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Abstract—Solid state drives (SSDs) are constructed with mul-
tiple level parallel organization, including channels, chips, dies
and planes. Among these parallel levels, plane level parallelism,
which is the last level parallelism of SSDs, has the most strict
restrictions. Only the same type of operations which access the
same address in different planes can be processed in parallel.
In order to maximize the access performance, several previous
works have been proposed to exploit the plane level parallelism
for host accesses and internal operations of SSDs. However,
our preliminary studies show that the plane level parallelism
is far from well utilized and should be further improved. The
reason is that the strict restrictions of plane level parallelism are
hard to be satisfied. In this work, a from plane to die parallel
optimization framework is proposed to exploit the plane level
parallelism through smartly satisfying the strict restrictions all
the time. In order to achieve the objective, there are at least
two challenges. First, due to that host access patterns are always
complex, receiving multiple same-type requests to different planes
at the same time is uncommon. Second, there are many internal
activities, such as garbage collection (GC), which may destroy
the restrictions. In order to solve above challenges, two schemes
are proposed in the SSD controller: First, a die level write
construction scheme is designed to make sure there are always
N pages of data written by each write operation. Second, in a
further step, a die level GC scheme is proposed to activate GC in
the unit of all planes in the same die. Combing the die level write
and die level GC, write accesses from both host write operations
and GC induced valid page movements can be processed in
parallel at all time. As a result, the GC cost and average write
latency can be significantly reduced. Experiment results show
that the proposed framework is able to significantly improve the
write performance without read performance impact.

Index Terms—SSD, Parallelism, Storage, Performance Im-
provement

I. INTRODUCTION

Solid state drives (SSDs) are widely adopted in modern

computer systems, ranging from embedded systems, personal

computers, to large servers in data centers. SSDs have many

advantages, such as shock resistance, high random access

performance, and low power consumption [1]. An SSD usu-

ally consists of multiple channels with each channel having

multiple chips, each chip having multiple dies, and each die

having multiple planes [2] [3]. To achieve high performance,

the prior studies strive to exploit the parallelism at chan-

nel/chip/die/plane levels so that multiple accesses, such as

reads, writes, and erases, can be processed in different parallel

units simultaneously [4] [5] [6].

However, the parallelism at the last level, referred to as

plane level parallelism, exhibits strict restrictions – for two

operations that can be issued simultaneously to two different

planes, they not only need to be of the same type (i.e., read

or write) but also need to have the same in-plane address (i.e.,

the same offset within each plane), making it challenging to

explore as shown in recent studies [7] [8] [9] [10] [11] [12].

For example, to concurrently write two planes, their write

points need to aligned. Unfortunately, host sends uneven write

requests to individual planes [9] while the activities origi-

nated from SSDs (e.g., garbage collection operations) further

introduce asynchronicity [9] [13]. This leads to sub-optimal

exploration of plane level parallelism and prevents modern

SSDs from achieving further performance improvement.

In recent studies, Tavakkol et al. proposed TwinBlk to

write data to the different planes in a die in a round-robin

fashion [11]. TwinBlk faces two problems: (i) a single-page

write operation can mis-align the write points of different

planes; (ii) the write points may be misaligned by GC or

WL (wear leveling) activities originated inside the SSD. In

this case, most of accesses to the multiple planes cannot be

processed in parallel. What’s more, GC, when being initiated

asynchronously in different planes, disables the plane level

parallelism of related planes [9] [13] [14] [15]. To reduce

GC-induced plane idleness, Shahidi et al. proposed ParaGC
to activate the GC process at all planes in the same die at the

same time [9]. However, it is only able to opportunistically

use the plane level parallelism when all the pages at the

same address of different planes are valid. For GC, TwinBlk
selects blocks with same offset in different planes at the same

time and activates GCs simultaneously. However, it cannot

process all valid page movements in parallel when not all

paired pages are valid. What all of these works did is to

optimize plane level parallelism passively. None of them is

able to satisfy the strict restrictions all the time. The key

problem of previous works, such as TwinBlk and ParaGC,

is that they cannot actively construct multi-plane command
supported requests on all planes in the same die at all time,

especially after GC is processed. Since the number of valid

pages may be different for GC selected blocks, write points
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of different planes will be moved to unaligned positions so

that subsequent requests can not be processed in parallel. This

problem also exist in superpage enabled SSDs [1] [16] [17].

Superpage is adopted to strip multiple requests to all planes

in a die at each time so that more sequential write access is

generated for improving write performance of SSDs. However,

if there is a GC triggered on one of these planes, although GC

induced valid page movements can be processed by writing

superpage to all planes, the reclaimed free blocks will be

unaligned, causing write points unaligned while these free

blocks are allocated. That is, under superpage design, write

points cannot be maintained all the time, too. Motivated by

previous work, if we can construct the multi-plane command
oriented writes from both host and GC at all time, the plane

level parallelism can be maximally exploited.

In this paper, we propose SPD, an SSD from plane to die
parallel optimization framework, to fully exploit the last level

parallelism of SSDs for performance improvement by smartly

satisfying the restrictions all the time. We summarize our

contributions as follows.

• We propose SPD to treat all planes (e.g., N planes) in

a die as a single unit so that a die write results in N
page writes while a die read fetches N or fewer pages.

Similarly, internal activities, e.g., GC, get triggered for

N blocks from different planes that have the same in-

plane block address. To our best knowledge, this is the

first work on actively maintaining aligned write points for

multiple planes in a die combining writes from both host

and internal activities for all the time;

• We then propose die level write construction and die level

GC schemes to fully exploit the plane level parallelism

enabled by SPD. The write construction scheme is to

construct write operation with N pages of data and issue

them to a die at once; The die level GC scheme is to

process valid page movements, aligning the write points

of all planes in the same die.

• We evaluate the proposed SPD using a significantly

extended SSDSim [10] and compare it to the state-of-the-

arts. The experimental results show that SPD is able to

significantly improve write performance of SSDs without

read performance impact.

The rest of this paper is organized as follows: In Section

II, the background is presented. In Section III, the problem

statement is presented. In Section IV, the SPD framework is

presented. In Sections V and VI, the experiment setup and

evaluations are presented. In Section VII, related works are

discussed. Finally, the work is concluded in Section VIII.

II. BACKGROUND

In this section, we briefly discuss the background, including

SSD organization, advanced SSD commands, parallelism, and

garbage collection (GC).

A. SSD Organization

A modern SSD usually consists of multiple channels with

each channel containing multiple flash chips. Within each flash

chip, there are multiple dies with each die containing multiple

planes. Figure 1 illustrates the organization of a typical SSD

that has 4 channels, 2 chips per channel, 2 dies per chip,

and 2 planes per die. The SSD parallelism can be exploited

at channel/chip/die/plane levels, which have one major focus

of previous studies for performance improvement [2] [13]

[18]. To manage the flash memory as well as to explore the

parallelism, an SSD controller comprises several components,

including flash translation layer (FTL), data allocation (DA),

wear leveling (WL), garbage collection (GC).
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Fig. 1. The organization of SSDs.
The FTL is to manage the mapping between logical ad-

dresses and physical addresses. Based on the operation gran-

ularity, there are three types of mapping schemes, i.e., page

mapping [4], block mapping [19], and hybrid mapping [20]

[21] [22]. In this work, we assume the widely adopted page

mapping as it tends to have its better performance.
The DA is to determine the allocations of channel, chip, die

and plane for write operations. The pages within a plane are

written sequentially, with the location of the next page to write

indicated by a write point [2] [10] [23].
The WL is to distribute written data evenly to flash pages

for prolonging the SSD lifetime [24] [25]. Since WL is not

the focus, we do not discuss WL in the following sections —

the proposed scheme works with widely adopted WL schemes

in the literature.
Since flash memory cannot reprogram a programmed flash

page before executing an erase operation to reclaim the whole

block, modern SSDs widely adopt out-of-place-update scheme

for data updating. To update a page, the corresponding updated

data are programmed to a free flash page while the original

flash page is set as invalid. When the number of free pages

drops below a predefined threshold, the GC is activated to

reclaim the invalid pages. GC first selects a victim block, e.g.,

the one with the most invalid pages; it then reads and programs

the valid pages in the block to other blocks; and finally, it

erases the whole victim block. Since page movements and

erase operations are slow operations, GC has been identified

as the most time-consuming activity in SSDs [9] [13] [14]

[26]. In this work, we optimize GC by fully exploiting plane

level parallelism.
In addition, modern SSDs widely equip a built-in Random

Access Memory (RAM), referred to as the SSD buffer, within

SSD controller for temporarily storing hot data and metadata.

Since the access latency of RAM is much smaller than that of
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flash memory, buffer-equipped-SSDs can provide much better

performance for data hit in the buffer [27] [28] [29] [30].

B. Parallelism and Advanced Commands

The hierarchical SSD architecture provides four level par-

allelism, from channel, chip, die to plane. For channel and

chip level parallelism, data can be processed in different chips

in parallel. The parallelism of these two levels is naturally

supported by SSDs while that of the rest two levels are

supported by advanced commands [31] [18] [10] [9] [12]. The

die and plane level parallelism is also referred to as internal

parallelism [3].

For die level parallelism, operations issuing to the same

chip but different dies can be processed in parallel with

interleaving command [10] [9]. There is no restriction on when

to use the interleaving command. For the last level parallelism,

plane level parallelism may be exploited to further improve

performance through processing operations concurrently on

different planes of the same die. Due to circuit restrictions

[7], as shown in the open NAND flash interface (ONFI)

standard specification [8], the plane level parallelism can be

exploited when satisfying the two operation type and in-plane

address restrictions of multi-plane command. A multi-plane
command improves plane utilization as it operates multiple

planes within the same die in parallel and only takes the time

to finish one operation. However, when the restrictions can

not be met, it processes different planes sequentially to the

requested operation. In particular, an operation processed on

one plane blocks other planes of the same die from servicing

other operations.

The number of planes per die can be 2 or 4 in most

products, where 2 is the most popular design. If there are two

planes within die, multi-plane command can be used when two

operations accessing these two planes satisfy the restrictions. If

there are four planes within a die, two different types of multi-
plane command utilization are adopted in different SSDs. For

the most popular one, multi-plane command is executed on

either paired plane 0&1 or plane 2&3 [1] [10]; For the another

one, all four planes are accessed in parallel only when four

operations accessing planes satisfy the restrictions of multi-
plane command [32].

Another advanced command, i.e., copy-back command, is

designed to mitigate the inter-plane data movement cost [31]

[1] [33]. With copy-back command, the register on a plane

can temporarily store data from the current plane and write

them back to other pages in the same plane [1] [33].

III. PROBLEM STATEMENT

In this section, we present the challenges in exploiting

the plane level parallelism. Due to the restrictions of the

multi-plane command, the plane level parallelism is hard to

exploit, as shown in previous studies [9] [18]. For example,

we assume a die with two planes. Without considering GC, the

operations that access the same die can be categorized into one

of the following four cases. In this work, we focus on write

operations as they are much slower than read operations and

thus have larger impact on the overall performance.
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Fig. 2. The percentages of write operations in three cases.

Case 1: Operations are issued to one plane only (Single
Write). In this case, the write operation will introduce un-

aligned write point;

Case 2: Two different types of operations are issued to

the two planes of the die. Due to the operation type restriction,

the operations cannot be processed in parallel;

Case 3: Two same type operations with unaligned in-

plane addresses are issued to the two planes of the die

(Unaligned Writes). Due to the address restriction, the op-

erations cannot be processed in parallel either;

Case 4: Two same type operations with aligned in-plane

addresses are issued to the two planes (Parallel Writes). In

this case, they can be processed in parallel.

We next analyze how to address the four cases to fully ex-

ploit the plane level parallelism. For Case 2, mixed operations

cannot be scheduled in parallel due to the circuit restriction

of multi-plane command. We then collect the numbers of

operations falling in Case 1, Case 3 and Case 4, respectively,

and report the results in Figure 2. The experiment setting

details can be found in the experiment section. We have two

observations from the results: (i) plane level parallelism is far

from well utilized; (ii) a large percentage of write operations

issued to the die are unaligned write operations, which can be

exploited for performance improvement.

First, a naive solution to address the above issues is to write

data at the aligned points greedily [10]. However, if the current

write points are unaligned, writing data at the aligned points

lead to wasted space. For example, we assume there are two

planes per die, one block per plane, and six pages per block,

as shown in Figure 3(a). In Figure 3(a)-(1), the current write

points are unaligned. Traditionally, if two write operations,

W1 and W2, are issued to the two planes in the same die,

they will be processed sequentially. If they are written to the

aligned pages, a free page in Plane 1 would be wasted, as

shown in Figure 3(a)-(2). In this work, we strive to design a
write construction scheme to align the write points in each
die.

Second, internal SSD activities, e.g., GC, also introduce

non-negligible performance impact [13] [14]. Given a die

with multiple planes, if one plane activates GC, the other

planes cannot be accessed before this GC finishes. To solve

this problem, Shahidi et al. proposed to activate GCs in all
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planes at the same time so that GC induced time cost can be

overlapped [9]. To avoid significant parallel GC induced write

amplification, ParaGC first selected a block containing most

invalid pages in a plane, then, if its paired block in another

plane contains enough invalid pages, these two blocks can be

reclaimed by GCs simultaneously. Otherwise, only one block

is processed by GC. However, such a solution faces two issues:

First, since the number of valid pages in paired blocks are

different, ParaGC may lead to unaligned write points across

different planes after valid page movements. For example, in

Figure 3(b), after moving valid pages in each plane in Figure

3(b)-(1), the new write points (WP in the figure) become

unaligned, as shown in Figure 3(b)-(2). Second, if there

is only one block is processed by GC, write points will be

unaligned while reclaimed free block is allocated and its paired

block still has not been reclaimed. That is, to maintain aligned

write points at all time, we need to construct multi-plane
oriented writes for host requests and GC induced operations.

IV. SPD: FROM PLANE TO DIE PARALLELISM

EXPLORATION

A. Overview

To maximize plane level parallelism, the access addresses

of writes on all planes in the same die should be aligned at

all time. In this work, we propose SPD, an SSD from plane to
die framework, to exploit the plane level parallelism for per-

formance improvement by smartly maintaining aligned write

point for the multi-planes in each die all the time. Basically,

SPD takes the following strategies to achieve the objective,

as shown in Figure 4. SPD adds two new components — a

die level write construction and a die level GC. The die level

write construction is designed to maintain aligned write points

for host writes. The die level GC is designed to maintain

aligned write points for GC induced page movement. Note

that for other activities, such as WL, they can adopt the same

design principle of GC. For simplicity, only GC is taken as

an example in this paper. For die level write construction,

SPD exploits the SSD buffer to choose N dirty pages and

writes them back to one die simultaneously. This helps to

convert one die access to N page writes at the aligned in-plane

address. This is referred to as Die-Write. Similarly, the

read access to the die is referred to as Die-Read. Note that

Die-Read only needs to read required number of data, which

does not introduce any read amplification. For die level GC, it

is activated at the multiple planes in a die at the same time. In

addition, all writes induced from the valid page movements is

processed in the unit of N page writes to maintain the aligned

write point. This is referred to as Die-GC. N is set to two in

the following discussion while we evaluate different N values

in the experiments. We will elaborate the details of these two

components in following sections.

SSD
Controller

Free PageInvalid PageValid PagePage in Buffer

Host Interface Logic

FTL
DA

WL

Die-GC

R0

Buffer
Management

Reallocating

Die-Write Die-Read

Buffer

W0 W1

W0 W1 R0

W0 W1
W2 W3

Aligned Eviction

Flash Memory Array

Plane 0 Plane 1
Die 0

Plane 0 Plane 1
Die 1

Plane 0 Plane 1
Die n

Plane 0 Plane 1
Die n+1

W
ri

te
 P

oi
nt

s

(D0) (D0)

(D0,P0) (D0,P1)

D0
D1

Fig. 4. The Overview of the from plane to die framework

B. Die Level Write Construction

Given that multi-plane commands would be disabled if the

in-plane addresses are mis-aligned, the basic idea of die level

write construction is to maintain aligned write points all the

time by write the same amount of data synchronously to all

planes in the same die. That is, (1) the amount of data issued

to a die should be a multiple of N pages, assuming there are

N planes in a die; and (2) the starting locations of data should

be aligned for all the planes in the same die. With this scheme,

whenever there are multiple write operations issued to a die,

they can be processed in parallel.

SPD exploits SSD buffer to assist die level write construc-

tion. An SSD buffer evicts a multiple of N dirty pages from

one die at a time such that these pages can be written using

Die-Write. For data allocation, we adopt a plane level

dynamic allocation scheme [11]. The data allocation at higher

levels can either be static or dynamic, as discussed in Section

2.1. In the following discussion, we assume static allocation

at the channel, chip, and die levels.

1) Buffer Supported Die-Write: Figure 5 illustrates how

the SSD buffer assisted Die-Write works. Figure 5(a) shows

how the SSD buffer is organized. It maintains a die queue that

keeps a list of dirty pages for each die in the system. The pages

in each list are linked together using LRU algorithm. The data

evicted from the buffer are written to their corresponding dies.

To balance the number of writes sent to different dies, SPD

adopts round-robin to choose the next die from which its LRU

pages are evicted.

For the example, in Figure 5(b), the SSD has four dies, each

die has two planes, and the current turn is Die 0. When the

SSD buffer is full and there is a host requirement for inserting
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Fig. 5. Organization of write buffer and the die level write construction

five dirty pages to the buffer, SPD chooses the victim dies with

at least two dirty pages (i.e., two is the number of planes in

a die) and evicts the two LRU pages from each selected die.

In the example, it first chooses Die 0 and then skips Die 1 as

the latter does not have enough dirty pages. It continuously

chooses Die 2 and Die 3 and then evicts two pages from Die

0, 2, and 3, respectively.

From this example, the write points of all planes are

effectively aligned. The proposed scheme may evict one more

dirty page than the number of dirty pages from the host. Since

one Die-Write takes the same amount of time as one page

write, the scheme is able to speed up the storage access if

there exist several dirty pages evicted to the same die. But

if only one dirty page from the host, evicting one more dirty

page can align the write points without introducing additional

time cost. In addition, since all Die-Writes operations can

be scheduled in parallel, SPD avoids the access conflicts on

the same die [3] [18]. Due to that we always evict the pages

at LRU positions, the write amplification can be minimized.

Since the addresses of requested data are fixed, die level

read operations cannot be constructed the same way at that

for Die-Write. In this work, Die-Read only read the

requested data, i.e., if there exist read operations with aligned

access locations, they can be issued to the die in parallel;

otherwise, only single page read gets processed next. The

goal of Die-Read is to maximize the number of multi-plane
command supported read operations without introducing read

amplification.

2) Implementation and Analysis: Most of the state-of-the-

art SSDs have equipped with a RAM based buffer inside SSD

controller for metadata and data caches [1] [27] [28] [29] [34].

The buffer sizes range from 8MB in early products to 1GB

in recent ones. To assist die level write constructions, SPD

enhances the SSD buffer management to expose more parallel

processing opportunities.

Different from traditional buffer management scheme, SPD

needs to evict a multiple of N dirty pages from one die queue.

In this work, the N pages of dirty data at the head of LRU

are selected for eviction. When inserting new dirty pages to

the buffer, SPD first checks if they are already in the queue

and moves hit pages to the tail of the queue. Comparing to

traditional LRU eviction, SPD evicts N pages instead of one

page at a time. SPD does not require an extra built-in buffer

and thus does not introduce extra space demand. However,

SPD requires a minimal of M ∗N ∗Size of Page-byte buffer

for smooth buffer management where M is the number of

dies in an SSD, and each die has N planes. When the number

of planes within each die increases, the minimal buffer size

increases as well. A tradeoff exists between the minimal buffer

space requirement and the number of planes within a die. Most

existing SSD devices have two or four planes per die [1] [35]

[23] [36] [32], where the space requirement can be easily met.

For example, for a 512GB SSD, with 16GB die, two or four

planes in each die and 4KB page size, the minimal buffer is

256KB for two planes and 512KB for four planes, which can

be satisfied by most existing SSD products.

Another issue that SPD needs to consider is the power

interruption induced data loss. Since the write buffer is used

to store dirty data, these data would be lost when there is a

sudden power failure. This is often mitigated by integrating

a super capacitor, a popular scheme in state-of-the-art SSDs

(such as PCIe SSDs) for buffer protection [37] [38] [39]

[34] [40]. In addition to capacitor protection, non-volatile

memories, such as 3D-Xpoint [41], Phase change memories

[42], can also be employed as the write buffer to mitigate

data loss under sudden power failure.

C. Die Level GC

A GC process includes three steps: victim block selection

[14] [1]; valid page movement; and victim block erase. The

dominate cost of a GC comes from valid page movement [13].

The design goal of Die-GC is to speed up the GC process

with minimal GC cost. For this purpose, SPD activates GC at

all the planes in the same die at the same time with carefully

selected victim blocks. By adopting Die-Write instead of

sequential page writes, SPD improves reclaim effectiveness

by reducing the most timing cost. We elaborate the details as

follows.

1) GC Process: Figure 6 shows an example for Die-GC.

Different to the traditional GC process, Die-GC includes four

steps: First, SPD selects N blocks from the N planes of the

target die — one from each plane and all the selected blocks

share the same in-plane addresses. The selection process takes

the N aligned blocks as a GC unit. During this process, we

adopts the greedy based victim block selection [13] [1], where

the N blocks with maximal invalid pages are selected. With

this scheme, the total GC cost will be minimized. Second, SPD

uses Die-Read (in Section IV-B1) to read the valid pages

to the SSD buffer. Third, after reading N pages of valid data,

SPD groups the N pages of data to construct a Die-Write
operation and then writes the valid data back to the die. Finally,

when all the valid pages are written back, the N aligned blocks

can be erased in parallel. Given SPD reclaims N blocks from

one GC invocation, the GC gets triggered less frequently than

that of the traditional one. In addition, since the N aligned

blocks are taken as the GC unit for victim selection, GC with

multiple blocks induced lifetime impact can be minimized.
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For the example shown in Figure 6, let us assume the two

aligned blocks 0 are selected as the victim blocks. According

to Die-GC, the valid pages in these two blocks are read and

written with Die-Read and Die-Write, respectively.

Step1: Read page 0 from plane 0 and page 1 from plane 1

to the SSD buffer. Since they are not aligned, they are read

sequentially.

Step2: Group the two valid pages together to construct a

Die-Write operation and written them back to the current

aligned write point of both planes at block j. The current write

points are marked using red arrows in the figure.

Step3: Then, read page 2 from plane 0 and plane 1 to the

SSD buffer. These two pages are read in parallel as they have

aligned addresses.

Step4: Repeat step (2) for the last two valid pages.

Step5: Then, erase the two victim blocks in parallel. From

the above discussion, Die-GC significantly reduces GC cost

because it maintains aligned write points in the die such that

many strip reads and writes can operate in parallel.

An exception for the above scheme happens when the

total number of valid pages in the victim aligned blocks

is odd. In this case, the write points of different planes

become misaligned after GC. To address this issue, the last

Die-Write operation is constructed from remaining valid

pages and dirty pages from the write buffer (as discussed in

Section IV-B).

2) Implementation, Analysis and Discussion: We next elab-

orate the implementation overhead of SPD. We identify the

construction of Die-Write as the most critical component

in SPD. Since die level GC reclaims more blocks from each

invocation, more data need to be transferred from the planes

to the SSD controller sequentially, which introduces larger

transfer cost. However, the cost of writing valid pages is much

higher than that of data transfer [1] [10]. By writing multiple

pages in parallel, SPD reduces the overall GC cost even though

the data transfer cost increases.

Given that SPD transfers more data to the write buffer in

the controller, it demands larger data storage. Considering the

worst that all dies are activated with the die level GC, each

die needs at least N pages in the write buffer. For a typical

SSD setting as presented in Section 4.2, the required buffer

size for Die-GC is 256KB for a 512GB two-plane SSD and

512KB for a 5I2GB four-plane SSD. In summary, the storage

requirement is modest for modern SSDs. In addition, there are

no additional power, implementation area and latency costs for

the framework. The proposed work can be easily implemented

for state-of-the-art SSDs.

In the discussion, we assume SPD adopts 4KB flash mem-

ory page. However, recent studies proposed the adoption of

larger flash pages [43] [9]. SPD remains effective for larger

page sizes. This is because there still exist multiple planes

within a die so that several big data write operations also

can be processed in parallel using multi-plane command. For

Die-Read, a sub-page read operation [44] may be adopted

to mitigate read amplification resulted from reading data from

big flash pages.

V. EXPERIMENT SETUP

A. Simulated SSD Devices

Due to that the proposed scheme needs firmware support of

SSDs, in this work, we use a popular trace driven simulator,

SSDsim [10], to evaluate the effectiveness of the proposed

framework. In order to simulate a state-of-the-art SSD, SSD-

sim is significantly extended based on ONFI [8]. During the

evaluation, a 512 GB SSD is simulated, and page mapping and

greedy based GC scheme are adopted [10] [3]. The threshold

value for GC activation is set to 7% [9]. To triggering GC

process, SSD is warmed up by filling SSD with valid and

invalid data ahead. The warming up process contains two

steps: first, each plane of the SSD is randomly filled with

data from 93% to 95% to trigger GC immediately, of which

80% are valid; second, the evaluated workload is pre-processed

in the SSD to validate read data [13]. The over-provisioning

ratio is set to 25%, which complies with the setting in previous

work [9]. For the data allocation scheme, the most widely used

Channel-Chip-Die-Plane scheme is adopted. The experiment

settings represent an aged state-of-the-art SSD. Other details

are presented in Table I.

TABLE I
PARAMETERS OF THE SIMULATED SSD [9].

SSD
Configuration

512GB;16 Channels; 8 Chips/Channel; 1 Die/Chip;
2 Planes/Die;2048 Blocks/Plane; 256 Pages/Block;
4KB Page;

Timing
Parameters

0.075 ms for page read; 1.5 ms for page write; 3.8
ms for block erase; 25 ns for byte transfer.

During the evaluation, a DRAM buffer is configured in the

SSD. We set the buffer size to be 1‰ of the footprint of the

evaluated workload [27] [45], which helps to prevent setting

a large buffer from generating biased results in evaluation.

The default data organization of die lists in the buffer is de-

signed based on the scheme of the Element-Level Parallelism

Optimization (EPO) [46]. EPO evicts dirty pages from buffer

based on its die location so that the utilization of die level

parallelism can be maximized. The data are organized in LRU

for each die list of the buffer.

B. Evaluated Workloads

The workloads studied in this work include a subset of MSR

Cambridge Workloads from servers [47]. These workloads are
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widely used in previous works for studying SSD performance

[18] [9] [14]. The characteristics of workloads are presented

in Table II. Each workload is characterized by three metrics:

W/R Ratio, FP , R V , W V , R S and W S. W/R Ratio
represents the write and read operation ratios, FP is the

footprints of each workload, R V is the total amount of read

data, W V represents the total amount of written data, R S
represents the average size of read requests, and W S is the

average size of write requests.

TABLE II
THE CHARACTERISTICS OF EVALUATED WORKLOADS

Workloads W/R Ratio§ FP§ R V§ W V§ R S§ W S§

HM 0 67.9% 1.35 6.9 15.2 11.2 11.6
PRN 0 93.7% 2.93 3.0 20.5 24.8 11.6
PRN 1 32.1% 5.16 31.4 10.9 24.2 11.4
RSR 0 90.7% 0.31 1.8 14.6 15.0 12.6
STG 0 76.9% 0.28 7.4 9.3 33.6 12.6
PROJ 0 82.9% 1.58 7.2 56.5 21.9 35.7
PROJ 3 4.89% 1.86 21.6 2.8 11.9 29.9
SRC2 0 88.6% 0.52 1.9 13.6 12.2 11.0

TS 0 82.6% 0.57 4.9 15.9 17.5 11.8
PRXY 0 97.06% 0.17 0.27 5.8 9.6 6.2
WDEV 0 79.9% 0.34 3.2 9.2 16.5 12.1

§ W/R Ratio: Write and Read Requests Ratio;
FP: FootPrint (GB);
R V/W V: Read/Write Data Volume (GB);
R S/W S: Average Read/Write Request Size (KB).

C. Evaluated Schemes:

Five schemes are implemented to show the effectiveness of

SPD.

Baseline-D: This scheme is implemented to represent the

traditional SSD design [10]. The buffer management of

Baseline-D adopts EPO to exploit die level parallelism through

adding dirty pages to different die lists based on their die

locations [46]. With this organization, dirty data evicted from

write buffer can be distributed to different dies so that die level

parallelism can be exploited;

Baseline-P: This scheme is similar to Baseline-D. The

difference is that Baseline-P evicts dirty data based on their

plane locations to further exploit plane level parallelism. In this

case, dirty pages accessing different planes within the same die

are evicted at a time. Baseline-P evenly distributes dirty pages

to different planes to better exploit plane level parallelism,

which is similar to the previous studies [48] [18];

TwinBlk: This scheme is designed based on the work

proposed by Tavakkol et al. [11], which aims to align write

points of all planes in a die via round-robin policy. In this case,

several host requests can be processed in parallel when write

points are aligned. During GC process, the adopted round-

robin policy is designed to align write points of active blocks

in victim blocks as well, aiming to move valid pages with the

support of multi-plane command;

ParaGC: This scheme is designed by Shahidi et al. [9],

which aims to align valid page movement during GC to

minimize the GC cost. Differing from TwinBlk, ParaGC aligns

write points of active blocks through sequentially moving valid

pages to one active block until write points of all planes are

aligned. After that, with cache assistance, all valid pages can

be written back to active blocks with the support of multi-plane
command;

SPD: This is the proposed framework, which includes

Die-Write and Die-GC.

VI. EXPERIMENT RESULTS AND ANALYSIS

In this section, SPD is evaluated with two scenarios based

on whether GC is triggered. For the first scenario without

triggering GC, it is evaluated to show the advantages of the

proposed Die-Write scheme. For the second scenario with

triggering GC, it is evaluated to show the effectiveness of

SPD, including Die-Write and Die-GC. In addition, the

Die-GC is also evaluated in term of its cost and lifetime

impact. Finally, the impact of different buffer sizes and results

on SSD with 4 planes per die are presented.

A. Experiment Results without GC

(1) Write Latency Evaluation: Figure 7 shows the results of

write latency for the five schemes. Note that, since ParaGC

is designed to optimize GC process, the results of ParaGC

in this part are same to that of Baseline-D. The results show

that SPD achieves write latency reduction for all evaluated

workloads. For example, for HM 0, PRN 0, PROJ 3, SRC2 0

and PRXY 0, the write latency is reduced by more than

15% compared with Baseline-D. These results show that

deploying Die-Write to maintain aligned write points for

the multiple planes in a die is important in improving the

access performance. In Figure 8, we collected the percentages

of write operations processed by multi-plane command. The

results show that the proposed Die-Write is able to maintain

aligned write points for all write operations. However, this is

not a promise for the other schemes.
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Fig. 7. Write Latency Reduction.

To obtain more details, we compare SPD with other two

schemes, Baseline-P and TwinBlk. Two observations can be

concluded from the results: First, compared with these two

schemes, SPD achieves the best write performance. Baseline-

P is proposed to distribute the same type requests to all

planes evenly. However, the address restriction is not taken

into consideration. As a result, Baseline-P only achieves little

write latency reduction, which is only up to 1.4%. TwinBlk
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Fig. 8. Percentages of Write Operations Processed by multi-plane command.

aims to align write points of all planes in the same die as

well. However, the write points still may be unaligned due to

the unaligned accesses on planes of the same die. On average,

TwinBlk achieves 7.8% write latency reduction compared with

Baseline-D. As shown in Figure 8, the percentages of write

operations processed by multi-plane command for Baseline-P

is similar to that of Baseline-D. For TwinBlk, the percentage

is largely increased compared with Baseline-D. Second, for

several workloads, TwiBlk only achieves similar performance

improvement to that of Baseline-D, such as RSR 0, STG 0,

TS 0 and PRXY 0. This can be explained from the results in

Figure 8, where the percentage of write operations supported

by multi-plane command is limited. The reason is that TwinBlk

cannot guarantee aligned write points for all planes all the

time.

For read latency, the average read latency improvement

compared with Baseline-D is presented in Table III. The results

show that read latency is similar among the five schemes. The

key reasons are from two aspects: first, read requests of all

evaluated schemes are processed with higher priority [49] [50]

[3]; second, Die-Read is designed to only read requested

data. In conclusion, the proposed Die-Read is same to that of

normal read operations without introducing read amplification.

TABLE III
READ LATENCY IMPROVEMENT WITHOUT GC

Baseline-D Baseline-P TwinBlk ParaGC SPD
Reduction 0 0.049% 0.011% 0% 0.096%

(2) Plane Utilization: Plane Utilization is defined to

present the average number of planes being occupied in

parallel. In order to obtain plane utilization, the number of

planes being accessed is counted when each buffer eviction

process is completed. Figure 9 shows the plane utilization

(Bars) and the maximal number of planes being accessed in

parallel (Dots+Line) for the five schemes. The results have a

matching pattern with the write performance improvement in

Figure 7. SPD can significantly increase the plane utilization

through doubling the number of parallel planes with satisfying

the restrictions of multi-plane command. On average, the plane

utilization is increased by 36.5% compared with Baseline-

D. For the maximal number of planes accessed in parallel,

all planes of the SSD can be accessed in parallel for most

workloads. However, for Baseline-D, Baseline-P and TwinBlk,

there still exists a large gap compared with SPD. In conclusion,

Die-Write is not only able to increase plane utilization, but

also can make a full use of all planes of the SSD.
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Fig. 9. The Plane Utilization and Maximal Number of Planes being Accessed
in Parallel.

(3) Buffer Hit Ratio: Differently from previous work,

Die-Write may need to evict more data from the buffer

to align the write points. In this case, it may have impact to

the hit ratio of buffer. Figure 10 presents the results of buffer

hit ratios for the five schemes. The results show that SPD has

little impact to the hit ratio of buffer. The average buffer hit

ratio is reduced by only 1.92%, which is negligible. The reason

for the slight reduction is that Die-Write is designed with

following principles: first, it always only need to evict one

more dirty page, which is critical in aligning write points;

second, the buffer is designed to only evict the cold dirty data

from the LRU position.
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Fig. 10. The Buffer Hit Ratios of Evaluated Schemes.

B. Experiment Results with GC

Figure 11 shows the results of write latency with GC

triggered. The results show that SPD is able to significantly

reduce the write latency for all workloads. The write latency is

reduced by 48.61%, 47.65%, 42.05%, and 28.58% compared

with Baseline-D, Baseline-P, TwinBlk, and ParaGC, on av-

erage. The significant improvement comes from two aspects:

First, SPD constructs aligned write access to reduce write

latency, which has been verified in Section VI-A. Second, the
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GC cost is further reduced through moving all valid pages

with the support of Die-Write and reclaiming two planes

at once time.
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Fig. 11. The Write Latencies of Evaluated Schemes.

To understand more details, the total GC costs are presented

in Figure 12. The results show that first, TwinBlk generally

has much higher cost than ParaGC. On average, compared

with Baseline-D, total GC cost of ParaGC is reduced by

30.8% while TwinBlk only reduces the total GC cost by 6.9%.

For ParaGC, it activates GCs in paired planes only when the

number of free pages in the other plane is smaller than 7%.

In this case, it can avoid introducing high GC cost while

moving valid pages. In addition, ParaGC proposed to align

write points during the process of valid page movement so

that valid pages in the same position of paired planes can be

read and written in parallel. However, for TwinBlk, it activates

paired GCs without considering the number of valid pages in

the paired planes. In this case, more valid pages from paired

planes may be moved during GC process. In addition, TwinBlk

adopted round-robin policy. If current write points are not

aligned, valid pages having same position in different planes

still can not be read and written in parallel. Therefore, for

some workloads, the total GC cost of TwinBlk is larger than

Baseline-D. Second, even though SPD also activates GC at the

all planes at the same time, it is proposed to regard the whole

die as the smallest access unit and all the write operations

during GC are processed via Die-Write. As a result, the

total GC cost is reduced by 36.4%, on average. In conclusion,

SPD achieves the best write performance compared with all

other related works.

HM
_0

 

PRN_0

PRN_1

RSR_0

STG_0

PROJ_
0

PROJ_
3

SRC2_
0

TS_0

PRXY_0

W
DEV_0

Ave
ra

ge
0

1x104

2x104

3x104
 Baseline-D  Baseline-P  TwinBlk  ParaGC  SPD

T
ot

al
 G

C
 T

im
e 

C
os

t (
s)

Fig. 12. Total GC Cost of Evaluated Schemes.

For read latency, results of read latency improvement with

considering GC are presented in Table IV. Similarly, the read

latency is similar among each scheme. The results show that

SPD has no impact to read access with significant write

performance improvement.

TABLE IV
READ LATENCY IMPROVEMENT WITH GC

Baseline-D Baseline-P TwinBlk ParaGC SPD
Reduction 0 0.052% -0.042% 1.144% 1.203%

C. GC Evaluation

In this part, Die-GC is evaluated. First, the average GC

cost and the number of triggered GC in different schemes are

evaluated. Second, the number of erase operations induced by

GC is collected to show its impact on the lifetime of SSDs.

(1) Average GC Cost: Average GC costs are collected in

Figure 13. In the Figure, the average GC cost is broken into

four parts: read cost, write cost, transfer cost and erase cost.

Read cost is the cost in reading valid pages from the victim

block; write cost is the cost in writing the valid data to free

pages; transfer cost is the cost in transferring the valid data

among planes or between controller and chips; and erase cost

is the time cost in erasing the victim block. The results show

that the write cost takes the dominate part of the total cost

[18]. This is because write latency of flash memory is several

times of read latency. In addition, there are always a large

number of valid page movement during GC. There are two

observations from the results: First, SPD has the minimal

GC cost compared with TwinBlk and ParaGC. Clearly, the

reduced GC cost is from the Die-Write used in Die-GC,

which is triggered to write dirty pages back to the multiple

planes in parallel. For TwinBlk, it also trigged GC in the

paired planes. However, TwinBlk adopted round-robin policy

for write operations among planes, which is not able to always

align the write points. In this case, many valid pages written

back may be processed sequentially. Second, the GC cost

of SPD is similar to that of Baseline-D and Baseline-P. As

presented in the technique part, Die-GC is designed to reclaim

several blocks in one GC. Several block reclaiming costs are

similar with single block reclaiming cost in Baseline-D and

Baseline-P due to that we carefully select victim blocks among

planes as a single unit and use Die-Write to speed up the

process.

(2) GC Count: Figure 14 shows the total number of trig-

gered GCs during runtime. We can find that Die-GC highly

reduces the number of GCs. Therefore, the frequency of

triggering GC is reduced. The results show that GC count

is reduced in the range of 32.9% to 50.1%, compared with

Baseline-D. As a result, the total GC cost during whole

runtime can be highly reduced as well so that the performance

of SSDs can be improved. For related works, the number of

triggered GCs in Baseline-P is similar to Baseline-D. Both

TwinBlk and ParaGC can reduce the number of triggered GCs

as well. This is because that TwinBlk and ParaGC erase more
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Fig. 13. Average GC Cost Breakdown of Evaluated Schemes.

blocks in each GC process as well. But for TwinBlk, it selects

victim blocks inefficiently so that its GC counts are slightly

higher in most cases. For a exception, PROJ 0, since SPD

may slightly increase write operations, the total triggered GC

count of SPD may be slightly increased.
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Fig. 14. The Total Number of Triggered GC.

(3) GC Induced Erases: Figure 15 shows the number of

erase operations for the five schemes. Since TwinBlk, ParaGC

and Die-GC are designed to erase more blocks in each

GC process, the number of erase operations are larger than

that of Baseline for most workloads. The reason is that,

reclaiming blocks from different planes at once time may

trigger premature GCs [51] [52]. However, the results show

that the number of erase operations of Die-GC is much

smaller than TwinBlk and ParaGC. For example, TwinBlk, in

the worst case, introduces more than 102.2% erase operations

for PRXY 0, compared with Baseline-D. ParaGC, introduces

more than 65.8% erase operations compared with Baseline-

D. Compared with these two related works, SPD introduces

fewer erase operations in most cases. On average, the num-

ber of erase operations is reduced by 13.43% and 10.04%

compared with TwinBlk and ParaGC. The reason comes from

that Die-GC is triggered with regarding the whole die as

the smallest unit without introducing additional valid page

movements.

D. Sensitive Studies
(1) Buffer Size Impact: In this part, the write intensive

workload, RSR 0, is selected for buffer size sensitivity study.

Buffer size is different within different devices. Its impact

on SPD is presented. Figure 16 shows the results of the

normalized write latencies of the five schemes by varying
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Fig. 15. The Total Number of Erase Operations

buffer size from 256KB to 16MB. During the evaluation, GC

is not triggered to only understand the impact from different

buffer sizes. Two observations can be concluded from the

results. First, with larger buffer size, the write latencies of

all schemes can be further reduced. This is because that more

dirty pages can be stored and higher hit ratio can be achieved.

Second, compared with other schemes, stable write latency

reduction is achieved by SPD with different buffer sizes. The

proposed framework is designed to align the write point of

planes all the time. It has benefit once there are multiple write

operations issued to a die.
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Fig. 16. Write Latency with Different Buffer Sizes.

(2) Four-Plane SSD Evaluation: In this part, SSD with four

planes per die is evaluated for SPD. For the four planes of a

die, each paired planes can be accessed in parallel with the

support of multi-plane command [1] [10]. The results of write

latencies for Baseline-D, Baseline-P, and SPD are presented

in Figure 17, where GC is not triggered to evaluate the single

influence from more planes per die. First, Baseline-P has
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similar write latency to that of Baseline-D. Four-plane SSD

requires that only paired plane 0&1 or 2&3 can be processed

in parallel. Only a few write operations can be processed with

the support of multi-plane command. Second, for SPD with

four-plane SSD, the write latency is further reduced. This is

because that all four planes are regarded as one unit in Die-
Write. Therefore, more dirty pages can evicted and written

back as Die-Write at the cost of one write operation when

the number of planes in a die increases. On average, compared

with Baseline-D, SPD achieves 43.9% write latency reduction,

on average.
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Fig. 17. Write Latency with 4 Planes per Die.

VII. RELATED WORKS

In this section, related works on improving the plane level

parallelism and reducing GC impact on performance are

presented, respectively.

(1) Plane Level Parallelism Exploration: In order to improve

plane level parallelism, several previous works have been

proposed. Gao et al. [18] and Jung et al. [48] proposed to

increase the potential of using multi-plane command through

distributing requests belonging to different planes at one

time. Similarly, Abdurrab et al. [31] proposed DLOOP to

modify mapping policy to evenly distribute data across planes

based on a fixed location calculation. However, the achieved

performance is limited since they highly depend on the access

patterns of workloads to match the limitations of multi-plane
command. On the other hand, Tavakkol et al. [11] and Hu et
al. [10] proposed to align writing points of planes. Tavakkol

et al. [11] proposed to maintain the write points to distribute

writes among planes in round-robin fashion. However, due to

the above mentioned unaligned access problem, plane level

parallelism still can not be fully exploited. Hu et al. [10]

proposed a greedy multi-plane command. They proposed to

allocate new writing points in the same position. However,

this will waste space.

Different from all these works, SPD is the first on proposing

to align the write points in an active way. Die-Write is

designed to align the write point all the time. In this case,

all write operations issued to multiple planes in a die can be

processed in parallel.

(2) Garbage Collection Impact Minimization: Previous

works aiming at reducing GC impact on performance can be

classified into two groups: The first group proposed to reduce

the time cost of GC activity [13] [53]; For example, Gao et al.
[13] proposed to reduce the time cost of valid page movement

through migrating valid pages to idle chips. Park et al. [53]

proposed a new hotness identification method for accurately

capturing the recency and frequency of data. The second group

proposed to schedule requests or GCs to reduce the impact on

performance of SSDs [54] [14] [12]. For example, Wu et al.
[14] used cache to store requests conflicted by GC. Jung et
al. [54] proposed to advance or delay GC through moving

the time-consuming activity from busy period to idle period.

Choi et al. [12] proposed to combine host I/O operations

with valid pages migration. However, the aforementioned GC

optimization methods still have not taken unaligned access

problem of plane level parallelism into consideration.

There are two works proposed to reduce GC impact resulted

from unaligned access problem. Shahidi et al. [9] proposed

ParaGC to select paired planes, where GC activities can be

processed in parallel. However, if the paired planes can not be

found, unaligned access problem still exist. Tavakkol et al. [11]

proposed TwinBlk, which can minimize the unaligned access

induced impact on GC. TwinBlk is designed to trigger GCs on

all planes of the same die simultaneously so that symmetric

victim blocks on planes can be reclaimed in parallel. During

this process, valid pages are evenly moved to all planes in

round robin policy for aligning write points of all planes.

Different from these works, SPD uses Die-GC to speed

up the GC process and reduce the GC cost. Die-GC is

designed to select multiple blocks in the unit of die and adopt

Die-Write to speed up the GC process.

VIII. CONCLUSION

In this work, a from plane to die optimization framework is

proposed to exploit the plane level parallelism, which is the

last level parallelism of SSDs. Two components are designed

in the framework: die level write construction and die level

GC. Different from previous work, this work is the first which

is able to maintain the aligned write points for the multiple

planes for each die at the time. There are two components

designed to align the write points of all planes in the same die

all the time. In this case, the last level parallelism, plane level

parallelism, is fully exploited to improve the performance of

write requests and internal activities. Experiment results show

that SPD achieves significant write performance improvement

and much smaller lifetime impact compared with state-of-the-

art works.
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