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H I G H L I G H T S   

• MF-ML assisted-QSAR model was de
veloped for 1089 compounds toward 
HO% reactivity.  

• An ensemble model that combined 
XGBoost and DNN was developed.  

• The SHAP method was used to 
interpret all the obtained models.  

• The model made predictions based on 
the chemical knowledge correctly 
“learned”. 
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A B S T R A C T   

Developing quantitative structure-activity relationships (QSARs) is an important approach to predicting the 
reactivity of HO radicals toward newly emerged organic compounds. As compared with molecular descriptors- 
based and the group contribution method-based QSARs, a combined molecular fingerprint-machine learning 
(ML) method can more quickly and accurately develop such models for a growing number of contaminants. 
However, it is yet unknown whether this method makes predictions by choosing meaningful structural features 
rather than spurious ones, which is vital for trusting the models. In this study, we developed QSAR models for the 
logkHO% values of 1089 organic compounds in the aqueous phase by two ML algorithms—deep neural networks 
(DNN) and eXtreme Gradient Boosting (XGBoost), and interpreted the built models by the SHapley Additive 
exPlanations (SHAP) method. The results showed that for the contribution of a given structural feature to logkHO 

% for different compounds, DNN and XGBoost treated it as a fixed and variable value, respectively. We then 
developed an ensemble model combining the DNN with XGBoost, which achieved satisfactory predictive per
formance for all three datasets: Training dataset: R-square (R2) 0.89–0.91, root-mean-squared-error (RMSE) 
0.21–0.23, and mean absolute error (MAE) 0.15–0.17; Validation dataset: R2 0.63–0.78, RMSE 0.29–0.32, and 
MAE 0.21–0.25; and Test dataset: R2 0.60–0.71, RMSE 0.30–0.35, and MAE 0.23–0.25. The SHAP method was 
further used to unveil that this ensemble model made predictions on logkHO% based on a correct ‘understanding’ 
of the impact of electron-withdrawing and -donating groups and of the reactive sites in the compounds that can 
be attacked by HO%. This study offered some much-needed mechanistic insights into a ML-assisted 
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environmental task, which are important for evaluating the trustworthiness of the ML-based models, further 
improving the models for specific applications, and leveraging the implicit knowledge the models carry.   

1. Introduction 

Quantitative structure − activity relationships (QSARs) correlate 
chemical reactivity with chemical and/or structural features of many 
chemicals [1,2] and can be used to predict the reactivity of new com
pounds that otherwise needs labor-intensive and expensive experi
ments. The development of QSARs for HO% radicals has been a long- 
standing interest [3–5] because the HO% radical, a ubiquitous strong 
oxidant, plays important roles in natural and engineered waters, the 
atmosphere, biological systems, and even interstellar space by un
selectively and instantaneously reacting with numerous organic and 
inorganic compounds [6–18]. With more and more toxic organic con
taminants released into water environments, a simple, fast and accurate 
approach is desirable for developing QSAR models to predict the 
second-order rate constants (kHO%) for thousands of organic con
taminants. 

However, traditional approaches including molecular descriptors 
(MDs)-based QSARs [3] and the group contribution method (GCM)  
[19–21] have their own limitations. MDs represent certain molecular 
physicochemical properties, such as Hammett constants, reduction 
potential, and topological polar surface area. MDs have to be calculated 
by advanced computation that relies greatly on one’s sophisticated 
physicochemical knowledge and ability to use different software. For 
example, Borhani et al. believed that a two-step optimization of the 
chemical structures should be completed before calculating the MDs, 
and Density Functional Theory calculations were necessary for ob
taining quantum-chemically calculated descriptors [3]. MD-based 
QSARs often have satisfactory predictive performance when the 
number of compounds involved is small. For instance, Wang et al. used 
4 MDs with multiple linear regression to develop a QSAR for 55 com
pounds and achieved a low RMSE of 0.139 [22]. However, the obtained 
QSARs often have a small applicability domain that is only applicable to 
a limited number of compounds. With more and more contaminants 
involved, the calculation of MDs becomes time consuming while, gen
erally, involving more MDs but this still achieves less accurate QSAR 
models [23]. For example, Borhani et al. used 8 MDs to develop a 
binary particle swarm optimization-multiple linear regression model for 

457 compounds and achieved a higher RMSE of 0.356 [3]. Also, to 
develop QSAR models with a satisfactory prediction performance, a 
number of MDs should be manually selected among thousands of MDs 
but some of them are difficult to understand, that is, the physico
chemical meanings of these MDs cannot be easily linked to the HO 
radical reactivity. Nevertheless, one major advantage of MD-based 
QSAR models is that they are interpretable because of the chemical 
meanings carried by the MDs. The word “interpretable” means one 
usually knows why a model predicts high logkHO% values for some 
compounds but not others. 

GCM and structure–activity relationships (SAR) are another ap
proach to developing QSARs by hypothesizing that a rate constant of a 
given organic compound is a combined rate constant of all the struc
tural features [19–21]. Specifically, GCM quantifies HO radical rate 
constants based on the contributions of four reaction mechanisms 
(when applicable): (1) H-atom abstraction, (2) HO% addition to alkenes, 
(3) HO% addition to aromatic compounds, and (4) HO% interaction with 
sulfur (S)-, nitrogen (N)-, or phosphorus (P)-atom-containing com
pounds [19,20]. Monod et al. [21] combined SAR with linear regression 
to develop a QSAR model to predict the HO-oxidation rate constants for 
72 aliphatic compounds. The results showed a satisfactory performance 
as 60% of the estimated values were within the range of 80% of the 
experimental values. Note that they did not employ metrics such as 
RMSE to evaluate the performance so it is difficult to compare it with 
MD-based QSARs. Later, they expanded this method to 102 carbonyl 
compounds with 252 experimental rate constants and the accuracy of 
this updated SAR was such that 58% of the rate constants were calcu
lated within ± 20% of the experimental data and 76% within ± 40%  
[24]. Minakata et al. used GCM with genetic algorithms to develop a 
QSAR model for 434 compounds and 62% of the test compounds were 
predicted within 0.5–2 times of the experimental values [20]. The 
drawbacks of GCM or SAR are that: (1) For compounds whose reaction 
mechanisms are beyond the four mechanisms, GCM may be unreliable 
and inaccurate [20]; (2) GCM only linearly combines the contributions 
of different groups for a compound. When thousands of compounds are 
involved, non-linear correlations may exist, that is, the contribution of a 
structural group to the reactivity of different compounds may differ, but 

Scheme 1. The workflow of the data construction and preprocessing, model development, SHAP explanation, and the final goal.  

S. Zhong, et al.   Chemical Engineering Journal 405 (2021) 126627

2



GCM cannot well capture the differences. Nevertheless, the reaction 
mechanisms-based GCM is also interpretable. 

We have recently used molecular fingerprints (MFs) as the inputs for 
a deep neural network (DNN) to develop a QSAR model for the kHO% of 
500+ compounds [23]. It showed a comparative prediction perfor
mance with the MDs- and GCM-based QSARs but can be more readily 
built for a large number of compounds (logkHO% for new compounds can 
be predicted within a millisecond). As compared with MDs and the 
GCM methods, MFs can be more easily obtained and understood than 
MDs; obtaining the MFs for thousands of compounds is also faster than 
obtaining atom groups in GCM. There is no need to manually choose 
MDs with complex physicochemical meanings. However, MFs carry 
little mechanistic information and only encode the structural informa
tion of the molecules including atoms, bonds, and functional groups as 
binary vectors containing 0 s and 1 s (more details of MFs in Text S1 
and Fig. S1 in the Supplementary Material) [23,25,26]. Although the 
DNN-MF-based approach significantly simplifies and accelerates the 
development of QSARs for a large amount of organic compounds with a 
satisfactory prediction performance, the built QSARs are not yet in
terpretable, that is, one usually has little idea about how a DNN makes 
its predictions based on the MF binary vectors. The motivation question 
for this work therefore was “Does a DNN combined with MFs make 
predictions for rate constants based on a correct ‘understanding’ of 
important structural features for the reactivity?” which has never been 
addressed. Answering this question can offer a theoretical support for 
MF-based QSAR models. If a model makes predictions based on spur
ious features, then we cannot fully trust the model even though it can 
be easily built with high accuracy. For example, McCloskey et al. used 
the attribution method to interpret that DNN still learned spurious 
binding logics despite its perfect classification accuracy on the pro
tein–ligand binding dataset [27], while Belzen et al. revealed that the 
perfect classification accuracy achieved on a well-trained DNN was 
based on the correct identification of the specific protein sequence as
sociated with the biological functions [28]. 

In this study, we employed a large dataset that covered the reported 
kHO% values for 1159 organic compounds in the aqueous phase (Scheme 
1). Based on this dataset, the effects of ML algorithms, data splitting 
approaches, and outliers on the prediction performance were in
vestigated. XGBoost and DNN were then chosen to develop QSAR 
models (Scheme 1). Their hyperparamters and the radius and length of 
MFs were optimized by the Bayesian optimization algorithm. Next, we 
used the recently developed SHapley Additive exPlanations (SHAP) 
method [29] to interpret the two ML models about what features (i.e., 
atom groups) were selected to make the predictions. A brief introduc
tion to DNN, XGBoost, and SHAP is provided in Text S2. The SHAP 
method is theoretically sound as compared with other interpretation 
methods (Text S3). It has been applied to interpret the predictions made 
in gene expression, the concentrations of polycyclic aromatic hydro
carbons in the high arctic, and wet deposition of toluene, ethylbenzene 
and xylene [30–32]. We then developed an ensemble ML model that 
combined the DNN with XGBoost and interpreted it by the SHAP 
method. Interestingly, the developed ensemble model acquired the 
most relevant chemical knowledge to accurately predict logkHO%, in
cluding the influence of electron-donating and -withdrawing groups 
and the reactive sites. The performance of the ensemble model was also 
compared with the previously well-established QSARs. 

2. Methods 

2.1. Dataset, preprocessing and MF generation 

A dataset containing 1159 organic compounds and their HO% ra
dical rate constants (kHO%, M−1s−1) obtained under standard conditions 
(i.e., 25 °C) in the aqueous phase was created after reviewing relevant 
journal articles [3,23,33–41]. A detailed description of the dataset was 
supplied in Text S4. MFs of all the compounds were generated by the 

RDKit program within milliseconds by converting their “SMILES” 
strings obtained by the ChemDraw program, which is impossible for 
their MDs to be calculated in such a short time. 

Instead of randomly splitting the dataset into the training, valida
tion, and test datasets, we relied on the compound structures to split the 
dataset. This was to maximize the diversity in the compound structures 
in the training dataset and ensure similarities among the training, va
lidation, and test datasets. A detailed explanation of why we should 
value these two properties was provided in Text S5. According to this 
principle, we grouped all the organic compounds based on their func
tional groups. It should be noted that this grouping method was not 
based on single functional groups because more than 1 functional group 
exists in most compounds. Instead, it was based on a combination of 
different functional groups. For instance, the class of “OH” represents 
simple alcohol species while the class of “OH-X” represents the species 
that contain both OH and halogen groups. Another important reason for 
this functional groups-based data splitting was to identify outliers. 
Without grouping, it was difficult to identify whether the reactivity of a 
compound was “abnormal” or not. However, with grouping the com
pounds with the same functional groups should have similar reactivity. 
Hence, we can have more confidence in identifying outliers when some 
compound show abnormal reactivity as compared with others in the 
same group. 

Based on all the functional groups, the 1159 organic compounds 
were first divided into 357 classes. However, 250 of the 357 classes 
contained less than 3 compounds and could not be divided into three 
subsets of training, validation, and test datasets. Hence, we merged the 
classes containing less than 3–4 compounds with other larger groups 
based on similarity in the functional groups to form 98 classes. For 
every class, we identified the outliers based on the corresponding 
boxplot of logkHO% (not shown). Any compounds with a logkHO% value 
outside the range of (Q1 − 1.5 × IQR) to (Q3 + 1.5 × IQR) were 
excluded as the outliers (Q1 and Q3: 25% and 75% quartile, inter
quartile range IQR: (Q3 − Q1)). In this way, 70 compounds (6%) were 
removed from the dataset and the final number of compounds was 
1089. These outliers might result from experimental errors (‘real’ out
liers) or the merging operation as stated above (‘false’ outliers). For 
example, 1,4-diaminobutane was identified as an outlier in the class of 
amine. This outlier was ‘real’ because it was assigned to the correct 
class. However, for 1,3-dithiolane-2-thione, we merged it into sulf
oxides, which is obviously not reasonable, so this outlier might result 
from the incorrect grouping (‘false outliers’) and/or experimental er
rors. To investigate the effect of these outliers, three datasets containing 
no outliers (DFG-98), ‘false outliers’ (DFG-98-fo), and all outliers (DFG-98-all) 
were established and compared. The final dataset including the names, 
structures and logkOH% values of all the compounds is summarized in 
the excel file named “Dataset.xlsx” in the Supplementary Material. DFG- 

98 was used in all modeling processes unless otherwise specified. 
After grouping, for each dataset (DFG-98, DFG-98-fo, and DFG-98-all) we 

randomly chose compounds from every class with a ratio of 8:1:1 and 
combined them to form the training, validation, and test datasets. The 
specific information about which compounds were in the training, va
lidation or test dataset can be found in the excel file “Dataset.xlsx”. A 
validation dataset is necessary to control the overfitting problem and 
optimize the hyperparameters; otherwise, DNN can perfectly fit the 
data points in the training dataset but poorly predict the samples in the 
test dataset, i.e., overfitting. In this way, the diversity of the compound 
structures was similar in the training, validation and test datasets. 
Following this approach, each of the three datasets was split five times 
to form five different sets of training-validation-test sub-datasets, which 
were each used independently to train, validate, and test the ML 
models. In other words, we obtained 5 models for each dataset. This 
was to check if the performance of the ML models was a coincidental 
result of the data splitting or not. 

To prove that the above grouping approach was reasonable, the 
dataset that contained no outliers (DFG-98) was split in three additional 
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ways. “Drandom” refers to a random split of the dataset into training- 
validation-test sets (8:1:1). “DFG-28” and “DFG-63” refer to splitting the 
compounds into 28 and 63 classes, respectively, also based on func
tional groups but more broadly. Each dataset was further split five times 
to form five sets of training-validation-test sub-datasets, each con
taining at least one compound for each functional group. Obviously 
DFG-98 grouped the organic compounds more finely than DFG-28 and DFG- 

63. All the constructed datasets are summarized in Table S1. 

2.2. Baseline ML algorithm selection 

To choose a baseline ML algorithm to compare with DNN, we ap
plied 11 common ML algorithms with their default parameters to the 
same dataset and obtained their prediction performances (root mean 
squared errors on the test dataset: RMSEtest). RMSEtest was used as an 
indicator to evaluate the prediction performance: the lower the RMSEtest 

value is, the better prediction ability the model has. As the results 
shown in Fig. S3, Random forest, Bagging, Gradient Boosting, and 
XGBoost showed similar RMSEtest and were superior to the other ML 
methods. Here, we chose XGBoost as the baseline model because of its 
fast calculation and better design to control overfitting [42]. 

2.3. Bayes optimization of the hyperparameters of XGBoost, DNN and MFs 

Before the training process, there were several parameters called 
“hyperparameters” whose values needed to be determined. Tuning 
hyperparameters is a necessary step to optimize the performance of any 
ML method. Besides the hyperparameters of XGBoost and DNN, the 
length and radius of MFs should also be carefully tuned. Table S2 
summarizes the names and roles of the hyperparameters and the ranges 
of their values. Because there was a large number of hyperparameters 
whose values varied over wide ranges, it was impossible to enumerate 
every value to find out the optimum ones. We thus employed the 
powerful Bayesian optimization algorithm, which can choose the next 
optimum hyperparameter candidate value based on the results obtained 
from the previous ones [43,44]. Hence, the possibility of achieving the 
optimum values of the hyperparameters was maximized. 

For both XGBoost and DNN, we used the same dataset DFG-98 to 
optimize the hyperparameter values. After 500 iterations of the 
Bayesian optimization (i.e., choosing 500 groups of hyperparameter 
values), the mean squared errors (MSE) of the training and validation 
datasets by the XGBoost and DNN were obtained and are plotted in Fig. 
S4. It should be noted that in each iteration, “early stopping” was used 
to control overfitting during the training process. The “early stopping” 
method monitors changes in the MSE of the validation dataset 

(MSEvalidation). If there was no change or an increase in the MSEvalidation 

after a preset number of epochs, the training process stopped. The 
dotted lines in Fig. S4 indicate the lowest MSEvalidation position for both 
the XGBoost and DNN. With decreasing MSEtrain, the MSEvalidation de
creased, reached the minimum value, and then increased. Hence, un
derfitting and overfitting problems existed to the right and left hand 
sides of the dotted line, as shown in Fig. S4. The optimum values of the 
hyperparameters were the ones that achieved the minimum 
MSEvalidation, as listed in Table S3. 

2.4. Applicability domain 

Applicability domain aims to evaluate if a trustful prediction can be 
made for a query compound. Applicability domain is obtained by 
comparing the similarity between the query compound and the com
pounds in the training dataset. The similarity between two compounds 
A and B was calculated based on the Tanimoto index, T(A, B), according 
to Eq. (1): 

=
+

N
N N N

T(A, B) c

a b c (1) 

where Nc is the number of 1 s in the MFs of both compounds A and B; 
Na is the number of 1 s in the MF of compound A and Nb is the number 
of 1 s in the MF of compound B. Because MFs are binary vectors with a 
pre-set length filled with 0 s and 1 s, in which only 1 s represent there 
exist atom groups and the positions of 1 s represent what atom groups 
are in the compound, the Tanimoto index calculates the percent of the 
same atom groups that are in both compounds A and B, thus comparing 
their similarity. If the similarity is above a pre-set threshold, the query 
compound is within the applicability domain and the prediction made 
on this compound is reliable [45–47]; otherwise, the query compound 
is outside the applicability domain and the prediction is not reliable. 
The threshold value of similarity was determined by comparing the 
similarity between the compounds in the test dataset and those in the 
training dataset. To obtain the similarity of one compound in the test 
dataset to the ones in the training dataset, we calculated the similarity 
between this compound and every compound in the training dataset. 
Two similarity metrics were then used: the maximum similarity refers 
to the maximum value among all the obtained similarity values, while 
the mean similarity refers to the mean of these similarity values. For 
every pre-set threshold, the compounds that were outside the applic
ability domain were removed from the test dataset and the RMSEtest was 
recalculated. The optimum threshold was the one that achieved the 
lowest RMSEtest with the smallest possible number of compounds out
side the applicability domain. 

Fig. 1. (A) The effects of outliers and data splitting methods on the predication performance of the DNN and XGBoost. (B) Comparison of the prediction performance 
of the XGBoost and DNN with the hyperparameter values either randomly selected or obtained by the Bayesian optimization algorithm. 
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3. Results and discussion 

3.1. Effect of outliers and data splitting methods on the performance of 
models 

We first used the randomly chosen hyperparemeters for both DNN 
and XGBoost, as shown in Table S4. The outliers had a significantly 
adverse effect on the performance of both XGBoost and DNN, with 
lower RMSE being observed when more outliers were removed (Fig. 1A, 
from DFG-98-all to DFG-98-fo and then DFG-98). The prediction performance 
also relied heavily on the data splitting methods, as the prediction ac
curacy increased with the chemicals more finely grouped (Fig. 1A, from 
Drandom to DFG-28, DFG-63 and then DFG-98). We then optimized the hy
perparameters of DNN and XGBoost by the Bayesian algorithm (Table 
S3), obtained better and more robust prediction performances for both 
models (Fig. 1B), and confirmed the optimum ratio of training, vali
dation, and test datasets as 8:1:1 (Fig. S5). 

Table 1 lists the performance of seven reported models that have 
been developed based on different algorithms. With an increasing 
number of chemicals (n from 55 to 526), more molecular descriptors (p 
from 4 to 13) had to be involved in the reported models, but the model 
performance still became worse (RMSE from 0.079 to 0.356). This may 
be because there are more complex non-linear correlations between the 
molecules and their reactivity for a larger dataset. Such correlations 
cannot be captured by the simple models because of their limited fitting 
ability. Generally, the predictive performance of all the models is also 
better for the training datasets than for the test datasets in terms of R2 

and RMSE. Based on the DNN-MF model we developed in our previous 
study for 593 compounds [23], we increased the number of compounds 
to 1089 but still achieved a comparative or even better prediction 
performance here in terms of RMSEtest, demonstrating the effectiveness 
of our model. The slightly lower R2

test value (Table 1) in this study than 
in the previous one is likely because the metric of R2

test is highly de
pendent on the size and distribution of the test dataset [48]. For ex
ample, the size of the test dataset in this study is 109, which is even 
larger than the whole dataset used by Wang et al. [22]. These results 
suggest that the DNN and XGBoost models had been well trained and 
were ready to be interpreted. 

3.2. SHAP explanation of the XGBoost and DNN results 

Fig. 2A and B are the summary SHAP plots of the top-20 most 

important features of the compounds in the training dataset as learned 
by the DNN and XGBoost. The greater the absolute SHAP value is, the 
more influence it has on the logkOH%. The SHAP values of all the fea
tures in each compound are summarized in the excel file named  
“SHAP_values.xlsx” in the Supplementary Material. 

The SHAP patterns of the training dataset are similar to those of the 
test dataset (Fig. S6), indicating that the predictions made on the test 
dataset were indeed based on the knowledge learned from the training 
dataset. The blue dots mean 0 s in the MFs, which contain no structural 
information and, thus, theoretically should not affect the predictions 
(i.e., SHAP = 0). However, for the top-10 features that have 0 s, their 
contributions to the predictions were non-zero. This is because the 
XGBoost and DNN “learned” that there were obvious differences in the 
logkHO% values between the compounds with and without these features 
(Fig. S7). Nevertheless, the blue dots for most of the features indeed 
negligibly affected the predictions, as indicated by the top-100 features 
in Fig. S8. Therefore, the physicochemical meaning that no structural 
feature means no influence on the reactivity was mostly successfully 
learned by both the XGBoost and DNN. 

The patterns in Fig. 2 also implied that the DNN and XGBoost em
ployed two distinctly different approaches to make predictions. The 
DNN treated each atom group statically without “considering” the 
specific bonding environments the atom groups were in, as indicated by 
the same SHAP values for the same features (vertical bars) in different 
compounds. In contrast, the XGBoost “considered” every atom group 
dynamically because it assigned different SHAP values to the same 
atom groups (vertical and horizontal bars) in different compounds, that 
is, the contributions of the atom groups to the predictions depended on 
the specific organic compounds. Obviously, such differential assign
ments are chemically more meaningful because the same atom groups 
in different bonding environments can affect the compound reactivity 
differently. 

3.3. Development of ensemble model 

To simultaneously achieve the accuracy of the DNN and the che
mically meaningful differential assignments of the XGBoost, we devel
oped an ensemble model by linearly combining the predictions from the 
XGBoost and DNN of certain ratios, as shown in Eq. 2, where the ratio of 
0.72:0.28 was obtained by the Bayesian optimization algorithm. 

= × + ×Ensemble model 0.72 DNN 0.28 XGBoost

Table 1 
Comparison among different models for their performance in predicting aqueous kHO% values.          

Model Algorithm na pb Training Set Test Set 

R2
train RMSEtrain R2

test RMSEtest  

Wang et al. [22] MLR 55 4 0.905 0.139 0.962 0.079 
Kušić et al. [49] GA-MLRc 78 4 0.735 0.174 0.76 0.20 
Sudhakaran and Amy [5] PCA-MLRd 83 2 0.918 – – – 
Jin et al. [50] MLR 118 7 0.823h 0.204 0.772 0.329 
Borhani et al. [3] BPSO-MLRe 457 8 0.716 0.347 0.724 0.356 
Luo et al. [4] MLR 526 13 0.805h 0.165 0.802 0.232 
[23] DNN 593 0 0.972 0.135 0.747 0.329f 

Gupta et al. [34] DTBf 995 5 0.954 0.17 0.925 0.14g 

This study DNN-MF 1089 0 0.88–0.92 0.20–0.24 0.61–0.69 0.333–0.353 
XGBoost-MF 1089 0 0.80–0.93 0.18–0.29 0.53–0.67 0.302–0.368 

a n = the total number of chemicals in the dataset; 
b p = the number of MD or the length of MF; 
c GA: genetic algorithm; MLR: multiple linear regression; 
d PCA: principal component analysis; 
e BPSO: binary particle swarm optimization; 
f DTB: decision treeboost; 
g No test dataset was supplied. Instead, RMSEvalidation is shown here. Hence, the generalization ability of the model cannot be evaluated and this model was not 

used to compare with other models; 
h R2

adj  
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The ensemble model had a lower RMSE value than both the XGBoost 
and the DNN (Fig. 3A), and assigned different contributions to the same 
feature present in different compounds (Fig. 3B). Fig. 4 showed the 
scatter plots of the experimental versus predicted logkOH% values by the 
ensemble model. For all the five groups, the predictive performances for 
the training, validation and test dataset were respectively similar in 
terms of R2, RMSE and MAE, indicating that the prediction accuracy of 
the ensemble model was robust, or independent of data splitting. Next, 
we focused on interpreting this well-established ensemble model by the 
SHAP method to evaluate whether the model agreed with a few widely 
accepted chemical reaction principles, as detailed below. 

3.4. Learned electron-donating and -withdrawing groups 

Table 2 lists the top-10 most important atom groups learned by the 
ensemble model. The positive or negative effects of these features on 
logkHO% were obtained based on their positive or negative SHAP values 
and are also included in Table 2. HO% radicals mainly oxidize electron- 
rich organic compounds. Any functional group that can increase the 
electron density of the compound will increase the reactivity, that is, 
electron-donating groups or conjugated systems can increase the re
activity, whereas electron-withdrawing groups can decrease the re
activity. For example, the carbonyl oxygen (the 2nd feature) and ha
logen groups (the 5th feature), typically electron-withdrawing, were 
correctly identified to decrease the reactivity, whereas the electron- 
donating benzene ring (the 1st feature) and alkenes (the 6th feature) 
were correctly identified to increase the reactivity. Such chemistry 
knowledge often needs several years of experience, but our ML model 

quickly learned this after developing the prediction models based on 
the MFs and the logkHO%. It should be noted that we did not train our 
ML model to classify the positive or negative effects but only correlated 
the logkOH% with the MFs. 

Table 3 lists 19 well-known aromatic substituents that have positive 
or negative effects on the oxidation reactivity (the atom groups for all of 
the substituents are summarized in the file named “All the compounds 
and their features and representing atoms.txt” in the Supplementary 
Material). Such effects are the total effect that includes the inductive 
and resonance effects. Surprisingly, the ensemble model correctly 
learned the effects of all the substituents (100%) except for the 
eCONH2 group (5 out 6 chemicals correct). These results suggest that 
our ensemble model was based on a reasonable casual understanding to 
make predictions, which made it trustworthy. 

We then plot the electronic effects of the substituents as quantified 
by the Hammett constants [51] against the SHAP values to quantita
tively investigate the magnitude of these effects. It should be noted that 
higher absolute SHAP values mean larger effects while positive and 
negative SHAP values represent increasing or decreasing effects on the 
reactivity. Fig. 5A showed the inductive electronic effects on the SHAP 
values. A higher Hammett constant σI represents a stronger inductive 
effect, which decreases the electron density of compounds more sig
nificantly and hence lowers the reactivity toward OH%. Fig. 5A showed 
the decreasing trend in the SHAP values from positive to negative, that 
is, from increasing to decreasing the reactivity when σI increased from 
about 0 to 0.65, which is consistent with the chemical knowledge.  
Fig. 5B showed the resonance effect on the SHAP values. A more ne
gative σR represents a stronger resonance effect, leading to a higher 

Fig. 2. The summary SHAP plots of the DNN (A) and the XGBoost (B) for the compounds in the training datasets. For each feature, blue means 0 while red means 1 in 
the MF. The feature numbers on the left label the positions of the features in the MFs, and different positions represent different atoms or substructures (Text S1). The 
x-axes are the SHAP values where a positive value means that it can increase the logkHO% by the value; whereas a negative value means that it can decrease the logkHO 

% by the value. The pattern for each feature is composed of the SHAP values for all the chemicals that contain that feature. Note that because the XGBoost and DNN 
used different lengths of MFs, the same atoms may be represented by different feature numbers. For instance, feature 900 for the XGBoost represents the same atom as 
feature 1019 for the DNN. 
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electron density on the compounds, which is beneficial to the oxidative 
reactivity by HO%. Fig. 5B also showed a similar downward trend be
tween the SHAP values and σR. Fig. 5C showed the total electronic ef
fect resulting from both the inductive and resonance effects, with a 
higher R2 value (0.548) than in the case of either σI (R2 = 0.371) or σR 

(R2 = 0.472), indicating a more obvious correlation. This is expected 
because the reactivity of compounds toward HO% is affected by both the 
inductive and resonance effects. Given that different compounds have 
different reactive sites and the effect of a certain substituent toward 
different reactive sites cannot be the same, the above non-perfect linear 
correlations are chemically reasonable. Nonetheless, the chemical 
knowledge learned by the ensemble model contains not only qualitative 
effects but also quantitative effects on the reactivity, which was not 
expected. 

3.5. Learned reactive sites in the organic compounds toward attack by HO% 

The identification of the reactive sites in the organic compounds 
toward HO% was achieved by examining the largest SHAP values for 
different features in each compound (an example in Fig. S9). For all 
1,089 compounds, we compiled their individual SHAP plots, the che
mical structures, and the MFs in the Supplementary Material (the file 
named “All the compounds and their shap plots.txt”). Fig. 6 summarizes 
the learned reactive sites in 10 chemical classes whose oxidation me
chanisms by HO radicals have been well understood. We started from 
simple alkanes, whose eCH2e groups were thought to be the most 
reactive because of the largest absolute SHAP values (compound No. 
41–46). This is interestingly consistent with the experimental ob
servation that HO% prefers to attack eCH2e groups [8]. When these 
long-chain alkanes are folded to form cycloalkanes (compound No. 
667–671), the ensemble model still identified all the eCH2e groups as 

the essential feature, and these groups indeed all react with HO% as the 
reactive sites [8]. When a single bond in alkanes is replaced by a double 
bond to form alkenes (compound No. 49–52), the model “smartly” 
changed its decision from the eCH2e groups to the carbon atoms in the 
double bonds, and the latter are indeed attacked by HO% as the reactive 
sites [9,11]. When one or two H atoms in alkanes are replaced by eOH 
to form alcohols (compound No. 850–853), the model still underscored 
the eCH2e groups rather than the eOH group. This is again consistent 
with the experimental observation that HO% prefers to abstract H from 
eCH2e rather than from eOH [6]. However, the model did not cor
rectly identify the α-C to the eOH group to be more reactive than the β- 
or γ-C [6]. Different from the case of alcohols, when eOH is replaced by 
eSH to form thiols (compound No. 1016-1018), the model turned to the 
eSH group as the reactive site, although the only difference between 
the alcohols and the thiols is the S and O atoms. Indeed, eSH often 
reacts with HO% by H-abstraction as the first reactive site [6,11]. Si
milar cases were found in ethers (compound No. 736–751) and sulfides 
(compound No. 973–981) in which the methyl and/or methylene 
groups in the ethers and the sulfur atoms in the sulfides were correctly 
recognized as the reactive sites [15,18]. The carbon atoms in aldehydes 
(compound No. 0–5) or the nitrile group (compound No. 810–813), 
identified as the most reactive features by the model, are also known 
reactive sites in which they undergo H-abstraction and HO%–addition, 
respectively [10,13,17]. In the oxidation of amines (compound No. 
285–302), they can undergo either H-abstraction from the eNH2 and 
the neighboring methylene/methyl groups or electron transfer from the 
tertiary N [7,14]. The top-2 largest SHAP values were correctly as
signed to these groups so these reactive sites were also “smartly” 
identified by the model. 

Several features were identified to have the largest negative SHAP 
values, including eNO2 (compound No. 820–833), eCOR (compound 

Fig. 3. (A) The comparison among the DNN, XGBoost and ensemble models in terms of the prediction accuracy; (B) the summary plot of the top-20 learned features 
by the ensemble model. To combine the DNN and XGBoost into the ensemble model, the MF length was set to 4050 and the optimum values of the hyperparameters 
for XGBoost are in Table S5. 
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No. 800–807), eCOOR (compound No. 718–727), and eN]O (com
pound No. 834–845), but they are not the reactive sites toward HO%  

[6,11,52]. This is because all of these features are electron-withdrawing 

groups and can significantly lower the reactivity. Based on the obtained 
large negative SHAP values, the ensemble model exactly identified their 
significant negative effects on the predicted reactivity. 
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3.6. Applicability domain 

Table 4 shows that with an increasing threshold of the maximum 
similarity, more compounds (0 to 5) in the test dataset were outside the 
applicability domain, but the RMSEtest first decreased and then in
creased. A threshold of 0.35 led to the minimal RMSEtest (0.317), in
dicating the best prediction performance of the model. Nevertheless, 
there is not much difference among the RMSEtest when the threshold 
was above 0.25. With an increasing threshold for the mean similarity, 
more compounds (0 to 5) in the test dataset were also determined to be 
outside the applicability domain. Different from the case of maximum 
similarity, the RMSEtest first increased and then decreased. Although 
lower RMSEtest can be achieved by further increasing the threshold 
value, the number of compounds outside the applicability domain in
creased. Gadaleta et al. pointed out that lower RMSEtest and less 

compounds outside of applicability domain are preferred when 
choosing an appropriate applicability domain [45]. When we compared 
the number of compounds outside the domain at the RMSEtest = 0.317 
based on the maximum and mean similarity, 4 and 3 compounds were 
excluded, respectively. Hence, the optimum similarity metric and 
threshold value are the mean similarity and 0.028. We can thus con
clude that if the mean structural similarity of a given compound to the 
ones in the training dataset is higher than 0.028, our ensemble model 
can make a reliable prediction. Such a low similarity level indicates that 
the ensemble model is robust and can be applied to a broad range of 
organic compounds. 

4. Conclusions 

In this study, we combined two ML algorithms, DNN and XGBoost, 

Table 2 
The top-10 most important features and their positive and negative effects on the reactivity as learned by the ensemble model. The values in the parentheses are the 
sum of the absolute SHAP values for that feature in all compounds.        

Ranking 1st (201.51) 2nd (102.26) 3rd (83.14) 4th (45.03) 5th (43.43)  

atoms 

Feature # 1019 430 4008 3522 275 
Atom group Aromatic carbon Carbonyl oxygen Aromatic carbon Methylene carbon Chlorine 
Effect on logkHO% positive negative positive positive negative  

Ranking 6th (35.47) 7th (32.02) 8th (30.18) 9th (26.34) 10th (24.12) 

atoms 

Feature # 2748 2584 3387 1653 2189 
Atom group Ethylene carbon Aromatic OH Methyl Methylene Carbonyl 
Effect on logkHO% positive positive positive positive negative 

Note: One compound may have multiple identical features. For example, feature 1019 represents aromatic carbon atoms that are only attached to one H atom; 
toluene has five of them (Fig. S1c). The blue circles represent the center atoms, the black solid lines represent the bonds in the feature, the grey lines represent the 
neighboring bonds not in the feature, the dotted lines represent conjugated structures, e.g., aromatic, and the yellow color represents an aromatic atom in the feature. 
All heavy atoms except for C, such as O and Cl, are shown in different colors, while the C atoms are not shown.  

Table 3 
Common aromatic substituents with positive or negative electronic effects. a        

Effect Functional Group Feature # No. of compounds with the feature No. of correctly identified compounds Percentage (%)  

Positive eNH2 3359 62 62 100 
eNHR 2292 10 10 100 
eNR2 2054 7 7 100 
eOH 2584 121 121 100 
eOR 2258 53 53 100 

eNHCOR 1733 + 430 + 1568b 6 6 100 
eC6H5 1019 19 19 100 

eCH]CH2 2748 6 6 100 
eCH2CH3 1979 15 15 100 

Negative eNO2 3115 + 430 + 495b 36 36 100 
eCN 3408 23 23 100 

eCHO 3749 + 430b 11 11 100 
eCOCH3 2800 + 430b 9 9 100 
eCONH2 1685 + 430 + 539b 6 5 83.3 
eCONHR 1790 + 430 + 566b 9 9 100 
eCONR2 162 + 1747 + 430b 1 1 100 
eN]O 2514 + 430b 2 2 100 

eCl 275 63 63 100 
eBr 2680 16 16 100 

a These groups were chosen because (1) their positive or negative effects on the oxidation reactivity are well established; and (2) these groups are in our dataset. 
b Some groups were too large to be described by one feature when the MF radius was 1, such as eCONR2. In these cases, their SHAP values were calculated by 

summing the SHAP values of all of the features involved.  
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with the MFs of organic compounds to develop an accurate prediction 
model for the logkHO% of 1089 compounds (RMSEtest for DNN-MF: 
0.333–0.353, RMSEtest for XGBoost-MF: 0.302–0.368). How the two 
algorithms made predictions on logkHO% were interpreted by the SHAP 
method. The results showed that for the contribution of a given struc
tural feature to the predicted logkHO% values for different compounds, 
the DNN and XGBoost treated it as a fixed and variable value, respec
tively. Based on this interpretation, we recognized that the DNN may 
not use all the correct chemical knowledge to develop models, even 
though the models’ predictive performance was acceptable. Then, we 
developed the ensemble model by combining the DNN with the 
XGBoost, which achieved more accurate and robust prediction perfor
mance (RMSEtest: 0.30–0.35) while relying on the same working me
chanism as the XGBoost. Given the fact that more and more con
taminants may arise in the future, the ML-MF based approach will show 
great applications in the environmental field. We then interpreted the 
ensemble model and found that it surprisingly “learned” the reaction 
patterns after linking the reactivity to the MFs, including “knowing” 
which atom groups can decrease or increase the reactivity, “quanti
fying” the decreasing or increasing effect of structural features, and 
“locating” the reactive sites in the compound structures toward HO% 

radicals. Specifically, aromatic carbons and carbonyl groups can in
crease and decrease the reactivity the most for these 1,089 compounds, 
and common well-known atom groups that can decrease or increase the 
reactivity, such as eNH2, eBr, eCH2]CH2 and eN]O, were correctly 

identified. The decreasing or increasing effect was quantitatively ana
lyzed by the plots of Hammett constants versus the SHAP values. The 
reactive sites for 10 common chemical classes were correctly located 
based on the highest absolute SHAP values. The applicability domain of 
the ensemble model was determined to be 0.028 of the mean similarity, 
that is, the HO% reactivity of any query compounds with a similarity 
value of over 0.028 can be reliably predicted, indicating the wide ap
plication potential of the built model to a broad range of organic 
compounds. These results demonstrated that ML can implicitly learn 
the chemical knowledge when it helps perform a chemical task. 
Therefore, although the ML methods used here have a “black box” 

Fig. 5. Correlations between the Hammett constants of the aromatic substituents in Table 2 and their SHAP values: (A) the inductive effect, (B) the resonance effect, 
and (C) the total electronic effect. 

Fig. 6. The important features (highlighted in red) with the largest SHAP values for each compound learned by the ensemble model smartly shifted among the 10 
chemical classes. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 4 
The thresholds of similarity, the number of compounds outside the applicability 
domain for each threshold value, and the corresponding RMSEtest.      

Similarity metric Threshold value # of Compounds outside the 
applicability domain 

RMSEtest  

Maximum 0.25 0 0.319 
0.30 2 0.318 
0.35 4 0.317 
0.40 5 0.318 

Mean 0.015 0 0.319 
0.020 2 0.321 
0.028 3 0.317 
0.030 5 0.313 
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nature, we can still trust the ensemble models. This finding offers a 
theoretical support for the MF-ML method in developing QSAR models 
in general. The SHAP method can also be widely used as an inter
pretation method to reveal “black box” ML algorithms and to validate 
the developed models. Moreover, after unveiling the knowledge con
tained in these “black box” ML, it is possible to learn if there is any new 
knowledge. In brief, by uncovering the underlying chemical knowledge, 
we can trust a ML model, modify the model to make it more powerful, 
and leverage the implicit knowledge the model carries. 
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