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A B S T R A C T

This work combined a Deep Neural Network (DNN) with molecular fingerprints (MF) to develop models to
predict the OH% radical rate constants of 593 organic contaminants. Molecular descriptors, most often used in
establishing quantitative structural-activity relationships (QSARs), were not used here because of their com-
plicated generation processes that rely on advanced physicochemical and computational knowledge. Instead, we
only fed the most basic information of the contaminant structures, i.e., MF encoding the types of atoms and how
they are connected, to DNN and DNN then developed predictive models automatically. Here, a dataset con-
taining 457 contaminants and their OH% rate constants was first used to develop predictive models by DNN-MF.
The hence developed models showed comparable accuracy to the traditional QSARs. The root mean square error
(RMSE) values of the test sets were 0.358-0.384. The length of 2048 bits for the MF and 3 hidden layers (each
with 1024 neurons) were found to be the optimal parameters for DNN. The model containing additional 89
micorpollutants in the training set was then successfully applied to predict the OH% rate constants of 17 orga-
nophosphorus flame retardants and 29 additional micropollutants, with comparable accuracy to the reported
molecular descriptors-based QSARs.
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1. Introduction

Quantitative structure−activity relationships (QSARs) have been
widely used for decades to correlate the reactivity with the chemical
and/or structural features of organic compounds (Borhani et al., 2016;
Free and Wilson, 1964; Su et al., 2018). Based on a given QSAR, the
reactivity of new compounds can be predicted by applying their re-
levant features. This prediction is particularly significant in applications
that need labor-intensive and expensive experiments, such as drug de-
sign (Hughes and Swamidass, 2017; Kubinyi, 1997; Olier et al., 2018).
In the environmental field, QSARs have been often established to pre-
dict the reaction rate constants of organic contaminants with common
reactants such as H2O2 (Lee and von Gunten, 2012; Su et al., 2018), O3
(Lee and von Gunten, 2012; Sudhakaran and Amy, 2013), Fe(VI) (Ye
et al., 2017), OH% (Borhani et al., 2016; Cheng et al., 2017; Sudhakaran
and Amy, 2013), SO4%− (Luo et al., 2018; Xiao et al., 2015), hydrated
electrons (Li et al., 2018b), chlorine dioxide (Lee and von Gunten,
2012), MnO2 (Salter-Blanc et al., 2016), and natural reductants such as
Fe(II)-based and sulfite-based species (Canonica and Tratnyek, 2003;
Colón et al., 2006; Salter-Blanc et al., 2015). However, the establish-
ment of such QSARs is highly dependent on the calculation of a small
group of pre-selected molecular descriptors, each derived to represent a
portion of the molecular properties, such as Hammett constants, re-
duction potential, topological polar surface area, molar volume, dipole
moment, and HOMO and LUMO energies. Different chemicals have
different values of the molecular descriptors, which have often been
obtained by calculations that require sophisticated physicochemical
knowledge and the ability to use advanced software (Borhani et al.,
2016; Cheng et al., 2017; Su et al., 2018; Ye et al., 2017). To establish
working QSARs, one needs to intentionally choose the most relevant
molecular descriptors from a large number of them – now over 5000
(Kamath and Pai, 2017), which again needs advanced knowledge of the
descriptors and the types of reactions involved. Even with that knowl-
edge, there is no guarantee that the selected descriptors are the most
appropriate ones that can capture the entire picture of the reactivity,
and the physical meanings of many theoretical descriptors are difficult
to interpret (Borhani et al., 2016).

Deep neural network (DNN) is receiving increasing attention in
recent years and has achieved great success in several areas (Coley
et al., 2017; Moosavi et al., 2019; Ryan et al., 2018; Wei et al., 2016; Ye
et al., 2018; Zhou et al., 2017), such as image recognition (Krizhevsky
et al., 2012). One of the most exciting characteristics of DNN is that it
can “learn” the features that are most relevant to the specific targets
(e.g., reaction rate constants) by itself, and no sophisticated knowledge
of the subject (e.g., reaction) is required. Hence, studies that used deep
learning (e.g., artificial neural network) to develop QSARs have been
recently published (Borhani et al., 2016; Ma et al., 2015). However,
these studies still rely on complicated and sometimes arbitrary mole-
cular descriptors as the inputs (Borhani et al., 2016; Fatemi, 2006; Ma
et al., 2015). It is therefore of great interest to find out if QSARs can be
developed without using any descriptor. Specifically, can we only
provide the computer with the basic information about the compound
structures, such as the types of atoms and how they are connected in the
structure, and the corresponding reaction rate constants? If the com-
puter can “learn” the relationship between the structures and the re-
activity, then there is no need for any secondary molecular descriptors.
The achievement of the above goal will greatly simplify and expand the
development and applications of QSARs.

Molecular fingerprints (MF) encode structural and/or functional
features of molecules as binary vectors (Glen et al., 2006), and have
been commonly used in tasks such as virtual screening (Myint et al.,
2012), similarity searching (Klopmand, 1992), and clustering
(McGregor and Pallai, 1997). They have also been applied to devel-
oping QSAR models, such as predicting ligand biological activity (Myint
et al., 2012) and toxicity (Mansouri et al., 2016; Wu and Wang, 2018).
Each compound owns a unique vector (i.e., fingerprint) but the length

of the vector is adjustable, for example, (0..1..0..1..0..0..1..1..) re-
presents the MF of toluene (Figure S1 in the supplementary information
(SI)). The values and positions in the vector store the structure in-
formation about the types of atoms and how they are connected to their
neighboring atoms. Different compounds are described by different
vectors, but the same structure feature in different compounds shares
the same value and position within the vectors.

OH% radical, a major reactive species in advanced oxidation pro-
cesses that have been widely used in water treatment, can oxidize or-
ganic compounds through different structure-dependent pathways: (1)
addition to olefin or aromatic systems; (2) abstraction of hydrogen from
carbon atoms; (3) electron transfer reactions; and (4) reaction with
sulfur-, nitrogen-, or phosphorus-moieties (Buxton et al., 1988; Lee and
von Gunten, 2012; Minakata et al., 2009). Hence, the reactivity is
highly structure-dependent such that similar reactivity can be found in
compounds with the same structural features (Minakata et al., 2009).
The encoding approach of MF is therefore suitable for deep learning to
“learn” the relationship between structures and reactivity. However, to
the best of our knowledge, MF has not been used to develop QSARs for
the reactivity of OH% radical toward organic contaminants.

The objective of this study was to demonstrate that DNN combined
with MF can work well to develop QSARs without using any molecular
descriptor. Here, the available dataset of 457 organic contaminants and
their OH%-radical rate constants (kOH%) (Borhani et al., 2016) was first
used to build QSAR, which was then validated by two other datasets of
17 organophosphorus fire retardants (Li et al., 2018a) and 118 micro-
pollutants (Ortiz et al., 2017). The MF of these contaminants were
obtained and used as the inputs for DNN. The results showed that the
obtained DNN-MF models had comparable prediction accuracies to the
traditional QSARs.

2. Materials and methods

2.1. Datasets

A dataset containing 457 organic contaminants from 27 diverse
chemical classes and their OH% radical rate constants was compiled by
Borhani et al. (Borhani et al., 2016). This dataset was downloaded from
the supplemental data and used in this study without any modification,
except for adding the MF for all the compounds. Following Borhani
et al., all the experimental rate constant data were extracted from the
literature (Minakata et al., 2009; Monod et al., 2005; Wols and Hofman-
Caris, 2012). If several rate constants were reported for the same con-
taminant, an average value was used. The rate constants kOH% (M−1s−1)
were all obtained under standard conditions (i.e., 25 °C and 1mol/L)
and transformed into log units. The dataset was randomly split into a
training set (80%) and a test set (20%). To ensure that both datasets
contained all the chemical classes, we randomly selected 20% of the
contaminants from each chemical class (27 in total) into the test set,
and the remaining 80% was used in the training set. This was to ensure
that DNN could “learn” the features of all the chemical classes. Fol-
lowing this approach, the dataset was split four times to form four
groups (referred to as group 1 to 4), each group containing one training
set and one test set. The reason for organizing the dataset into 4 groups
was to investigate whether the data selection process affected the ac-
curacy of the obtained model. In addition, another group (referred to as
group 5) contained the same training set (90% of the contaminants) and
test set (10% of the contaminants) as those used by Borhani et al.
(Borhani et al., 2016), which was used to directly compare the per-
formance of DNN-MF with the published results.

Another dataset that contained 18 organophosphorus flame re-
tardants was recently reported and all the reaction constants were
measured experimentally (Li et al., 2018a). 17 of them were chosen to
test the prediction accuracy of the developed model because they had
never been exposed to the model. The third dataset included 118 mi-
cropollutants and was used by Ortiz et al. to develop a descriptors-
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based QSAR (Ortiz et al., 2017). Following their approach, we split the
dataset to one training set (89 micropollutants) and one test set (29
micropollutants). This training set was then combined with the training
set of group 1 to form a larger training set of 454 chemicals that con-
tained more diverse structure features. DNN was next trained based on
this larger training set to develop a QSAR that was finally applied to
predict the OH% radical rate constants of the test set of group 1, the 17
organophosphorus flame retardants, and the 29 micropollutants.

All the datasets, including the “SMILES” strings for all con-
taminants, are provided in the supplementary information (SI, Datasets
excel file). “SMILES” stands for “simplified molecular-input line-entry
system” and describes chemical structures using short ASCII strings in
the form of line notation.

2.2. Generation of molecular fingerprints (MF)

To obtain the MF of all 593 organic compounds, we first obtained their
“SMILES” strings by the ChemDraw program. Then, these “SMILES” strings
were converted into MF by the RDKit program (https://www.rdkit.org/)
using the command “AllChem.GetMorganFingerprintAsBitVect()”. The gen-
erated MF were binary vectors (Figure S1) of the same length. The length
was however adjustable, and the longer the length is, the more structural
features are stored so that it was less likely for the features of different
compounds to overlap.

To develop more accurate QSARs, we first investigated the effect of
the vector length using the following values: 126, 512, 1024, 2048,
4096, and 8192 bits. Here, the root mean square error (RMSE) and
coefficient of determination (R2) were used to evaluate the performance
of the developed models. RMSE is the standard deviation of the re-
siduals (prediction errors) (eq. 1). When we applied the R2 to the test
set, the R2 values were equal to the external explained variance (Q2).
The lower the RMSE and the higher the R2 value are, the better the
model is. The absolute relative error (ARE) (eq. 2) and the average
absolute relative error (AARE) (eq. 3) for each chemical class were also
calculated to obtain the numbers of chemicals in each chemical class
that had prediction errors of< 2%, 2–4%, 4–6% or>6%.
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2.3. Structure of DNN

DNN is a computer program designed to emulate human brains in
terms of learning from the data in a manner similar to the human
nervous system. A typical DNN is composed of a number of neurons
from a few to millions, which are arranged in a series of layers (Figure
S2). The input neurons in the input layer are designed to receive the
external data, such as the MF used here, and the output neurons in the
last layer are the final predictions made by the DNN, which will be used
to compare with the true target data, such as logkOH%. Between the input
layer and the output layer are hidden layers, often more than one layer.
The input data go into the DNN through the input layer, are then
transformed in the hidden layers, and finally become the predictions in
the output layer. The values in all neurons in the hidden and output
layers are calculated by (sum of the values in the previous

neurons×weight+ bias), in which weights and biases can be updated
based on the errors between the predictions and the target until the
errors reach a minimum value. This process is the “learning” process of
DNN. The number of layers and neurons is also called the “depth” and
“width” of DNN, respectively. Larger numbers of layers and neurons
mean deeper and wider DNN, which often have more powerful fitting
ability and can achieve better accuracy on the prediction. However, too
many layers and neurons often have the overfitting problem, that is,
accurate prediction on the training set but worse prediction on the test
set. The model development process is hence to develop an optimum
architecture of the DNN with an appropriate fitting ability.

In this study, our DNN is composed of an input layer, several hidden
layers, and an output layer (Figure S2). In each layer, there are nu-
merous neurons accepting values from the neurons of the neighboring
layer. In the input layer, the number of neurons was equal to the length
of the MF. For instance, if the length of a MF was 512 bits, then there
were 512 neurons in the input layer. The number of neurons in the
output layer was 1 because there was only one reaction rate constant
for each compound. The number of neurons in the hidden layers, called
“hyperparameter”, was set manually before the learning process began.
Here, we focused on two most important hyperparameters: the number
of hidden layer and the number of neurons, and investigated their ef-
fects on the performance of the DNN. The RMSE, ARE, and AARE values
were also calculated to evaluate the effects of the hyperparameters.
Detailed description of the theory behind DNN has been adequately
described elsewhere (Fatemi, 2006; Lek and Guégan, 1999; Zupan and
Gasteiger, 1993).

To avoid overfitting, the “dropout” method was applied to each
hidden layer. Overfitting means that the model has a low RMSE on the
training set but a high RMSE on the test set. It often results from the
complexity of the models being too high. Models with high complexity
may extract odd features that fit the training set well but are not ap-
plicable to the test set. The “dropout” value is the probability that the
value of a neuron is not passed to the neurons in the next layer
(abandoned). For example, a dropout value of 0.5 means that for each
neuron, there is a 50% probability that its value is not used to calculate
the values in the next layer, or in other words, 50% of randomly se-
lected neurons will be abandoned. Employing the “dropout” method
would lower the complexity of the established DNN models, thus con-
trolling the potential of overfitting. The “dropout” value was also a
hyperparameter. We set it at 0.2 for the neurons in the first hidden layer
and 0.5 for the ones in all other hidden layers. The model training was
stopped after 500 epochs (iterations).

3. Results and discussion

For DNN, the prediction accuracy is highly related to its structure,
i.e., the numbers of layers and neurons. Moreover, the length of MF,
i.e., the number of neurons in the input layer, should be adjusted
manually. Hence, their effects on the prediction accuracy of DNN were
first investigated.

3.1. Effects of the MF length and hyperparameters

MF store the structural features of compounds; therefore, the effect
of their length on the performance of DNN was first investigated. Note
that this parameter is not a hyperparameter of DNN. During the mod-
eling process, the structure of the DNN was fixed, i.e., one input layer,
three hidden layers each with 1024 neurons, and one output layer. The
model was first established by training DNN with the training set of
group 1 and then applied to the test set of group 1 to calculate the
RMSE.

As shown in Fig. 1A, with increasing length of MF, the RMSE value
first decreased and then remained low when the length was over 2048
bits. This result indicates that longer MF yielded better models. This
was because MF of longer lengths could store more structural features
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so that it was less likely for the features of different compounds to
overlap. Once more features were extracted by DNN, more accurate
models were developed. Here, 2048 was chosen as the length of the MF
for all the calculations below. This was because further increasing the
length to more than 2048 bits only led to slight decrease in the RMSE,
but made calculations more demanding.

Fig. 1B shows the effects of the hyperparameters on the performance
of the models. Generally, the numbers of hidden layers and neurons
were seen as the “depth” and “width” of DNN, respectively. Wider or
deeper DNN can produce more complex models that yield lower RMSE
on the training set because it can extract more features, but can more
easily over fit to generate higher RMSE on the test set. Here, the number
of hidden layers was changed from 1 to 4 and the number of neurons in
all the hidden layers was varied from 256 to 2048. The length of all the
MF was fixed at 2048 bits, as obtained above. As shown in Fig. 1B, the
2048 neurons in the hidden layers can be first excluded because of the
largest RMSE values in most cases, and the RMSE also increased as the
number of hidden layers increased from 2 to 4. Because the DNN with
2048 neurons was already the widest among all the DNNs (i.e., pro-
duced models with the highest complexity), further increasing the
number of hidden layers would make the model even more complex,
thus leading to higher RMSE on the test set, that is, overfitting. In this
study, only the models with the smallest RMSE values were selected to
be the optimum model to avoid the overfitting problem.

As the number of neurons increased from 256 to 1024, the RMSE
almost always became smaller for the DNN with 1–4 hidden layers. This
result indicated that a reasonably larger number of neurons in the
hidden layers contributed to lower RMSE. For a given number of neu-
rons in the hidden layers, increasing the number of hidden layers from 1
to 3 decreased the RMSE, but there was only a slight decrease in the
RMSE when that number exceeded 3. Adding the fourth hidden layer
negligibly contributed to further reduction in RMSE but significantly
burdened the calculation process. Based on the above sensitivity study
of the DNN structure, the optimal numbers of neurons and hidden layer
were set as 1024 and 3, respectively.

3.2. Performance of the models developed by DNN-MF

Fig. 2A shows the scatter plot of the experimental versus the pre-
dicted logkOH% of the 96 compounds in the test set of group 1 based on
the model trained using the training set of group 1 (RMSE=0.358,
R2=0.747). For the datasets of groups 2, 3 and 4, the obtained models
for the training sets showed similar RMSE values (0.387, 0.360, and
0.372, Table S1) and R2 values (0.678, 0.651, and 0.664, Table S1) as
the respective test set, indicating that the prediction accuracy of the
“learned” models was robust, or independent of data splitting. Group 5
contained the same dataset as Borhani et al.’s, in which the training set

was used to train the DNN model, and the obtained model was then
applied to predict the test set of group 5 to get a RMSE and R2 value of
0.384 and 0.669 (Table S1, group 5). This accuracy is comparable to the
one reported by Borhani et al. (Table S1, RMSE=0.352 and
R2=0.724) (Borhani et al., 2016). It should be noted that there were 9
duplicate contaminants in Borhani et al.’s dataset, but we did not delete
them to make the comparison between their model and ours under the
identical conditions. Also, the RMSE values only slightly increased after
the 9 duplicate values were deleted (Table S1). As shown in Fig. 2B, the
predicted versus the experimental logkOH% also showed similar patterns
in both models. This result indicated that the model developed by DNN-
MF had comparable prediction accuracy to the traditional one based on
molecular descriptors; however, the new model avoided using any
molecular descriptor.

When the model based on the training set of group 5 was used to
predict the logkOH% values for the group 5 test set, the predictions de-
viated more for those with logkOH% values less than 9 than those greater
than 9 (Fig. 2B), e.g., for acetic acid and pentachlorehane. This may be
because the number of compounds with logkOH% less than 9 in the
training set was much less than that with logkOH% greater than 9
(Fig. 2D). In other words, DNN “learned” less about the compounds
with smaller logkOH%. This phenomenon is understandable because DNN
is a highly data-dependent method. The more data it has, the more
accurate the prediction is. Nevertheless, DNN still showed promising
results in developing predictive tools for reactivity estimation and its
performance can be enhanced by providing a more diverse range of
data for each structure group.

Table S2 lists the numbers of chemicals in each chemical class that
have prediction errors of< 2%, 2–4%, 4–6% and>6%. In most che-
mical classes, there are more chemicals with small ARE (< 2%) (377 vs.
229) and less chemicals with larger ARE (2–4%, 4–6% and>6%) (48
vs. 119, 10 vs. 57 and 22 vs. 52, respectively) in our model than in the
reported descriptors-based binary particle swarm optimization (BPSO)
algorithm and multiple-linear regression (MLR) model (BPSO-MLR)
(Borhani et al., 2016). The AARE values in our model were also mostly
smaller than those in BPSO-MLR. These results indicated that our model
was more accurate than BPSO-MLR in predicting the rate constants for
most chemicals. Our model was only less accurate in predicting the rate
constants for three classes, i.e., carboxyl, imidazole and triazines, as
there were 3, 3 and 5 contaminants with ARE > 6% using our model
while 1, 0, and 3 using BPSO-MLR, respectively.

To further validate the reliability of our model, the second dataset
containing 17 organophosphorus flame retardants was applied to the
model trained by using the training set of group 1. Compared to the
experimental logkOH% values, the predicted logkOH% had RMSE=0.306
and R2=0.737 (Fig. 2A), which was similar to RMSE=0.235 and
R2=0.862 by using a conventional descriptors-based QSAR (Li et al.,

Fig. 1. The effects of (A) the length of molecular fingerprints and (B) the numbers of hidden layers and neurons on the RMSE values. Group 1 datasets were employed
in the modeling.
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2018a). It should be noted that all of the chemicals in this dataset had
never been exposed to our model. This satisfactory accuracy was
nevertheless expected because all the functional groups in these 17
chemicals, including alkane, alcohol, benzene, ether, and halogenated
groups, had already been “learned” by the DNN-MF model. For mi-
cropollutants that mostly have more complicated structures, this ap-
proach was still effective. As shown in Fig. 2C, the model obtained by
combining the training sets of group 1 and the 89 micropollutants in
Ortiz et al. had comparable prediction accuracies for the test set of
group 1, the 17 flame retardants, and the 29 micropollutants
(RMSE=0.278-0.329) (Ortiz et al., 2017).

3.3. Comparison among different models

Table 1 lists the performance of six reported models that were de-
veloped based on different algorithms. In general, to obtain models
with satisfactory prediction performance on an increasing number of
chemicals (n from 55 to 526), more molecular descriptors (p from 4
to13) had to be involved in the reported models. However, our DNN-MF
model showed comparable accuracy (R2test = 0.747, RMSE=0.329) to
the reported models even on the largest dataset (n=593) and without
using any molecular descriptor (p=0). It should be noted that both
R2train (0.972) and RMSEtrain (0.135) on the training set were better than
the R2test (0.747) and RMSEtest (0.329) on the test set. This phenomenon
is common and reasonable because we trained our DNN on the training
set and then applied it to the test set that it had never seen before
(Myint et al., 2012). This should not be seen as overfitting, because we
always selected the model with the smallest RMSEtest when optimizing
the DNN structure, as shown in Fig. 1B and explained in Section 3.1.
This means that further increase or decrease in the complexity of DNN
would lead to higher RMSE, which would yield overfitting or under-
fitting. Note that although our DNN-MF showed a slightly higher
RMSEtest and lower R2test than the MD-based models, its accuracy can be
further increased by including a larger number of compounds in the
modeling process because more meaningful features will be learned by

the model. For the MD-based models, however, with increasing number
of organic compounds, their accuracy might decrease, as shown in
Table 1 where the RMSEtest increased with an increasing number of
parameters in the model (RMSEtest: 0.079-0.356). Given the fact that
more and more contaminants may arise in the future, the DNN-MF
based approach will show great applications in the environmental field.

We also compared our model with the reported group contribution
based model that used error goals (EG= Predicted value

Experimental value
) to evaluate the

model performance (RMSE was not provided) (Minakata et al., 2009).
Note that their dataset was already included in ours so we directly
compared the performance of their model with that of ours. Their
model could predict the rate constants of 334 out of 435 contaminants

Fig. 2. The scatterplot of the predicted vs the
experimental values of logkOH% for (A) 96
compounds in the test set of group 1 and the 17
organophosphorus flame retardants in Li et al.
and (B) the 69 compounds in the test set of
group 5 based on the conventional QSARs
versus the new DNN-MF model, both trained
by the training set of group 5; (C) Comparison
between the experimental and the predicted
values of logkOH% for the 96 compounds in the
test set of group 1 (Borhani et al.), the 17
newly reported compounds in Li et al., and the
29 micropollutants in Ortiz et al. by the DNN-
MF model trained by the larger training set of
454 chemicals. (D) The number of compounds
in the training set of group 5 that has the re-
ported logkOH% values within each range, for
example, 160 compounds with logkOH% values
between 9.5 and 10.

Table 1
Comparison among different models for their performance in predicting aqu-
eous kOH% values.

Model Algorithm na pb Training Set Test Set

R2train RMSEtrain R2test RMSEtest

(Wang et al.,
2009)

MLR 55 4 0.905 0.139 0.962 0.079

(Kui et al., 2009) GA-MLRc 78 4 0.735 0.174 0.76 0.20
(Sudhakaran and

Amy, 2013)
PCA-MLRd 83 2 0.918 – – –

(Jin et al., 2015) MLR 118 7 0.823f 0.204 0.772 0.329
(Borhani et al.,

2016)
BPSO-MLRe 457 8 0.716 0.347 0.724 0.356

(Luo et al., 2017) MLR 526 13 0.805f 0.165 0.802 0.232
This study DNN-MF 593 0 0.972 0.135 0.789 0.329g

a n= total number of chemicals in the dataset.
b p=number of molecular descriptors.
c GA: genetic algorithm.
d PCA: principal component analysis.
e BPSO: binary particle swarm optimization.
f The R2adj value was reported instead.
g This value was for Borhani et al.’s test set (Fig. 2C).
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(77%) that had the error goal (EG) (EG = Predicted value
Experimental value

) in the range of
0.5–2 (Minakata et al., 2009), whereas our model could predict 416 out
of 457 contaminants (91%) within the same EG range. In short, these
comparison results confirmed that the DNN-MF had satisfactory per-
formance in predicting chemical reactivity.

3.4. The feasibility of the DNN-molecular fingerprints (MF) approach:
model utilization and model development

The DNN-MF approach combines simple MF with powerful DNN to
develop QSAR models. To extend this approach to a wide range of
applications, we’d like to address two important questions: one is how
to apply the established QSARs to new compounds, i.e., model utili-
zation, and the other is how to develop new models for different tasks,
i.e., model development. A related question is whether the knowledge
of DNN is necessary in the above context.

For model utilization, the background of DNN is not necessary. Once
a model has been established, the parameters in DNN (weights and
biases in Figure S2) have been fixed. Users just need to input the MF of
new compounds into the model, and DNN will calculate the prediction
results using these fixed parameters. MF can be more easily obtained
than molecular descriptors, simply by transforming “SMILES” strings of
new compounds using the RDKit program. The “SMILES” strings of new
compounds can be obtained from their chemical names, CAS numbers
or chemical structures (in this study, we used chemical structures).

To make the established DNN-ML models broadly available, it will
be useful to develop APPs or web applications for automatic calcula-
tion. Users can simply input the chemical names, CAS numbers or the
chemical structures of new compounds and click the prediction button.
The APP or web applications will automatically retrieve the MF, feed
them into the trained DNN, and return the prediction results. In com-
parison, for molecular descriptors-based QSARs, molecular descriptors
are typically not available for new compounds and one needs both
advanced physicochemical knowledge to select appropriate descriptors
and the ability to use different software such as Gaussian to calculate
the descriptors.

For model development, the knowledge of DNN is necessary if one
wants to develop new MF-based QSARs. Fortunately, learning how to
use DNN is much easier than learning all necessary chemical, compu-
tational and software knowledge for molecular descriptors. There are
many packages that can be directly used in Python. In MATLAB, there
are also a number of built-in DNNs. One just needs to adjust the hy-
perparameters of DNN for a specific application. With the rapid de-
velopment of computer science and data science, many more re-
searchers will have the ability to run DNN in the near future. For
molecular descriptors-based QSARs, however, the learning curve is
much steeper. This is probably part of the reason that although nu-
merous QSARs have been developed and available for a few decades,
they are mostly used by a small group of researchers.

4. Conclusions

This work combined MF with DNN to develop predictive models for
the oxidation rate constants of 593 organic compounds by OH% radical.
The optimum length of MF was 2048 bits, and the optimized archi-
tecture of DNN was 1 input layer with 2048 neurons, 3 hidden layers
each with 1024 neurons, and 1 output layer with 1 neuron. The model
developed by the DNN-MF approach showed low RMSE values, e.g.,
0.329 on the largest dataset (n=593) and without using any molecular
descriptor. This work for the first time showed that the combination of
MF and DNN could provide simple, robust models that had comparable
prediction accuracies to the traditional QSARs that relied on complex
molecular descriptors. Simply providing the DNN with the most basic
chemical information (i.e., MF) was sufficient for the DNN to “learn”
the relationship between the reactivity and the chemical structures. It

also should be noted that the generation of MF was straightforward, the
MF can be much more easily understood than molecular descriptors,
and the development and use of DNN-MF models was independent of
any advanced knowledge of chemical reactions, chemical properties,
and descriptor calculations. Developing QSARs using this new approach
is thus both useful and desirable for environmental researchers who do
not have rich chemical and computational knowledge.

Compared with traditional QSARs, our DNN models did not indicate
which chemical features were most related to the reactivity and why
the model chose those features. The features extracted by DNN might be
statistical results, but it was also possible that meaningful mechanistic
features had been “learned”, which can facilitate mechanistic under-
standing. On the one hand, one would argue that mechanistic knowl-
edge may not be necessary for prediction purposes, especially given the
large number of chemicals that exist in the environment and the likely
increasing number of them to be developed and released. On the other
hand, our on-going work aims to unveil the “black-box” model and
identify which features can be learned by DNN for the prediction pur-
poses, which will assist in obtaining physical insights into the QSARs.
Nevertheless, the DNN-MF approach is promising in the development of
simple, powerful QSARs. In addition to predicting kOH% of organic
compounds, this new approach will likely show exciting applications in
and can be easily expanded to many other areas of the environmental
field, such as prediction of various biotic and abiotic degradation rate
constants, adsorption, transport, plant uptake, and toxicity.
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