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ABSTRACT: Predictive models are useful tools for aqueous
adsorption research; existing models such as multilinear regression
(MLR), however, can only predict adsorption under specific
equilibrium concentrations or for certain adsorption isotherm models.
Also, few studies have discussed data processing beyond applying
different modeling algorithms to improve the prediction accuracy. In
this research, we employed a cosine similarity approach that focused
on mining the available data before developing models; this approach
can mine the most relevant data concerning the prediction target to
build models and was found to considerably improve the prediction
accuracy. We then built a machine-learning modeling process based on neural networks (NN), a group-selection data-splitting
strategy for grouped adsorption data for adsorbent−adsorbate pairs under different equilibrium concentrations, and polyparameter
linear free energy relationships (pp-LFERs) for aqueous adsorption of 165 organic compounds onto 50 biochars, 34 carbon
nanotubes, 35 GACs, and 30 polymeric resins. The final NN-LFER models were successfully applied to various equilibrium
concentrations regardless of the adsorption isotherm models and showed less prediction deviations than the published models with
the root-mean-square errors 0.23−0.31 versus 0.23−0.97 log unit, and the predictions were improved by adding two key descriptors
(BET surface area and pore volume) for the adsorbents. Finally, interpreting the NN-LFER models based on the Shapley values
suggested that not considering equilibrium concentration and properties of the adsorbents in the existing MLR models is a possible
reason for their higher prediction deviations.

■ INTRODUCTION

Aqueous adsorption, a long-standing purification/separation
process, has been continuously investigated for decades;
however, challenges still exist for this technology. Traditional
batch and column experiments are time-consuming and
inefficient toward a growing number of chemicals and
adsorbents, and this has led to scarcity in data for adsorption
of (new) compounds on (new) adsorbents.1−4 Also, although
the adsorption of many model chemicals like phenols on new
or modified adsorbents has been explored extensively,5−8 these
abundant data have not been fully utilized other than for the
comparison or selection of a small number of adsorbents.
Mining published data to build broad predictive models will be
a promising solution to fill the gaps. A model with high
prediction accuracy can replace some labor-intensive adsorp-
tion experiments; even moderately accurate models are
valuable, as they can facilitate the design of adsorption
experiments by quickly estimating the adsorbed amounts of
different chemicals by given adsorbents (e.g., help to determine
the mass of the adsorbents used in the experiments).
The adsorbed amount (Qe) under an equilibrium concen-

tration (Ce) is essentially a function of three key sets of
properties: the properties of the chemical, the properties of the

adsorbent, and the equilibrium concentration Ce of the
chemical with respective to the adsorbent.
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where the adsorption coefficient log Kd has been commonly
employed to quantify the extent of adsorption.
Most studies have relied on two approaches to develop

predictive models. The first approach examines the adsorption
of many chemicals on a small number of similar adsorbents
(referred to as the “chemical-based approach” hereafter),
among which polyparameter linear free energy relationships
(pp-LFERs) are one of the most widely used.9−11 In the pp-
LFERs approach, multilinear regression (MLR) is established
between log Kd and the Abraham descriptors (E, S, A, B, and
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V)12 of different chemicals under a selected equilibrium
concentration level Ce:

= · + · + · + · + · +K C e E s S a A b B v V clog ( )d e (2)

where the equilibrium concentration level Ce is equal to a
fraction of a chemical’s water solubility (Sw) (e.g., Ce = 0.01 ×
Sw), e, s, a, b, v, and c are the fitting parameters, and log Kd(Ce)
is the adsorption coefficient of a chemical under a given Ce.
The Abraham descriptors E, S, A, B, and V can capture
nonspecific interactions arising from induced dipoles, stable
polarity (i.e., dipole−dipole interactions), overall H-bonding
acidity and basicity (electron-accepting and -donating
capacities), and cavitation energy and part of London
dispersive forces beyond what is captured by the E term,
respectively. With the obtained fitting parameters, the
adsorption coefficients of new chemicals (with known
Abraham descriptors) at the same Ce can then be calculated
through the regression equations.13,14 Besides the pp-LFERs,
quantitative structure−property relationships (QSPRs) have
been used to predict aqueous adsorption as either Qe or
Kd,

15−17 where different QSPR descriptors such as those for
hydrogen bonding have been used as the independent
variables.18−20

The pp-LFERs approach, however, generally needs to build
one MLR model per Ce, and the predictions based on the
established MLR models are only limited to the concentration
levels involved in the modeling, which is not helpful when
predictions under different equilibrium concentrations are
needed. To expand the prediction ability to multiple
concentration levels, a few studies have attempted to unify
several MLR models into one equation by treating the fitting
parameters (e, s, a, b, v, and c) in eq 2 as concentration-
dependent.21,22 Unfortunately, the concentration levels are still
limited by the available experimental data (typically covering
several concentration levels such as Ce = 0.001 × Sw or 0.01 ×
Sw) and are not able to cover wide concentration ranges in real
applications. This is because some chemicals are much less
soluble than others such that we cannot obtain their
experimental log Kd under high equilibrium concentrations;
as a result, developing pp-LFERs at multiple concentration
levels will greatly reduce the number of chemicals (and hence
the amount of data available) that can be included in the
modeling process, which further limits the applicability and
accuracy of the MLR models.
Another limitation of the MLR modeling is the implicit

simplification that the Abraham descriptors are the only
variables leading to different adsorption coefficients for
chemicals under a given Ce so that the impact of the adsorbent
properties is not considered. For various adsorbents belonging
to the same class but with different properties (such as surface
area (BET) and total pore volume (Vt)), they are treated the
same even though they have different adsorption patterns
toward the same chemicals. Not including descriptors to
capture differences in the adsorbents can inevitably lead to
larger prediction deviations by MLR models. Meanwhile, this
simplification prevents a possible improvement in the
prediction accuracy by incorporating descriptors for adsorb-
ents.
Treating adsorbents that belong to the same class (e.g.,

GAC) but with significantly different properties equally can
lead to other problems. In the MLR models, the adsorption
data of one chemical on one class of adsorbents is only
considered once (the MLR models require only one dependent

variable value per chemical under every Ce), even when the
adsorption data of the chemical on several adsorbents are
available. This allows the utilization of only a small portion of
the abundant adsorption data. Considering the adsorption of
phenol on different GACs as an example, although there are
plenty of reported data for phenol adsorption on different
GACs, only one or an average of the adsorption coefficients
per Ce may be used in the MLR modeling; this makes much of
the phenol’s adsorption data seem repetitive. It is however
known that the adsorption of phenol on different GACs can
show distinctively different patterns,23−25 so the seemly
repetitive data actually contain important information about
the interactions between phenol and the different GACs, which
has barely been utilized by the MLR models.
The second approach correlates the adsorption of one or a

small number of chemicals under a specific Ce with key
adsorbent properties, such as BET, Vt, and particle size of
different adsorbents (referred to the “adsorbent-based
approach” hereafter).26−28 The relationships can be used to
predict the adsorption of that chemical on new similar
adsorbents. In this approach, the established models are
mostly confined to predicting the adsorption of a small portion
of chemicals.26,29,30

To address the limitations in the existing models, a modeling
strategy combining the chemical-based and adsorbent-based
approaches can provide a helpful solution, as it can not only
allow predictions for varying Ce or adsorption isotherm models
but also utilize the abundant adsorption data of various
chemicals as well as include properties of adsorbents to
improve the prediction accuracy. However, no established
simple regression methods can combine these two approaches
to build such predictive models.
Machine learning (ML) algorithms such as neural networks

(NN),31 the support vector machine (SVM),32 and Bagging (a
tree-based algorithm)33 have emerged as powerful tools for
uncovering hidden relationships. They have drawn much
attention and achieved great success in problems related to
adsorption prediction,34 material design, and reaction param-
eter optimization.35 Plenty of research has employed ML to
model single/multicomponent adsorption with significant
improvements compared with traditional regression meth-
ods.36−39 Different research has also used ML to optimize
adsorption parameters.40−42 In several publications, ML has
been successfully used to build predictive models based on pp-
LFERs or QSPRs.20,43−51 However, even with versatile ML
algorithms, few have ever tried to incorporate properties of the
adsorbents into the models, and most models are still only able
to predict the adsorption under selected Ce or for certain
adsorption isotherm models. One recent study has reported a
major advance in this area by incorporating the surface areas as
well as the C, H, and O contents of the adsorbents into a deep
neural network model (20 hidden layers) to predict the fitting
parameters of Freundlich isotherms, by which it largely
resolved the limitation on equilibrium concentrations by
MLRs.52 However, plenty of research has documented better
isotherm fittings by other models such as the Langmuir,
Dubinin−Radushkevich, or Temkin isotherm.53 So, it is
valuable that the predictive models for adsorption are
independent of adsorption isotherm models. The descriptors
for adsorbents should also be both highly related to the
adsorption mechanisms and widely available. BET and Vt are
among the most commonly reported properties for porous
adsorbents; more importantly, these two parameters are critical
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for deciding the adsorption of organic compounds through
hydrophobic interactions and pore-filling, two key mechanisms
for organic compounds to be adsorbed by various
adsorbents.26,29,30 However, no ML models have considered
their contributions to adsorption prediction.
Besides the algorithms, the abundance of source data plays a

crucial role in improving the prediction accuracy. In other ML
research such as natural language processing (NLP)54 and face
recognition,55 the prediction can be improved by feeding a
tremendous amount of data to the models. For experimental
research like adsorption, however, the available data are almost
always limited, so it will be beneficial to improve the prediction
beyond only selecting different algorithms or optimizing the
hyperparameters. Unfortunately, how to improve the pre-
diction accuracy for adsorption concerning source data
processing has been rarely discussed.
To address the above limitations, we first mined the

literature for the adsorption data of 165 organic chemicals
on 50 biochars, 34 carbon nanotubes (CNTs), 35 granular
activated carbons (GAC), and 30 polymeric resins. We then
compared the predictive models using the NN, SVM, Bagging,
and three classical regression algorithms and selected NN as
the best-performing one (grid search was used to optimize the
hyperparameters). We also evaluated two different data-
spitting methods to avoid the potential data leakage problem
in ML for grouped data (details below). Next, a cosine
similarity approach was employed to select the data that are
most relevant to a prediction target as the training set to build
the NN-LFER models, which helped to further improve the
prediction accuracy for a given modeling algorithm. The
Shapley values were then calculated to quantify the
contribution of each input descriptor to the overall adsorption
coefficients and to assess whether the built ML models violated
any adsorption rules. Additional comparisons between this and
previously published research are in given Text S1 and Figure
S1. Lastly, an easy-to-use tool with a Graphical User Interface
(GUI) was developed based on the trained ML models.

■ MATERIALS AND METHODS

Four types of widely investigated adsorbents, including three
carbon materials (namely biochar, CNTs, and GAC) and
polymeric resins, were selected as the target adsorbents. The
adsorption isotherms were first collected from the literature,
and the data points were then calculated from the isotherms
within the reported equilibrium concentration ranges. To
obtain good predictive models, high-quality, representative
source data are the key. Although there are numerous studies
on adsorption, only a small portion has been used to build
predictive models because either the data is not of high quality
or some key parameters are not reported. For any adsorption
isotherm to be selected, it needs to meet the following three
requirements: (1) the isotherm fitting coefficient (R2) needs to
be higher than 0.95 with at least 7 experimental data points in
the isotherms; (2) the adsorbent properties including at least
BET and Vt should be measured and reported (other
properties including macropore volume and micropore volume
were also collected, if available); and (3) for the adsorption of
chemicals onto multiple adsorbents with minor differences,
only one adsorbent was chosen for each chemical. For
instance, in the adsorption of phenol on two GACs, if the
difference in the BET between the two GACs was ≤10 m2/g,
only one of the GACs was chosen because the adsorption
capacities were similar. For compounds with acid or base
functional groups, the experimental pH of the adsorption data
was carefully selected to ensure that the majority of the
chemicals existed predominantly in the neutral form (more
information about data collection is given in Text S2).
Following these requirements, 4102 adsorption data points
associated with 586 isotherms were mined from the literature
(each isotherm has 7 concentration points, which, together
with the corresponding adsorbent properties, will be referred
to a “group” hereafter), covering the adsorption of 165 organic
chemicals on 50 biochars, 34 CNTs, 35 GACs, and 30
polymeric resins (Tables S5−8).
During the ML modeling, the input data had eight

descriptors including the equilibrium concentration log Ce
(μM), five Abraham descriptors (E, S, A, B, and V) for the
chemicals, and two descriptors for the adsorbents (BET in m2/

Figure 1. (a) Two different data-splitting approaches, in which each small rectangle is one data point, each row represents one group of data, and
the rectangles with gray, blue, and orange colors indicate that the data points were selected into the training, validation, and test sets, respectively.
(b) Performance of the two data-splitting approaches for the resin adsorption data (the collected data were split into the training, validation, and
test by the ratio of 0.7:0.15:0.15).
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g and Vt in cm3/g). The output was the adsorption coefficient
log Kd (L/g). The data were then standardized onto the same
scale (between −1 and 1) to eliminate possible bias before
feeding them to the models because the input values varied
within large ranges (e.g., the BET can be as high as 2000 m2/g,
while Vt is less than 2 cm3/g). This also helped to accelerate
the training process (a flowchart for the standardization-
involved ML process can be found in Figure S2 and Text S3).
The procedure for the modeling included four steps: (1)

collecting published data, (2) selecting the prediction target
including chemicals and adsorbents, referred to as the
validation set, (3) developing predictive models, and (4)
applying the developed models to the prediction target. When
training an ML model, data splitting is the first and one of the
most critical steps. A good approach is necessary to prevent
possible data leakage in the splitting process. This is essential
for studies like this because there are grouped data points. Data
leakage occurs when some data points in the training and
validation sets are from the same group(s). Two different data-
splitting approaches (Figure 1a) were tested and compared in
this research: (1) group selection that selected the entire group
(i.e., one adsorption isotherm plus the adsorbent properties) to
the training, validation, or test sets and (2) point selection that
randomly split data points from the collected data minus the
test set into the training or validation set (the test set still only
contained the entire group).37

The optimal configuration of the ML models was
determined by the grid search method in Matlab R2019a
with a deep learning toolbox (details in Text S4 and Figure
S3). The performance of the Bagging models with different
numbers of base estimators, SVM models with different
kernels, and NN models with different hyperparameters
(including learning goal, learning rate, activation function,
training function, number of hidden layers, and number of
neurons in the hidden layers) was evaluated by comparing the
root-mean-square error (RMSE, eq S8) and Q2

F2 (referred to
as Q2 hereafter, eq S9)56 values on the validation set. The best
NN configuration was selected with the minimal RMSEs and
maximal Q2, and a simpler NN model with fewer hidden layers
and neurons in the hidden layers was preferred to avoid
possible overfitting (Table S1).57

Please see the Supporting Information for additional details
on the data splitting (Text S5), cosine similarity (Text S6),
outliers (Text S7), and calculations of the Shapley values (Text
S8).

■ RESULTS AND DISCUSSION
Different Algorithms and Data-Splitting Approaches.

A comparison among different regression algorithms (Table
S2) showed that commonly used methods such as Ridge,
Lasso, and Elastic Net had a poor performance in dealing with
this problem. Specifically, the Ridge provided very poor
predictions with high RMSEs and low Q2; the Lasso and
Elastic Net provided acceptable predictions for CNTs, GACs,
and resins, but their prediction accuracies for biochars were
much lower than those of the SVM or Bagging method. The
SVM approach had a slightly lower prediction accuracy than
the Bagging method. The Bagging method achieved com-
parable results with those by the NN method over the four
types of adsorbents, but adding another metric mean absolute
error (MAE, which is less affected by extreme values) for
comparison, the prediction by the Bagging showed significantly
higher MAE than the NN method for the biochars and resins
(Table S3). Considering both the RMSE and MAE, the NN
approach was better and hence was selected.
Four NN models containing different input parameters were

built, and their performances were evaluated (Figure S4).
Compared with the models considering only the Abraham
descriptors as the input, the RMSEs of the prediction were
significantly improved by adding either BET or Vt, but the
models considering the Abraham descriptors with both BET
and Vt as the input gave the best predictions for all four
adsorbents. These results indicated the significance of
incorporating the key properties of the adsorbents in the
prediction models.
The results in Figure 1b and Figures S5−8 showed that for

the point-selection approach, the RMSEs of the validation sets
maintained at relatively low levels whereas those of the test sets
varied within much broader ranges. For instance, there was a
significant difference (p value = 3.31 × 10−9) between the
RMSEs of the validation and test sets for resins in the point-
selection approach (Figure 1b). In contrast, the test and
validation sets had comparable RMSEs (p value = 0.5375) in

Figure 2. Ranges of the input descriptor (BET in the plot represents log BET) values for 924 training, 196 validation, and 196 test data points for
CNTs under two scenarios: (a) a good predictive model (Q2 = 0.9438 and 0.9486 for the validation and the test set separately) and (b) a poor
model (Q2 < 0.82 for both the validation and test sets).
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the group-selection approach. Also, there was no significant
difference in the RMSEs between the test set in the point-
selection approach and the test or validation set in the group-
selection approach (p value = 0.4463 and 0.9085, respectively).
It means that the validation set in the group-selection can
successfully reflect the predicting capability of the NN models
on the test set, demonstrating the robustness of the group-
selection approach.
The possible reason for the above results is that data leakage

happened in the point-selection. In the MLR modeling,
randomly splitting data will not have this problem because
there is only one data point per Ce per chemical; no point can
appear in both the training and the validation sets and the
independence between the two data sets is guaranteed;
therefore, no data leakage happens. However, more attention
should be paid to the random data-splitting process when the
data are grouped because some data points from a group may
go into the validation set and the rest may go into the training
set. Once data leakage happens, it may lead to overfitting.58

That is, a model that gives satisfactory predictions on the
validation set may not be able to perform well for an external
test set. In this case, the training set has already contained
some features (e.g., adsorbent properties and/or descriptors of
the chemicals) of the validation set by the point-selection, so
low RMSEs on the validation set are achieved, but the test set
is independent of the training set such that the model performs
poorly on the test set. For the group-selection, because all of
the data sets are selected by groups, the training, validation,
and test sets are independent, so a better consistency in the
prediction performance, i.e., similar RMSEs and/or Q2 values,
between the validation and the test sets is achieved. Also, the
point-selection is not consistent with real applications because
an unknown target will never appear in the training set.59

Therefore, the group-selection approach was employed.
Further discussion of the two data-splitting approaches is
given in Text S5.
Cosine Similarity. During the training process, a

qualitative trend was observed in the ranges of the descriptor
values (Figure 2). That is, the ranges of the descriptor values

for the training and validation/test sets were similar when we
observed satisfactory predictions (an example is shown in
Figure 2a) but were considerably different when we observed
relatively poor predictions (e.g., descriptors E and V in Figure
2b). Such a similarity is also physically meaningful; that is, a
similarity in the descriptor ranges means that the combination
of the chemicals and adsorbents in one group is similar to that
in another. Also, following the adsorbent-based approach,
when trying to predict the adsorption of phenol on a GAC, it is
better to build models based on the adsorption data of phenol
or phenol-like chemicals on GACs. To generalize the above
finding, it is possible to improve the prediction accuracy by
selecting part of the collected data that is similar to the
prediction target rather than using all of the collected data.
Indeed, further tests suggested that when the training and test/
validation sets had similar ranges in the descriptor values, a
smaller training set yielded a comparable or slightly better
prediction for the test/validation set than that using a much
larger training set (Text S6 and Figure S9).
Different methods in ML can be employed to quantify the

similarity mentioned above;60 however, many of them do not
always apply to the physicochemical parameters of both the
adsorbents and adsorbates in this research. For example,
adding the distance (difference) between two pore volumes to
the distance between two concentrations may not yield any
physicochemically meaningful results. Commonly used dis-
tances such as Euclidean or City-block generally need to
directly add up the distances of the parameters so they may not
be suitable for adsorption prediction (Figure S10). Instead, the
cosine distance/similarity that measures similarity by the
angles between different data vectors was more suitable and
thus selected for further research. To validate the cosine
similarity-assisted data-preprocessing method, a cosine sim-
ilarity cross-validation was performed to assess its effectivenes.
Briefly, each group of the collected data was reserved as the
validation set once. The cosine similarity between the
validation set and the rest of the collected data was then
calculated as the criterium to select some of the remaining
groups as the training set. The Euclidean and City-block

Figure 3. (a) Comparison of the performance of the models based on three different training set selection approaches: R, randomly selected; CS,
cosine similarity; TR, leave-one-out cross-validation. Leave-one-out cross-validation means that one group was chosen as the validation set at a
time, and the rest was the training set until all of the groups had been selected once as the validation set. The prediction target in each of the three
approaches was the same, and the difference was in the training sets. CS had lower RMSE values than TR with the p values of 0.4008, 0.0203,
0.5375, and 0.0178 for biochar, CNTs, GACs, and resins, respectively. TR also had lower RMSE values than R, with the p values of 0.0003, 0.0093,
0.6114, and 0.0002 for biochars, CNTs, GACs, and resin, respectively. (b) Mean absolute Shapely (MAS) values for the input descriptors on the
four adsorbents. The inset shows the dominant effect of the log Ce term on the MAS values.
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similarity methods were also employed for comparison. The
training set was then fed to NN for training, and the prediction
for the validation set was obtained based on the trained model.
For comparison, the same number of groups as in the above
training set was randomly selected as another training set
(referred to as “random selection” below), and the obtained
model was employed to predict the same validation set. We
also employed the leave-one-out cross-validation approach for
comparison because it is similar to the cosine similarity
approach except that it used the entire data set minus the
validation set as the training set (more details can be found in
Text S7).
As shown in Figure 3a, the cosine similarity approach

generally provided better predictions (the RMSEs were 0.31,
0.25, 0.28, and 0.23 for biochar, CNT, GAC, and resin
separately) than the leave-one-out method (RMSEs 0.34, 0.27,
0.28, and 0.27 separately), which in turn was considerably
improved compared to the random selection (RMSEs 0.47,
0.29, 0.34, and 0.36 separately), the Euclidean (RMSEs 0.38,
0.28, 0.34, and 0.24 separately), and the City-block (the
RMSEs 0.38, 0.28, 0.35, and 0.24 separately) methods. Further
discussion of the cosine similarity is in Text S6.
The cosine similarity method can indeed select the

adsorption data that are the most relevant to a prediction
target. The descriptor ranges of the training set being selected
by the cosine similarity method were narrower than those by
the leave-one-out and closer to those of the prediction target
(Figure S11a), whereas the values of the descriptors by the
leave-one-out approach varied within much wider ranges
(Figure S11b). For instance, when the prediction target was
the adsorption of phenol on MN200 (a polymeric resin with
polystyrene backbones), the adsorbates in the training set
selected by the cosine similarity approach included 2-
nitroaniline, 2-nitrophenol, 4-chloroaniline, 4-chlorophenol,
4-methylephenol, 4-nitroaniline, aniline, catechol, chloroben-
zene, naphthalene, nitrobenzene, phenol, resorcinol, and
salicylic acid, all of which were aromatic, whereas the
adsorbents selected were MN200, XAD-4, CHA-111, MCH-
111, NDA-150, NDA-100, ZK-1, AH-1, HJ-01, GQ-06, and
HJ-11, all of which were polystyrene-based resins61−66 and
shared similar properties with MN200. As expected, the
adsorption on a polyacrylic ester resin XAD-7 was not selected
into the training set because of the difference in the backbones
of MN200 and XAD-7 and different adsorption behaviors of
the chemicals on these two resins. The combination of the
resins and the chemicals selected as the training set validated
the effectiveness of the cosine similarity method. As for the
prediction performance, the RMSE for the adsorption of
phenol on MN200 based on the above data set was 0.33 versus
0.44 for the leave-one-out approach.
Model Performance. The optimized NN-LFER models

achieved high accuracy when predicting the adsorption of 165
chemicals onto 50 biochars, 34 CNTs, 35 GACs, and 30 resins
(Text S7 and Figure 4). Compared with the published results,
the overall prediction in this work was significantly improved
even though more data points were included for each type of
the adsorbents, with the RMSEs ranging from 0.23 to 0.31 log
unit and Q2 ranging from 0.86 to 0.91 (Table 1). Besides, a
considerable amount of the prediction deviations was caused
by several outliers (Figure 4). When the top 10 deviated
predictions were removed (Figure S13), the RMSEs were
improved to 0.24, 0.20, 0.22, and 0.18 for biochar, CNTs,
GAC, and resins, respectively.

For a fair comparison based on the same data set, the
reported SVM-assisted prediction67 was repeated with our
NN-LFER model for the CNTs (Text S7), and a better
prediction was obtained with the RMSE decreased from 0.45
to 0.30 (Q2 increased from 0.83 to 0.85, Figure S14).
Among the adsorbents, the biochars had a slightly higher

RMSE than the CNTs, GACs, and resins. A possible reason is
that biochars contain larger fractions of impurities including
ash and organic matter,70 and the portions of the impurities
vary widely from one biochar to another, which complicates
the interactions between the adsorbates and the adsorbents.
Biochars in different studies have also been produced with
different raw materials under varying conditions (such as
temperature, time, and activation methods); as a result, they
may have more drastically different properties such as pore size

Figure 4. Performance of the NN-LFER models for the selected
adsorbents. For each group of input data, the log Kd predicted was
obtained from the NN-LFER models based on the cosine similarity
approach. There are 952, 1316, 903, and 798 data points for biochar,
CNTs, GAC, and resin, respectively, in this plot.

Table 1. Comparison of the Prediction Performance
between This Work and Published Resultsa

adsorbent predicted value method Q2 RSME ref

biochar log Kd (N = 128) pp-LFER 0.85 0.41(SE) 68
log Kd (N = 11) pp-LFER − 0.31 14

CNTs SW log Kd,0.001Sw
(N = 30)

pp-LFER 0.88 0.51 13

MW log Kd,0.001Sw
(N = 83)

pp-LFER 0.86 0.23

log KSA (N = 30) QSPR +
SVM

0.83 0.45 67

GAC log Kd,0.001Sw
(N = 89)

pp-LFER 0.83 0.35 13

log Kd (N = 210) pp-LFER 0.84 0.28(SE) 22
resin log Ce(N = 180) pp-LFER − 0.97 69

log Ce(N = 160) − 0.76
biochar log

Kd

N = 952 NN-
LFER

0.87 0.31 this
workCNTs N = 1316 0.91 0.25

GAC N = 903 0.86 0.28
resins N = 798 0.88 0.23

aN = number of data points used for building the models; SW =
single-walled; MW = multiwalled; Sw = water solubility; SE = standard
error; KSA = Kd/BET.
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distribution and surface functional groups, many of which were
not included in the modeling because they had not been
reported in the literature.
In this research, only two of the most widely used physical

properties, namely BET and Vt, were included in the models so
we could build the data set as large as possible. Although these
properties could only partly reflect all of the behaviors of the
adsorbents, the predictions were significantly improved. Also,
additional properties of the adsorbents, if available, can be
added to the models to further improve the prediction
accuracy. For example, the RMSE of the prediction for resins
was reduced from 0.224 to 0.198 (the Q2 increased from 0.91
to 0.92) by dividing the total pore volume into micro- and
macropore volumes. In short, the modeling approach in this
research provided a powerful, adaptable framework for
building predictive models, which can easily incorporate
more descriptors for adsorbents and adsorbates to improve
the prediction accuracy. In contrast, such an adaptability
cannot be readily achieved by the MLR models or by simply
applying different ML algorithms.
Mechanistic Interpretation. To help identify the most

influential factors in the adsorption of chemicals on those
adsorbents, the Shapley values (details in Text S8) were
calculated to quantify the contributions of the input factors.
The Shapley theory is based on the coalitional game theory
and tells us how to fairly distribute the “payout” among the
descriptors,71 where the payout refers to the predicted log Kd
in this case. This is especially suitable for quantifying the
contributions that are not equal for all factors like the eight
input descriptors in this case.72 A more positive or negative
Shapley value means that the descriptor has a larger positive or
negative contribution to the log Kd value, and vice versa. The
Shapely values were calculated for each descriptor at every data
point (each point is the adsorption of one chemical to an
adsorbent at a given Ce).

73−75 For each data point, there were
eight Shapley values, one for each descriptor (examples are
shown in Figure S15, and the collection of all of them is shown
in Figure S16). Then, all the Shapley values for a descriptor
were used to calculate its mean absolute Shapley (MAS) value

(Figure 3b). The overall impact of each descriptor on the
adsorption can now be quantified by the MAS values; the
larger the MAS value, the more significant the factor in
influencing the adsorption.
As shown in Figure 3b, the overall pattern is that the E, B, V,

and BET are the most influential factors because they have the
largest MAS values, but there are significant differences in the
MAS values between the resins and the three types of carbon
materials. For the resins, the B, V, and BET are the most
critical factors for the predicted log Kd values. This result is
consistent with the adsorption mechanisms for resins. Most
resins are hydrophobic polymers; due to the hydrophobic and
porous nature of the resins, the adsorption on resins generally
happens through hydrophobic interactions and pore-filling,
although the hydrogen bond-donating ability of chemicals, as
described by the B term, cannot be neglected.76−78 Indeed, our
previous pp-LFER models for adsorption on resins have shown
that the hydrogen bond-donating (B) and cavity energy
(described by the V descriptor, which is related to pore-filling
and hydrophobic interactions) play crucial roles in the
adsorption of organic chemicals onto three neutral resins
(XAD-4, XAD-7, and MN200).76

Among the carbon materials, GACs and CNTs share similar
patterns that the E, B, V, and BET matter the most to the
predicted log Kd values. This is because the majority of the
GACs and CNTs consist of carbon with minor impurities, so
similar interactions between the adsorbents and the adsorbates
are expected. The published predictive models based on pp-
LFERs have also revealed that the E, B, and V are the most
important descriptors for adsorption prediction, as suggested
by their largest regression coefficients in the MLR
equations.79,80 Note that the adsorbent properties are only
implicitly considered in the published MLR models, where the
same class of adsorbents (such as GACs) but with different
properties are treated the same, and the properties of the
adsorbents such as BET and Vt are not directly involved in the
MLR models.
Almost all of the input descriptors can significantly influence

the adsorption on the biochars. As discussed earlier, the

Figure 5. Shapely values at different log a (a = Ce/Sw) values for the adsorption of different compounds on (a) CNTs and (b) resins. ANI, aniline;
CA, 4-chloroaniline; BZ, benzene; DP, 2,4-dichlorophenol; NA, 4-nitroaniline; CB, chlorobenzene; CAF, caffeine; NAP, 2-naphthol; NP, 3-
nitrophenol; SW, single-walled; MW, multiwalled; MN200 and XAD-4 are two types of commercial resins. The vertical black lines indicate two
concentration levels of 0.01 × and 0.1 × Sw. The y values at the intercepts of the vertical lines and the sloped lines are the Shapley values for the
chemicals under the concentration levels of 0.01 × or 0.1 × Sw.
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biochar and GAC/CNT differ in that biochar generally
contains a large amount of organic/inorganic impurities,
which complicates the interactions between the biochars and
the adsorbed chemicals. Among the descriptors, the E, S, B, V,
and BET are the dominant ones for biochars, agreeing with the
reported MLR models in which the S, B, and V are the most
important (BET and Vt are not included in the reported MLR
models).11,68,81 The coefficient for E is not recognized as
significant; this may be because the adsorption data are only
available for 1 biochar and 14 chemicals.68 The dependency on
E may emerge if the data set is to be expanded in both
chemicals and adsorbents.
The agreement between this and previous work indicates

that the NN-LFER models are both robust and chemically
meaningful for adsorption prediction. Besides, compared with
the contribution of log Ce, the contributions of the other seven
descriptors are much less (Figure 3b, inset), suggesting that log
Ce is an important input descriptor for adsorption prediction.
With the results from the NN-LFER models, higher

deviations of the published MLR models can be at least partly
explained. For single-concentration-level MLRs, one simplifi-
cation is that the contribution of log Ce to the log Kd values for
different chemicals is the same so that the Ce term is eliminated
from the regression equations. The contributions of different
adsorbents to log Kd are also treated as identical, so the
properties of the adsorbents are not included either. These
assumptions have clear limitations, and their validity can be
tested with the newly developed NN-LFER models. Toward
this goal, the contribution of log Ce to the predicted log Kd was
quantified as the Shapley values. If the contribution of log Ce is
the same for different chemicals under a certain Ce (such as at
Ce = 0.01 × Sw or 0.1 × Sw), the Shapley values for different
chemicals under the same Ce should be the same. The results
in Figure 5 instead indicated that the Shapley values at the
same Ce mostly varied from chemical to chemical. These
results, therefore, disapproved the first simplification that the
contributions of log Ce for different chemicals under the same
Ce were identical. Instead, it supports the modeling strategy in
this research that considers the equilibrium concentration as a
variable when building predictive models.
For the simplification that adsorbents with different BET

and Vt are treated the same, it is only correct when the
contributions of BET or Vt for different adsorbents have a
single Shapley value. However, the calculations showed that
their contributions varied within a broad range (Figure S16),
so the adsorbent properties cannot be neglected in the
adsorption prediction. This can explain part of the higher
deviations in commonly used MLRs as the absence of
adsorbent properties has failed to capture the differences in
the adsorption among the adsorbents, even if they belong to
the same class.22,67,68

Graphical User Interface Tool and Limitations of the
Built Models. Generally, some basic knowledge about NN
and coding in Matlab/Python is necessary to use a NN model,
and additional time will be required to learn the necessary
knowledge and codes on the terminal windows, which do not
favor applications of these trained models. To solve this
problem and make the models widely accessible and usable, a
simple tool with a graphical user interface (GUI) that is run
under the Matlab environment was developed based on the
well-trained NN-LFER models (Text S9, Figure S17, and the
source code in the Supporting Information). With such a tool,
predicting aqueous adsorption on the four categories of the

adsorbents becomes straightforward. Also, even for chemicals
that undergo substantial acid/base dissociation, such as
pentachlorophenol (pKa = 4.7, at pH = 5.0, around 33% of
the pentachlorophenol is in the neutral form),82 we were still
able to use the equilibrium concentration of the neutral species
instead of the total concentration as the input to achieve a
satisfactory prediction, e.g., an RMSE of 0.25 for the
adsorption of pentachlorophenol onto three different biochars
at pH 5.0.
Despite the major advances in the built models, they (like

any model does) have three major limitations in their
applications: (1) We need to know the Abraham descriptors
for a given chemical to predict its adsorption on one of the
adsorbents; however, many emerging chemicals do not have
those descriptors reported. Thus, future work should focus on
obtaining the descriptors for these chemicals. (2) Considering
both the application scope of the built models and the
availability of the experimental data, only BET and Vt were
selected to describe the adsorbents. As a result, three separate
models were built for biochars, CNTs, and GACs to achieve
low prediction deviations. With more adsorption data
becoming available, future research can try to include
additional adsorbent descriptors such as surface elemental
composition, micropore volume, and macropore volume to
unify those three models so that a more broadly applicable
model can be built for all carbon materials. (3) The built
models are primarily for adsorption of neutral and partially
ionizable chemicals. However, a large number of chemicals are
ionic under environmental conditions, and electrostatic
interactions are the major adsorption forces. Therefore, the
built models cannot predict their adsorption. Future work may
include two additional Abraham descriptors J+ and J− to
account for the contributions of electrostatic interactions to
extend the application of the models to ionic chemicals.

Environmental Implications. In this work, we have
demonstrated that data preprocessing coupled with NN and
pp-LFERs can build accurate, chemically meaningful, and
tunable models for predicting aqueous adsorption. The
established data-preprocessing approaches that can improve
the model performance include adding descriptors of the
adsorbents to the models, employing the group-selection
approach in the model training, and relying on the cosine
similarity approach for source data preprocessing. For a given
ML modeling process, it is a common practice to improve the
prediction by increasing the volume of the data, which may
lead to many irrelevant data and is also hard to achieve if labor-
intense experiments such as adsorption experiments are
needed; however, the cosine similarity approach provides
another option from the data-preprocessing perspective. This
is especially useful when there are limited adsorption data
available, which is also commonly the case in many other
experimental sciences, and we can design a minimum number
of new experiments to achieve better prediction accuracy.
By interpreting the built NN models based on the Shapley

values, we further showed that it was necessary to include both
the equilibrium concentration and the properties of the
adsorbents to build predictive models in future research. The
absence of these descriptors is a possible reason for high
deviations by MLR models. Overall, this research has not only
built easy-to-use models for aqueous adsorption prediction but
also provided a powerful modeling approach that will make
further improvement in prediction accuracy possible, both of
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which will substantially facilitate predictive modeling research
on aqueous adsorption.
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