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Abstract

In this paper, Gram determinant solutions of local and nonlocal integrable discrete nonlinear Schrödinger (IDNLS)

equations are studied via the pair reduction. A generalized IDNLS equation is firstly introduced which possesses

the single Casorati determinant solution. Two kinds of Gram determinant solutions are presented from Casorati

determinant ones due to the gauge freedom. The different pair constraint conditions for wave numbers are imposed

and then solutions of local and nonlocal IDNLS equations are derived in terms of Gram determinant.
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1. Introduction

The parity-time (PT) symmetry has firstly proposed in quantum mechanics since Bender and Boettcher [1]

found that non-Hermitian Hamiltonians possess entirely real spectra. In nonlinear integrable system, Ablowitz and

Musslimani have recently introduced a nonlocal nonlinear Schrödinger (NLS) equation with the PT-symmetric

invariance. Such a nonlocal PT-symmetric NLS equation remains integrable due to the existence of a Lax pair

formulation and an infinite number of conservation laws. Indeed, it can be obtained from a nonlocal reduction

of the AKNS spectral problem [2, 3]. Along with this idea, many nonlocal versions of local integrable equations

have been identified in both one and two space dimensions as well as in discrete case [2–11]. These nonlocal

reductions include the reverse space-time symmetry, or the partially PT symmetry and the partially reverse space-

time symmetry in higher dimensional case. The potential applications of nonlocal soliton equations appear in

nonlinear PT symmetric media [6], or more universally in the context of “Alice-Bob events” [7, 8]. Moreover,

the classical methods such as inverse scattering transform, Darboux transformation and bilinear approach have

recently applied to nonlocal integrable models and gave rise to new types of solution [12–27].

Among these nonlocal system, three kinds of nonlocal integrable discrete NLS (IDNLS) equations can be

reduced from the Ablowitz-Ladik (AL) spectral problem [3]. More specifically, considering the AL scattering

problem

υn+1 =

 z ψn

ϕn z−1

 υn, υn,t =
iψnϕn−1 − i

2 (z − z−1)2 −i(zψn − z−1ψn−1)

i(z−1ϕn − zϕn−1) −iϕnψn−1 +
i
2 (z − z−1)2

 υn, (1)

where υn = (υ(1)n , υ(2)n )T and z is a complex spectral parameter, the discrete compatibility condition υn+1,t =

(υm,t)m=n+1 yields the coupled system

iψn,t = ψn+1 + ψn−1 − 2ψn − ψnϕn(ψn+1 + ψn−1), (2)

−iϕn,t = ϕn+1 + ϕn−1 − 2ϕn − ϕnψn(ϕn+1 + ϕn−1). (3)
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It admits four different symmetry reductions [3, 12, 13, 19, 22, 24]:

(i) The standard Ablowitz-Ladik symmetry (ϕn = δψ∗n) gives rise to the local IDNLS equation

iψn,t = ψn+1 + ψn−1 − 2ψn − δψnψ
∗
n(ψn+1 + ψn−1), δ = ±1. (4)

(ii) The discrete PT preserved symmetry (ϕn = δψ∗−n) leads to the PT symmetric IDNLS equation

iψn,t = ψn+1 + ψn−1 − 2ψn − δψnψ
∗
−n(ψn+1 + ψn−1), δ = ±1. (5)

(iii) The reverse time symmetry (ϕn = γψn(−t)) yields the reverse time symmetric IDNLS equation

iψn,t = ψn+1 + ψn−1 − 2ψn − γψnψn(−t)(ψn+1 + ψn−1), (6)

where γ is an arbitrary complex constant.

(iv) The reverse discrete-time symmetry (ϕn = γψ−n(−t)) results in the reverse discrete-time symmetric IDNLS

equation

iψn,t = ψn+1 + ψn−1 − 2ψn − γψnψ−n(−t)(ψn+1 + ψn−1), (7)

where γ is an arbitrary complex constant.

More recently, a bilinearisation-reduction approach [24] has been proposed to derive solutions of Eqs.(4)-(7).

By imposing different reduction conditions, double Casoratian solutions for Eqs.(4)-(7) have been provided [24].

It is known that the local IDNLS equation (4) admits bright solition solutions in terms of the double Casorati

determinant but dark soliton ones expressed as the single Casorati determinant [28]. Thus, “dark” soliton solutions

for nonlocal IDNLS equations (5)-(7) need to be investigated. Apart from the single Casorati determinant form,

the dark soliton solution of the local IDNLS equation (4) can be written as Gram determinant form. It motivates us

to construct Gram determinant solutions for nonlocal IDNLS equations. In the previous work [27], one of authors

have used the direct reduction, namely the wave number satisfying the constraint condition under the same index, to

obtain Gram determinant solutions for local and nonlocal IDNLS equations (4)-(6). For instance, the derivation of

the dark soliton solution for the defocusing local IDNLS Eq.(4) was realized by imposing the constraint condition

qi = p∗−1i [27, 28] on the before-redcution IDNLS equation. In the direct reduction, only singular soliton solutions

were obtained for the nonlocal PT symmetric IDNLS Eq.(5) and only one-soliton solution was derived for the

reverse time symmetric IDNLS Eq.(6) [27]. Note that in the continuous nonlocal PT-symmetric NLS equation with

the nonzero boundary condition case, there existed an even number of soliton solutions related to an even number

(2N) of eigenvalues [4, 26]. So it is necessary to develop a kind of pair reduction on the before-redcution IDNLS

equation, in which the constraint condition is taken between a pair of wave numbers, to derive dark solutions for

local and nonlocal IDNLS equations. However, for the reverse discrete-time symmetric IDNLS Eq.(7), the soliton

solution can be obtained directly from the one of the before-redcution IDNLS equation without the constraint

condition for wave numbers. Therefore, in the present paper, we will apply the pair reduction to construct Gram

determinant solutions for the local Eq.(4), the PT symmetric Eq.(5) and the reverse time symmetric Eq.(6).

This paper is organized as follows. In Section 2, we first introduce a generalized (before-redcution) IDNLS

equation whose solution is expressed in terms of the single Casorati determinant. Then we convert the Casorati

determinant solution to two kinds of the Gram determinant one. In Section 3, with the help of the pair reduction,

Gram determinant solutions of local and nonlocal IDNLS equations are derived by imposing different constraint

conditions. The last section is a summary and discussion.
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2. Gram determinant solution of the generalized IDNLS equation

2.1. Casorati determinant solution

In order to derive Gram determinant solution from the known Casorati determinant one for the generalized

IDNLS equation, we first recall the derivation of Casorati determinant solution in [28, 29].

The bilinear forms for Bäcklund Transformation (BT) of Toda lattice (TL) equation

(aDx − 1)τn+1(k + 1, l) · τn(k, l) + τn(k + 1, l)τn+1(k, l) = 0, (8)

(bDy − 1)τn−1(k, l + 1) · τn(k, l) + τn(k, l + 1)τn−1(k, l) = 0, (9)

and the bilinear form of discrete 2-dimensional Toda lattice (D2DTL) equation

τn(k + 1, l + 1)τn(k, l) − τn(k + 1, l)τn(k, l + 1) = ab[τn(k + 1, l + 1)τn(k, l) − τn+1(k + 1, l)τn−1(k, l + 1)], (10)

with the constants a and b, have the following Casorati determinant solution

τn(k, l) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φ(n)1 (k, l) φ(n+1)1 (k, l) · · · φ(n+N−1)1 (k, l)

φ(n)2 (k, l) φ(n+1)2 (k, l) · · · φ(n+N−1)2 (k, l)
...

... · · ·
...

φ(n)N (k, l) φ(n+1)N (k, l) · · · φ(n+N−1)N (k, l)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (11)

where φ(n)i (k, l) are functions of continuous independent variables x, y and discrete ones k, l, satisfying the disper-

sion relations as follows

∂xφ
(n)
i (k, l) = φ(n+1)i (k, l), ∂yφ

(n)
i (k, l) = φ(n−1)i (k, l), (12)

∆kφ
(n)
i (k, l) = φ(n+1)i (k, l), ∆lφ

(n)
i (k, l) = φ(n−1)i (k, l). (13)

Here ∆k and ∆l are the backward difference operators with respect to the difference intervals a and b given by

∆k f (k, l) =
f (k, l) − f (k − 1, l)

a
, ∆l f (k, l) =

f (k, l) − f (k, l − 1)
a

, (14)

and the Hirota’s bilinear operators Dx and Dy are defined as

Dn
xD

m
y (a · b) =

(
∂

∂x
− ∂

∂x′

)n( ∂
∂y
− ∂

∂y′

)m
a(x, y)b(x′, y′)

∣∣∣∣∣
x=x′,y=y′

.

The Casorati determinant solution (11) can give rise to various types of solutions for the bilinear equations

(8)-(10), since the matrix elements can be taken as any functions obeying the dispersion relations (12)-(13). In the

following, the function φ(n)i (k, l) is taken as

φ(n)i (k, l) = pni (1 − api)−k
(
1 − b 1

pi

)−l
exp(ξi) + qni (1 − aqi)−k

(
1 − b 1

qi

)−l
exp(ηi), (15)

with

ξi = pix +
1
pi
y + ξi,0, ηi = qix +

1
qi
y + ηi,0,

where pi, qi and ξi,0, ηi,0 are arbitrary constants. This kind of choice leads to soliton solutions and pi, qi and ξi,0,

ηi,0 represent the wave numbers and phase parameters of solitons, respectively.

In order to reduce the coupled system of TL’s BT (8)-(9) and D2DTL (10) to the generalized IDNLS equation,
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one need to impose the constraint condition for the wave numbers in (15)

apiqi + b − pi − qi = 0, (16)

which implies

p2i
1 − b 1

pi

1 − api
= q2i

1 − b 1
qi

1 − aqi
. (17)

This condition makes φ(n)i (k, l) in (15) satisfy

φ(n+2)i (k + 1, l − 1) = p2i
1 − b 1

pi

1 − api
φ(n)i (k, l), (18)

and then tau functions have the relations

τn+2(k + 1, l − 1) =
 N∏
i=1

p2i
1 − b 1

pi

1 − api

 τn(k, l). (19)

Therefore, the bilinear forms of TL’s BT (8)-(9) and D2DTL (10) become

(aDx − 1)τn+1(k + 1, l) · τn(k, l) + τn(k + 1, l)τn+1(k, l) = 0, (20)

(bDy − 1)τn+1(k + 1, l) · τn(k, l) + τn+2(k + 1, l)τn−1(k, l) = 0, (21)

τn+1(k + 1, l)τn−1(k − 1, l) − τn+1(k, l)τn−1(k, l) = ab[τn+1(k + 1, l)τn−1(k − 1, l) − τn(k, l)τn(k, l)]. (22)

Here the parameter l is dropped by simply taking l = 0. Furthermore, by using the independent variable transfor-

mation

x = iact, y = ibdt, i.e., − i∂t = ac∂x + bd∂y, (23)

where c and d are constants, and defining

fn = τn(0), gn = τn+1(1), hn = τn−1(−1), (24)

the above bilinear equations converts to the bilinear form of the generalized IDNLS equation

(−iDt − c − d)gn · fn + dgn+1 fn−1 + cgn−1 fn+1 = 0, (25)

(iDt − c − d)hn · fn + chn+1 fn−1 + dhn−1 fn+1 = 0, (26)

fn+1 fn−1 − f 2n = (ab − 1)( f 2n − gnhn), (27)

which have the solution in terms of Casorati determinant as follows

fn = |F| =
∣∣∣∣pn+ j−1i eξi + qn+ j−1i eηi

∣∣∣∣ , (28)

gn = |G| =
∣∣∣∣∣∣∣ pn+ ji

1 − api
eξi +

qn+ ji

1 − aqi
eηi

∣∣∣∣∣∣∣ , (29)

hn = |H| =
∣∣∣∣(1 − api)pn+ j−2i eξi + (1 − aqi)qn+ j−2i eηi

∣∣∣∣ , (30)

with

ξi = i
(
acpi +

bd
pi

)
t + ξi,0, ηi = i

(
acqi +

bd
qi

)
t + ηi,0 (31)

where the wave numbers pi and qi need to satisfy the constraint condition (16).
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Through the dependent variable transformation

un =
gn
fn
, vn =

hn
fn

(32)

one can get the generalized IDNLS equation

i
dun
dt
+ (c + d)un − [ab − (ab − 1)unvn](dun+1 + cun−1) = 0, (33)

−idvn
dt
+ (c + d)vn − [ab − (ab − 1)unvn](cvn+1 + dvn−1) = 0. (34)

2.2. Gram determinant solution

In this section, we will transform the above Casorati determinant solution to two kinds of Gram determinant

one for the generalized IDNLS equation. To this end, we change exponential functions as

exp(ξi) =


N∏
k=1
k,i

(qk − pi)


−1

exp(ξ′i ), exp(ηi) =


N∏
k=1
k,i

(qk − qi)


−1

exp(η′i), (35)

with

ξ′i = i
(
acpi +

bd
pi

)
t + ξ′i,0, η

′
i = i

(
acqi +

bd
qi

)
t + η′i,0,

and introduce the following 2N × 2N diagonal matrices

A = Diag(a1, a2 · · · , a2N), ai =
1

qi − pi
, (36)

B = Diag(b1, b2 · · · , b2N), bi =
1

pni e
ξ′i
, (37)

C = Diag(c1, c2, · · · , c2N), ci =
1 − api

pi
, (38)

and a Vandermonde matrix

Vq =

(−1)2N−i
∑

1≤k1<k2<···<k2N−i≤2N
kl, j

2N−i∏
l=1

qkl



2N×2N

. (39)

For example, when N = 1 and N = 2, the Vandermonde matrices read

Vq =

−q2 −q1
1 1

 , (40)

Vq =


−q2q3q4 −q1q3q4 −q1q2q4 −q1q2q3

q2q3 + q2q4 + q3q4 q1q3 + q1q4 + q3q4 q1q2 + q1q4 + q2q4 q1q2 + q1q3 + q2q3
−q2 − q3 − q4 −q1 − q3 − q4 −q1 − q2 − q4 −q1 − q2 − q3

1 1 1 1


. (41)

Due to the gauge freedom, we can find the first kind of Gram determinant solution

f̃n = |F̃| = |ABFVq| =
∣∣∣∣∣∣∣ 1
pi − q j

+ δi j
1

pi − q j

qni e
η′i

pnje
ξ′j

∣∣∣∣∣∣∣
2N×2N

, (42)

g̃n = |G̃| = |CABFVq| =
∣∣∣∣∣∣∣ 1
pi − q j

+ δi j

[
qi(1 − api)
p j(1 − aq j)

]
1

pi − q j

qni e
η′i

pnje
ξ′j

∣∣∣∣∣∣∣
2N×2N

, (43)

h̃n = |H̃| = |C−1ABFVq| =
∣∣∣∣∣∣∣ 1
pi − q j

+ δi j

[
pi(1 − aqi)
q j(1 − ap j)

]
1

pi − q j

qni e
η′i

pnje
ξ′j

∣∣∣∣∣∣∣
2N×2N

, (44)
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still satisfy the bilinear IDNLS equations (25)-(27).

For the second case, we need to introduce another group of 2N × 2N diagonal matrices

P = Diag(1, 1 · · · , 1N ; pN+1, pN+2, · · · , p2N), (45)

Q = Diag(1, 1 · · · , 1N ; qN+1, qN+2, · · · , q2N). (46)

Owing to the gauge freedom, one can derive the second kind of Gram determinant solution

f̃n = |F̃| = |PABFVqQ| =
∣∣∣∣∣∣∣A B
C D

∣∣∣∣∣∣∣
2N×2N

, (47)

g̃n = |G̃| = |CPABFVqQ| =
∣∣∣∣∣∣∣A(g) B
C D(g)

∣∣∣∣∣∣∣
2N×2N

, (48)

h̃n = |H̃| = |C−1PABFVqQ| =
∣∣∣∣∣∣∣A(h) B
C D(h)

∣∣∣∣∣∣∣
2N×2N

, (49)

with the block matrices given by

A =
(
ai j(0)

)
N×N

, A(g) =
(
ai j(1)

)
N×N

, A(h) =
(
ai j(−1)

)
N×N

, (50)

D =
(
di j(0)

)
N×N

, D(g) =
(
di j(1)

)
N×N

, D(h) =
(
di j(−1)

)
N×N

, (51)

B =
(
bi j

)
N×N

, C =
(
ci j

)
N×N

, (52)

where the elements are defined by

ai j(k) =
1

pi − q j
+ δi j

1
pi − q j

[
qi(1 − api)
p j(1 − aq j)

]k qni eη′i
pnje

ξ′j
, bi j =

qN+ j
pi − qN+ j

, (53)

ci j =
pN+i

pN+i − q j
, di j(k) =

pN+iqN+ j
pN+i − qN+ j

+ δi j
pN+iqN+ j

pN+i − qN+ j

[
qN+i(1 − apN+i)
pN+ j(1 − aqN+ j)

]k qnN+ie
η′N+i

pnN+ je
ξ′N+ j

. (54)

This Gram determinant solution also satisfy the bilinear IDNLS equations (25)-(27).

3. Reduction to local and nonlocal IDNLS equations

3.1. The local IDNLS equation (4)

For the local IDNLS equation (4), we start from the second kind of Gram determinant solution (47)-(49) via

the pair reduction. To be specific, by imposing the pair conditions

pN+i =
1
q∗i
, qN+i =

1
p∗i
, b = a∗, (55)

one can find that the constraint condition (16) for pN+i and qN+i is complex conjugate of one for pi and qi. If we

further restrict

d = c∗, ξ′N+i,0 = −η′∗i,0, η′N+i,0 = −ξ′∗i,0, (56)

then the following relations hold

ξ′N+i = −η′∗i , η′N+i = −ξ′∗i , pnN+ie
ξ′N+i = q∗−ni e−η

′∗
i , qnN+ie

η′N+i = p∗−ni e−ξ
′∗
i . (57)
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The elements in the Gram determinant solution (47)-(49) are rewritten as

ai j(k) =
1

pi − q j
+ δi j

1
pi − q j

[
qi(1 − api)
pi(1 − aqi)

]k qni eη′i
pnje

ξ′j
, bi j =

1
pip∗j − 1

, (58)

ci j =
1

1 − q∗i q j
, di j(k) =

1
p∗j − q∗i

+ δi j
1

p∗j − q∗i

[
a − q∗i
a − p∗i

]k q∗nj eη′∗j
p∗ni eξ

′∗
i
. (59)

In this case, we haveA∗ = DT , B∗ = BT and C∗ = CT . Notice that a∗ − pi = qi(1 − api) and a∗ − qi = pi(1 − aqi)
which yieldA∗(g) = DT

(h) andA∗(h) = DT
(g), thus one can get

f̃ ∗n = |T F̃TT | = |F̃| = f̃n, g̃∗n = |T H̃TT | = |F̃| = h̃n, (60)

where the matrix T is defined by

T =

 0 IN×N
IN×N 0


2N×2N

. (61)

From the transformation (32), it immediately reaches u∗n =
g̃∗n
f̃ ∗n
= h̃n

f̃n
= vn. Furthermore, through the variable

transformations

un =
ψn√
α
exp

(
−inθ + ie

iθ + e−iθ

|a|2 t − 2it
)
, α =

|a|2 − 1
δ|a|2 , c =

e−iθ

|a|2 , (62)

with δ = 1(|a|2 > 1) and δ = −1(|a|2 < 1), the generalized IDNLS equation (33)-(34) reduces to the local IDNLS

equation (4). Finally, we arrive at the following theorem about 2N-soliton solution of the local IDNLS equation

(4).

Theorem 3.1 The local IDNLS equation (4) has the solution

ψn =

√
|a|2 − 1
δ|a|2 e

(
inθ−i eiθ+e−iθ|a|2 t+2it

)
g̃n
f̃n
, (63)

with δ = 1(|a|2 > 1) and δ = −1(|a|2 < 1), where tau functions are given by

f̃n =

∣∣∣∣∣∣∣A B
C D

∣∣∣∣∣∣∣
2N×2N

, g̃n =

∣∣∣∣∣∣∣A(g) B
C D(g)

∣∣∣∣∣∣∣
2N×2N

, (64)

with the block matrices

A =
 1
pi − q j

+ δi j
1

pi − q j

qni e
η′i

pnje
ξ′j


N×N

, A(g) =

 1
pi − q j

+ δi j
1

pi − q j

[
qi(1 − api)
pi(1 − aqi)

]
qni e

η′i

pnje
ξ′j


N×N

,

D =
 1
p∗j − q∗i

+ δi j
1

p∗j − q∗i

q∗nj e
η′∗j

p∗ni eξ
′∗
i


N×N

, D(g) =

 1
p∗j − q∗i

+ δi j
1

p∗j − q∗i

[
a − q∗i
a − p∗i

] q∗nj eη′∗j
p∗ni eξ

′∗
i


N×N

,

and

B =
 1
pip∗j − 1


N×N

, C =
(

1
1 − q∗i q j

)
N×N

.

Here ξ′i = i
(
ae−iθ
|a|2 pi + a∗eiθ

|a|2pi

)
t+ ξ′i,0 and η

′
i = i

(
ae−iθ
|a|2 qi +

a∗eiθ
|a|2qi

)
t+η′i,0, pi, qi ξ

′
i,0,η

′
i,0 (i = 1, 2 · · · ,N) and a are arbitrary

complex constants, θ is an arbitrary real constant, these parameters need to satisfy the constraint conditions

apiqi + a∗ − pi − qi = 0. (65)

The above solution holds for both focusing and defocusing cases in the local IDNLS equation (4). As pointed

out in [28], this kind of solution corresponds to the homoclinic orbit one of the local IDNLS equation.
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For example, by taking N = 1, tau functions for the local IDNLS equation (4) are written as:

fn = ∆1 + ∆2

1 + qn1e
η′1

pn1e
ξ′1
+

q∗n1 eη
′∗
1

p∗n1 eξ
′∗
1
+
|q1|2neη

′
1+η

′∗
1

|p1|2neξ
′
1+ξ

′∗
1

 , (66)

gn = ∆1 + ∆2

1 + P1
qn1e

η′1

pn1e
ξ′1
+ P∗1

q∗n1 eη
′∗
1

p∗n1 eξ
′∗
1
+ |P1|2

|q1|2neη
′
1+η

′∗
1

|p1|2neξ
′
1+ξ

′∗
1

 , (67)

where

∆1 =
1

(|p1|2 − 1)(|q1|2 − 1)
, ∆2 =

1
|p1 − q1|2

, P1 =
a∗ − p1
a∗ − q1

,

and ξ′1 = i
(
ae−iθ
|a|2 p1 + a∗eiθ

|a|2p1

)
t + ξ′1,0 and η

′
1 = i

(
ae−iθ
|a|2 q1 +

a∗eiθ
|a|2q1

)
t + η′1,0, p1, q1 ξ

′
1,0,η

′
1,0 and a are arbitrary complex

constants, θ is an arbitrary real constant, they need to satisfy the constraint condition ap1q1 + a∗ − p1 − q1 = 0.

3.2. The PT symmetric IDNLS equation (5)

For nonlocal IDNLS equation (5), we carry out the pair reduction on the first kind of Gram determinant solution

(42)-(44). For this purpose, we first impose the pair conditions

pN+i = q∗i , qN+i = p∗i , a∗ = a, b∗ = b, (68)

which ensure that the constraint condition (16) for pN+i and qN+i is complex conjugate of one for pi and qi. If we

further require

c∗ = c, d∗ = d, ξ′N+i,0 = −η′∗i,0, η′N+i,0 = −ξ′∗i,0, (69)

one can find the relations

ξ′N+i = −η′∗i , η′N+i = −ξ′∗i , pnN+ie
ξ′N+i = q∗ni e−η

′∗
i , qnN+ie

η′N+i = p∗ni e−ξ
′∗
i . (70)

The Gram determinant solution (42)-(44) can be rewritten as

f̃n = |F̃| =
∣∣∣∣∣∣∣A B
C D

∣∣∣∣∣∣∣
2N×2N

, g̃n = |G̃| =
∣∣∣∣∣∣∣A(g) B
C D(g)

∣∣∣∣∣∣∣
2N×2N

, h̃n = |H̃| =
∣∣∣∣∣∣∣A(h) B
C D(h)

∣∣∣∣∣∣∣
2N×2N

, (71)

with the block matrices given by (50)-(52) whose elements are defined by

ai j(k) =
1

pi − q j
+ δi j

1
pi − q j

[
qi(1 − api)
p j(1 − aq j)

]k qni eη′i
pnje

ξ′j
, bi j =

1
pi − p∗j

, (72)

ci j =
1

q∗i − q j
, di j(k) =

1
q∗i − p∗j

+ δi j
1

q∗i − p∗j

[
p∗i (1 − aq∗i )
q∗i (1 − ap∗i )

]k p∗ni eη
′∗
i

q∗nj e
ξ′∗j
. (73)

In this situation, we haveA∗(−n) = −DT , A∗(−n)(g) = −DT
(h),A∗(−n)(h) = −DT

(g), B∗ = −BT and C∗ = −CT , thus
one can get

f̃ ∗−n = | − T F̃TT | = |F̃| = f̃n, g̃∗−n = | − T H̃TT | = |F̃| = h̃n. (74)

From the transformation (32), it immediately reaches u∗−n =
g̃∗−n
f̃ ∗−n
= h̃n

f̃n
= vn. Furthermore, through the variable

transformations

un =
ψn√
α
exp

(
−nθ + ie

θ + e−θ

ab
t − 2it

)
, α =

ab − 1
δab

, c =
e−θ

ab
, d =

eθ

ab
, (75)

with δ = 1(ab > 1, or ab < 0) and δ = −1(0 < ab < 1), we obtain the PT symmetric IDNLS equation (5). Finally,

we get the following theorem about the solution of the nonlocal IDNLS equation (5).
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Theorem 3.2 The nonlocal PT symmetric IDNLS equation (5) has the solution

ψn =

√
ab − 1
δab

e
(
nθ−i eθ+e−θab t+2it

)
g̃n
f̃n
, (76)

with δ = 1(ab > 1, or ab < 0) and δ = −1(0 < ab < 1), where tau functions are given by

f̃n =

∣∣∣∣∣∣∣A B
C D

∣∣∣∣∣∣∣
2N×2N

, g̃n =

∣∣∣∣∣∣∣A(g) B
C D(g)

∣∣∣∣∣∣∣
2N×2N

, (77)

with the block matrices

A =
 1
pi − q j

+ δi j
1

pi − q j

qni e
η′i

pnje
ξ′j


N×N

, A(g) =

 1
pi − q j

+ δi j
1

pi − q j

[
qi(1 − api)
p j(1 − aq j)

]
qni e

η′i

pnje
ξ′j


N×N

,

D =
 1
q∗i − p∗j

+ δi j
1

q∗i − p∗j

p∗ni eη
′∗
i

q∗nj e
ξ′∗j


N×N

, D(g) =

 1
q∗i − p∗j

+ δi j
1

q∗i − p∗j

[
p∗i (1 − aq∗i )
q∗i (1 − ap∗i )

]
p∗ni eη

′∗
i

q∗nj e
ξ′∗j


N×N

,

and

B =
 1
pi − p∗j


N×N

, C =
(

1
q∗i − q j

)
N×N

.

Here ξ′i = i
(
e−θ
b pi + eθ

api

)
t + ξ′i,0 and η′i = i

(
e−θ
b qi + eθ

aqi

)
t + η′i,0, pi, qi ξ

′
i,0 and η′i,0 (i = 1, 2 · · · ,N) are arbitrary

complex constants, a, b and θ are arbitrary real constants, these parameters need to satisfy the constraint conditions

apiqi + b − pi − qi = 0. (78)

For example, tau functions for the nonlocal IDNLS equation (5) are written as:

fn = ∆1 + ∆2

1 + qn1e
η′1

pn1e
ξ′1
+

p∗n1 eη
′∗
1

q∗n1 eξ
′∗
1
+
qn1p

∗n
1 eη

′
1+η

′∗
1

pn1q
∗n
1 eξ

′
1+ξ

′∗
1

 , (79)

gn = ∆1 + ∆2

1 + P1
qn1e

η′1

pn1e
ξ′1
+

1
P∗1

p∗n1 eη
′∗
1

q∗n1 eξ
′∗
1
+

P1

P∗1

qn1p
∗n
1 eη

′
1+η

′∗
1

pn1q
∗n
1 eξ

′
1+ξ

′∗
1

 (80)

where

∆1 =
1

(p1 − p∗1)(q1 − q∗1)
, ∆2 = −

1
|p1 − q1|2

, P1 =
q1(1 − ap1)
p1(1 − aq1)

,

and ξ′1 = i
(
e−θ
b p1 + eθ

ap1

)
t + ξ′1,0 and η

′
1 = i

(
e−θ
b q1 + eθ

aq1

)
t + η′1,0, p1, q1 ξ

′
1,0 and η

′
1,0 are arbitrary complex constants,

a, b and θ are arbitrary real constants, they need to satisfy the constraint condition ap1q1 + b − p1 − q1 = 0. To

investigate the asymptotic behavior of above two-soliton solution (79)-(80), we redefine the following notations:

θ̂ = nθ − ie
θ + e−θ

ab
t + 2it, ρ̂ =

√
ab − 1
δab

,
q1
p1
= eρ+iφ, P1 = ec0+iθ1 ,

∆2

∆1 + ∆2
= δ̂ec1 , (81)

η′1 − ξ′1 = (A + iB)t + A0 + iB0,
qn1e

η′1

pn1e
ξ′1
= eχ1 ,

p∗n1 eη
′∗
1

q∗n1 eξ
′∗
1
= eχ2 . (82)

Without loss of generality, we assume A > 0 and then have the asymptotic forms as follows:

(i) Before collision (t → −∞)
Soliton 1 (χ1 ≈ 0, χ2 ≈ −∞):

ψn → ρ̂eθ̂
1 + δ̂eX

+
1 +c1+c0ei(Y

+
1 +θ1)

1 + δ̂eX+1 +c1eiY+1
, |ψn|2 →

∣∣∣∣∣ab − 1δab

∣∣∣∣∣ e2nθ+c0 cosh(X+1 + c1 + c0) + δ̂ cos(Y+1 + θ1)cosh(X+1 + c1) + δ̂ cos(Y
+
1 )

. (83)
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Soliton 2 (χ2 ≈ 0, χ1 ≈ −∞):

ψn → ρ̂eθ̂
1 + δ̂e−X

−
1 +c1−c0ei(Y

−
1 +θ1)

1 + δ̂e−X−1 +c1eiY−1
, |ψn|2 →

∣∣∣∣∣ab − 1δab

∣∣∣∣∣ e2nθ−c0 cosh(X−1 − c1 + c0) + δ̂ cos(Y−1 + θ1)cosh(X−1 − c1) + δ̂ cos(Y−1 )
. (84)

(ii) After collision (t → +∞)
Soliton 1 (χ1 ≈ 0, χ2 ≈ +∞):

ψn → ρ̂eθ̂
p1
p∗1

1 + e−X
+
1 −c0e−i(Y

+
1 +θ1)

1 + e−X+1 e−iY+1
, |ψn|2 →

∣∣∣∣∣ab − 1δab

∣∣∣∣∣ e2nθ−c0 cosh(X+1 + c0) + cos(Y−1 + θ1)cosh(X+1 ) + δ̂ cos(Y
+
1 )

. (85)

Soliton 2 (χ2 ≈ 0, χ1 ≈ +∞):

ψn → ρ̂eθ̂
p1
p∗1

1 + eX
−
1 +c0e−i(Y

−
1 +θ1)

1 + eX−1 e−iY−1
, |ψn|2 →

∣∣∣∣∣ab − 1δab

∣∣∣∣∣ e2nθ+c0 cosh(X−1 + c0) + cos(Y−1 + θ1)cosh(X−1 ) + δ̂ cos(Y
−
1 )

. (86)

Here X±1 = nρ ± At ± A0 and Y±1 = nφ ± Bt ± B0.

(a) (b)

(c) (d)

Figure 1: The solution (79)-(80) of the PT symmetric IDNLS equation (5) with the parameters (a) a = 1, b = 18
5 , p1 = 3+ 3i and q1 = 3

5 +
3
5 i;

(b) a = 1, b = 3, p1 = 1 + i and q1 = 1 + 2i; (c) a = 1, b = 11, p1 = 2 + 3i and q1 = 3i; (d) a = 1, b = 3
2 , p1 = 2 + 3i and q1 = 19

20 +
3
20 i.

In the previous work [27], one of authors have applied a direct reduction qi = p∗i to derive the solution of the

nonlocal IDNLS equation (5). When N = 1, the solution reads

ψn =

√
ab − 1
δab

e
(
nθ−i eθ+e−θab t+2it

) [
p∗1(1 − ap1)
p1(1 − ap∗1)

] 1 + p1(1−ap∗1)
p∗1(1−ap1)

(
p1
p∗1

)n
eξ
′
1+ξ

′∗
1

1 +
(
p1
p∗1

)n
eξ
′
1+ξ

′∗
1

, (87)

where, δ = 1(ab < 0) and δ = −1(0 < ab < 1), ξ′i = i
(

pi
beθ +

eθ
api

)
t + ξ′i,0, p1 and ξ′1,0 are arbitrary complex

parameters, a, b and θ are arbitrary real parameters and they need to satisfy 1 − ap1 = − p1
p∗1
(1 − b

p1
) and ab < 1. For

the solution (87), if we set pi = exp(αi + iβi),
[ (1−ap∗1)
(1−ap1)

]
= e2iγ1 and define ξ1 + ξ∗1 ≡ 2ϑ1, then the modular square of
10



ψn is given by

|ψn|2 = exp(2nθ)
∣∣∣∣∣1 − abab

∣∣∣∣∣ [1 − 2 sin(2nβ1 + β1 + γ) sin(β1 + γ)
cosh(2ϑ1) + cos(2nβ1)

]
, (88)

which means the singularity at β1 = kπ (k = ±1,±2, · · · ).
However, the solution (79)-(80) may allow the nonsingular case under the suitable choice of parameters. From

the above asymptotic analysis, it is found that the requirement φ = B = B0 = 0 is an sufficient condition for

the nonsingular solution. We illustrate the solution (79)-(80) in Fig.1 with the parameters ξ′1,0 = η′1,0 = 0, in

which θ is taken as zero to avoid the amplitude increases/decreases exponentially. Under the special parameters

satisfying φ = B = B0 = 0, Figure 1(a) exhibits a nonsingular two-dark soliton. Other three examples in Fig.1 are

singular solutions, although they look like two kink soliton, the interaction of kink and breathing soliton and two

breathing-soliton, respectively.

3.3. The reverse time discrete symmetric IDNLS equation (6)

For the nonlocal IDNLS equation (6), we consider the pair reduction on the second kind of Gram determinant

solution (47)-(49). More specificly, by imposing the pair conditions

pN+i =
1
qi
, qN+i =

1
pi
, b = a, (89)

it is found that the constraint condition (16) for pN+i and qN+i is consistent with one for pi and qi. If we further

require

d = c, ξ′N+i,0 = −η′i,0, η′N+i,0 = −ξ′i,0, (90)

then the following relations hold

ξ′N+i = −η′i(−t), η′N+i = −ξ′i (−t), pnN+ie
ξ′N+i = q−ni e−η

′
i (−t), qnN+ie

η′N+i = p−ni e−ξ
′
i (−t). (91)

The elements in the Gram determinant solution (47)-(49) are rewritten as

ai j(k) =
1

pi − q j
+ δi j

1
pi − q j

[
qi(1 − api)
pi(1 − aqi)

]k qni eη′i
pnje

ξ′j
, bi j =

1
pip j − 1

, (92)

ci j =
1

1 − qiq j
, di j(k) =

1
p j − qi

+ δi j
1

p j − qi

[
a − qi
a − pi

]k qnjeη′j(−t)
pni e

ξ′i (−t)
. (93)

In this case, we baveA(−t) = DT , B = BT and C = CT . Notice that a − pi = qi(1 − api) and a − qi = pi(1 − aqi)
which yieldA(g)(−t) = DT

(h) andA(h)(−t) = DT
(g), thus one can get

f̃n(−t) = |T F̃TT | = |F̃| = f̃n, g̃n(−t) = |T H̃TT | = |F̃| = h̃n. (94)

From the transformation (32), it immediately reaches un(−t) = g̃n(−t)
f̃n(−t)

= h̃n
f̃n
= vn. Furthermore, through the

variable transformations

un =
ψn√
α
exp

[
2i

(
1
a2
− 1

)
t
]
, α =

a2 − 1
γa2

, c =
1
a2
, (95)

with the complex constant γ, we obtain the reverse time discrete symmetric IDNLS equation (6). Finally, we get

the following theorem about the solution of the nonlocal IDNLS equation (6).

Theorem 3.3 The nonlocal IDNLS equation (6) has the solution

ψn =

√
a2 − 1
γa2

e−2i
(

1
a2
−1

)
t g̃n
f̃n
, (96)
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where tau functions are given by

f̃n =

∣∣∣∣∣∣∣A B
C D

∣∣∣∣∣∣∣
2N×2N

, g̃n =

∣∣∣∣∣∣∣A(g) B
C D(g)

∣∣∣∣∣∣∣
2N×2N

, (97)

with the block matrices

A =
 1
pi − q j

+ δi j
1

pi − q j

qni e
η′i

pnje
ξ′j


N×N

, A(g) =

 1
pi − q j

+ δi j
1

pi − q j

[
qi(1 − api)
pi(1 − aqi)

]
qni e

η′i

pnje
ξ′j


N×N

,

D =
 1
p j − qi

+ δi j
1

p j − qi
qnje

η′j(−t)

pni e
ξ′i (−t)


N×N

, D(g) =

 1
p j − qi

+ δi j
1

p j − qi

[
a − qi
a − pi

] qnjeη′j(−t)
pni e

ξ′i (−t)


N×N

,

and

B =
(

1
pip j − 1

)
N×N

, C =
(

1
1 − qiq j

)
N×N

.

Here ξ′i = i
(
pi + 1

pi

)
t
a + ξ

′
i,0 and η

′
i = i

(
qi + 1

qi

)
t
a + η

′
i,0, pi, qi ξ

′
i,0,η

′
i,0 (i = 1, 2 · · · ,N) and a are arbitrary complex

constants, these parameters need to satisfy the constraint conditions

apiqi + a − pi − qi = 0. (98)

For example, by taking N = 1, tau functions for the nonlocal IDNLS equation (6) are written as:

fn = ∆1 + ∆2

1 + qn1e
η′1

pn1e
ξ′1
+
qn1e

η′1(−t)

pn1e
ξ′1(−t)

+
q2n1 eη

′
1+η

′
1(−t)

p2n1 eξ
′
1+ξ

′
1(−t)

 , (99)

gn = ∆1 + ∆2

1 + P1
qn1e

η′1

pn1e
ξ′1
+

1
P1

qn1e
η′1(−t)

pn1e
ξ′1(−t)

+
q2n1 eη

′
1+η

′
1(−t)

p2n1 eξ
′
1+ξ

′
1(−t)

 , (100)

where

∆1 =
1

(p21 − 1)(q21 − 1)
, ∆2 =

1
(p1 − q1)2

, P1 =
a − p1
a − q1

,

and ξ′1 = i
(
p1 + 1

p1

)
t
a + ξ

′
1,0 and η

′
1 = i

(
q1 + 1

q1

)
t
a + η

′
1,0, p1, q1 ξ

′
1,0,η

′
1,0 and a are arbitrary complex constants, they

need to satisfy the constraint condition ap1q1 + a − p1 − q1 = 0.

4. Summary and discussions

In this paper, we study Gram determinant solutions for local and nonlocal IDNLS equations via the pair reduc-

tion. Starting from the coupled system of the TL’s BT and D2DTL equation, the generalized IDNLS equation with

the single Casorati determinant solution is derived through the dimensional reduction. According to the gauge

invariance of the bilinear form for the generalized IDNLS equation, the single Casorati determinant solution is

changed as two kinds of Gram determinant solutions. Based on the different forms of the Gram determinant solu-

tion, the pair constraint conditions for wave numbers are imposed and then solutions of local and nonlocal IDNLS

equations are constructed. These solutions corresponds to the even number of soliton respectively.
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