Gram determinant solutions to nonlocal integrable discrete nonlinear
Schrodinger equations via the pair reduction

Junchao Chen ®*, Bao-Feng Feng ®, Yongyang Jin ©

“Department of Mathematics and Institute of Nonlinear Analysis, Lishui University, Lishui, 323000, China
bSchool of Mathematical and Statistical Sciences, The University of Texas-Rio Grande Valley, Edinburg, TX 78541, USA
“Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou, 310023, China

Abstract

In this paper, Gram determinant solutions of local and nonlocal integrable discrete nonlinear Schrédinger (IDNLS)
equations are studied via the pair reduction. A generalized IDNLS equation is firstly introduced which possesses
the single Casorati determinant solution. Two kinds of Gram determinant solutions are presented from Casorati
determinant ones due to the gauge freedom. The different pair constraint conditions for wave numbers are imposed

and then solutions of local and nonlocal IDNLS equations are derived in terms of Gram determinant.
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1. Introduction

The parity-time (PT) symmetry has firstly proposed in quantum mechanics since Bender and Boettcher [1]
found that non-Hermitian Hamiltonians possess entirely real spectra. In nonlinear integrable system, Ablowitz and
Musslimani have recently introduced a nonlocal nonlinear Schrodinger (NLS) equation with the PT-symmetric
invariance. Such a nonlocal PT-symmetric NLS equation remains integrable due to the existence of a Lax pair
formulation and an infinite number of conservation laws. Indeed, it can be obtained from a nonlocal reduction
of the AKNS spectral problem [2, 3]. Along with this idea, many nonlocal versions of local integrable equations
have been identified in both one and two space dimensions as well as in discrete case [2-11]. These nonlocal
reductions include the reverse space-time symmetry, or the partially PT symmetry and the partially reverse space-
time symmetry in higher dimensional case. The potential applications of nonlocal soliton equations appear in
nonlinear PT symmetric media [6], or more universally in the context of “Alice-Bob events” [7, 8]. Moreover,
the classical methods such as inverse scattering transform, Darboux transformation and bilinear approach have
recently applied to nonlocal integrable models and gave rise to new types of solution [12-27].

Among these nonlocal system, three kinds of nonlocal integrable discrete NLS (IDNLS) equations can be

reduced from the Ablowitz-Ladik (AL) spectral problem [3]. More specifically, considering the AL scattering

problem
Z Y Wapn1 — 5= =i =2 W)
Uptl = ) Uns, Upgt = .1 . i 1\ Un, (D
n < (27 Pn — 2Pn-1) —1pptfn_1 + Q(Z -z)
where v, = (vﬁll),vf))T and z is a complex spectral parameter, the discrete compatibility condition v, =
(Um.-)m=n+1 yields the coupled system
i'/’n,t = l//n+l + lpn—l - 2¢n - lpn¢n(¢'n+l + %—1)» (2)
_i¢n,t = ¢n+1 + ¢n—1 - 2¢n - ¢n$n(¢n+1 + ¢n—1)' (3)
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It admits four different symmetry reductions [3, 12, 13, 19, 22, 24]:
(i) The standard Ablowitz-Ladik symmetry (¢, = 6y};) gives rise to the local IDNLS equation

iwn,t = lrbn-*—l + ';l’n—l - 2% - 5%‘#;(%“ + (pn—l)’ 6 ==l (4)

(i1) The discrete PT preserved symmetry (¢, = oy ,) leads to the PT symmetric IDNLS equation

i'1brl,t = ¢n+1 + wn—l - 2¢’n - 5!//n'ﬁin(¢’n+1 + wn—l)s 0 ==l (5)

(iii) The reverse time symmetry (¢, = yy,(—1)) yields the reverse time symmetric IDNLS equation

iwn,t = Wn+l + lpn—l - ZWVL - Vann(_t)(¢n+l + ';Dn—l)’ (6)

where 7 is an arbitrary complex constant.
(iv) The reverse discrete-time symmetry (¢, = y¥_,(—1)) results in the reverse discrete-time symmetric IDNLS
equation

iwn,t = lpn+l + lpn—l - 2@0}1 - )’lﬂnlﬂ—n(—f)(lﬂnﬂ + Wn—l)7 (7)

where 7y is an arbitrary complex constant.

More recently, a bilinearisation-reduction approach [24] has been proposed to derive solutions of Eqs.(4)-(7).
By imposing different reduction conditions, double Casoratian solutions for Eqs.(4)-(7) have been provided [24].
It is known that the local IDNLS equation (4) admits bright solition solutions in terms of the double Casorati
determinant but dark soliton ones expressed as the single Casorati determinant [28]. Thus, “dark” soliton solutions
for nonlocal IDNLS equations (5)-(7) need to be investigated. Apart from the single Casorati determinant form,
the dark soliton solution of the local IDNLS equation (4) can be written as Gram determinant form. It motivates us
to construct Gram determinant solutions for nonlocal IDNLS equations. In the previous work [27], one of authors
have used the direct reduction, namely the wave number satisfying the constraint condition under the same index, to
obtain Gram determinant solutions for local and nonlocal IDNLS equations (4)-(6). For instance, the derivation of
the dark soliton solution for the defocusing local IDNLS Eq.(4) was realized by imposing the constraint condition
qi = p;“l [27, 28] on the before-redcution IDNLS equation. In the direct reduction, only singular soliton solutions
were obtained for the nonlocal PT symmetric IDNLS Eq.(5) and only one-soliton solution was derived for the
reverse time symmetric IDNLS Eq.(6) [27]. Note that in the continuous nonlocal PT-symmetric NLS equation with
the nonzero boundary condition case, there existed an even number of soliton solutions related to an even number
(2N) of eigenvalues [4, 26]. So it is necessary to develop a kind of pair reduction on the before-redcution IDNLS
equation, in which the constraint condition is taken between a pair of wave numbers, to derive dark solutions for
local and nonlocal IDNLS equations. However, for the reverse discrete-time symmetric IDNLS Eq.(7), the soliton
solution can be obtained directly from the one of the before-redcution IDNLS equation without the constraint
condition for wave numbers. Therefore, in the present paper, we will apply the pair reduction to construct Gram
determinant solutions for the local Eq.(4), the PT symmetric Eq.(5) and the reverse time symmetric Eq.(6).

This paper is organized as follows. In Section 2, we first introduce a generalized (before-redcution) IDNLS
equation whose solution is expressed in terms of the single Casorati determinant. Then we convert the Casorati
determinant solution to two kinds of the Gram determinant one. In Section 3, with the help of the pair reduction,
Gram determinant solutions of local and nonlocal IDNLS equations are derived by imposing different constraint

conditions. The last section is a summary and discussion.



2. Gram determinant solution of the generalized IDNLS equation

2.1. Casorati determinant solution

In order to derive Gram determinant solution from the known Casorati determinant one for the generalized
IDNLS equation, we first recall the derivation of Casorati determinant solution in [28, 29].

The bilinear forms for Béacklund Transformation (BT) of Toda lattice (TL) equation

@Dy — Dtpitk+ 1,0 -1k, D) + 7k + 1, D741 (k, 1) = 0, ®)
(bDy — Dy (b, I+ 1) - 7(k, D) + T (k, L+ D1y (K, 1) = 0, )

and the bilinear form of discrete 2-dimensional Toda lattice (D2DTL) equation
Ttk + 1,1+ D1k, D) — 0k + 1, D7k, L+ 1) = ablt,(k + 1,1+ D1k, D) — Ty (b + 1, D701k I+ 1)), (10)

with the constants a and b, have the following Casorati determinant solution

() B ) BRI G ()
N I Gl ) AR G ()

=] " . , : (11)
N I Rl ) BT AR ()

where tpE")(k, 1) are functions of continuous independent variables x, y and discrete ones k, [, satisfying the disper-

sion relations as follows

8ok, 1) = ¢V, D), 8,0 (K, 1) = "V (k, D), (12)
Ak D) = "V D, A"k, D) = 9"k, D, (13)

Here Ay and A, are the backward difference operators with respect to the difference intervals a and b given by

Sk, D~ f(k—=1,D) Sk, — flk,I-1)
a a ’

Acfk, D) = s Aflk, D) = (14)

and the Hirota’s bilinear operators D, and D, are defined as

0 a \' o a\"
D'D™a-b) = (— - —) (= - (Y
«Dy(a-b) (6x 8x’) (6y Oy’) a(x b, y)

x=x"y=y’

The Casorati determinant solution (11) can give rise to various types of solutions for the bilinear equations
(8)-(10), since the matrix elements can be taken as any functions obeying the dispersion relations (12)-(13). In the

following, the function gaf.") (k, 1) is taken as

— -l
@me)=pﬂl—apok(l—b%) wp@»+qﬂ1—wmk(1—b$) exp(n), (15)

l L

with
1 1
& = pix+ —y+&p, i =qix+—y+n0,
Di qi
where p;, g; and &;, ;o are arbitrary constants. This kind of choice leads to soliton solutions and p;, g; and &;,

10 represent the wave numbers and phase parameters of solitons, respectively.
In order to reduce the coupled system of TL’s BT (8)-(9) and D2DTL (10) to the generalized IDNLS equation,



one need to impose the constraint condition for the wave numbers in (15)
apiqi +b - pi—q; =0,

which implies

1-bL 1-bpi
P 2 qi

2 i
P ap =TT = aq

This condition makes ¢ (, 1) in (15) satisfy

1
¢+ 1,11 = P?t—z,i“’ﬁ")(k’ D,
and then tau functions have the relations
N 1-bt
Tualk + 1,1=1) = {]_1[ pfl_—al’;]r,,(k, D).

Therefore, the bilinear forms of TL’s BT (8)-(9) and D2DTL (10) become

@Dy = Dk + 11 - 7u(k, D) + Tp(k + 1, DTy (k, 1) = 0,
(bDy = Dtk + 1,0 - 70k, D) + T2k + 1, Dym1(k, 1) = 0,

Tn+1(k + 1, I)Tn—l(k - 1’ l) - Tn+1(ks l)Tn—l(ks l) = ab[TrHI(k + 1’ l)Tn—l(k - 1, l) - Tn(k’ I)Tn(k’ l)]

(16)

a7

(18)

19)

(20)
2n
(22)

Here the parameter / is dropped by simply taking / = 0. Furthermore, by using the independent variable transfor-

mation

X =iact, y=1ibdt, ie., —id; = acd, + bdo,,

where ¢ and d are constants, and defining

ﬁl = 71,(0), 8n = Tur1 (D), hy = 701(=1),

the above bilinear equations converts to the bilinear form of the generalized IDNLS equation

(=iD; —c - d)gn . fn + dgn+lfn—l + cgn—lfn+l =0,
(lDt —c—d)hy, - fn + Chn+1fn—1 + dhn—lﬁHl =0,

Fost oot = [ = (ab = D(f} = guha),

which have the solution in terms of Casorati determinant as follows

fo= 1FL=|pl e 4 g e
n+j n+j
p; . q; .
8n = |Gl = [=———¢fl + "],
1—ap; 1 —-agq;

ho = 1H] = (1 = appp 726 + (1 - agg] e,

with
. bd . bd
& =ilacpi + — |t + &, mi=ilacgi + — |t +nip
Pi qi

1 l

where the wave numbers p; and g; need to satisfy the constraint condition (16).

(23)

(24)

(25)
(26)
27)

(28)

(29)

(30)

&2V



Through the dependent variable transformation

8n hy,
Up=—71, Vn=—1 (32)
Ja f
one can get the generalized IDNLS equation
i ut” + (¢ + dyu, — [ab — (ab — Du,vyl(dupsy + cuy—1) = 0, (33)
.dvy
—i ; + (c + d)v,, — [ab — (ab — Du,v,1(cvue1 + dv,—q) = 0. (34)

2.2. Gram determinant solution
In this section, we will transform the above Casorati determinant solution to two kinds of Gram determinant

one for the generalized IDNLS equation. To this end, we change exponential functions as

-1 -1

N N

exp(@&) = || [ —po| exp&). expm =|[ [(a-an| exptrp, (35)
k=1 k=1
k#i k#i

with
. bd , , . bd ,
& =1lacpi + —|t+ &y, 1 =1lacqi + — |1+ 1,0,
Pi ’ qi ’

l 1

and introduce the following 2N X 2N diagonal matrices

1

A = Diag(aj,ar -+ ,aon), aj = ——, (36)
qi — Pi
1
B = Diag(by,by--- ,byy), bi=—, 37
preési
1 —ap;
C =Diag(ci,co. ). €= —2 (38)
Pi

and a Vandermonde matrix

2N—i
v=lee oy [1—[ qk,] | 9
1<k <k2<--»<]<2N,;§2N =1

ki#j INX2N

For example, when N = 1 and N = 2, the Vandermonde matrices read

942 —q1

V, = , (40)

Tl

—429394 —q19394 —q19294 —419293

V. = 9293 + 4294 + q394 4193 t 4194 + q3q4 4192 + 4194 + 4294 9192 + 4193 + 4243 41

. = .

—q92— 43— 44 —q1— 43— 44 —q1— 42— 44 —q91 49293
1 1 1 1

Due to the gauge freedom, we can find the first kind of Gram determinant solution

~ . 1 1 q?e"f
fn=I|F|=1ABFV,| = + 6ij e , 42)
Pi—4q;j Pi—4qj P | non
- 1 (1 —ap; 1 g'em
gn=|G|=|CABFVq|=‘—+6U|:q( ap)] q; _ ’ 43)
Pi—4q; pi(l —aq)) | pi=q; pets NN
L 1 (1 - ag; 1 grem
hw = |l = |C'ABFV,| = +5ij[p( a'”] 4e : (44)
Pi—4q; qj(1 —ap)) | pi —q; pe’i
J 2Nx2N

5



still satisfy the bilinear IDNLS equations (25)-(27).

For the second case, we need to introduce another group of 2N X 2N diagonal matrices

P =Diag(1,1---,1n;Pn+1, DN+25 "+ s P2N), (45)
Q:Dlag(l’l ,1N§CIN+1,CIN+2,"' ,CIZN)- (46)

Owing to the gauge freedom, one can derive the second kind of Gram determinant solution

- . A B
Jn=IF| = |PABFV,Q| = 0 , 47)
INX2N
5 — |5 Ag B
gn =G| = |CPABFV,0| = ) (48)
D)l yyan
~ . " Aw B
h, =|H| = |C"'PABFV,Q| = , (49)
Diwlyysan
with the block matrices given by
A= (a0),y+ Ao = (@i(D) 0 A = (aD),, (50)
D = (dij(0), > Doy = (dij(D), .+ D = (dis=D),, > (51)
B= (bij)NxN ’ C= (cij)NxN ’ (52)
where the elements are defined by
1 1 [qil—ap) | gje" N+
a;j(k) = +6;j [ : ' ] —, bij= — (53)
Pi—q; pi=q;lpi(l=agp| piet Pi = qn+j
i iqN+j iqN+j i(l - D] dhewie™
cij = PNi : dij(k) _ PN-+_(]N+1 ' +5ij PN‘+_CIN+J ‘ [4N+ '(1 _aPN+?} dn+ —. (54)
PN+i — 4 PN+i — gN+j PN+i — gN+j PNH( an+j) p7v+je N+j

This Gram determinant solution also satisfy the bilinear IDNLS equations (25)-(27).

3. Reduction to local and nonlocal IDNLS equations

3.1. The local IDNLS equation (4)

For the local IDNLS equation (4), we start from the second kind of Gram determinant solution (47)-(49) via

the pair reduction. To be specific, by imposing the pair conditions

1 .
PN+i = —> 4N+i = 5> b=a, (55)
q; 14

i i

one can find that the constraint condition (16) for py,; and gy.; is complex conjugate of one for p; and ¢;. If we

further restrict

% ’ _ 7% ’ _ 1%
d=c", Eyiio ="M Mysio = ~Si0 (56)

then the following relations hold

’ o ’ o rx n Enei k= -0 n Myei — ¥ =&
Enei = M s Nngi = =6 s Pyu€ M =q; e, gy e =pp e (57)



The elements in the Gram determinant solution (47)-(49) are rewritten as

k 4
1 1 (1 —ap; el 1
a;j(k) = +6;j [Q( ap )} L -, bj= ———, (58)
pi=q;  pi=qilpill—ag)| pheti pip; =1
1 1 1 [a-q g
Cij = ——— dij(k) = + 6 N (59)
J 5 J s« 5 J % * 5 1 &
1 -q;q; P;—4q; P;—q; la—p;| pje

In this case, we have A* = DT, B8* = BT and C* = CT. Notice that a* — p; = ¢i(1 — ap;) and a* — q; = p;(1 — aq;)

which yield .‘7{2* =Dl and A;, = DI

) = thus one can get

(8’
i =ITF'T|=|F| = f,, & =|THT|=|F| = h,, (60)

where the matrix 7T is defined by

0 1
T = [ NXN] . (61)
Ivav 0 ) on

From the transformation (32), it immediately reaches u;, = j% = 7 = v,. Furthermore, through the variable

transformations » » P "

Yn . e+ e . al* -1 e”

u, = —exp|—inf + i————1 — 2it = , = , 62
N P daf 7 lar ©

with§ = 1(lal* > 1) and 6 = —1(la* < 1), the generalized IDNLS equation (33)-(34) reduces to the local IDNLS
equation (4). Finally, we arrive at the following theorem about 2/N-soliton solution of the local IDNLS equation
.

Theorem 3.1 The local IDNLS equation (4) has the solution

|CZ|2 -1 (1 g—i 20 ‘“’ 1nt+21t)gn

n 63
Yn = SaP A (63)
with § = 1(Jal*> > 1) and § = —1(|a|* < 1), where tau functions are given by
. A B A B
n=|c AR C(f') ” : (64)
INX2N ®lanxan

with the block matrices
1 e 1 1 (1 —ap,)] q'e"
A= +0i; ; s A = +6; [6],( ap,)} L ; ,
Pi—4; pi=ajpiei) Pi—4; pi=a;jlpil—ag) ] preti |

1 1 qe 1 1 [a-q 4"
D:( x *+6ij ® ok in f’*] ’ D(g):( * *+6l] w [ ql] *7 f’*] ’
P;—4; P;—4; p; e NxN P;—4; p; q; la-p; et o

1 1
N
pip;=1) L= 49 ) yun

—if i6 . .
Here ¢! = 1( it Ia\z )t+§l gandn; = 1( it Ia\fq,-) 1410, Pis i §g-M;o (1 = 1,2+ -+ ,N) and a are arbitrary
complex constants, 6 is an arbitrary real constant, these parameters need to satisfy the constraint conditions

and

apiqi +a* - p; —q; = 0. (65)

The above solution holds for both focusing and defocusing cases in the local IDNLS equation (4). As pointed

out in [28], this kind of solution corresponds to the homoclinic orbit one of the local IDNLS equation.
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For example, by taking N = 1, tau functions for the local IDNLS equation (4) are written as:

Tn=Ar+ A T+ e + qy'en gy et (66)
n = A1 2 1 ¢ wn & T F T
pet pre |p1l*"e
n 17 *1 '7] 2n 0, +n}
gn = A +A2(1+P1 4he 7 + P} qln +|Py |2%) .
Piet pie |p1[2nefité
where
1 ! a —pi

s AZ =T 5 Pl - s
(p1l? = Dllg:* = 1) lp1 — a1 a - q

A =

and £ = 1( SEDLT Ialze )t +{&lgand 77} = 1( Tt Ialqu)t + 110> P> q1 &)1} o and a are arbitrary complex
constants, 6 is an arbitrary real constant, they need to satisfy the constraint condition ap;q; + a* — p; — q; = 0.

3.2. The PT symmetric IDNLS equation (5)

For nonlocal IDNLS equation (5), we carry out the pair reduction on the first kind of Gram determinant solution

(42)-(44). For this purpose, we first impose the pair conditions
PN+i =4q;> qN+i=P;, @ =a, b" =D, (68)

which ensure that the constraint condition (16) for py.; and gy, is complex conjugate of one for p; and ¢g;. If we

further require
'=c d =d, &0 =T Mneio = ~€i00 (69)

one can find the relations

SI/VH = _77;*’ TI;\/H - le*’ pN+ EN” = q;ﬁne_”' ’ qN+ enNH p*ne_f (70)

The Gram determinant solution (42)-(44) can be rewritten as

o . A B 5 ~ A B - - | An B
fn=|F|=| o B=l0l= © o Il =1 = 5 : (1)
¢ 2NN ¢ ®lanxon ¢ Mlanson
with the block matrices given by (50)-(52) whose elements are defined by
1 1 (1 —ap) 1 q'e” 1
a;j(k) = +0;; [q( ap)] 4 -, bij = - (72)
i—4; = 4j Pl =aq)] piefi Pi = pj
1 1 1 [p;(d—ag)]* p;re
cij= ———, dijtk) = ——= +6;j— [ - - o (73)
q; —4;j i TP q; —p; lgi(1 —ap}) q7é
In this situation, we have A*(—n) = —DT, A*(- n)g) = Z)(h), A (—=n)py = D(g), B = T and C* = —CT, thus
one can get
Ly=1=TF'TI=|F| = f,, &,=1-TH'TI=|F|=h, (74)
From the transformation (32), it immediately reaches u*, = f}; = % = v,. Furthermore, through the variable
transformations
/8 e +e? . ab -1 e? e’
n = —=exp|-nf + 1=2it|, a= s e=—,d=—, 75
! \/anp( A YT e T b ab 73

with ¢ = 1(ab > 1,0r ab < 0)and 6 = —1(0 < ab < 1), we obtain the PT symmetric IDNLS equation (5). Finally,

we get the following theorem about the solution of the nonlocal IDNLS equation (5).



Theorem 3.2 The nonlocal PT symmetric IDNLS equation (5) has the solution

ab -1 (nG 1e *” l+21t) 8n

n = 76
=57 7 (76)
with ¢ = 1(ab > 1,or ab < 0)and 6 = —1(0 < ab < 1), where tau functions are given by
. A B A B
= ‘C gy = C(f') o : (77
2NX2N ®@lansan

with the block matrices
L s—t aie” Ay = L st [ g:(1 - api) ] qre’
i ’ > 8) — 13 ’ )
Pi—q; Pi=4j ple®i e Pi—q; pi=qjLpi(1 —agp| peti o

1 1 pren 1 1 “(1—ag))] phe'’
s« 5 +6ij 5 5 pl 1 ’ D(g) = % 5 + 5] * [p ( q )] p 1 ’
4; — P q = P q;és q; = p; q; = pj L 4;(1 —ap)) | gne5i
NXN

NXN
1 1
o( ) ool
Pi— Pj NxN q; —49i/Nxn

9 . —60 0 . .
Here & = i(Gpi+ S )t + &g and 0} = i(5qi+ S )t + 0y, pi» @i € and 7 (i = 1,2+, N) are arbitrary
complex constants, a, b and 6 are arbitrary real constants, these parameters need to satisfy the constraint conditions

A

D

and

apiqi+b-pi—q;=0. (78)

For example, tau functions for the nonlocal IDNLS equation (5) are written as:

q};er]’l pineni* q?PTne”/‘ +y
=A+ A1+ + 79
St 2( Pet get  pigpeit "
caonliap qn ) . Lp’;nenfl* iqnp*nen'ﬁn/l* 0
n =0 2 ! ple‘fl P; qa;nefj* P; pt q*ne£;+§i*
where

_ ! N _ o -ap)

- * *\ ? TR 1= 75

(p1 =1 —q}) lp1 —qil? pi(1 —aq)

and &) = 1( &P+ am)t+ .fl pandn = 1( X ) t+ 7]1 0> P1> 41 51 o and ’71 o are arbitrary complex constants,
a, b and 6 are arbitrary real constants, they need to satisfy the constraint condition ap;q; + b — p; —gq; = 0. To

investigate the asymptotic behavior of above two-soliton solution (79)-(80), we redefine the following notations:

e +e7? . ab -1 q1 Ay

0=no-i t+2it, p= , = PP Py =0t 2§l 81

' P=N o T A m T @D
ner]’l *”e”r

& =A+iBr+ A +iBy, D =en, LT 2 e, )
phef gt

Without loss of generality, we assume A > 0 and then have the asymptotic forms as follows:
(i) Before collision (f — —o0)
Soliton 1 (y; = 0, y2 = —o0):

1 + é‘ex++(,|+LUel(y++91)

1 + eXitereity

e cosh(X| + ¢y +cop) + (A5cos(Y1+ + 91). 83)
cosh(X} +¢1) + dcos(Y})

ab -1
oab

2
7
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Soliton 2 (y, = 0, y; & —o0):

o1+ e~ Xitei=copii+6n) 1 cosh(X] — ¢y +co) + Scos(YT +6))

ao — eZn97co 1 ] (84)

2
s Wl” —

Yn = pe’

1 + e Xiteiel?t oab cosh(X7 — ¢1) + §cos(¥7)
(i1) After collision (t — +00)
Soliton 1 (y; = 0, xy2 & +00):
Capr 1+ e im0 ab = 1| 5,4 COSh(X] + co) + cos(¥Y[ + 61)
l/’n *peep—l Xt iyt 5 |Wn|2 - 62 o= ] + 2 l+ . (85)
Py 1+eXieh oab cosh(X{) + 6 cos(Y;)
Soliton 2 (y2 = 0, x| = +o0):
. 0Pl 1+ eXI+COe_i(Yf+01) ) ab -1 e COSh(X; + C()) + COS(Y{ + 9])
Yn — pe’— 7 Wl” - e —= - . (36)
P 1+efie™ oab cosh(X}) + d cos(¥;)

Here X{" = np + At + Ag and Y| = ng + Bt + By.

[wr|

Figure 1: The solution (79)-(80) of the PT symmetric IDNLS equation (5) with the parameters (a)a = 1, b = ?8 p1=3+3iandq; = 5+ 3;
=2+

b)ya=1,b=3,py=1+iandq; =1+2i;(c)a=1,b=11,p; =2+3iand ¢ —31,(d)a—1,b: +3iand q; = 20+2301

In the previous work [27], one of authors have applied a direct reduction g; = p; to derive the solution of the
nonlocal IDNLS equation (5). When N = 1, the solution reads

pi1-ap}) ﬂ)” P
ab-1 (né) el t+21t)[p1(1_ap1):| +PT(1—11P1)(P7 e

Sab pd=ap)| |, (ﬂ) CEiHEr
Py

Y = , 87)

where, 6 = 1(ab < 0)and 6 = -1(0 < ab < 1), & = i(b% + ;—;)t + &, p1 and & are arbitrary complex

parameters, a, b and 6 are arbitrary real parameters and they need to satisfy 1 —ap; = —%(1 - p%) and ab < 1. For
1

(1-ap7)

the solution (87), if we set p; = exp(a; + i8;), [ Tapy)

] = ¢?”1 and define &, + ¢} = 284, then the modular square of
10



Y, is given by
(88)

W2 = exp(2n6) ’1 b [1 _ 2sin(2nB) + B +y)sin(Bi +7)

cosh(29) + cos(2nB;) ’
which means the singularity at 8; = kr (k = £1,£2,---).

However, the solution (79)-(80) may allow the nonsingular case under the suitable choice of parameters. From
the above asymptotic analysis, it is found that the requirement ¢ = B = By = 0 is an sufficient condition for
the nonsingular solution. We illustrate the solution (79)-(80) in Fig.1 with the parameters &}, = 77, = 0, in
which 6 is taken as zero to avoid the amplitude increases/decreases exponentially. Under the special parameters
satisfying ¢ = B = By = 0, Figure 1(a) exhibits a nonsingular two-dark soliton. Other three examples in Fig.1 are
singular solutions, although they look like two kink soliton, the interaction of kink and breathing soliton and two

breathing-soliton, respectively.

3.3. The reverse time discrete symmetric IDNLS equation (6)

For the nonlocal IDNLS equation (6), we consider the pair reduction on the second kind of Gram determinant

solution (47)-(49). More specificly, by imposing the pair conditions

1
DN+i = —, qn+i= —, b=aq, (89)

qi i
it is found that the constraint condition (16) for py,; and gy.; is consistent with one for p; and ¢;. If we further
require

d=c, fz/vﬂ‘,o = _77:',0’ ’7;v+i,0 = _ff,o’ (90)

then the following relations hold

Ener = (=0, Ty = =60, Pl = ", gy e = pile 0, On
The elements in the Gram determinant solution (47)-(49) are rewritten as
1 1 a- 6"1 1
aij(k) = +6 [q’ i ’)] I by = ——, 92)
i =4 pi—q; | pi(1 — aq;) ~pipi— 1
k(=0

1 1 a-— q;e’
Cij = -, dlj(k) = + 611 [ q ] jl £(—1) . (93)

1 - qiq; Pji—4i pi—qila—pi| ples

In this case, we bave A(—f) = DT, B = BT and C = CT. Notice that a — p; = gi(1 —ap;) and a — ¢; = pi(1 — aq;)

which yield Ay (-1) = Z)(Th) and Ag,y(—1) = thus one can get

()’

S0 = ITF'T| = |F| = fo, 8.(=0) = |TH"T| = |F| = hy. (94)
From the transformation (32), it immediately reaches u,(—f) = ‘j}’éig = 7 = v,. Furthermore, through the
variable transformations
1 21 1
un:w—exp 2il—= -1 a:a , C=—, 95)
Va ya? a?

with the complex constant y, we obtain the reverse time discrete symmetric IDNLS equation (6). Finally, we get
the following theorem about the solution of the nonlocal IDNLS equation (6).
Theorem 3.3 The nonlocal IDNLS equation (6) has the solution

a’-1 =2i( L -1)r 8n
n = a - 96
¥ 2 ¢ 7 (96)
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where tau functions are given by

Agq B
C Dy

’ n

2NX2N

, o7

2NX2N

1 1 g 1 1 (1—ap)] qie"
ﬂ:{ — | Ay = e |
Pi—4q; Pi—4g; pie s Pi—4q; Pi—4q; | Pi qi pie NSy

' (~t) n (=)
1 1 g5 1 1 [a—gq|4¢"
o [Pj —a g pE ) PO g T g ap e |
l NXN ! NXN

and

1 1
e Rt W
pipj_l NXN I_Qiqj NXN

Here ¢/ = i(pi + 1%) +&andn) = i(qi + ql) 5+ Mg Pis 4i € (i = 1,2++- ,N) and a are arbitrary complex

constants, these parameters need to satisfy the constraint conditions
apigi +a—pi—q; = 0. (98)

For example, by taking N = 1, tau functions for the nonlocal IDNLS equation (6) are written as:

/ " (—1) 2n 0+ (—1)
q’llenl le”l q;"em™mn
Jo= b +A2(1 Y e ey | ©9
{ 1(=1) 21 iy 111 (=1)
qien 1 4jen qy'en™™
= hirhe (1 FO o Bt g ) (100

where
1 1 _a—-p

1:—7 AZ: b Pl_ 9
(P -1t -1 (P — q1)? a-qi

and &) = i(p1 + pl]) L +&pand ) = i(ql + qll) Ly M. P1> 41 &) 011 o and a are arbitrary complex constants, they

need to satisfy the constraint condition ap,q; + a — p; —¢q; = 0.

4. Summary and discussions

In this paper, we study Gram determinant solutions for local and nonlocal IDNLS equations via the pair reduc-
tion. Starting from the coupled system of the TL’s BT and D2DTL equation, the generalized IDNLS equation with
the single Casorati determinant solution is derived through the dimensional reduction. According to the gauge
invariance of the bilinear form for the generalized IDNLS equation, the single Casorati determinant solution is
changed as two kinds of Gram determinant solutions. Based on the different forms of the Gram determinant solu-
tion, the pair constraint conditions for wave numbers are imposed and then solutions of local and nonlocal IDNLS

equations are constructed. These solutions corresponds to the even number of soliton respectively.
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