter samples
Ξm = {ξ(1), . . . , ξ(m)} with probabilities p(1), . . . , p(m). Risk level β ∈ (0, 1). Tolerance
TOL.

Output: ĈVaRβ [X̃k] and ε̃Gk such that |ĈVaRβ [X̃k]− ĈVaRβ [X]| ≤ ε̃Gk ≤ TOL or k = kmax.

1: Set k = 1 and generate V1 ∈ RN×N1 and ROM (4.4), X̃1(ξ) = X1(ξ) = (V T
1 c(ξ))

T y1(ξ)
with error function ε̃1(ξ) = ε1(ξ) given by (4.7).

2: Set G̃0
β = Ξm.

3: while k < kmax do
4: Call Algorithm 2.1 with Ξm = G̃k−1

β , corresponding probabilities p(j), and X = X̃k to

compute V̂aRβ [X̃k], and ĈVaRβ [X̃k].

5: Call Algorithm 2.1 with Ξm = G̃k−1
β , corresponding probabilities p(j), and X = X̃k− ε̃k

to compute V̂aRβ [X̃k − ε̃k].
6: Estimate G̃k

β = {ξ(j) ∈ G̃k−1
β : X̃k(ξ

(j)) + ε̃k(ξ
(j)) ≥ V̂aRβ [X̃k − ε̃k]} and set

ε̃Gk = max{ε̃k(ξ(j)) : ξ(j) ∈ G̃k
β}.

7: if ε̃Gk < TOL then
8: break
9: end if

10: Set ` = 1 (number of snapshots to add) and Vk+1 = Vk
11: while ` < `max do
12: Compute the FOM solution y(ξ(`)) at ξ(`) = arg max

ξ∈G̃kβ
ε̃k(ξ).

13: Update ROM matrix Vk+1 ← [Vk+1, y(ξ(`))] and set Nk+1 = Nk + `.
14: Construct the new ROM of size Nk+1 and evaluate Xk+1(ξ(j)) and εk+1(ξ(j)) for

ξ(j) ∈ G̃k
β .

15: Compute model X̃k+1(ξ(j)) and error function ε̃k+1(ξ(j)) as in (3.11a) and (3.11b) for
ξ(j) ∈ G̃k

β .

16: if ε̃k+1(ξ(j)) < ε̃k(ξ
(j)) for ξ(j) ∈ G̃k

β

(
or max ε̃k+1(ξ) < ε̃Gk for ξ(j) ∈ G̃k

β

)
then

17: break
18: end if
19: Set ` = `+ 1.
20: end while
21: Set k = k + 1 and continue.
22: end while
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5. Numerical results. We now apply our Algorithm 4.1 to the so-called thermal fin prob-
lem with varying numbers of random variables. We describe the test problem in subsection 5.1
and discuss the format of our reported results in subsection 5.2. The results for the case of
two, three, and six random variables are shown in subsection 5.3–subsection 5.5.

5.1. Thermal fin model. We consider a thermal fin with fixed geometry as shown in
Figure 2, consisting of a vertical post with horizontal fins attached. We briefly review the
problem here and refer the reader to [10, 14] for more details. In particular, [14, sec. 3] discusses
the efficiency of the derived reduced-basis (RB) error bounds for the thermal fin problem. The
thermal fin consists of four horizontal subfins with width L = 2.5, thickness t = 0.25, and a fin
post with unit width and height four. The fin is parametrized by the fin conductivities ki, i =
1, . . . , 4, and post conductivity k0, as well as the Biot number Bi which is a nondimensionalized
heat transfer coefficient for thermal transfer from the fins to the surrounding air. Thus, the
system parameters are [k0, k1, k2, k3, k4, Bi] ∈ [0.1, 1] × [0.1, 2]4 × [0.01, 0.1]. In our
experiments some or all of these parameters play the role of the random variables ξ, which
are uniformly distributed in the parameter space above. The system is governed by an elliptic
PDE in two spatial dimensions x = [x1, x2]T whose solution is the temperature field = y(x, ξ).
We consider cases when only k0 and Bi are random (subsection 5.3), k0, k1, and Bi are
random (subsection 5.4), and finally, when all six parameters are random (subsection 5.5).

Figure 2. Thermal fin geometry and model parameters.

The fin conducts heat away from the root Γroot, so the lower the root temperature, the
more effective the thermal fin. Thus, as a QoI we consider the average temperature at the
root, i.e.,

X(ξ) =

∫
Γroot

y(x, ξ)dx.

The FOM is a finite element discretization with N = 4, 760 degrees of freedom. The ROMs
are RB approximations yk; see [14] for details of RB methods for the thermal fin problem.
The ROM-based estimates are compared to a FOM-sampling-based estimation of CVaRβ [X]
using Algorithm 2.1.

We consider the problem with two random variables, three random variables, and six ran-
dom variables, as specified in sections 5.3–5.5 below. The CVaRβ estimates and corresponding



684 M. HEINKENSCHLOSS, B. KRAMER, AND T. TAKHTAGANOV

confidence interval (CI) widths computed with several sample sizes |Ξm| using the FOM are
shown in Table 1.

Table 1
CVaRβ estimates for β = 0.99 and corresponding confidence interval (CI) widths computed with several

sample sizes |Ξm|. For |Ξm| = 5, 000 samples the CI widths are less than 5% of the CVaR estimates.

ĈVaRβ Width CI |Ξm|
2 RV 12.404 0.437 5,000
2 RV 11.956 0.326 10,000
2 RV 11.984 0.232 20,000

3 RV 10.379 0.405 5,000
3 RV 10.187 0.274 10,000
3 RV 10.546 0.194 20,000

6 RV 10.435 0.421 5,000
6 RV 10.510 0.296 10,000
6 RV 10.419 0.189 20,000

Since the CI widths are less than 5% of the CVaR estimates computed with 5, 000 samples,
we use |Ξm| = 5, 000 samples in the following computations.

Since the ROM needs to approximate the FOM on these sets of samples, we use them as
training sets to construct the ROMs. The thermal fin model and the RB ROM fit exactly
into the framework of subsection 4.1. We use the error bound (4.7) in the adaptive CVaRβ

approximation below. The risk level β is set to

β = 0.99.

In the following sections we report the numerical results obtained with the adaptive Algo-
rithm 4.1 and with the greedy approach outlined in subsection 4.2. The latter corresponds to
Algorithm 4.1 with X̃k = Xk, ε̃k = εk, G̃k

β = Gk
β , and ε̃Gk = εGk . Moreover, in the latter case,

in step 12 we compute the FOM solution y(ξ(`)) at ξ(`) = arg maxξ∈Ξm εk(ξ) to update the
ROM Xk. In steps 4 and 5 we call Algorithm 2.1 with the full set Ξm of parameters. Since
computation of arg maxξ∈Ξm εk(ξ) in step 12 already requires computation of Xk and εk at all
parameters in Ξm, this modification of steps 4 and 5 is insignificant.

5.2. Overview of reported data. We report the results of the CVaRβ estimation using
the adaptive and the greedy approaches in Table 2–Table 7 in subsection 5.3–subsection 5.5
below. Each table contains the same information, which we discuss for convenience here:

• ĈVaRβ reports the sampling-based CVaRβ estimates for the FOM or the kth ROM;
• “Width CI” is the width of the CI (2.14) of the sampling-based CVaRβ estimate using

the FOM or the kth ROM;
• “Abs error” is |ĈVaRβ [X] − ĈVaRβ [Xk]|, i.e., the error between estimates with the

FOM and the kth ROM (via the adaptive or greedy approach);
• εGk and ε̃Gk are the CVaRβ error bounds computed using the ROM Xk / modified ROM

X̃k;
• |Gk

β | and |G̃k
β | denote the percentage of “volume” measured in probability occupied by

the ε-risk region for the ROM Xk / X̃k within the parameter region Ξ;
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• Nk is the size of the kth ROM;
• |Ξm| is the number of samples at which the current ROM has to be evaluated.

5.3. Results for two random variables. We start with a problem with two random
variables ξ = (k0, Bi) uniformly distributed in Ξ = [0.1, 1] × [0.01, 0.1]. Having two ran-
dom variables allows us to visualize both the risk regions and the error estimates. We fix
k1 = k2 = k3 = k4 = 0.1.

(a) Risk region of FOM, Gβ [X]. (b) ε-risk region of ROM 1, G̃β1 . (c) ε-risk region of ROM 4, G̃β4 .

Figure 3. Risk regions shown in light yellow for thermal fin problem with two random variables and
β = 0.99. The ε-risk regions for the ROMs are designed to contain the FOM risk region. The smaller the ROM
error, the closer the ε-risk regions to the true FOM risk region.

The reference value ĈVaRβ [X] is estimated with m = 5, 000 Monte Carlo samples in Ξ.
These samples, Ξm, also serve as input for Algorithm 4.1 with corresponding probabilities
p(j) ≡ 1/m, j = 1, . . . ,m. The risk region Ĝβ [X] is shown in light yellow in Figure 3a. The

ε-risk regions G̃k
β for the ROMs are designed to contain the FOM risk region, and are closer

to the FOM risk region Ĝβ [X] the smaller the ROM error is.

The error in the FOM estimate ĈVaRβ [X] is quantified by the CI width (2.14). We want
a ROM estimate of the same quality. Therefore, we apply Algorithm 4.1 with tolerance

TOL = 10−1 × (CI width),

i.e., 10% of the current estimate of the width of the CI for ĈVaRβ [X].
Initially, Ξm is the set of 5, 000 Monte Carlo samples. The initial ROM basis V1 is generated

with a single N1 = 1 snapshot of the FOM at a randomly selected ξ ∈ Ξm. The error function
ε̃1(ξ) = ε1(ξ) evaluated at the samples is plotted in Figure 4a. To construct the next ROM we
consider only the samples and the corresponding error values in the risk region G̃1

β plotted in
Figure 3b. More generally, in step k we add a snapshot taken at a sample corresponding to
the largest value of ε̃k(ξ) in G̃k

β . For the newly constructed ROM X̃k+1 and its error function

ε̃k+1 we check whether ε̃Gk+1 < ε̃Gk . If this is not the case, we add another FOM snapshot to

the basis Vk+1. In the current example we found that ε̃Gk+1 < ε̃Gk is always satisfied after the
addition of a single FOM snapshot.

In our adaptive framework, reported in Table 2, we only need to evaluate X̃k and ε̃k in the
current ε-risk region Ξm = G̃k

β . For example, to build X̃2 we consider 8, 128 (and not the full
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(a) Error of ROM 1, ε̃1(ξ)
(both).

(b) Error of ROM 2, ε̃2(ξ)
(both).

(c) Error of ROM 3, ε̃3(ξ)
(adaptive).

(d) Error of ROM 3, ε3(ξ)
(greedy).

(e) Error of ROM 4, ε̃4(ξ)
(adaptive).

(f) Error of ROM 4, ε4(ξ)
(greedy).

Figure 4. Error functions ε̃k(ξ) for the ROMs obtained at different steps of Algorithm 4.1 and error
functions ε(ξ) obtained with a greedy approach evaluated at samples. Note the different magnitudes on the color
bars. Both approaches reduce the error, but error reduction for the adaptive approach is focused more on the
risk region.
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Table 2
Results for the adaptive algorithm for the thermal fin problem with two random variables and β = 0.99.

The sizes of the ε-risk region |G̃kβ | and of the error bound ε̃Gk decrease monotonically. The current ROM needs
to be evaluated at a decreasing number |Ξm| of samples, which approaches 1% = (1− β) ∗ 100% of the original
number of samples.

ĈVaRβ Width CI Abs error ε̃Gk |G̃kβ | Nk |Ξm|
FOM 12.404 0.437 — — — — 5,000
ROM1 11.381 0.354 1.0238 3.3645 3.60 1 5,000
ROM2 11.486 0.360 0.9185 1.6908 2.44 2 180
ROM3 12.360 0.432 0.0445 0.1461 1.12 3 122
ROM4 12.401 0.438 0.0032 0.0191 1.02 4 56

5,000) samples as candidates for the snapshot selection. These are the only samples that we
use in Algorithm 2.1 to evaluate VaRβ [X̃2], CVaRβ [X̃2], and G̃2

β . As we continue, the number
of samples at which we need to evaluate the current ROM gets closer to 1% = (1− β) ∗ 100%
of the size of the initial set Ξm.

We contrast the results obtained with adaptive Algorithm 4.1 to those obtained with the
greedy approach described in subsection 4.2 and at the end of subsection 5.1. We start with
the same initial snapshot; i.e., the initial ROM X1 is the same. The results for the greedy
approach are reported in Table 3. As mentioned before, in each iteration we add a snapshot
corresponding to the largest value of εk(ξ) at all original samples. Thus all ROMs Xk and
error bounds εk need to be evaluated at all |Ξm| = 5, 000 samples. Although there is no
guarantee, in this case the greedy approach also happens to monotonically decrease the size
of the ε-risk region Gk

β and the error bound εGk . However, the error does not decrease as fast
as with the adaptive approach.

Table 3
Results for the greedy approach for the thermal fin problem with two random variables and β = 0.99.

Although this cannot be guaranteed, in this case the size of the ε-risk region |Gkβ | and the error bound εGk happen
to decrease monotonically. In each step the current ROM has to be evaluated at all |Ξm| = 5, 000 samples.

ĈVaRβ Width CI Abs error εGk |Gkβ | Nk |Ξm|
FOM 12.404 0.437 — — — — 5,000
ROM1 11.381 0.354 1.0238 3.3645 3.60 1 5,000
ROM2 11.644 0.353 0.7605 1.1809 2.34 2 5,000
ROM3 11.796 0.363 0.6081 1.0494 1.76 3 5,000
ROM4 12.386 0.437 0.0188 0.0680 1.06 4 5,000
ROM5 12.387 0.436 0.0170 0.0666 1.04 5 5,000
ROM6 12.403 0.438 0.0016 0.0057 1.02 6 5,000

The snapshots selected by Algorithm 4.1 and by the greedy approach are shown in Figure 5.
Our proposed adaptive algorithm selects FOM snapshots in the current ε-risk region, which
is close to the original risk region. In contrast, the standard greedy algorithm selects FOM
snapshots in the original parameter region. For example, the third snapshot is far outside the
risk region; see Figure 5b. In this example, selecting the next snapshot globally in the entire
parameter region still gives a good reduction of the ROM error in the ε-risk region εGk . The
greedy algorithm only needs two additional steps to reach the CVaRβ tolerance, compared to
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(a) Adaptive selection. (b) Greedy selection.

Figure 5. Snapshots for ROM construction generated by the adaptive and greedy approaches for the thermal
fin problem with two random variables and β = 0.99. The adaptive approach tends to select snapshots near the
risk region.

our adaptive algorithms. A big difference is in the expense of ROM evaluations; see the last
columns of Table 2 and Table 3.

5.4. Results for three random variables. Now we consider the problem with k1 = k2 =
k3 = k4 and three random variables ξ = (k0, k1, Bi) uniformly distributed in Ξ = [0.1, 1] ×
[0.1, 2]× [0.01, 0.1]. Again, we use 5, 000 Monte Carlo samples.

The results for the adaptive approach and the greedy approach are presented in Table 4
and Table 5, respectively. The format of these tables is identical to that of Table 2 and Table 3,
respectively.

Table 4
Results for adaptive algorithm for the thermal fin problem with three random variables and β = 0.99.

ĈVaRβ Width CI Abs error ε̃Gk |G̃kβ | Nk |Ξm|
FOM 10.379 0.405 — — — — 5,000
ROM1 8.292 0.477 2.0870 30.3903 19.88 1 5,000
ROM2 10.008 0.449 0.3718 10.1849 5.46 2 994
ROM3 10.281 0.423 0.0985 3.5377 2.00 3 273
ROM4 10.326 0.413 0.0534 0.2997 1.18 4 100
ROM5 10.357 0.411 0.0225 0.1305 1.08 5 59
ROM6 10.376 0.405 0.0035 0.0429 1.02 6 54
ROM7 10.378 0.405 0.0009 0.0140 1.02 7 51

The snapshots selected by both approaches are shown in Figure 6. We start with a
randomly selected initial sample, which is chosen to be the same for both approaches (sample
1 in Figure 6a and Figure 6b). The second sample happens to be the same in both the
adaptive and greedy approaches. Due to our suggested ROM modification (3.11a), ROM X̃2

in the adaptive case has a smaller bound ε̃G2 than ROM X2 in the greedy case, εG2 . The third
snapshot is different for the two approaches. However, the third snapshot selected by the
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Table 5
Results for the greedy approach for the thermal fin problem with three random variables and β = 0.99.

ĈVaRβ Width CI Abs error εGk |Gkβ | Nk |Ξm|
FOM 10.379 0.405 — — — — 5,000
ROM1 8.292 0.477 2.0870 30.3903 19.88 1 5,000
ROM2 10.008 0.449 0.3718 11.1808 5.82 2 5,000
ROM3 10.294 0.418 0.0852 3.5377 2.00 3 5,000
ROM4 10.326 0.413 0.0533 0.2997 1.18 4 5,000
ROM5 10.362 0.409 0.0174 0.1792 1.08 5 5,000
ROM6 10.366 0.409 0.0137 0.0806 1.06 6 5,000
ROM7 10.368 0.409 0.0114 0.0815 1.08 7 5,000
ROM8 10.378 0.405 0.0010 0.0087 1.02 8 5,000

greedy approach happens to lie in the ε-risk region G2
β of ROM X2. (Of course, the third

snapshot selected by the adaptive approach will always be chosen in ε-risk region G̃2
β of ROM

X̃2.) In this case, the resulting ROM X̃3 in the adaptive case has a larger bound ε̃G3 than
the bound εG3 for ROM X3 in the greedy case. This can happen, since we compute the next
snapshot based on an error bound of the current model, and not based on the error of the
new model. In the majority of cases, however, the error bound ε̃Gk for the ROM constructed
with the adaptive approach is smaller than the error bound εGk for the ROM constructed with
the greedy approach.

By construction, the error bound ε̃Gk in the adaptive approach decreases monotonically.
This may not be true for the greedy approach. In fact, as can be seen from Table 5, between
ROM 6 and ROM 7 we observe an increase in the estimate of εGk .

A major strength of our proposed adaptive method is that the ROMs X̃k and their error
bounds ε̃k have to be evaluated only at a small number |Ξm| of the total samples, whereas
in the greedy approach all ROMs and their error bounds have to be evaluated at all 5,000
samples. This leads to significant computational savings for the adaptive ROM construction
and CVaRβ estimation.

5.5. Results for six random variables. Finally, we let all six parameters be random,
ξ = (k0, k1, k2, k3, k4, Bi) uniformly distributed in Ξ = [0.1, 1] × [0.1, 2]4 × [0.01, 0.1]. Again,
we use 5, 000 Monte Carlo samples.

Results for β = 0.99 are presented in Table 6 and Table 7. We omit some of the rows
in both tables in the interest of saving space. In the greedy case we once more observe an
increase in εGk between subsequent iterations (see rows corresponding to ROM 10 and ROM 11
in Table 7).

6. Conclusions. We have presented an extension of our recent work [3] that systemati-
cally and efficiently improves a ROM to obtain a better ROM-based CVaR estimate. A key
ingredient to make efficient use of ROM is the structure of CVaR, which only depends on
samples in a small but a priori unknown region of the parameter space. ROMs are used to
approximate this region, and new ROMs only need to be better than the previous ROM in
these approximate regions. However, to guarantee that this approach monotonically improves
the CVaR estimate, we had to introduce a new way to combine previously constructed ROMs
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Figure 6. Snapshots for ROM construction for the thermal fin problem with three random variables and
β = 0.99.

Table 6
Results for the adaptive algorithm for the thermal fin problem with six random variables and β = 0.99.

ĈVaRβ Width CI Abs error ε̃Gk |G̃kβ | Nk |Ξm|
FOM 10.435 0.421 — — — — 5,000
ROM1 9.386 0.388 1.0492 14.5163 15.08 1 5,000
ROM2 9.872 0.449 0.5630 11.6548 7.98 2 754
ROM3 10.201 0.403 0.2335 2.6354 2.42 3 399
ROM4 10.310 0.408 0.1249 0.7235 1.42 4 121
ROM5 10.363 0.416 0.0717 0.3908 1.34 5 71
ROM6 10.424 0.420 0.0110 0.2941 1.14 6 67
ROM7 10.430 0.421 0.0044 0.1314 1.02 7 57
ROM8 10.432 0.421 0.0026 0.0557 1.02 8 51
ROM9 10.433 0.421 0.0019 0.0285 1.02 9 51

Table 7
Results for the greedy procedure for the thermal fin problem with six random variables and β = 0.99.

ĈVaRβ Width CI Abs error εGk |Gkβ | Nk |Ξm|
FOM 10.435 0.421 — — — — 5,000
ROM1 9.386 0.388 1.0492 14.5163 15.08 1 5,000
ROM2 9.872 0.449 0.5623 12.4641 8.42 2 5,000
ROM3 10.206 0.401 0.2292 2.6354 2.48 3 5,000
ROM4 10.271 0.403 0.1634 1.9756 1.88 4 5,000
ROM5 10.349 0.413 0.0854 1.5134 1.68 5 5,000
ROM6 10.385 0.419 0.0496 0.8382 1.34 6 5,000
ROM7 10.398 0.421 0.0369 0.8645 1.32 7 5,000
ROM8 10.420 0.423 0.0144 0.2083 1.14 8 5,000
ROM9 10.421 0.423 0.0136 0.1854 1.12 9 5,000
ROM10 10.430 0.422 0.0052 0.0683 1.08 10 5,000
ROM11 10.430 0.422 0.0046 0.0680 1.08 11 5,000
ROM12 10.430 0.422 0.0043 0.0616 1.08 12 5,000
ROM13 10.431 0.422 0.0041 0.0655 1.06 13 5,000
ROM14 10.432 0.422 0.0032 0.0556 1.08 14 5,000
ROM15 10.433 0.422 0.0017 0.0266 1.06 15 5,000
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into new adaptive ROMs. We have provided error estimates and demonstrated the benefits
of our approach on a numerical example for the CVaR estimation of a QoI governed by an
elliptic differential equation.

Our approach requires the construction of ROMs with error bounds. In many examples
it is difficult to find error bounds, and instead one may only have asymptotic bounds or
estimates. Extension of our approach to such cases would expand the rigorous and systematic
use of ROMs for CVaR estimation.
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