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In this paper we propose and analyze a weakly nonlinear, energy stable numerical scheme
for the strongly anisotropic Cahn-Hilliard model. In particular, a highly nonlinear and
singular anisotropic surface energy makes the PDE system very challenging at both the
analytical and numerical levels. To overcome this well-known difficulty, we perform a
convexity analysis on the anisotropic interfacial energy, and a careful estimate reveals that
all its second order functional derivatives stay uniformly bounded by a global constant.
This subtle fact enables one to derive an energy stable numerical scheme. Moreover, a
linear approximation becomes available for the surface energy part, and a detailed estimate
demonstrates the corresponding energy stability. Its combination with an appropriate
treatment for the nonlinear double well potential terms leads to a weakly nonlinear,
energy stable scheme for the whole system. In particular, such an energy stability is in
terms of the interfacial energy with respect to the original phase variable, and no auxiliary
variable needs to be introduced. This has important implications, for example, in the case
that the method needs to satisfy a maximum principle. More importantly, with a careful
application of the global bound for the second order functional derivatives, an optimal rate
convergence analysis becomes available for the proposed numerical scheme, which is the
first such result in this area. Meanwhile, for a Cahn-Hilliard system with a sufficiently large
degree of anisotropy, a Willmore or biharmonic regularization has to be introduced to make
the equation well-posed. For such a physical model, all the presented analyses are still
available; the unique solvability, energy stability and convergence estimate can be derived
in an appropriate manner. In addition, the Fourier pseudo-spectral spatial approximation
is applied, and all the theoretical results could be extended for the fully discrete scheme.
Finally, a few numerical results are presented, which confirm the robustness and accuracy
of the proposed scheme.
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1. Introduction

The Cahn-Hilliard flow, which models spinodal decomposition and phase separation in a binary alloy [5,6], is one of
the best known PDEs of gradient flow type. In the Cahn-Hilliard family of models, sharp interfaces are replaced by narrow
diffusive transition layers, which often leads to models that are simpler and more theoretically tractable than their sharp
interface counterparts. In crystalline solids, the energy of interfaces can change according to the orientation of that interface.
In fact, the energy of certain orientations may be large enough so that they do not naturally appear in the microstructure. In
the sharp interface case, when the surface energy density is a smooth function of the interface normal and the anisotropy is
sufficiently strong, it is known that there are missing orientations in the Wulff shape, that is, the shape that minimizes the
total surface energy for a given volume [7,47]. Crystalline anisotropy plays a very important role in the material properties
of heterogeneous solids. In the absence of anisotropy, microscopic precipitates are expected to be rotationally symmetric.
Anisotropy breaks this symmetry as certain directions are endowed with higher free energy.

Here, we consider a bounded domain € c RY, d =2, 3. By ¢ we denote the phase variable (order parameter), and we
set p := V¢. The vector n := % is the unit normal vector with respect to iso-contours of ¢, having the components

n=X® _ Py g
Vol Ipl
Of course, the normal vector is defined everywhere that V¢ is non-zero. The following anisotropic Kobayashi-type [41] free
energy is proposed for consideration:

1 2
E(¢)=f(Z(¢2—1)2+%y2(n>|p|2>dx, y@m=1+al(m), (11)
Q

where ¢ is an interface transition width parameter, f(¢) = }1(¢2 —1)? is a double well potential, ¥ (n) is the interfacial
energy function describing the nature of the anisotropy, and « > 0 is the anisotropy strength. For four-fold anisotropy, a
common choice for the anisotropy structure function, T, is

d
T(n)=Tq(m):=4) ni-3. (12)
i=1
Here we will mainly focus on the four-fold case, though it is straightforward to generalize this to more exotic forms of
anisotropy. In this model, the equilibrium profiles of one dimensional diffuse interfaces have different thicknesses, and,
therefore, different energies, according to their orientation in space. In other words, the thickness of the interface is used to
adjust the interfacial free energy as a function of orientation. This is in contrast to the model in Torabi et al. [51], where the
equilibrium thickness does not change with orientation. However, the latter model is much more nonlinear than the one
considered and may be the subject of a future study.

In the present model (1.1) the primary difference between isotropic and anisotropic systems is the structure of the y (n)
function. If y(n) =1 (or equivalently, « = 0), one recovers the isotropic model, which leads to the standard Cahn-Hilliard
equation in the H~! flow. The anisotropy function presented in (1.1) has been studied in [47] and elsewhere. For small
values of «, the gradient free energy density function

2 P ) p2
gp) =y (|p|>|p|

remains a convex function of p. (Of course, it is convex when o« = 0.) However, for sufficiently large values of «, it is
possible that G(p) can become indeterminate, non-convex and non-concave. In this case, we say that we are in the strong
anisotropy regime. There is a simple test in two dimensions to determine the strong anisotropy regime with precision. In the
two-dimensional setting, where 6 denotes the angle between the normal vector n and e, the canonical basis vector pointing
in the x-direction, the interfacial energy function can be rewritten as y (n) = y(0) :=1 +al(9). When Y@ +p" ) <0, for
some angles of 6 [56], the problem is strongly anisotropic. There will be missing orientations (angles) on the equilibrium
(Wulff) shape [56]. In the case of four-fold anisotropy, I'(8) = cos(46), and, if y > % then we are in the strongly anisotropic
regime.

Define the projection matrix P:=1— n ® n, where I is the identity matrix. Let us suppose, for simplicity that ¢ is
Q-periodic. The corresponding anisotropic Cahn-Hilliard system becomes the corresponding H ! flow:

hp=Ap, p=¢>—¢p—e*v. (yz(mw + y(n>|V¢|Pvny<n>), (13)

where V, is the gradient with respect to n. The anisotropic Cahn-Hilliard equation becomes ill-posed in the strong
anisotropy regime; there is a sign change of the surface stiffness [49,56]. To overcome this well known ill-posedness, a
higher order derivative regularization has to be added to the surface energy [4,23], such as the bi-harmonic regulariza-
tion [56] or the nonlinear Willmore regularization [10,43-46,51].
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There have been quite a few existing numerical works for the anisotropic Cahn-Hilliard model, such as [28], where the
authors use a convexification technique and [10,56], whose authors use a stabilized time discretizations, with adaptive finite
difference multigrid solvers. Because of the highly singular nature of the surface energy, a theoretical justification of the
energy stability turns out to be a very challenging issue. A few recent works have addressed this subtle issue. For example,
a convex splitting approach is proposed and analyzed in [17] for the anisotropic system with a Willmore regularization. On
the other hand, a theoretical analysis for the energy stability is only available for the isotropic flow in [17]. A stabilized
scalar auxiliary variable (SAV) approach is studied in more recent works [9,59] for the anisotropic flow, and a stability
analysis has been provided for a numerically modified energy. However, we point out that a uniform in time bound for the
energy functional (1.1), in terms of the original phase variable, is not theoretically available in this approach.

In this article, we propose and analyze a uniquely solvable, energy stable numerical scheme for the anisotropic Cahn-
Hilliard system, with the stability in terms of the original energy functional (1.1). The key difficulty has always been
associated with the highly nonlinear nature in the chemical potential of the surface energy part. To overcome this well-
known difficulty, a careful convexity analysis is carried out for y(m), which reveals that all its second order functional
derivatives stay uniformly bounded by a global constant. As a consequence, although the surface energy itself is a non-
convex, non-concave functional, we are able to combine it with an artificial linear surface diffusion term, so that the
combined functional could become either convex or concave. In particular, a combination with an artificial negative dif-
fusion term makes it concave, which in turn leads to a linear approximation for the surface energy. Moreover, a careful
analysis demonstrates the energy stability in terms of the original phase variable, and no auxiliary variable needs to be in-
troduced. This approach avoids an implicit treatment of the nonlinear surface energy part, so that computational efficiency
can be greatly improved. Meanwhile, a convex splitting method is applied to the double well potential terms, which in turn
leads to a weakly nonlinear, energy stable scheme for the whole system.

In addition, the convergence analysis of any numerical scheme applied to the anisotropic Cahn-Hilliard system has been
an open problem for a long time. In this article, we perform an optimal rate convergence analysis for the proposed nu-
merical scheme, making use of a careful application of the global bound for the second order functional derivatives. To our
knowledge, it will be the first such result in this area.

The anisotropic phase field equation may become ill-posed with increasing values of «. When the system becomes
strongly anisotropic, we introduce a bi-harmonic regularization. For the regularized physical model, all the presented analy-
ses are still available, including the unique solvability, energy stability and convergence estimates.

For simplicity of presentation, we choose the Fourier pseudo-spectral spatial approximation. The advantage of this dis-
cretization is associated with the fact all the numerical variables, such as the phase variable, its gradient, and the Laplacian
one, are evaluated at the regular grid points; no staggered finite difference mesh points are needed in the numerical imple-
mentation [17,56]. Moreover, the summation by parts formulae enable us to extend all the theoretical results to the fully
discrete scheme, including the unique solvability, energy stability (in terms of the original phase variable), and optimal rate
convergence estimates.

This paper is organized as follows. In Section 2, we provide a convexity analysis for the surface diffusion coefficients. The
numerical scheme is formulated in Section 3, where the unique solvability and energy stability are established. An optimal
rate convergence analysis is presented in Section 4. The numerical approximation for the strongly anisotropic system (with
missing orientations on the Wulff shape) is considered in Section 5, in which a bi-harmonic regularization is added. All the
theoretical results are established for this case as well. The Fourier pseudo-spectral approximation is reviewed, and the fully
discrete scheme is outlined in Section 6. Some numerical results are presented in Section 7, and concluding remarks are
made in Section 8.

2. Convexity analysis for the physical energy

The key difficulty to derive an energy stable scheme for the anisotropic CH model is associated with the highly singular
and nonlinear nature of y(m). To overcome this difficulty, we have to obtain a convexity analysis for the energy func-
tional (1.1). In particular, we focus on the surface diffusion energy functional fQ G(p)dx. It turns out that, in general, this is
a non-convex, non-concave, highly singular term.

As stated earlier, we work specifically with the four-fold anisotropy function

y@m) =1-3a+4a®n] +nj +n3).

The eight-fold anisotropy function, for example would be treated similarly, though the precise details will differ. For the
four-fold function, we begin with the following observation:

Pi+P3+p3 2 (P} + p3 + 3
3 2 g P16 5
(p1+p3+Dp3) (p1+p3+Dp3)

In turn, the following expansion is available:

y2m =1 -3a)> +8a(1 — 3a) (2.1)

G(p) =y2m|pl* = (1 -3a)?|pl* +8a(1 — 3¢V (p) + 16a2g? (p), (2.2)
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where
1) . pzll + P‘zl + P‘gl @) - (P? + P‘zl + Pg)z
g Pi=F—575 &8 PM=—F—"5"53" (2.3)
p1+p53+Dp3 (p7+p3+p3)
A direct calculation gives the first order derivatives of g and g@:
ap?y i p?-2piy 0t
I g (p) = ———— = i=1.2.3, (2.4)
(Z393)
(2) 2Pi2?:1 p‘; (4}7,2 2?21 pf _323:1 pjl) .
0,87 (p) = T o\ , 1=1,2,3. (2.5)
(Z5093)
Furthermore, the following lemma is needed in the convexity analysis; the proof will be given in Appendix A.
Lemma 2.1. Define
7
1) . _ 1) ._ 2 ._ (2) ._

pi" =3, D=2, DPi=6. DY :=3.

The functions gV, g@, are twice continuously differentiable in R2 := R3 \ {0}, and we have the bounds
n o n . .
12gM(p)| <D, i=1,2,3, 10,0p,8 V(@) <DV, 0, j=1,2,3, i# ], (2.6)
2 2) s .,
2@ (p)|<D?, i=1,2,3, 18p,0p, 8P (D) < DS, i, j=1,2,3, i #]. (2.7)

forall p e R3.

Let us denote by G and G® the Hessian matrices associated with the scalar functions g, g@®, respectively. The
following result is available.

Corollary 2.2. Define
k) ._ ok (k) _
H® :=c¢® +B”1, k=1,2.

Then HV and H® are non-negative definite in R3 = R3 \ {0}, provided B{" > 2 and B{” > 12.

Proof. It is clear that

(k) (k) (k) (k)
1 81,1 +k30 kg1.2 ; g};f’
HO=1 g g +ByY &% | k=12
(k) (k) (k) (k)
831 83 833+ By

where, for brevity, gl(kj) = 0p;0p,;&". For the matrix HD, we see that

(1 (1)

15 7
1 1 1 1
g1 +By = By — lgihl = -5 =4z gl + gl (2.8)

2
in which estimate (2.6) of Lemma 2.1 has been used. Similar estimates could be derived for the second and third rows:

1 1 1 1 1 1 1 1
g0+ By = lgsnl + g5l 855 + By = 1851+ 1850l (29)

Therefore, the matrix H) is diagonally dominant. Since it is also symmetric, it must be non-negative definite.
In a similar way, we can prove that H® is diagonally dominant and, therefore, non-negative definite. The details are left
to interested readers. O

We immediately have the following corollary.

Corollary 2.3. Define
HH .= _¢® 4+ B1 k=1,2.

Then H® and H® are non-negative definite on R2 = R3 \ {0}, provided B(()l) > B and B(()Z) > 12,
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On the other hand, based on the detailed expansions in (2.4) and (2.5), we observe that, while gV, g@ e C1(R3), these
functions are not twice differentiable at 0. The Hessian matrices defined above are not well-defined at 0. To overcome this
difficulty, the following lemma is needed to treat the singularity at 0.

Lemma 2.4. Assume that f € C'(IR?) satisfies the following property: f € C>(R2) and its Hessian matrix S is non-negative definite
in R3 =R3\ {0}. Then f is convex over R3, and, consequently,

PR < (fan+ fe). Vi x B, (210)
and

Vi@®)- (%2 —%1) > f(x2) — f(*1), V&1, X € R (2.11)
Proof. For any x1, x; € R3, define L = |x, —x;| and v:= # (so that |v| = 1). If the line segment from x; to ¥, - denoted

xrx)z - does not pass through the origin, 0, we see that f is smooth, with non-negative definite Hessian matrix over x1‘x>2,
—
so that the directional derivative Dy f is increasing along the line segment x1x>.
—_
In the case that the vector x1x, does pass through 0, we parameterize this vector as follows: x1 +tv, for 0 <t <L,

N
and define L1 := |x1]|. For any y along vector x;0, we denote y(t) = &1 +tv, for 0 <t < L. By the Fundamental Theorem of
Calculus the following identity is valid:

t

Duf(y(6)) = Dy f(x1) + / D2f(x; +Ev)ds, VO<t<Ly. (212)
0

Furthermore, since f € Cl(R3),

t
Duf(@ = Duftxn)+ fim [ D3 v+, (213)
0

—

Since the Hessian matrix S is point-wise non-negative definite along the segment 10 - not including the point 0 at which
it may be undefined - we conclude that D2 f(x1 4+ &v) > 0, for any 0 < & < Ly. This fact implies that

Dyf(y(t2)) > Dy f(y(t1)), forany 0<t1 <ty <Ly. (214)

—
In other words, Dy f is increasing along the segment x10, from x; all the way to 0.

—_—
A similar analysis could be carried out along vector 0x2, so that

t

Dyf(y(t)) =Dy f(0) + 11\1? /D\Z;f(xl +&v)dg, VIi<t<L. (2.15)

N
! S

We can conclude, using the non-negativity of the Hessian,

Dyf(y(t2)) = Dyf(y(t1)), forany Lq<tq<ty<L. (2.16)
A combination of (2.14) and (2.16) indicates that Dy f is increasing all along the segment x?xz:

Dyf(y(t2)) = Dyf(y(t1)), forany 0=<t; <t =<L. (2.17)

N
Since, Dy f is increasing along the segment x1X, for arbitrary x1, x; € R3, f must be convex, and the two inequalities
in (2.11) become a straightforward consequence. 0O

Then we obtain the following convexity result.

Proposition 2.5. Let « > 0 be the anisotropy strength parameter. Define Es(¢) := fQ G(p)dx, p=V¢. Then

Hi(¢) := Es(®) + A1V, (218)

is convex provided Bgl) > %, Béz) > 12, and

A > max(sangZ) +4a1—3a|B{") — (1 —3a)?, 0). (2.19)
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Proof. We define

k(@)= G(p) + ArlpP = ((1 = 3% + A1 ) Ip + 8ar(1 - 302" (p) + 1608 (p). (2:20)
For any p € R2, the Hessian matrix of « is precisely

K=2((1=30)? + A1 )1+ 8a(1 = 3)6" + 160°G?

_ (1) 2y
Z{8<>{|1 3aHY + 160’H if 1>3x (2.21)

8|1 — 3a|H® +16a2H@® if 1<3a °
Here, for symmetric matrices A and B, A > B means that A—B is non-negative definite. Therefore, we conclude that the Hes-
sian matrix K is non-negative definite over R3 = R3\ {0}, since H", H®, H® are non-negative definite (by Corollaries 2.2

and 2.3. In turn, with an application of Lemma 2.4, since k € C'(R3)UC2(R3), x must be convex. Since H1(¢) = [, K (p) dx,
the convexity of the functional Hq is assured. 0O

Remark 2.6. According to the last estimate, it follows that if 0 < o < «,, where

36 — /362 — 12
oy 1= — % ~0.0278,

then we can take A; =0 and still be assured that H; will be convex.

As a result of Proposition 2.5, the following convex-concave decomposition for the original energy functional E(¢) exists:
define

1 1 2 1 1 &
E)= [ <Z"’4 T Z) dut @) = [(304+ 5+ 5 A+ y2m) VR dx (2:22)
Q Q
1 Aqe?
Ee(@)i= [ (502 + 5 1Vo2) d. (2.23)

Q

Then E = E. — E, and E. and E. are convex. It is then straightforward to devise a scheme that is unconditionally energy
stable and unconditionally uniquely solvable using the framework devised in [57].

However, we observe that the highly nonlinear energy functional Es(¢) is placed in the convex part in the decomposi-
tion (2.22) - (2.23), which would, in turn, lead to an implicit treatment of these nonlinear and singular terms. To overcome
this well-known difficulty, we look for an alternate decomposition so that the nonlinear and singular expansions in the
energy functional is placed in the concave part, whose terms would be treated explicitly in a numerical scheme. First, based
on the expansion for G(p) = y2(n)|p|? in (2.1), (2.2), and (2.3), we rewrite the surface free energy as

Es(¢) = / G(p)dx=(1-3a)?|Vo|* + Es(¢), (2.24)
Q
where the last term contains the nonlinear and singular terms:
Es(¢) = f (&x(l -3a)gM (p) +160?g? (p))dx, p=Vé. (2.25)
Q

Now, we define another functional:

Ha(¢) = A2 | V91* — Es(¢) = / (A2lpP? — 8ar(1 - 30)8" (p) — 16278 (p) ) dx. (2:26)
Q

The following convexity result is available.

Proposition 2.7. The functional Hy(¢) is convex on R3 provided B(()l) > 12—5 B(()Z) > 12, and

Ay > 8a?BS” +4a|1 —3a|B{".
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Proof. The convexity of Hy can be proved by the same technique used previously. First, we define
Kk(p) = Aa|p)> — 8a(1—3a)g" (p) — 162’ (p). (227)
Its Hessian matrix is
K=2A5I—8a(1 — 3a)GV — 160*G®
> 2(4al1 - 3alBy +8a2B{ )1 - 8a(1 - 306" — 160G

_ 3) 2H@
_{8a|1 3a|H® +16a’H® if 1>3«a (2.28)

“ | 8a|1 =3¢ HD +1602H® if 1<3a °

Making use of Corollaries 2.2 and 2.3, we conclude that K is non-negative definite in R2. The result follows. [

As a result of Proposition 2.7, the following convex-concave decomposition for the original energy functional E(¢) be-
comes available.

Corollary 2.8. The functionals

1 1 &
B = [ (6 + 3+ 5 =30+ 49 Vo) dx. (2.29)
Q
Eed) = Mo+ S to0) = [ (202 + £ Es(o) + AV d 230
@) =5101” + 5 z(¢>—/(5¢ + 5 (<Es(9) + A2 Vo[ ) dx. (2:30)
Q

are convex, provided Bgl) > %, 382) >12,and A > 8012382) +4a|1 — 30{|BBD. In other words, the energy E(¢) possesses a convex-
concave decomposition, E(¢) = E.(¢) — Ec(¢), using the alternate functionals (2.29) and (2.30).

We will need the functional derivative of Eg, which is

8Es ==V - ((/2m) — (1 = 30))Ve + y @V IP%y m)). (2.31)

As before, we are assuming Q2-periodic boundary conditions for ¢. Based on the detailed expansion in (2.1), (2.2), and (2.3),
this term could also be represented as

5pFs = —V - <8a(1 —3a0)%g M (p) + 160{2Vpg(2)(p))

9p, 8 (p) , [ 082 )
==V | 8a(1-3a) | dp,gV(p) | +16a*| 3p,g% ) | |, (2.32)
9p;8" (p) 9p;8 (p)

where V, is the gradient with respect to p. The detailed expansions of 8pig(j), i=1,2,3, j=1,2, are given in (2.4) and
(2.5).

Remark 2.9. In the convexity analysis, we focus on the four-fold anisotropy structure function (1.2) for simplicity of pre-
sentation. Of course, a more general structure function might be necessary for certain applications. For example, one may
consider a function of the form

d d d
y(n)=ao+a42n?+a52n?+a32n?+---, (2.33)

i=1 i=1 i=1
where ¢4, i =0,4,6,8, ---, are constants. For this more general expression, the convexity analysis could be performed in a

similar way. For example, in the expansion of y2(n) the sixth-order term is expected to include a term in the form of
Pt +pS + 1§
(r} +p3+03
as well as its square. The representation of G(p) leads to two additional terms in the form of
8+ pS + p§

(0§ + pS + pH)?
(p? +p3+pH?’

@y
g7 (p) = .
(p? + p3+p3)°

g =
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For g® and g™, a uniform bound of the second order derivatives could be derived as in (2.6) and (2.7) in Lemma 2.1, with
bounds D?), D?), D§4), Dé‘l), being introduced. In turn, the convexity results stated in Propositions 2.5, 2.7 and Corollary 2.8
could be similarly established, but with modified values of A1 and Aj.

3. A semi-discrete numerical scheme

A standard convex splitting scheme could be derived based on the alternate decomposition in (2.29) and (2.30) for
the physical energy E(¢). On the other hand, such a convex splitting has to introduce artificial regularization term
—Aye? A(¢™! — ¢™), which may be large. To reduce the size of numerical dissipation, we consider the following semi-
implicit, first-order-in-time numerical scheme:

n+1 _ . n
% =A™, oM, (3.1)
M(¢n+17¢n) — (¢ﬂ+1)3 _¢n _ (-1 _ 30()282A¢n+1 _ Azng(d)TH-l _¢ﬂ)
—e2v. (4a(1 —3a0)VpgM (Vo) + 8a2Vpg(2)(V¢”)), (32)

with the artificial diffusion coefficient
Aq

- 1

Ay = max(4a2352) +2a)1 - 3a/B — 51 =30, o) =2
where Aq is given by (2.19). We observe that

~ 1 2 Ay

Ay = EmaX(AZ —(1-3:)7,0) < 5

which would lead to half as much numerical dissipation. The following theoretical result is available by a careful energy
analysis.

Theorem 3.1. The proposed numerical scheme (3.1) and (3.2) is uniquely solvable and unconditionally energy stable: E(¢™+!) <

E(¢™).

Proof. The unique solvability of the scheme represented in (3.1) and (3.2) comes from a standard convexity analysis. In
particular, the scheme results as the gradient of a strictly convex energy functional. The details are similar to what is
described in [57] and in several other places.

In terms of the energy stability, we take an L2 inner product of Equations (3.1) and (3.2) with (—A)~1(¢™t! — ¢™") and
get

0= <(¢n+1)3’¢n+1 _ ¢n) _ (¢n,¢n+1 _ ¢n) + (l —3&)282(V¢n+1, \v/ (¢n+1 _¢n))

1 ~
gl =0T + Aae? |V (67 )

_g2 (V . (4a(1 —3a)Vp gV (Vo) + 82 Vpg? (v¢”)), P+ — ¢”), (33)
using integration-by-parts. The following convexity estimates/identies are valid:
n+1\3 n+1 _ n l/ n+1\4 _/ n\4
(@291 =) = 2( [ @™ ax— [ @"ax). (3:4)
Q Q
1
(om0 =) = =3 ([ dx— [@n2ax). 35)
Q Q
1 1
(V"L v (@1 = ¢") = S (VO™ 12 = IV" 1) + S IV (™ = ¢ (3.6)

For the nonlinear surface diffusion terms, we make use of the convexity property of H;, as given by Proposition 2.7
— (8pHa (@™, ¢ — ¢") > —(H2(¢"T) — Ha(¢™). (3.7)
More precisely, we have
~(V (821 = 30) VgV (Vg™ + 16025,8® (V")) @™ = 9") +242(A¢", "1 — g7
= Es@™") — Es(¢™) — A2(IVe" 117 — V9" %), (3.8)
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Meanwhile, by the following identity

242(A¢", ¢"T — ¢y = — A2 (V"2 — V" I?) + A2V (@™ — 9™ 1%, (3.9)
we arrive at
(v (821 =300V, (Vg™ + 167 %g® (Vg™ 9" — ¢")
> Es(¢"!) — Es(¢™) — A2V (9" — ¢™M)|1%. (3.10)
Therefore, a substitution of (3.4) - (3.6) and (3.10) into (3.3) yields

(1 — 3a)2¢2

5 (IVe™ 12 — V" I?)

1 1
0> Z(I|¢”+1 llpe = ll¢"ILe) — §(|I¢”+1 12 = 1" 1% +

2 - 1-3w)? - A
+%(Es(¢>”+1) — Es(¢") + (% + Ay — 72)82||v<¢"+1 — M2 (3.11)

Based on our choice Az = 3 max(A; — (1—3w)?2, 0), we have

1-32) . A
G0 45— 220 (312)

and its substitution into (3.11) results in the desired energy stability inequality:

This finishes the proof of Theorem 3.1. O

Remark 3.2. We refer to this scheme (3.1) - (3.2) as a weakly nonlinear scheme because only the nonlinearity associated to
the double well energy needs to be dealt with implicitly in order to obtain an energy stability result. This is an important
point, since most often this term is associated with a positivity property of the equation, and it must be treated implicitly
to maintain positivity numerically. See, for example, [15], where the singular Flory-Huggins-type double well potential is
treated. For simplicity of presentation, we focus on the polynomial approximation in the double well energy potential,
as given by (1.1), in which the positivity-preserving property is not available. Meanwhile, for the anisotropic model with
a Flory-Huggins-type double well potential - which would presumably yield a positivity property - the corresponding
convexity and energy stability analysis could be carried out in a similar way, and the details are left to future works.

Remark 3.3. The convex splitting framework, poularized by Eyre’s pioneering work [29], has been successfully applied to
various gradient model, such as the phase field crystal (PFC) equation and the modified version [1,2,27,40,53,57]; epitaxial
thin film growth models [11,14,20,52]; non-local gradient model [35-37]; phase field model coupled with fluid flow [12,13,
24,25,31,42,55]; et cetera. In this approach, the unique solvability and energy stability could be established via a variational
inequality framework.

Meanwhile, we observe that the proposed numerical scheme (3.1) - (3.2) does not come from a direct application of
convex splitting. In fact, a standard convex splitting scheme, based on the convex-concave decomposition in (2.29) - (2.30),
results in an artificial regularization in the form of —A282A(¢™t! — ¢™). In comparison, our proposed scheme contains an
artificial regularization in the form of —Ag2A(¢"t! — ¢"), with Ay < %, leading to less numerical dissipation. In addition,
in the region of sufficiently small , A, could be taken as 0, so that an artificial regularization is not needed; just the
constant coefficient surface diffusion part is sufficient to stabilize the numerical scheme.

The key reason for the significant difference is that the convexity of the constant coefficient surface diffusion term, with
a given energy density of @MVMZ, brings more extra stabilization that can be used to reduce the size of A,. Similar
stabilization also exists in the convexity analysis of Hy(¢). In turn, we make use of the additional stabilization estimates,
which in turn lead to a much reduced artificial regularization, while preserving the energy stability.

Remark 3.4. In the physical system (1.1) and (1.3) discussed in this article, the anisotropic interfacial function y (n) is only
placed in the surface diffusion part, and the double-well potential still keeps the standard type. In more recent works [50,
51], such an interfacial energy function has been placed in both the surface diffusion and double-well potential part. In this
updated model, the double-well surface density function may even become negative for sufficiently strong anisotropy. The
analysis for this model is more challenging than the one presented in this article, and we will leave this analysis in the
future works.

Remark 3.5. For the isotropic Cahn-Hilliard system, there have been extensive works of energy stable numerical
schemes [19,22,26,38,58], etc. However, for the anisotropic one, the only existing related work could be found in [59],
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in which a stabilized SAV algorithm is applied to the Allen-Cahn model. Again, such an energy stability is in terms of a nu-
merically modified variable; in comparison, the stability estimate reported in Theorem 3.1 is based on the energy functional
in the original phase variable.

Remark 3.6. For simplicity of presentation, we only focus on first-order energy stable schemes for the anisotropic Cahn-
Hilliard equation. A second-order energy stable algorithm could be constructed using similar techniques of convexity
analysis, combined with the second-order backward differentiation formula (BDF2) for temporal approximation; also see
the related works [19,58] for the isotropic model. The details of the second-order schemes will be left to future investiga-
tions.

4. Convergence analysis

The following estimate is needed in the convergence analysis; its proof will be provided in Appendix B.

Lemma 4.1. For any p;, p, € R3,
k k k &
Ing ) - 0pg¥ o] = (DI - DY) @1+ DY Y Gl k=12, i=1.23, (41)
j=1

where q :=p, — p1.
We will assume from this point forward that Bg” = 12—5 and BE)Z) =12, so that

(k) () (k)
By =Dy’ +2D,".
In this section, we look at the region of sufficiently small «, i.e.,
Yo :=(1—3a)% — (8a?BY +4a|1 - 3a|B{") > 0. (4.2)
In this case A, = 0. It was proved in the related work [43] that, a global in time weak solution (in the variational form)
could be established with an ngr initial data, if a Willmore regularization is applied. The PDE solution with higher order
regularity could also be derived using certain local in time analysis techniques: for any ngl. initial data (with m > 2), there
is a solution with a local-in-time H™ estimate. In addition, the model without Willmore regularization could be analyzed in

a similar manner, under a requirement of sufficiently small «, such as (4.2). In this region, the following convergence result
is valid assuming that the PDE solution has sufficient regularity.

Theorem 4.2. Let ® be the exact periodic solution of the anisotropic CH equation (1.3) with the initial data ®(0) = ¢o € ng”ﬂ.(Q),
with m sufficiently large. For the parameter « satisfying condition (4.2), suppose ¢ is the space-continuous numerical solution of (3.1)
—(3.2). Then the following error estimate is valid:

”d) - ¢||[00(0’T;H;e1r) + ”q> - ¢||[2(07T;H11Je‘.) < CAt, (43)

where the constant C > 0 is independent of At but depends on the regularity of the exact solution, the equation parameters, € and «,
and the final time T, where it is assumed that T = At - N, for some positive integer Nt.

Proof. Define ® = ®(-, t;). A detailed Taylor expansion implies the following truncation error:

¢)n+1 — "

=A@ — 0" — (1 - 30)262 40" — Ape? A(O™ - 07

—e2v. (4a(1 —30)V,g " (Vo") + 82V, g@ (v¢”))) +n, (4.4)
with |[7"| < CAt. Consequently, with an introduction of the error function

ek =k — gk k=0,1,2, -, (4.5)

we get the following evolutionary equation, by subtracting (3.1)-(3.2) from (4.4):
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en-H _ el

N — A(((QH'H)Z + (Dn+1¢n+1 + (¢n+1)2> el _ o

—(1=3)2e2Ae™! — Aye? A" — e
-2V (4a(1 - 3a)(vp gV von) - vpg<”(v¢>”))
+802(Vpg@ (VO™ — Vg @ (V")) + ", (46)

Meanwhile, we recall that the exact solution to the CH equation (1.3) is mass conservative:

/CD(x, t)dxz/@(x, 0)dx, Vt>O0.
Q Q

On the other hand, the numerical solution (3.1)-(3.2) is also mass conservative. In turn, we conclude that the numerical
error function e¥ e Flpl,el.(Q), that is, it has zero mean:

/ ekd /e =0, since e’=0. (4.7)
Tl el

Consequently, we define v := (—A)~lek e FI;elr(Q) via
—Axpk =ek,  where / l/fk dx=0.
Q

Taking the L? inner product of the error equation (4.6) with 2y"*! gives
le™ Iy — eIy +1le™ ! — eIy +2(1 = 3en’e At Vet ?
Hper Hper Hpef
—2A28? At (AT —e™), e")
_ _2At<((®n+1)2 @t 4 (¢n+1)2) et en+1) £ 2ALEN, e £ 2AL(T", YY)
—8a(1— 3a)52At(vpg<1>(vq>") — VgD (g, Ve"+1)
—16(1282At(vpg(2)(v(bn) — Y, g (V™. Ve"“), (48)

where integration-by-parts has been repeatedly applied.
The following inequality is valid for the last term on the left hand side:

1
_ (A(en+1 _ en)’ eﬂ"rl) — (V(e”"rl _ en)’ Ven"rl) > 5(”Ven"rl ”2 _ ||V€n||2). (4-9)

The first term on the right hand side is always non-positive:
_(<(¢n+1)2 o tlgntl 4 (¢n+1)2> o1 en+1) <0 (4.10)

due to the fact that a® +ab + b? > 0 for any a, b € R. For the concave (expansive) term, the estimate is standard:

1
(", e < —<||e"||2 + [le"t )12

Vo
——(IVe"|* + [ ver|? >+4 (||e"+1|| e, (411)

in which the following interpolation inequality has been applied in the last step:

_ Yoé
ek = (vek, v(—a)Tek) < ||Vek||~||e"||H4 <—||Ve P24 ||e"||

270 1€ Wiy (4.12)

for k =n,n + 1. The local truncation error term could also be bounded in a straightforward way:

@YD < T g VYT = T gy e e < 5 (||e"“||H1+||r i) (413)
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The rest of the proof is focused on the estimates for the nonlinear error terms. We begin with the following expansion

3
—(Vog® (Vo) — Vg (V). Vert) = — 3" (3,80 (Vo) — 8, gV (V™). tyge™ ), (414)
j=1

for k=1, 2. Applying Lemma 4.1, we get, for k=1, 2,

|(%e®vom - g (v, vert!)|

(k)
k
< 3= (IVe" | + Vet + DY (Ve |2 4 Vet |?)

gk
= %(IIW”IIZ +Ive™ 12, (4.15)

due to the fact that B((]k) = ng) + 2D§k).
Subsequently, a combination of (4.8), (4.9), (4.10), (4.11), (4.13), and (4.15) yields

le™ 12 — e 12, + Aa (Ve — [ ve'|?)
per per
+32Ar(2(1 ~30)? — 4|1 — 30| — 80?B2 — %)Wenﬂ 2

< szAt(4a|1 —3a|By” + 8a?By + %) Ve |?

+ (% + 1) AL Iy + eI, ) + AT - (416)
Meanwhile, under condition (4.2), we see that
(201 = 3002 — 41 - 3018y — 8028 = 22) - (4al1 3B + 808 + ) = y0 > 0.
(417)
Summation of (4.16) in time gives
n+1
e g, + A2l Ve T2+ yosZ ALy Vel
k=0
o2 n+1 ‘) n+1 ‘)
< (% +2> Atgne ||1:11§e1r+At§”t [P (4.18)

Finally, an application of discrete Gronwall inequality leads to an £°°(0, T; IiIl;elr) Ne%0, T; Hg,er) convergence of the numer-
ical scheme (3.1)-(3.2):

n+1
le™ 12, +y0e? ALY [VeF|? < car, (4.19)
Hper
k=0
for any 1 <n+1 < N7, where T = At - Nt. Note that the constant C > 0 depends on the exact solution, the physical
parameters ¢ and «, and the final time T, but is independent on At. The proof of the theorem is completed. O

5. Strong anisotropy and missing orientations

For sufficiently large «, the system is strongly anisotropic, and the associated anisotropic Cahn-Hilliard equation may
become ill-posed. Furthermore, the equilibrium shape would have missing orientations without appropriate regularization.
With respect to modeling, this is desirable, since crystals with missing orientations are observed in nature. To overcome
the difficulty with ill-posedness, a Willmore or biharmonic regularization is usually added. The biharmonic regularization
is simpler, and it is may be more preferred [51,54,56] when using the Kobayoshi-type anisotropy model [41]. With such a
regularization the total energy functional is given by

_ 1 5 2, € ) 2 pe? 2
E(¢) = Z(tﬁ -1 +?V (m)|Ve| dX+T (Ap)“dx, (5.1)
Q

Q
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and the PDE system becomes

hp=Ap, pu=¢>—¢p—ev- (yz(mw - y<n>|V¢|PVny<n>) + B> A% (5.2)

Since fQ(AdJ)ZdX is strictly convex, the convex-concave decomposition for the total energy functional (5.1), with bihar-
monic regularization, is given by E(¢) = Ec(¢) — E¢(¢), with

(1.4 1 & ) ,  Bé&? )
Ee@) = [ (364 5+ 5 =37 + AiveP + 2289 ax, (53)
Q
1 2
E0) = [ (362 + 5 (-Es(@) + A21VoP) ) . (5.4)
Q

where both E. and E. are convex.
Again, we avoid a direct application of convex splitting. Following similar ideas in the design of the numerical scheme
(3.1) = (3.2), we present the following semi-implicit, first-order-in-time numerical scheme:

¢n+1 _(pn _ el n
= Ar@" e, (5:5)
M(¢I’l+1, ¢n) — (¢n+1)3 _ d)n _ (l _ 3a)282A¢n+1 +’382A2¢n+1 _ A282A(¢n+1 _ d)n)
—e2v. (4a(1 —3a0)VpgD(Ve") + sazvpg<2)(v¢”)). (5.6)

The unique solvability and unconditional energy stability could be similarly established as in Theorem 3.1; the details are
skipped for the sake of brevity.

Theorem 5.1. The proposed numerical scheme (5.5) - (5.6) is uniquely solvable and unconditionally energy stable, that is, E(¢"*1) <
E(¢™), for any o > 0, provided BE)D = % BE)Z) =12, and

N 1 A
Ay = max(4a23§)2) +2a]1 - 3a/B) - S(1-30)%, o) _ 71

where A1 is given by (2.18).

The convergence result is established in the next theorem, for any « > 0, even the for the strongly anisotropic regime.
The PDE solution with H? regularity has been established in [43], for the Willmore regularization with any 8 > 0. The
analysis with the biharmonic regularization is expected to be more straightforward. Moreover, higher order H™ estimates
would become available with the help of certain local in time analysis techniques.

Theorem 5.2. Let ® be the exact periodic solution of the anisotropic CH equation with the biharmonic regularization, with the initial

data ®(0) =¢p € Hg‘er(Q), with m sufficiently large. Suppose that o > 0 is arbitrary, but A; is chosen as in the last theorem. Suppose

¢ is the space-continuous numerical solution of (5.5) - (5.6). Then the following error estimate is valid:

||¢) - ¢”[°C(0-T?nglr) + ”q) - ¢”Z2(07T§ngr) < CAt7 (57)

where the constant C > 0 is independent of At but depends on the regularity of the exact solution, the equation parameters, €, ., and
B, and the final time T, where it is assumed that T = At - N, for some positive integer Nt.

Proof. The proof follows the same idea as the one for Theorem 4.2, with only an addition of the bi-harmonic surface
diffusion term. For simplicity of presentation, we use the same notations as in the proof of Theorem 4.2.
A detailed Taylor expansion gives the following truncation error
<I>"+1 —on ~
— = A((q>”+1)3 —@" — (1-3a)’? A" + B2 A" — Ape? A(@"H! — ")
_g? _ M n 2 ) n n
eV (4a(1 -3a)Vpg ' (Vo") +8a Vg (Vo) ) ) + 17, (5.8)

with |[7"| < CAt. Subsequently, subtracting (5.5)-(5.6) from (5.8) gives
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en+1 _el

: — A(<(¢n+1)2 + (Dn+l¢n+1 + (¢n+1)2> en+1 _en

_(l _ 3a)282Aen+1 +ﬂ82A26n+1 _ AzEZA(en-H _ en)
—e2V. (4a(1 — 3a)(vpg<”(vq>") — vpg<”(v¢"))
4802 (vpg@ (Vo) — vpg@)(v«p”))) o (5.9)
In turn, taking an L2 inner product of the error equation (5.9) with 2¢/"+! gives
1™y = lle" Iy + le™ ! —e"IFy +2(1 = 3)?e® Ar| Ve 2
Hper Hper Hper
+2Be* At AGMT2 — 2Ar82 At (A" — ™), e"tT)
_ —2At<((d>”+1)2 T+ ontlgntl 4 (¢n+1)2) e+, en+1) £ 2ALE", e 4 2A¢(2", YY)

—8ar(1 - 3w)e2At( VgV (VO™ — VgD (Vg™ vertt)

—16a282At(Vpg(2) (Vo) — Vpg@ (V") Ve"“). (5.10)
Estimates (4.9), (4.10), (4.13), and (4.15) are still valid, and inequality (4.11) could be modified as
82 8_2
(", "y < —(IVe"|I> + IVe™ %) + —(lle" A, + e 1% 0)- (5.11)
4 4 Hper Hper

A substitution of all these inequalities into (5.10) yields
1™ Iy — €™l + A2e?(IVe™ |12 — [ Ve"|?) +28e> At A" |2
Hper Hper

2
~ ~ &
<2 AtCrIVe™ |2 + G| Ve"|?) + (7 + 1) ALl I + Nl )

+AtIT"A
Hpelr

(5.12)
where

C1:=[2(1 - 3w)? — 4|1 — 3a|B{" — 8B — %‘
and

Cy :=4a|1 —3a|BY’ +8a*BY + %

Meanwhile, based on the Sobolev interpolation inequality, |V f|l < | f ||:{i -IIAf|I3/3, we are able to apply Young's inequality
per

and obtain
= N1y 2 _ A ponly2/3 n+14/3 B2 2 B n+ig2
CllVe™ 17 < Colle™ 11, 5 - 1Ae™ %7 < —3 el +5||A€ [ (5.13)
per per
= np2 — Foenp2/3 iz~ GB B nny2
GlIve'||* < Calle ||H;e1r~||A€ 177 < 3 le ||F,_1_+§||A€ = (5.14)

Going back to (5.12), we arrive at
- 3 1
™ % = eI + A2(IVem T2 — Ve ) + S pe? At Ag" T2 — o pet Al Ag"|?
per per

—2 =3 | 23yp-2.2

£ (CT+C)B~%¢
<|Z— 41277 " 1) A3 3. At . 515
_< 3 + 3 + (l ||Hpell_+|| ”Hpel.-)+ Il ”Hpell_ (5.15)

Consequently, an application of discrete Gronwall inequality leads to the desired convergence estimate of the numerical
scheme (5.5)-(5.6), in the £%°(0, T; 111;611.) N€*(0, T; Hpep) norm:
n+1
™12 + B’ Aty [l Aek|? < CAl?, (5.16)
Hper
k=0
for any 1 <n+ 1 < Nr. The proof of the theorem is complete. [
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Remark 5.3. Utilizing the test function (—A)~le™1 an ¢°°(0, T; Iilgelr) n EZ(O,T;HE,er) error estimate is reported in
Theorem 4.2. For the anisotropic model with bi-harmonic regularization, the convergence has been improved to an
£°°(0, T, Iilgelr) N ¢2(0, T; ngr) error estimate, due to the bi-harmonic surface diffusion. Moreover, with an alternate test
function given by e"t1 an £°°(0, T; ¢2) N ¢2(0, T; lejer) error estimate for the proposed numerical scheme, as well as an
£2°(0, T; €%) N €2(0, T; ngr) error estimate for the model with bi-harmonic regularization, is expected. However, the non-
linear error estimates have to be performed in a much more delicate way, and the details are left to future works.

6. A fully discrete scheme
6.1. Fourier pseudo-spectral approximation

The Fourier pseudo-spectral method, also referred as the Fourier collocation spectral method, is closely related to the
Fourier spectral Galerkin method. However, different from the latter setting, a function can be represented on a grid, which,
in turn, simplifies the evaluation of certain operators, and can considerably speed up the calculation when using fast algo-
rithms such as the fast Fourier transform (FFT). See, for example, the descriptions in [3,8,18,21,22,32-34,39].

For simplify of presentation, we assume that the domain is given by € = (0,1)3, Ny = Ny=N;=NeNand N-h=1.
We further assume that N is odd: N = 2K + 1, for some K € N. The analyses for more general cases are a bit more
tedious, but can be carried out without essential difficulty. The spatial variables are evaluated on the standard 3D numerical
grid Qy, which is defined by grid points (x;, yj, zx), with x; =ih, y; = jh, zx =kh, 0 <1i, j,k < 2K + 1. This description for
three-dimensional mesh (d = 3) can be trivially modified for the two-dimensional case (d = 2). In addition, the grid function
space is defined as

gN = [f (73 >R ‘ fis QN—periodic] . (6.1)

Given any periodic grid functions f, g € Gy, the ¢2 inner product and norm are defined as

N-1
(f.8):=h " fijk- gijk Iflz:=V(F, f). (6.2)
i,j,k=0

The zero-mean grid function subspace is denoted Gy := {f €gn ‘ (f,y=f= 0}. For f € Gn, we have the discrete Fourier
expansion

K
fiik=Y_  [lunexp(2mitxi +my;+nz)), (6.3)
t,mn=—K

in which the discrete Fourier coefficients are given by

N—1
fﬁ’m,n =h3 Z fi jrexp (=27 (€x; +mx;j +nxy)) . (6.4)
i.j.k=0

The collocation Fourier spectral first and second order derivatives of f are defined as

K
Difijii= Y. @mit) fl, exp(2mitexi +myj+nzy)), (6.5)
£,mn=—K
K
Difijki= Y. (—47#@2) BN aexp (2mi(ex; +my; +nzp)) . (6.6)
¢.mn=—K

The differentiation operators in the y and z directions, Dy, Df,, D, and D? can be defined in the same fashion. In turn, the
discrete Laplacian, gradient and divergence operators are given by

Dy f fi
Anf=(DE+D+D2)f, Infi=|Dyf |, V| f2 | =Defi 4Dy +Dufs, (67)
D, f f3

at the point-wise level. It is straightforward to verify that

VN-VNf=ANS. (6.8)
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In addition, the following summation-by-parts formulas are valid (see the related discussions in [11,14,33,34]): for any
periodic grid functions f, g € Gy,

(f.Ang)=—(Vif.Vng). (F.A%g)=(AnS Ang). (69)

Definition 6.1. Suppose that the grid function f € Gy has the discrete Fourier expansion (6.3). Its spectral extension into the
trigonometric polynomial space Pk (the space of trigonometric polynomials of degree at most K) is defined as

K
fsy. 2= Y [l aexpQmi(ex+my +n2)). (6.10)
t,mn=—K

We write Sy(f) = fs and call Sy : Gy — Pk the spectral interpolation operator. Suppose g € Cper(€2, R). We define the grid
projection Qp : Cper(2, R) — Gy via

QN(®)ijk = &(Xis ¥js Zk)- (6.11)
The resultant grid function may, of course, be expressed as a discrete Fourier expansion:

K
——N
QN@ijk= D QN(@¢mnexp (2Tilx; +my;+nz)).

£,m,n=—K
We define the de-aliasing operator Ry : Cper(£2, R) — Pk via Ry := Sn(Qn). In other words,

K
Rn(g)(x, ¥,2) = Z @Zm,nexp(zm(ex—kmyﬁ—nz)). (6.12)

¢.mn=—K
Finally, for any g € L2($2, R), we define the (standard) Fourier projection operator Py : L2(§2, R) — Pk via

K
PNOX Y, )= Y Bemnexpui(tx+my+nz)),

¢,mn=—K

where

Eemn = / g(X,y,2) exp (—2mi (€x + my + nz)) dx,
Q

are the (standard) Fourier coefficients.
Remark 6.2. Note that, in general, for g € Cper(2, R), Pn(g) # Rn(g), and, in particular,
R _—N
g(i,m,n 75 QN(g)Lm‘n'
_—_N
However, if g € Pk to begin with, then g mn= QN(&)¢.m.n- In other words, Ry : Px — P is the identity operator.

To overcome a key difficulty associated with the H™ bound of the nonlinear term obtained by collocation interpolation,
the following lemma is introduced.

Lemma 6.3. Suppose that m and K are non-negative integers, and, as before, assume that N = 2K + 1. For any ¢ € Pny in RY, we
have the estimate

d
IRN (@)l gr <m2 |l@llgr, (6.13)

for any non-negative integer r.

See the recent article by Gottlieb and Wang [34] for a proof of the last result. The proof of the following estimate can be
found in [8].

Proposition 6.4. Suppose that ¢ € H g‘er(Q) and m > %. Then, there is some constant C > 0, such that

I = Rn(@)llx < Cligllumh™ ¥, for 0<k<m. (6.14)
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We also note the following identity:

Proposition 6.5. Suppose that ¢ € Cper(£2). Then

DxQn(9) = An (xRN (). (6.15)

Similar identities are available to the higher order derivatives.

In addition, we introduce the discrete fractional operator (—Ay)? (with y > 0):

K
AN fijr= Y (4n2(zz+m2+n2))yf;j’m‘nexp(zm(exi+myj+nzk)), (6.16)

£,mn=—K

for a grid function f with the discrete Fourier expansion as (6.3). Similarly, for a grid function f € Gy of (discrete) mean
zero, a discrete version of the operator (—A)~Y may be defined as

K
(AN fijk= Z (4712(152 +m®+ nz)) Y fé\,’m’n exp (2mi(¢x; +myj+nzy)). (6.17)
,mn=—K
(€,m,n)£0
Observe that, in this way of defining the inverse operator, the result is a periodic grid function of zero mean, ie,
(=AN)TY f €Gn.
Detailed calculations show that the following summation-by-parts formulas are valid (see the related discussions in [11,
14,33,34]): for any periodic grid functions f, g € Gy,

(f. Ang)=—(Ynf.Vng), (f A%g)=(Anf Ang), (f. A%g)=—(YnANS Vnang). (618)
We need a discrete version of the norm | - ||;-1 defined on Gn. For any f, g € Gy, we define
(o) ={f, (—an g =(-an 2 f.(—an ), (619)
so that the || - [|-1,y norm could be introduced as

LFl-n =V )=l (—=AN) "2 flla. (6.20)

In addition to the standard ¢2 norm, we also introduce the ¢P, 1 < p < oo, and £ norms for a grid function f € Gy:

N—-1

1
o= maxfiud, 1flpe= (1 32 1ijal”)", 1p<co (6:21)

i,j,k=0

The discrete H! and H2 norms are introduced as

WUy =IFUS + IV FIZ, UF IR =1 F G + IANFI3. (622)
For any ¢ € Gy, the discrete energy for the regularized system (5.1) is defined as

En(¢) = }lumli{ - %lwné + %|sz| + Esn(9) + 5782 IANgl3. (6.23)
where

Es.n(®) == (1—3a)?|Vnoll2 + 8ar(1 — 3a)(gV (VNg). 1) + 16a* (g2 (V). 1). (6.24)

6.2. The fully discrete scheme and theoretical results

For simplicity of presentation, we focus on the strongly anisotropic Cahn-Hilliard system (5.1), in which a biharmonic
regularization term is included. The case without such a regularization could be handled in the same way, and we skip it
for the sake of brevity.

Following similar ideas as in the semi-discrete scheme (5.5)-(5.6), we come up with the fully discrete one, with Fourier
pseudo-spectral spatial approximation:



18 K. Cheng et al. / Journal of Computational Physics 405 (2020) 109109

n+1 _ 4n
T =A™ 9", (6.25)
U@L M = @) = 9" — (1 =3’ Ang™ + B2 ARG — Ape Ay (™! — ")
—&2Vy - (4a(1 —30)V,g D (Vyo") + 8a2Vpg(2)(VN¢”)>. (6.26)

The unique solvability and unconditional energy stability estimates follow similar ideas as in the analysis presented in
Theorems 3.1, 5.1. In particular, the summation by parts formulas (6.18) have greatly helped the fully discrete analysis. The
technical details are left for interested readers.

Theorem 6.6. The proposed numerical scheme (6.25)-(6.26) is uniquely solvable and unconditionally energy stable: Ey(¢™1) <

En(o™).

Before the statement of the convergence analysis for the fully discrete scheme, we define ®y(-,t) :=PnyP1(-,t) as the
(spatial) Fourier projection of the exact solution into BX, the space of trigonometric polynomials of degree to and including
K (with N =2K + 1). The initial data for the numerical scheme (6.25)-(6.26) is taken as the point-wise interpolation of
oy at t=0; ¢0 =Ppon(-,t=0), ie, ¢i(?j,k = ®N(Xj, ¥j, Zk, t = 0). In turn, the || - || -1,y norm is well defined for the error
function between the numerical solution ¢" and the exact projection solution ®y.

The convergence result is available for any o > 0; the technical details are left for interested readers. With initial data
with sufficient regularity, we could assume that the exact solution has regularity of class R:

€ R i= H? (0, T Cper () NH' (0,3 Cler()) N1 (0, T3 HILE()). (6.27)

per

Theorem 6.7. Let ® be the exact periodic solution with of the anisotropic CH equation with the bi-harmonic regularization, with the
initial data ®(0) = ¢g € HBE;G(Q), and with the regularity class R given by (6.27). For any o > 0, suppose ¢ is the fully discrete
numerical solution of (6.25) - (6.26). Then the following error estimate is valid:

n 1/2
19 = @1 + (B2AL Y IVN(@N = 9)I3) = C(AL+h™), (6.28)
k=0

where the constant C > 0 is independent of At and h but depends on the regularity of the exact solution.
7. Numerical results
7.1. Convergence test for the numerical scheme

In this subsection we perform some numerical tests to verify the accuracy order of the proposed numerical
scheme (6.25)-(6.26), including the one with 8 =0 for « = 0.02 (so that (4.2) is satisfied), and the one with biharmonic
regularization coefficient 8 = 1, for an increasing value o = 0.2. The explicit treatment for the nonlinear singular parts g(»
and g@ in the surface diffusion part has greatly improved the numerical efficiency; only a weakly nonlinear term, ¢3,
needs to be handled at each time step. In this work, we make use of a preconditioned steepest descent (PSD) solver [30] to
implement the proposed numerical schemes. Such a solver turns out to be highly efficient, because of its weakly nonlinear
nature; the search direction and Poisson-like equations can be solved by using the FFT-based algorithms.

To test the convergence rate, we choose the following exact solution for (1.3) on the square domain Q = (0, 1)*:

Pe(x,y,t) = % sin(27rx) cos(2m y) cos(t). (7.1)

The physical parameters are set as &€ = 0.5, o = 0.02, and we choose the artificial diffusion coefficient given by A, =
max(4a2362) +2a|1 — 3a|BBl) - %(1 —3w)2, 0) = %. The final time is taken as T = 1.
Due to the spectral accuracy in space, we focus on the convergence test for the temporal numerical error. In turn, we

fix the spatial resolution as N = 256 so that the numerical error is dominated by the temporal ones. We compute solutions
with a sequence of time step sizes, At = NLT with Nt =100 to Nt = 800 in increments of 100, and the same final time

T = 1. The left part of Fig. 1 shows the discrete ¢2 norms of the errors between the numerical solution (6.25)-(6.26) (with
B =0) and exact solution (1.3) (with force terms). To obtain a precise accuracy order, we also present the least square
approximation to the CNy I curve, displayed as the straight line in the figure. A careful calculation reveals the slope as
—0.9989, so that a clear first order accuracy is demonstrated.

With an increasing value of o = 0.2, the system becomes strongly anisotropic, and we use the physical energy (5.1) with
biharmonic regularization. The same initial data (7.1), as well as the same physical parameters, are taken. The biharmonic
regularization coefficient is set as § =1 in the convergence test. Again, we fix the spatial resolution as N =256 to explore
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Numerical error
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N; N,

Fig. 1. Left: Discrete ¢2 numerical errors for the phase variable at T = 1, plotted versus Ny, the number of time steps, for the numerical scheme (6.25)~(6.26)
with B =0, « = 0.02. Right: The corresponding numerical errors for the fully discrete numerical scheme (6.25)-(6.26), with 8 =1, a = 0.2. The spatial
resolution is fixed as N =256. The star line represents the numerical error plot versus Nt, while the straight line is the least square approximation to the
CNy 1 curve. The least square slope is calculated as —0.9989 —0.9987, respectively. These constants have confirmed the first-order temporal accuracy of
the proposed scheme.

the temporal accuracy, and the solutions with a sequence of time step sizes: At = NLT (with Nt =100 to Nt = 800), are

computed with the same final time T = 1. The right part of Fig. 1 shows The discrete ¢2 norms of the errors between the
numerical solution (6.25)-(6.26) (with 8 = 1) and exact solution (5.2). Similarly, we display the least square approximation
to the CN ! curve as the straight line, and the numerical evidence reveals the slope as —0.9986. Again, an obvious first
order accuracy is verified.

In the numerical convergence test, an order O(1) value of B is chosen for the biharmonic regularization coefficient,
which leads to a perfect accuracy order. For a smaller value of 8, the convergence test becomes available only in a shorter
time interval, since the convergence constants presented in the estimate (6.28) is of the form of exp(CTB 'e~2). As the
time scale passes through O(Be2), the convergence estimate for a fixed time instant may not be observable, while the
numerical stability still persists. Meanwhile, extensive numerical simulation results have demonstrated the long time average
agreement with certain physical laws for various gradient flows in the large time scale computations with smaller values of
B and €, provided that the numerical method is energy stable; see the related works for the no-slope-selection thin film
growth model [11,14,20], etc. These numerical experiments have in turn demonstrated the importance of energy stability of
the algorithm, since it is a uniform-in-time property.

7.2. Numerical simulation of anisotropic flow with biharmonic regularization

We perform numerical simulation for the anisotropic Cahn-Hilliard system (5.2) with the biharmonic regularization. The
physical parameters are chosen as: Q = (0, 3.2)%, € = 0.03, « = 0.2, and initial data for the simulation are set as

(x—x0)2+ (y —y0)® — 10
0.25¢

The biharmonic regularization coefficient is set as g = 0.0005, and we take the temporal step size as At =1073. The
time snapshots of the evolution computed by the proposed numerical scheme (6.25)-(6.26), with spatial resolution 5122,
are presented in Figs. 2. These results demonstrate the combined effects of anisotropy and coarsening; the circular profile
evolves to an anisotropic shape with missing orientation at the four corners.

X, y.t =0) = —tanh( ) with xo = yo = 1.6, 7o = 0.8. (7.2)

7.3. Impact of the biharmonic regularization parameter

The impact of the biharmonic regularization parameter 8 has attracted a great deal of attentions in recent years. In
the two-dimensional numerical simulation using the initial data given by (7.2), we take a sequence of parameters: § =
0.004, 0.002, 0.001 and 0.0005. The other physical parameters are taken the same as in Fig. 2: & = 0.03, Q = (0, 3.2)2.
A comparison of the simulation solutions around the left corner at t = 30, using different regularization parameters, is
displayed in Fig. 3. Such a numerical experiment has demonstrated similar behavior reported in [17,56]: the basic structure
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t=0.05 t=0.1 t=30.0

Fig. 2. Time snapshots of the evolution for the anisotropic Cahn-Hilliard model, with & = 0.2 and biharmonic regularization coefficient 8 = 0.0005. The
time sequence for the snapshots is set as t = 0.05, 0.1, and 30. The parameters are ¢ =0.03, Q = (0, 3.2)2.

25

—— 5=0.005
248 - —-—-p=001 ||

23 \ \ \ \ \ \ \ \ \

1.35 14 1.45 1.5 1.55 1.6 1.65 1.7 1.75 1.8 1.85

Fig. 3. Comparison of the ¢ = 0.0 iso-contour plots for numerical solutions obtained with four different corner regularization parameters, g = 0.004, 0.002,
0.001 and 0.0005, at t = 30. The initial data is given by (7.2), and the other physical parameters are set as ¢ = 0.03, Q = (0, 3.2). As the regularization
parameter is decreased, the equilibrium ¢ = 0 iso-contour approaches the Wulff shape, which in this case of strong anisotropy has missing orientations. In
particular, a sharp corner would appear in the Wulff shape at x=1.6 [56].

patterns are similar, while smaller regularization coefficient leads to less numerical smearing and sharper profile around the
corner area.

7.4. Simulation results using an eight-fold symmetric anisotropic function

As one more example, we present the dynamics of the initial value (7.2) using an eight-fold symmetric anisotropic
function [16,17,45,48]

d
ym=1+a(8 6nf — 1008 +n) +9). (7.3)
i=1

The physical parameters are set as: &€ = 0.03, o = 0.2, 8 = 0.002, At = 10~%. The time snapshots of the evolution
computed by the proposed numerical scheme (6.25) - (6.26), with spatial resolution 5122, are presented in Figs. 4. An
octagonal shape has been clearly observed.

For the eight-fold anisotropy structure function (7.3), a similar convexity analysis could be performed as in Lemma 2.1,
since all the second order derivatives associated with the terms I's and I's are bounded. These bounds will lead to an
alternate artificial coefficient A, as in (6.26), which assures an energy stability at a theoretical level. In the practical com-
putations, extensive numerical experiments have indicated that a choice of A, = 10 is sufficient for the energy stability.
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t=0.05 t=1.0 t =30.0

Fig. 4. Time snapshots of the evolution for the anisotropic Cahn-Hilliard model, with an eight-fold symmetric anisotropic function (7.3). The time sequence
for the snapshots is set as t = 0.05, 1,5 and 30. The parameters are £ = 0.03, @ = 0.2, Q = (0, 3.2)%.

Fig. 5. The evolutionary surface plots of ¢ =0 for the 3-D anisotropic Cahn-Hilliard model, with a four-fold symmetric anisotropic function and initial
data (7.4). The time sequence for the snapshots is set as t = 0.05,0.1, 1 and 10. The parameters are &€ = 0.03, @ =0.2, = (0, 3.2)3.

7.5. Three-dimensional simulation results

Finally, we present three-dimensional (3-D) numerical simulation results using the four-fold anisotropic function (1.1).
The initial data are given by

(x —x0)* + (y — yo)? + (z — 20)* — fo)

d(x,y,z,t=0)= —tanh( 0252

(7.4)
with xo = yo = z9 = 1.6, 79 = 0.8. The physical parameters are set as: & = 0.03, o = 0.2, 8 = 0.0005, At =103, The
evolutionary surface plots of ¢ =0 for the numerical solution computed by the proposed numerical scheme (6.25) - (6.26),
with spatial resolution 1923, are presented in Figs. 5.

8. Concluding remarks

In this article, we propose and analyze an energy stable numerical scheme for the strongly anisotropic Cahn-Hilliard
model. To overcome a well-known difficulty associated with the highly nonlinear and singular nature of the anisotropic
surface energy, we perform a convexity analysis to the surface energy potential. In more details, a careful estimate reveals
that all its second order functional derivatives are uniformly bounded by a global constant. Because of this fact, we are able
to treat the nonlinear surface energy part by an explicit method, while preserving the energy stability, via an approach of
Doulas-Dupont type regularization. Such an explicit treatment greatly improves the computational efficiency. In addition, its
combination with a semi-implicit, energy stable approximation to the double-well potential part leads to a weakly nonlinear
numerical scheme. Furthermore, such an energy stability is in terms of the energy potential in the original phase variable,
and no auxiliary variable needs to be introduced. With a careful application of the global bound for the second order func-
tional derivatives, an optimal rate convergence analysis becomes available for the proposed numerical scheme, which is the
first such result in this area. For a Cahn-Hilliard system with increasing anisotropic parameter ¢, a biharmonic regulariza-
tion is introduced to make the equation well-posed, and the proposed numerical scheme turns out to be uniquely solvable,
energy stable and convergent. The Fourier pseudo-spectral spatial approximation is chosen as the spatial discretization, and
all the theoretical results has been extended for the fully discrete scheme. A few numerical results have also been presented
in this work, including the convergence test, simulation results of strongly anisotropic system, numerical investigation of
the impact of the biharmonic regularization parameters, etc.
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Appendix A. Proof of Lemma 2.1

For simplicity of presentation, we set x = xj, ¥y = X, z = x3. First, we recall the expansion formulas for (x> + y2 + z

with 2 <k <5:

& +y + 22 =xt+yt + 2 2Py X0+ YR,

R +y?+223 =20+ 8 + 28 132 + X022 + X2y + X%+ Y + Y22t 6%y

@ +y2+ D =8+ yB + 2+ 48y + 252 + x%y0 + %228 + y822 + y?2F)
+6(x*y* + x4 24 + vzt + 12?2 + X2y + P yP Y,

@+ y2+ 225 =x104 y10 4 210 4 58 y? + x822 + ¥y + 225 4 Y822 + y22B)
1005y 1 X574 4 x4y + 425 4 Y574 1 45
+20(x8y?2% + X2 Y522 + x?y220) + 30(x*yA 22 + x*y2 2t + P yiY).

In addition, the following preliminary estimates are needed in the proof of the two lemmas.

Lemma Al Let x = (x, y, z) € R3, and define the following polynomials:
1@ =8xy(=2x°y* — y*2* —x’2 + 2%,
fa(x) =2x5 — 2% — 220 4 6x* (2 + 22) + 18x° (v* + 2%) + 24x%y? 22 — 2(y*2 + 274,
f3(x) = 8xy(3y4 +62* —6x%2% — 3yzz2 - 9x2y2),
fa(x) =8xy> (x* + 4x?y? + 4x*2%2 — 3y* — 37,
fs(x) = —6x° — 6y5 — 620 — 30x*(y? + 2%) + 66X (y* + 2%) + 48x%y%2? — 6(y* 2% + y*2h),
fo(x) = 8x*(x* + 4x?y? + 4x?2% — 3y* — 374,
F1@) = & +y* + 25 + a@ & +y* +2%)
= 8xy (—8x6y2 — 8x2y6 + 8x4y4 + (6x* + Gy4 — 8x2y2)z4
62 + y2)25 + (—6x° — 6y5 + 2x3y? + 242 y4)z2),
fs® = fs@* +y* +2H + fe@)* + y* + 2%
=2x10— Gyw — 6210+ 10(xsy2 +x822) + 66(xzy8 + xzzs) — G(ygz2 + yzzs)
+68(x0y* +x82%) — 60(x*y® + x*2%) — 6(y%2* + y*25)
+80x%y% 2% + 48x? Y022 + 48x° y? 28 — 60x*(y* 2% + y?7*) + 66x° y* 74,
Then we have
|1 <202+ y* +2°)°,
7
@) <56 +y + 22,
|f70)] <3(* + y* +2%)°,
|f3@®)] <6+ y* +2°)°.
Proof. For f1(x), we begin with the following observation
|[i®)] 161° Y3 | +4(3 + y?) |-y* 2 — X2 + 2%,

in which the following inequality has been applied in the second part:

Z)k

(A1)
(A2)

(A3)

(A4)

(A11)

(A12)

(A13)
(A14)

(A15)
(A.16)

(A17)
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I8xy| < 4(x* + y?). (A18)
For the first part, we make use of the Cauchy inequality:
L4y =218y and 3(y? +x%yh = 617,
so that
161x°y3| < 2(x + y8 + 3x*y? + 3% y%) = 2(x% + y?)°. (A19)
For the second part, we make the following observation:
A2 +y))| -y 2 =2 + 2| <A + Y2 (P + y 4+ 2
=4(x* 4+ y2)? 22 + 4x* + yH) . (A.20)
Therefore, a combination of (A.17), (A.19) and (A.20) yields
[1@] <262 +y*)° +463 +y*)?2° + 46 + yH2*
<202+ y*+ 223 =22 + y2)P + 6% + y2)2 2% + 6(x% + yH) 2 + 225, (A21)

so that inequality (A.14) is proved.
For f,(x), we first establish a lower bound:

fo®) = =2y° = 22° —2(y*2% + y?2h) = —2(¢ + y* + 2°)°, (A22)
where the expansion (A.2) has been utilized. To obtain an upper bound for f,(x), we look at the following expansion:

7

S+ Y2 +2)’ — o)

3 11 9 15
=Zx5+ 7(y6 +25 + ix“(y2 + 2% - 7x2(y4 + z%) — 3x%y%7?

2

25

+7(y422 + y%zh. (A23)

Furthermore, an application of the Cauchy inequality indicates that

342,3024_3222 342,342 3222
—X -yt > =Xx“y°z°, =Xz —y7zc > =Xx“y°z°, A24
XY Ty zoxy Xty T zgxy (A.24)
15 6 15 4 5 15 5 4 1545 9 45 15 54
-~ - > — —z —X"z°> —x°z A.25
gV T XY Ry, A ox > X (A25)

and its substitution into (A.23) leads to

%(x2 +y2+75° - f2(x 20, (A.26)

so that an upper bound of f,(x) is available. As a result, (A.14) comes from a combination of the lower bound (A.22) and
the upper bound (A.26).
To bound f7(x), we begin with the following decomposition:

1f7®)<QV+Q?+Q® 47, (A.27)

where

)

Q(l) = ‘64xy(—x6y2 — x2y6 +x4y4)

Q® = ‘8xy(6x4 1 6y* —8x?y)t

)

’

Q® .= ‘48xy(x2 +yH8

QW.= ‘Sxy(—Gx6 — 6y6 + 2x4y2 + 2x2y4)zz|.

For the first term Q (1, the following observation is made:

X592 42298 — x4yt = 22 + vt — x2y?) > 0,
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so that

QWM =64lxy|(°y* +x*y° — ¥y =64(x" Y | + 1Ky | — X y°)).

(A.28)

Meanwhile, the following inequalities could be derived through repeated applications of the Cauchy inequality and Young's

inequality:
32 5 [/64\°
5x8y% +10x5y* > 10v2[x" 3|, x1°+?|x5y5|z§-<3> Ix"y3|,

which in turn yields

32 5 [/64\%°
x10+5x8y2+10x6y4+?|x5y5|z (10&4—5-(3) Ix”y3.

A similar inequality could be derived by a symmetry argument:
32 5 (64\°
y10 4+ 552y + 10x%y6 + ?|x5y5| > (10ﬁ+ > (3) Xy
Then we arrive at
64
X104+ y10 4 5(x8y? + x2y®) +10(x8y* + x*y%) + 3 IX°y°

5 [/64\%°
> (10«/§+ 3 (;) X"y 1+ 13y

64
> ?<|x7y3| +1X3y7],

3/5 )
where the last step comes from the fact that 10v/2 + % . (%) > 6—;‘. This is equivalent to

3(x10 4+ y10 4 566 Y2 +2%) + 1008y +xy5)) = 640Ky | + 1%y 7| - 1Ky = V.

For the second term Q ), we make a similar observation:
6x* + 6y4 — 8x2y2 >0,
so that
Q@ =8lxyl(6x* +6y* — 8x*y*)2* < 8lxy|(6x* + 6y*)z* = 48(1X°y| + Ixy° 2%,
Meanwhile, the following inequality could be obtained with an application of Cauchy inequality:
10x82% + 30x* y22% > 204/3|x°y| 24, 10y82% + 30x2 y*2* > 204/3|xy° |2,
which in turn implies that

48
QP <48(1x°y| + Ixy°Nz* < ———=(10x°® + 10y°® + 30x*y? + 30x° y*H)2*.
Xyl + xy’| 2073 y y

Similar analysis could be applied to bound the third term Q ®: since

10x*2°% + lezyzz6 > 20|x3y|z6 and 10y426 + 10x2y226 > 20|xy2|26,
it follows that

Q® = |48xy(x® + y»)2°| = 4813 y| + Ixy*)2° < % (10x4z6 +10y425 + 20x2y226).
Finally, we look at the last term Q . The following inequality

6x° + 6y6 — 2x4y2 — 2x2y4 >0,

which comes from the observation

(A29)

(A.30)

(A.31)

(A.32)

(A33)

(A34)

(A.35)

(A.36)

(A37)

(A38)
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3(¢° + y5) = 2max(x*y?, ¥ y?),
indicates that
Q@ =[8xy(—6x°5 — 6y° +2x*y% + 2%y 22| < 18xy(6x° + 6y%)2%| = 48(|x y| + |xy” 2> (A39)

Meanwhile, the following Cauchy inequalities are valid:

5x32% 4+ 20x%y%2? > 20|x” y|z2 and 5y3z% 4+ 20x%y%2* > 20|xy” |22 (A.40)
These imply that
48
QW <48yl +Ixy"DZ < o (5(x8 + 92 +20(:°y% + xzyG)zz)- (A41)

A combination of (A.33), (A.34), (A.37), (A.41), together with the expansion (A.4) and the observation that 3 >

max(%, %), results in the desired estimate (A.15).

To analyze fg(x), we first establish its lower bound. A careful calculation reveals that
6 +y° +29)° + fs(®)
=8x10+40(x%y? + x82%) + 96 (2 y® + x22%) + 24(yB2% + y*2%)
+128(x6y4 + x624) + 54(y‘5z4 + y426)
-{—200x6yzz2 + 1658x2sz2 + 168xzyzz6 + 120x4(y4z2 + yzz4) + 246)<2y424
>0. (A42)
To obtain its upper bound, we carry out a similar expansion:
6 +y* +2°)° — fs(®)
=4x"0+12y"0 +122'% + 20(:%y* 4+ x°2%) — 36(x°y® + X°2%) 4+ 36(y° 2 + y*2%)
—8(x°y* +x82%) + 120(x*y® + x*2%) + 66(y°2* + y*2°)

+40x°y2 2% + 72x°y®2% + 72x%y?2° + 240x* (y* 2 + y?2*) + 11452 y* 22, (A43)

The following Cauchy inequalities,
9y10 + 36x4y6 > 36x2y8, 9710 4 36x%2° > 36x%28, (A.44)
4x8y? 4 4x*y® > 8x0y4, 4x82% + 4x*7% > 8x524, (A.45)

when substituted into (A.43), imply that

60 +y* +2%)° — fg(x) > 0. (A46)
Finally, a combination of (A.42) and (A.46) leads to the desired estimate (A.16). This completes the proof of Lemma A.1. O

Next, we proceed into the proof of Lemma 2.1.

Proof of Lemma 2.1. Based on the form for dp, g in (2.4), careful calculations yield

M)y fi(p A7
812(P) (P +p2+pd)3’ (A47)
M f2(p)
P =—"=5= A.48
S = 2y (A48)

The estimate |g§1%| < 2 comes from the preliminary inequality (A.13), and the estimate |g§2| < % is based on (A.14). The

estimates for |g§1;|v Igégl. Igg%l and |g§g| could be handled by symmetry arguments.

Similarly, based on the form for dp,g® in (2.5), careful calculations give

@ f7(p) A49
gl ) = fs () (A.50)

(p? +p3+pd)°
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The estimate | g§2%| < 3 comes from the preliminary inequality (A.15), and the estimate | gfh < 6 results from the inequality
(A16). ' '

The estimates for |g;°
Lemma 2.1. O

(2) ul (2)

18531, |g(2)| and |g(2)| could be handled by symmetry arguments. This completes the proof of

Appendix B. Proof of Lemma 4.1

Proof of Lemma 4.1. For simplicity of presentation, we only focus on the first inequality (4.1); the other ones could be
handled in the same manner. We assume that p; # p,, since (4.1) is automatically satisfied otherwise. Define

q=p— P, 4=

|

. L:=14q|,
so that |q| = 1. If the line segment from p; to p, does not pass through the origin, 0, we observe that Bplg(l) is a smooth

function over the whole line segment pﬁz, so that an application of the intermediate value theorem gives

3p, 8V () — 3p, 8V (py) = Vaplg(”(pl +£q) - (p1 — p2)
==}£:g§9(p1—%sq)[p1 pal;. (B.1)
j=1

with for some & € [0, L]. Estimate (4.1) is a direct consequence of (B.1), using the estimates for gﬁ, ggl% and ggl; given
by (2.6) in Lemma 2.1.

On the other hand, in the case that the line segment p?pz does pass through the origin, 0, we parameterize the line
in two segments. For the first, we use p; +tq, for 0 <t < Ly, where L := |p4]. Since E)plg“) is continuous over R3 and
differentiable over Rf =R3\0, the intermediate value theorem can be applied between p; and 0 and between 0 and p,,
respectively:

3,8V () — 3p, 21 0) = vpaplg“)(p] +£19) - py
= Zgi‘j(m +a) ;. (B2)
j=
3p,810) — 3p, 8V (py) =~V 3p, 8V (p1 + 520 - P2

3
== g{"l(p1 + £20)9p, [P2]; . (B3)

for some parameters 0 < &1 < L1, L1 < & < L. Meanwhile, since pmz passes through 0, we have

L.
pi=-—. (B.4)
L—1Ly,
= . B.5
D2 L (B.5)
Substitution into (B.2) - (B.3) reveals that
3
I8V 00~ 0,8V = = 3 (el )p 6+ g+ 80 )i (B6)
j=1

Application of the estimates (2.6) for gﬁ, g% and g(l) yields the desired inequality (4.1), in the case that pr)pz passes

through 0.
Therefore, (4.1) is valid for any p; and p,. The other inequalities could be analyzed in the same manner, and the details
are skipped for the sake of brevity. O
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