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environmental task, which are important for evaluating the trustworthiness of the ML-based models, further
improving the models for specific applications, and leveraging the implicit knowledge the models carry.

1. Introduction

Quantitative structure — activity relationships (QSARs) correlate
chemical reactivity with chemical and/or structural features of many
chemicals [1,2] and can be used to predict the reactivity of new com-
pounds that otherwise needs labor-intensive and expensive experi-
ments. The development of QSARs for HO- radicals has been a long-
standing interest [3-5] because the HO- radical, a ubiquitous strong
oxidant, plays important roles in natural and engineered waters, the
atmosphere, biological systems, and even interstellar space by un-
selectively and instantaneously reacting with numerous organic and
inorganic compounds [6-18]. With more and more toxic organic con-
taminants released into water environments, a simple, fast and accurate
approach is desirable for developing QSAR models to predict the
second-order rate constants (kyo.) for thousands of organic con-
taminants.

However, traditional approaches including molecular descriptors
(MDs)-based QSARs [3] and the group contribution method (GCM)
[19-21] have their own limitations. MDs represent certain molecular
physicochemical properties, such as Hammett constants, reduction
potential, and topological polar surface area. MDs have to be calculated
by advanced computation that relies greatly on one’s sophisticated
physicochemical knowledge and ability to use different software. For
example, Borhani et al. believed that a two-step optimization of the
chemical structures should be completed before calculating the MDs,
and Density Functional Theory calculations were necessary for ob-
taining quantum-chemically calculated descriptors [3]. MD-based
QSARs often have satisfactory predictive performance when the
number of compounds involved is small. For instance, Wang et al. used
4 MDs with multiple linear regression to develop a QSAR for 55 com-
pounds and achieved a low RMSE of 0.139 [22]. However, the obtained
QSARs often have a small applicability domain that is only applicable to
a limited number of compounds. With more and more contaminants
involved, the calculation of MDs becomes time consuming while, gen-
erally, involving more MDs but this still achieves less accurate QSAR
models [23]. For example, Borhani et al. used 8 MDs to develop a
binary particle swarm optimization-multiple linear regression model for
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457 compounds and achieved a higher RMSE of 0.356 [3]. Also, to
develop QSAR models with a satisfactory prediction performance, a
number of MDs should be manually selected among thousands of MDs
but some of them are difficult to understand, that is, the physico-
chemical meanings of these MDs cannot be easily linked to the HO
radical reactivity. Nevertheless, one major advantage of MD-based
QSAR models is that they are interpretable because of the chemical
meanings carried by the MDs. The word “interpretable” means one
usually knows why a model predicts high logkyo. values for some
compounds but not others.

GCM and structure-activity relationships (SAR) are another ap-
proach to developing QSARs by hypothesizing that a rate constant of a
given organic compound is a combined rate constant of all the struc-
tural features [19-21]. Specifically, GCM quantifies HO radical rate
constants based on the contributions of four reaction mechanisms
(when applicable): (1) H-atom abstraction, (2) HO- addition to alkenes,
(3) HO- addition to aromatic compounds, and (4) HO- interaction with
sulfur (S)-, nitrogen (N)-, or phosphorus (P)-atom-containing com-
pounds [19,20]. Monod et al. [21] combined SAR with linear regression
to develop a QSAR model to predict the HO-oxidation rate constants for
72 aliphatic compounds. The results showed a satisfactory performance
as 60% of the estimated values were within the range of 80% of the
experimental values. Note that they did not employ metrics such as
RMSE to evaluate the performance so it is difficult to compare it with
MD-based QSARs. Later, they expanded this method to 102 carbonyl
compounds with 252 experimental rate constants and the accuracy of
this updated SAR was such that 58% of the rate constants were calcu-
lated within = 20% of the experimental data and 76% within + 40%
[24]. Minakata et al. used GCM with genetic algorithms to develop a
QSAR model for 434 compounds and 62% of the test compounds were
predicted within 0.5-2 times of the experimental values [20]. The
drawbacks of GCM or SAR are that: (1) For compounds whose reaction
mechanisms are beyond the four mechanisms, GCM may be unreliable
and inaccurate [20]; (2) GCM only linearly combines the contributions
of different groups for a compound. When thousands of compounds are
involved, non-linear correlations may exist, that is, the contribution of a
structural group to the reactivity of different compounds may differ, but
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Scheme 1. The workflow of the data construction and preprocessing, model development, SHAP explanation, and the final goal.
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GCM cannot well capture the differences. Nevertheless, the reaction
mechanisms-based GCM is also interpretable.

We have recently used molecular fingerprints (MFs) as the inputs for
a deep neural network (DNN) to develop a QSAR model for the kyo. of
500+ compounds [23]. It showed a comparative prediction perfor-
mance with the MDs- and GCM-based QSARs but can be more readily
built for a large number of compounds (logkyo. for new compounds can
be predicted within a millisecond). As compared with MDs and the
GCM methods, MFs can be more easily obtained and understood than
MDs; obtaining the MFs for thousands of compounds is also faster than
obtaining atom groups in GCM. There is no need to manually choose
MDs with complex physicochemical meanings. However, MFs carry
little mechanistic information and only encode the structural informa-
tion of the molecules including atoms, bonds, and functional groups as
binary vectors containing 0 s and 1 s (more details of MFs in Text S1
and Fig. S1 in the Supplementary Material) [23,25,26]. Although the
DNN-MF-based approach significantly simplifies and accelerates the
development of QSARs for a large amount of organic compounds with a
satisfactory prediction performance, the built QSARs are not yet in-
terpretable, that is, one usually has little idea about how a DNN makes
its predictions based on the MF binary vectors. The motivation question
for this work therefore was “Does a DNN combined with MFs make
predictions for rate constants based on a correct ‘understanding’ of
important structural features for the reactivity?” which has never been
addressed. Answering this question can offer a theoretical support for
MF-based QSAR models. If a model makes predictions based on spur-
ious features, then we cannot fully trust the model even though it can
be easily built with high accuracy. For example, McCloskey et al. used
the attribution method to interpret that DNN still learned spurious
binding logics despite its perfect classification accuracy on the pro-
tein-ligand binding dataset [27], while Belzen et al. revealed that the
perfect classification accuracy achieved on a well-trained DNN was
based on the correct identification of the specific protein sequence as-
sociated with the biological functions [28].

In this study, we employed a large dataset that covered the reported
kno- values for 1159 organic compounds in the aqueous phase (Scheme
1). Based on this dataset, the effects of ML algorithms, data splitting
approaches, and outliers on the prediction performance were in-
vestigated. XGBoost and DNN were then chosen to develop QSAR
models (Scheme 1). Their hyperparamters and the radius and length of
MFs were optimized by the Bayesian optimization algorithm. Next, we
used the recently developed SHapley Additive exPlanations (SHAP)
method [29] to interpret the two ML models about what features (i.e.,
atom groups) were selected to make the predictions. A brief introduc-
tion to DNN, XGBoost, and SHAP is provided in Text S2. The SHAP
method is theoretically sound as compared with other interpretation
methods (Text S3). It has been applied to interpret the predictions made
in gene expression, the concentrations of polycyclic aromatic hydro-
carbons in the high arctic, and wet deposition of toluene, ethylbenzene
and xylene [30-32]. We then developed an ensemble ML model that
combined the DNN with XGBoost and interpreted it by the SHAP
method. Interestingly, the developed ensemble model acquired the
most relevant chemical knowledge to accurately predict logkyo., in-
cluding the influence of electron-donating and -withdrawing groups
and the reactive sites. The performance of the ensemble model was also
compared with the previously well-established QSARs.

2. Methods
2.1. Dataset, preprocessing and MF generation

A dataset containing 1159 organic compounds and their HO- ra-
dical rate constants (kyo., M~ 's 1) obtained under standard conditions
(i.e., 25 °C) in the aqueous phase was created after reviewing relevant
journal articles [3,23,33-41]. A detailed description of the dataset was
supplied in Text S4. MFs of all the compounds were generated by the
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RDKit program within milliseconds by converting their “SMILES”
strings obtained by the ChemDraw program, which is impossible for
their MDs to be calculated in such a short time.

Instead of randomly splitting the dataset into the training, valida-
tion, and test datasets, we relied on the compound structures to split the
dataset. This was to maximize the diversity in the compound structures
in the training dataset and ensure similarities among the training, va-
lidation, and test datasets. A detailed explanation of why we should
value these two properties was provided in Text S5. According to this
principle, we grouped all the organic compounds based on their func-
tional groups. It should be noted that this grouping method was not
based on single functional groups because more than 1 functional group
exists in most compounds. Instead, it was based on a combination of
different functional groups. For instance, the class of “OH” represents
simple alcohol species while the class of “OH-X” represents the species
that contain both OH and halogen groups. Another important reason for
this functional groups-based data splitting was to identify outliers.
Without grouping, it was difficult to identify whether the reactivity of a
compound was “abnormal” or not. However, with grouping the com-
pounds with the same functional groups should have similar reactivity.
Hence, we can have more confidence in identifying outliers when some
compound show abnormal reactivity as compared with others in the
same group.

Based on all the functional groups, the 1159 organic compounds
were first divided into 357 classes. However, 250 of the 357 classes
contained less than 3 compounds and could not be divided into three
subsets of training, validation, and test datasets. Hence, we merged the
classes containing less than 3-4 compounds with other larger groups
based on similarity in the functional groups to form 98 classes. For
every class, we identified the outliers based on the corresponding
boxplot of logkyo. (not shown). Any compounds with a logkyo. value
outside the range of (Q1 — 1.5 X IQR) to (Q3 + 1.5 X IQR) were
excluded as the outliers (Q1 and Q3: 25% and 75% quartile, inter-
quartile range IQR: (Q3 — Q1)). In this way, 70 compounds (6%) were
removed from the dataset and the final number of compounds was
1089. These outliers might result from experimental errors (‘real’ out-
liers) or the merging operation as stated above (‘false’ outliers). For
example, 1,4-diaminobutane was identified as an outlier in the class of
amine. This outlier was ‘real’ because it was assigned to the correct
class. However, for 1,3-dithiolane-2-thione, we merged it into sulf-
oxides, which is obviously not reasonable, so this outlier might result
from the incorrect grouping (‘false outliers’) and/or experimental er-
rors. To investigate the effect of these outliers, three datasets containing
no outliers (Dgg.9g), ‘false outliers’ (Dgg.0s.f0), and all outliers (Dgg.9g-a1)
were established and compared. The final dataset including the names,
structures and logkoy. values of all the compounds is summarized in
the excel file named “Dataset.xlsx” in the Supplementary Material. Dgg.
9g Was used in all modeling processes unless otherwise specified.

After grouping, for each dataset (Drg.9g, Drg-98-fo, and Dgg.og.an) We
randomly chose compounds from every class with a ratio of 8:1:1 and
combined them to form the training, validation, and test datasets. The
specific information about which compounds were in the training, va-
lidation or test dataset can be found in the excel file “Dataset.xlsx”. A
validation dataset is necessary to control the overfitting problem and
optimize the hyperparameters; otherwise, DNN can perfectly fit the
data points in the training dataset but poorly predict the samples in the
test dataset, i.e., overfitting. In this way, the diversity of the compound
structures was similar in the training, validation and test datasets.
Following this approach, each of the three datasets was split five times
to form five different sets of training-validation-test sub-datasets, which
were each used independently to train, validate, and test the ML
models. In other words, we obtained 5 models for each dataset. This
was to check if the performance of the ML models was a coincidental
result of the data splitting or not.

To prove that the above grouping approach was reasonable, the
dataset that contained no outliers (Drg.gg) Was split in three additional
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ways. “Drandom” refers to a random split of the dataset into training-
validation-test sets (8:1:1). “Drg.08” and “Dgg.e3” refer to splitting the
compounds into 28 and 63 classes, respectively, also based on func-
tional groups but more broadly. Each dataset was further split five times
to form five sets of training-validation-test sub-datasets, each con-
taining at least one compound for each functional group. Obviously
Drg.og grouped the organic compounds more finely than Dgg.og and Dgg.
63. All the constructed datasets are summarized in Table S1.

2.2. Baseline ML algorithm selection

To choose a baseline ML algorithm to compare with DNN, we ap-
plied 11 common ML algorithms with their default parameters to the
same dataset and obtained their prediction performances (root mean
squared errors on the test dataset: RMSE,.s). RMSE,.;; was used as an
indicator to evaluate the prediction performance: the lower the RMSE,,,,
value is, the better prediction ability the model has. As the results
shown in Fig. S3, Random forest, Bagging, Gradient Boosting, and
XGBoost showed similar RMSE,.;, and were superior to the other ML
methods. Here, we chose XGBoost as the baseline model because of its
fast calculation and better design to control overfitting [42].

2.3. Bayes optimization of the hyperparameters of XGBoost, DNN and MFs

Before the training process, there were several parameters called
“hyperparameters” whose values needed to be determined. Tuning
hyperparameters is a necessary step to optimize the performance of any
ML method. Besides the hyperparameters of XGBoost and DNN, the
length and radius of MFs should also be carefully tuned. Table S2
summarizes the names and roles of the hyperparameters and the ranges
of their values. Because there was a large number of hyperparameters
whose values varied over wide ranges, it was impossible to enumerate
every value to find out the optimum ones. We thus employed the
powerful Bayesian optimization algorithm, which can choose the next
optimum hyperparameter candidate value based on the results obtained
from the previous ones [43,44]. Hence, the possibility of achieving the
optimum values of the hyperparameters was maximized.

For both XGBoost and DNN, we used the same dataset Dgg.og to
optimize the hyperparameter values. After 500 iterations of the
Bayesian optimization (i.e., choosing 500 groups of hyperparameter
values), the mean squared errors (MSE) of the training and validation
datasets by the XGBoost and DNN were obtained and are plotted in Fig.
S4. It should be noted that in each iteration, “early stopping” was used
to control overfitting during the training process. The “early stopping”
method monitors changes in the MSE of the validation dataset
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(MSEyajidation)- If there was no change or an increase in the MSE.jidation
after a preset number of epochs, the training process stopped. The
dotted lines in Fig. S4 indicate the lowest MSE,,jidation POSition for both
the XGBoost and DNN. With decreasing MSE,ain, the MSE,ajidation de-
creased, reached the minimum value, and then increased. Hence, un-
derfitting and overfitting problems existed to the right and left hand
sides of the dotted line, as shown in Fig. S4. The optimum values of the
hyperparameters were the ones that achieved the minimum
MSE,alidation, as listed in Table S3.

2.4. Applicability domain

Applicability domain aims to evaluate if a trustful prediction can be
made for a query compound. Applicability domain is obtained by
comparing the similarity between the query compound and the com-
pounds in the training dataset. The similarity between two compounds
A and B was calculated based on the Tanimoto index, T(A, B), according
to Eq. (1):

Ne

TA,B)= ——¢
N, + N, — N, (@]

where Nc is the number of 1 s in the MFs of both compounds A and B;
Na is the number of 1 s in the MF of compound A and Nb is the number
of 1 s in the MF of compound B. Because MFs are binary vectors with a
pre-set length filled with O s and 1 s, in which only 1 s represent there
exist atom groups and the positions of 1 s represent what atom groups
are in the compound, the Tanimoto index calculates the percent of the
same atom groups that are in both compounds A and B, thus comparing
their similarity. If the similarity is above a pre-set threshold, the query
compound is within the applicability domain and the prediction made
on this compound is reliable [45-47]; otherwise, the query compound
is outside the applicability domain and the prediction is not reliable.
The threshold value of similarity was determined by comparing the
similarity between the compounds in the test dataset and those in the
training dataset. To obtain the similarity of one compound in the test
dataset to the ones in the training dataset, we calculated the similarity
between this compound and every compound in the training dataset.
Two similarity metrics were then used: the maximum similarity refers
to the maximum value among all the obtained similarity values, while
the mean similarity refers to the mean of these similarity values. For
every pre-set threshold, the compounds that were outside the applic-
ability domain were removed from the test dataset and the RMSE,., was
recalculated. The optimum threshold was the one that achieved the
lowest RMSE,., with the smallest possible number of compounds out-
side the applicability domain.

0.50 ®)
- Randomly chosen
- Bayesian optimization
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Fig. 1. (A) The effects of outliers and data splitting methods on the predication performance of the DNN and XGBoost. (B) Comparison of the prediction performance
of the XGBoost and DNN with the hyperparameter values either randomly selected or obtained by the Bayesian optimization algorithm.
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3. Results and discussion

3.1. Effect of outliers and data splitting methods on the performance of
models

We first used the randomly chosen hyperparemeters for both DNN
and XGBoost, as shown in Table S4. The outliers had a significantly
adverse effect on the performance of both XGBoost and DNN, with
lower RMSE being observed when more outliers were removed (Fig. 1A,
from Drgg.9g.an t0 Drg.os.fo and then Dgg.gg). The prediction performance
also relied heavily on the data splitting methods, as the prediction ac-
curacy increased with the chemicals more finely grouped (Fig. 1A, from
Drandom tO Drg.28, Drg.e3 and then Dgg.gg). We then optimized the hy-
perparameters of DNN and XGBoost by the Bayesian algorithm (Table
S3), obtained better and more robust prediction performances for both
models (Fig. 1B), and confirmed the optimum ratio of training, vali-
dation, and test datasets as 8:1:1 (Fig. S5).

Table 1 lists the performance of seven reported models that have
been developed based on different algorithms. With an increasing
number of chemicals (n from 55 to 526), more molecular descriptors (p
from 4 to 13) had to be involved in the reported models, but the model
performance still became worse (RMSE from 0.079 to 0.356). This may
be because there are more complex non-linear correlations between the
molecules and their reactivity for a larger dataset. Such correlations
cannot be captured by the simple models because of their limited fitting
ability. Generally, the predictive performance of all the models is also
better for the training datasets than for the test datasets in terms of R?
and RMSE. Based on the DNN-MF model we developed in our previous
study for 593 compounds [23], we increased the number of compounds
to 1089 but still achieved a comparative or even better prediction
performance here in terms of RMSE,.;, demonstrating the effectiveness
of our model. The slightly lower RZ,, value (Table 1) in this study than
in the previous one is likely because the metric of RZ, is highly de-
pendent on the size and distribution of the test dataset [48]. For ex-
ample, the size of the test dataset in this study is 109, which is even
larger than the whole dataset used by Wang et al. [22]. These results
suggest that the DNN and XGBoost models had been well trained and
were ready to be interpreted.

3.2. SHAP explanation of the XGBoost and DNN results

Fig. 2A and B are the summary SHAP plots of the top-20 most
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important features of the compounds in the training dataset as learned
by the DNN and XGBoost. The greater the absolute SHAP value is, the
more influence it has on the logkeoy.. The SHAP values of all the fea-
tures in each compound are summarized in the excel file named
“SHAP _values.xlsx” in the Supplementary Material.

The SHAP patterns of the training dataset are similar to those of the
test dataset (Fig. S6), indicating that the predictions made on the test
dataset were indeed based on the knowledge learned from the training
dataset. The blue dots mean 0 s in the MFs, which contain no structural
information and, thus, theoretically should not affect the predictions
(i.e., SHAP = 0). However, for the top-10 features that have 0 s, their
contributions to the predictions were non-zero. This is because the
XGBoost and DNN “learned” that there were obvious differences in the
logkyo. values between the compounds with and without these features
(Fig. S7). Nevertheless, the blue dots for most of the features indeed
negligibly affected the predictions, as indicated by the top-100 features
in Fig. S8. Therefore, the physicochemical meaning that no structural
feature means no influence on the reactivity was mostly successfully
learned by both the XGBoost and DNN.

The patterns in Fig. 2 also implied that the DNN and XGBoost em-
ployed two distinctly different approaches to make predictions. The
DNN treated each atom group statically without “considering” the
specific bonding environments the atom groups were in, as indicated by
the same SHAP values for the same features (vertical bars) in different
compounds. In contrast, the XGBoost “considered” every atom group
dynamically because it assigned different SHAP values to the same
atom groups (vertical and horizontal bars) in different compounds, that
is, the contributions of the atom groups to the predictions depended on
the specific organic compounds. Obviously, such differential assign-
ments are chemically more meaningful because the same atom groups
in different bonding environments can affect the compound reactivity
differently.

3.3. Development of ensemble model

To simultaneously achieve the accuracy of the DNN and the che-
mically meaningful differential assignments of the XGBoost, we devel-
oped an ensemble model by linearly combining the predictions from the
XGBoost and DNN of certain ratios, as shown in Eq. 2, where the ratio of
0.72:0.28 was obtained by the Bayesian optimization algorithm.

Ensemble model = 0.72 X DNN + 0.28 X XGBoost

Table 1

Comparison among different models for their performance in predicting aqueous kyo. values.
Model Algorithm n' p° Training Set Test Set

Riain RMSE qin Riq RMSE o5
Wang et al. [22] MLR 55 4 0.905 0.139 0.962 0.079
Kusic¢ et al. [49] GA-MLR® 78 4 0.735 0.174 0.76 0.20
Sudhakaran and Amy [5] PCA-MLR* 83 2 0.918 - - -
Jin et al. [50] MLR 118 7 0.823" 0.204 0.772 0.329
Borhani et al. [3] BPSO-MLR* 457 8 0.716 0.347 0.724 0.356
Luo et al. [4] MLR 526 13 0.805" 0.165 0.802 0.232
[23] DNN 593 0 0.972 0.135 0.747 0.329
Gupta et al. [34] DTB' 995 5 0.954 0.17 0.925 0.14°
This study DNN-MF 1089 0 0.88-0.92 0.20-0.24 0.61-0.69 0.333-0.353
XGBoost-MF 1089 0 0.80-0.93 0.18-0.29 0.53-0.67 0.302-0.368

2 n = the total number of chemicals in the dataset;
b

p = the number of MD or the length of MF;

GA: genetic algorithm; MLR: multiple linear regression;
PCA: principal component analysis;

BPSO: binary particle swarm optimization;

f DTB: decision treeboost;

I

8 No test dataset was supplied. Instead, RMSE,gidation iS sShown here. Hence, the generalization ability of the model cannot be evaluated and this model was not

used to compare with other models;
h p2
adj
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Fig. 2. The summary SHAP plots of the DNN (A) and the XGBoost (B) for the compounds in the training datasets. For each feature, blue means 0 while red means 1 in
the MF. The feature numbers on the left label the positions of the features in the MFs, and different positions represent different atoms or substructures (Text S1). The
x-axes are the SHAP values where a positive value means that it can increase the logkyo. by the value; whereas a negative value means that it can decrease the logky;o
. by the value. The pattern for each feature is composed of the SHAP values for all the chemicals that contain that feature. Note that because the XGBoost and DNN
used different lengths of MFs, the same atoms may be represented by different feature numbers. For instance, feature 900 for the XGBoost represents the same atom as

feature 1019 for the DNN.

The ensemble model had a lower RMSE value than both the XGBoost
and the DNN (Fig. 3A), and assigned different contributions to the same
feature present in different compounds (Fig. 3B). Fig. 4 showed the
scatter plots of the experimental versus predicted logkoy. values by the
ensemble model. For all the five groups, the predictive performances for
the training, validation and test dataset were respectively similar in
terms of R%, RMSE and MAE, indicating that the prediction accuracy of
the ensemble model was robust, or independent of data splitting. Next,
we focused on interpreting this well-established ensemble model by the
SHAP method to evaluate whether the model agreed with a few widely
accepted chemical reaction principles, as detailed below.

3.4. Learned electron-donating and -withdrawing groups

Table 2 lists the top-10 most important atom groups learned by the
ensemble model. The positive or negative effects of these features on
logkuo. were obtained based on their positive or negative SHAP values
and are also included in Table 2. HO- radicals mainly oxidize electron-
rich organic compounds. Any functional group that can increase the
electron density of the compound will increase the reactivity, that is,
electron-donating groups or conjugated systems can increase the re-
activity, whereas electron-withdrawing groups can decrease the re-
activity. For example, the carbonyl oxygen (the 2nd feature) and ha-
logen groups (the 5th feature), typically electron-withdrawing, were
correctly identified to decrease the reactivity, whereas the electron-
donating benzene ring (the 1st feature) and alkenes (the 6th feature)
were correctly identified to increase the reactivity. Such chemistry
knowledge often needs several years of experience, but our ML model

quickly learned this after developing the prediction models based on
the MFs and the logkyo.. It should be noted that we did not train our
ML model to classify the positive or negative effects but only correlated
the logkoy. with the MFs.

Table 3 lists 19 well-known aromatic substituents that have positive
or negative effects on the oxidation reactivity (the atom groups for all of
the substituents are summarized in the file named “All the compounds
and their features and representing atoms.txt” in the Supplementary
Material). Such effects are the total effect that includes the inductive
and resonance effects. Surprisingly, the ensemble model correctly
learned the effects of all the substituents (100%) except for the
—CONHj;, group (5 out 6 chemicals correct). These results suggest that
our ensemble model was based on a reasonable casual understanding to
make predictions, which made it trustworthy.

We then plot the electronic effects of the substituents as quantified
by the Hammett constants [51] against the SHAP values to quantita-
tively investigate the magnitude of these effects. It should be noted that
higher absolute SHAP values mean larger effects while positive and
negative SHAP values represent increasing or decreasing effects on the
reactivity. Fig. 5A showed the inductive electronic effects on the SHAP
values. A higher Hammett constant o; represents a stronger inductive
effect, which decreases the electron density of compounds more sig-
nificantly and hence lowers the reactivity toward OH-. Fig. 5A showed
the decreasing trend in the SHAP values from positive to negative, that
is, from increasing to decreasing the reactivity when o; increased from
about 0 to 0.65, which is consistent with the chemical knowledge.
Fig. 5B showed the resonance effect on the SHAP values. A more ne-
gative oy represents a stronger resonance effect, leading to a higher



S. Zhong, et al.

Chemical Engineering Journal 405 (2021) 126627

(B) Feature 1,019 N )

(A)
0.38 -

0.36

0.34

RMSE,

0.32 A

0.30 ¢

T T
DNN XGBoost

T
Ensemble

Feature 430 < d
Feature 4,008 -4 | &
Feature 3,552 4
Feature 275 c—
Feature 2,748 ﬁ —
Feature 2,584 * -
Feature 3,387 o0
Feature 1,653 l -— o
Feature 2,189 -
Feature 539 ‘ —
Feature 3,775 _’
Feature 2,680  « . e |
Feature 2,360 — )
Feature 1,784 ‘-
Feature 2,194 ' -
Feature 2,985 — '
Feature 3,640 -
Feature 3,537 —
Feature 2,656 | —
-04-0.2 0.0 0.2 04
SHAP value

Fig. 3. (A) The comparison among the DNN, XGBoost and ensemble models in terms of the prediction accuracy; (B) the summary plot of the top-20 learned features
by the ensemble model. To combine the DNN and XGBoost into the ensemble model, the MF length was set to 4050 and the optimum values of the hyperparameters

for XGBoost are in Table S5.

electron density on the compounds, which is beneficial to the oxidative
reactivity by HO-. Fig. 5B also showed a similar downward trend be-
tween the SHAP values and og. Fig. 5C showed the total electronic ef-
fect resulting from both the inductive and resonance effects, with a
higher R? value (0.548) than in the case of either o; (R* = 0.371) or oy
(R? = 0.472), indicating a more obvious correlation. This is expected
because the reactivity of compounds toward HO- is affected by both the
inductive and resonance effects. Given that different compounds have
different reactive sites and the effect of a certain substituent toward
different reactive sites cannot be the same, the above non-perfect linear
correlations are chemically reasonable. Nonetheless, the chemical
knowledge learned by the ensemble model contains not only qualitative
effects but also quantitative effects on the reactivity, which was not
expected.

3.5. Learned reactive sites in the organic compounds toward attack by HO-

The identification of the reactive sites in the organic compounds
toward HO- was achieved by examining the largest SHAP values for
different features in each compound (an example in Fig. S9). For all
1,089 compounds, we compiled their individual SHAP plots, the che-
mical structures, and the MFs in the Supplementary Material (the file
named “All the compounds and their shap plots.txt”). Fig. 6 summarizes
the learned reactive sites in 10 chemical classes whose oxidation me-
chanisms by HO radicals have been well understood. We started from
simple alkanes, whose —CH,— groups were thought to be the most
reactive because of the largest absolute SHAP values (compound No.
41-46). This is interestingly consistent with the experimental ob-
servation that HO- prefers to attack —CH,— groups [8]. When these
long-chain alkanes are folded to form cycloalkanes (compound No.
667-671), the ensemble model still identified all the —CH,— groups as

the essential feature, and these groups indeed all react with HO- as the
reactive sites [8]. When a single bond in alkanes is replaced by a double
bond to form alkenes (compound No. 49-52), the model “smartly”
changed its decision from the —CH,— groups to the carbon atoms in the
double bonds, and the latter are indeed attacked by HO- as the reactive
sites [9,11]. When one or two H atoms in alkanes are replaced by —OH
to form alcohols (compound No. 850-853), the model still underscored
the —CH,— groups rather than the —OH group. This is again consistent
with the experimental observation that HO- prefers to abstract H from
—CH,— rather than from —OH [6]. However, the model did not cor-
rectly identify the a-C to the —OH group to be more reactive than the 3-
or y-C [6]. Different from the case of alcohols, when —OH is replaced by
—SH to form thiols (compound No. 1016-1018), the model turned to the
—SH group as the reactive site, although the only difference between
the alcohols and the thiols is the S and O atoms. Indeed, —SH often
reacts with HO- by H-abstraction as the first reactive site [6,11]. Si-
milar cases were found in ethers (compound No. 736-751) and sulfides
(compound No. 973-981) in which the methyl and/or methylene
groups in the ethers and the sulfur atoms in the sulfides were correctly
recognized as the reactive sites [15,18]. The carbon atoms in aldehydes
(compound No. 0-5) or the nitrile group (compound No. 810-813),
identified as the most reactive features by the model, are also known
reactive sites in which they undergo H-abstraction and HO--addition,
respectively [10,13,17]. In the oxidation of amines (compound No.
285-302), they can undergo either H-abstraction from the —NH, and
the neighboring methylene/methyl groups or electron transfer from the
tertiary N [7,14]. The top-2 largest SHAP values were correctly as-
signed to these groups so these reactive sites were also “smartly”
identified by the model.

Several features were identified to have the largest negative SHAP
values, including —NO, (compound No. 820-833), —COR (compound
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Fig. 4. The scatter plots of the experimental versus the predicted logkyo. by the ensemble model for the five groups: (A) G1, (B) G2, (C) G3, (D) G4, and (E) G5.

No. 800-807), —COOR (compound No. 718-727), and —N=O (com-
pound No. 834-845), but they are not the reactive sites toward HO-
[6,11,52]. This is because all of these features are electron-withdrawing

groups and can significantly lower the reactivity. Based on the obtained
large negative SHAP values, the ensemble model exactly identified their
significant negative effects on the predicted reactivity.
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The top-10 most important features and their positive and negative effects on the reactivity as learned by the ensemble model. The values in the parentheses are the
sum of the absolute SHAP values for that feature in all compounds.

Ranking 1st (201.51) 2nd (102.26) 3rd (83.14) 4th (45.03) 5th (43.43)
o O © Q e
Feature # 1019 430 4008 3522 275
Atom group Aromatic carbon Carbonyl oxygen Aromatic carbon Methylene carbon Chlorine
Effect on logkyo. positive negative positive positive negative
Ranking 6th (35.47) 7th (32.02) 8th (30.18) 9th (26.34) 10th (24.12)
atoms /@ O /@\

Feature # 2748 2584 3387 1653 2189
Atom group Ethylene carbon Aromatic OH Methyl Methylene Carbonyl
Effect on logkuo. positive positive positive positive negative

Note: One compound may have multiple identical features. For example, feature 1019 represents aromatic carbon atoms that are only attached to one H atom;
toluene has five of them (Fig. S1c). The blue circles represent the center atoms, the black solid lines represent the bonds in the feature, the grey lines represent the
neighboring bonds not in the feature, the dotted lines represent conjugated structures, e.g., aromatic, and the yellow color represents an aromatic atom in the feature.
All heavy atoms except for C, such as O and Cl, are shown in different colors, while the C atoms are not shown.

3.6. Applicability domain

Table 4 shows that with an increasing threshold of the maximum
similarity, more compounds (0 to 5) in the test dataset were outside the
applicability domain, but the RMSE,. first decreased and then in-
creased. A threshold of 0.35 led to the minimal RMSE,,; (0.317), in-
dicating the best prediction performance of the model. Nevertheless,
there is not much difference among the RMSE,;; when the threshold
was above 0.25. With an increasing threshold for the mean similarity,
more compounds (0 to 5) in the test dataset were also determined to be
outside the applicability domain. Different from the case of maximum
similarity, the RMSE,., first increased and then decreased. Although
lower RMSE, can be achieved by further increasing the threshold
value, the number of compounds outside the applicability domain in-
creased. Gadaleta et al. pointed out that lower RMSE,, and less

Table 3
Common aromatic substituents with positive or negative electronic effects. *

compounds outside of applicability domain are preferred when
choosing an appropriate applicability domain [45]. When we compared
the number of compounds outside the domain at the RMSE,;; = 0.317
based on the maximum and mean similarity, 4 and 3 compounds were
excluded, respectively. Hence, the optimum similarity metric and
threshold value are the mean similarity and 0.028. We can thus con-
clude that if the mean structural similarity of a given compound to the
ones in the training dataset is higher than 0.028, our ensemble model
can make a reliable prediction. Such a low similarity level indicates that
the ensemble model is robust and can be applied to a broad range of
organic compounds.

4. Conclusions

In this study, we combined two ML algorithms, DNN and XGBoost,

Effect Functional Group Feature # No. of compounds with the feature No. of correctly identified compounds Percentage (%)
Positive —NH, 3359 62 62 100
—NHR 2292 10 10 100
—NR, 2054 7 7 100
—OH 2584 121 121 100
—OR 2258 53 53 100
—NHCOR 1733 + 430 + 1568" 6 6 100
—CeHs 1019 19 19 100
—CH=CH, 2748 6 6 100
—CH»CHj3 1979 15 15 100
Negative —NO, 3115 + 430 + 495" 36 36 100
—CN 3408 23 23 100
—CHO 3749 + 430" 11 11 100
—COCH3 2800 + 430" 9 9 100
—CONH, 1685 + 430 + 539" 6 5 83.3
—CONHR 1790 + 430 + 566" 9 9 100
—CONR, 162 + 1747 + 430" 1 1 100
—N=0 2514 + 430° 2 2 100
—Cl 275 63 63 100
—Br 2680 16 16 100

@ These groups were chosen because (1) their positive or negative effects on the oxidation reactivity are well established; and (2) these groups are in our dataset.
> Some groups were too large to be described by one feature when the MF radius was 1, such as —CONRo. In these cases, their SHAP values were calculated by

summing the SHAP values of all of the features involved.
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Fig. 5. Correlations between the Hammett constants of the aromatic substituents in Table 2 and their SHAP values: (A) the inductive effect, (B) the resonance effect,

and (C) the total electronic effect.

with the MFs of organic compounds to develop an accurate prediction
model for the logkyo. of 1089 compounds (RMSE,, for DNN-MEF:
0.333-0.353, RMSE,,,; for XGBoost-MF: 0.302-0.368). How the two
algorithms made predictions on logkyo. were interpreted by the SHAP
method. The results showed that for the contribution of a given struc-
tural feature to the predicted logkyo. values for different compounds,
the DNN and XGBoost treated it as a fixed and variable value, respec-
tively. Based on this interpretation, we recognized that the DNN may
not use all the correct chemical knowledge to develop models, even
though the models’ predictive performance was acceptable. Then, we
developed the ensemble model by combining the DNN with the
XGBoost, which achieved more accurate and robust prediction perfor-
mance (RMSE: 0.30-0.35) while relying on the same working me-
chanism as the XGBoost. Given the fact that more and more con-
taminants may arise in the future, the ML-MF based approach will show
great applications in the environmental field. We then interpreted the
ensemble model and found that it surprisingly “learned” the reaction
patterns after linking the reactivity to the MFs, including “knowing”
which atom groups can decrease or increase the reactivity, “quanti-
fying” the decreasing or increasing effect of structural features, and
“locating” the reactive sites in the compound structures toward HO-
radicals. Specifically, aromatic carbons and carbonyl groups can in-
crease and decrease the reactivity the most for these 1,089 compounds,
and common well-known atom groups that can decrease or increase the
reactivity, such as —NH,, —Br, —CH,=CH, and —N=0, were correctly

NN

Compound No. 0-5

NN

Compound No. 973-981

qingle pond

Compound No. 736-751

No.:

Compound No. 1016-1018

Table 4

The thresholds of similarity, the number of compounds outside the applicability
domain for each threshold value, and the corresponding RMSE;es.

Similarity metric ~ Threshold value = # of Compounds outside the RMSE c5
applicability domain

Maximum 0.25 0 0.319
0.30 2 0.318
0.35 4 0.317
0.40 5 0.318

Mean 0.015 0 0.319
0.020 2 0.321
0.028 3 0.317
0.030 5 0.313

Sll o R
M : Q

Compound

identified. The decreasing or increasing effect was quantitatively ana-
lyzed by the plots of Hammett constants versus the SHAP values. The
reactive sites for 10 common chemical classes were correctly located
based on the highest absolute SHAP values. The applicability domain of
the ensemble model was determined to be 0.028 of the mean similarity,
that is, the HO- reactivity of any query compounds with a similarity
value of over 0.028 can be reliably predicted, indicating the wide ap-
plication potential of the built model to a broad range of organic
compounds. These results demonstrated that ML can implicitly learn
the chemical knowledge when it helps perform a chemical task.
Therefore, although the ML methods used here have a “black box”

/\/NH2

\\, H2N

Folding to
cycloalkanes

41-46
Compound No. 667-671

Compound No. 49-52

Compound No. 850-853

Fig. 6. The important features (highlighted in red) with the largest SHAP values for each compound learned by the ensemble model smartly shifted among the 10
chemical classes. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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nature, we can still trust the ensemble models. This finding offers a
theoretical support for the MF-ML method in developing QSAR models
in general. The SHAP method can also be widely used as an inter-
pretation method to reveal “black box” ML algorithms and to validate
the developed models. Moreover, after unveiling the knowledge con-
tained in these “black box” ML, it is possible to learn if there is any new
knowledge. In brief, by uncovering the underlying chemical knowledge,
we can trust a ML model, modify the model to make it more powerful,
and leverage the implicit knowledge the model carries.
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