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CONVERGENCE ANALYSIS OF THE
FAST SUBSPACE DESCENT METHOD
FOR CONVEX OPTIMIZATION PROBLEMS

LONG CHEN, XIAOZHE HU, AND STEVEN M. WISE

ABSTRACT. The full approximation storage (FAS) scheme is a widely used
multigrid method for nonlinear problems. In this paper, a new framework
to design and analyze FAS-like schemes for convex optimization problems is
developed. The new method, the fast subspace descent (FASD) scheme, which
generalizes classical FAS, can be recast as an inexact version of nonlinear
multigrid methods based on space decomposition and subspace correction. The
local problem in each subspace can be simplified to be linear and one gradient
descent iteration (with an appropriate step size) is enough to ensure a global
linear (geometric) convergence of FASD for convex optimization problems.

1. INTRODUCTION

Most real-world applications are inherently nonlinear. The design of fast algo-
rithms for the solution or approximate solution of nonlinear equations is of funda-
mental interest to mathematicians, physicists, biologists, and others. In this paper,
we consider solving nonlinear equations arising from the minimization of a convex
functional in the abstract Hilbert space setting.

The well-known Newton-Raphson method is a traditional and popular approach
for solving nonlinear equations. Basically, Newton’s method iteratively finds the
approximate solution by linearizing the problem near the current iterate. In the
present case, a linear symmetric positive definite system (the Jacobian system)
needs to be solved at each Newton’s iteration, and fast linear multigrid (MG)
methods are sometimes used as a solver. Practically, each linear problem can be
approximately inverted by applying a few multigrid iterations. But, if this is done,
the quadratic rate of convergence may be sacrificed.

One alternative to Newton’s method for solving nonlinear PDE is the nonlinear
multigrid method, better known as the full approximation storage (FAS) scheme.
This method, developed by Brandt [3] in the late 1970s (see also [4]) often con-
verges linearly and with optimal complexity in practice. Recall that the success
of multigrid methods relies on two ingredients: 1) high frequency components of
the error will be damped by smoothers; and 2) low frequency components of the
error can be approximated well on a coarse grid. The smoother used in FAS is usu-
ally the nonlinear Gauss-Seidel smoother, which solves many small-sized nonlinear
problems (typically with one degree of freedom) on small patches of the mesh. For
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the coarse grid problem, the FAS method uses the full approximation rather than
the standard defect, which makes it essentially different from linear MG methods.
Due to its high efficiency, the FAS method has been applied to many nonlinear
PDE problems, such as in [14-16,19, 24,28, 30].

Although FAS is quite successful in practice, its theoretical analysis is limited.
In [13], Hackbusch considered nonlinear MG methods for general nonlinear prob-
lems. By imposing conditions on the nonlinear operators and their derivatives,
together with standard smoothing and approximation properties, he was able to
show that the FAS converges in a sufficiently small neighborhood of the solution
on a fine enough mesh. Moreover, the number of smoothing steps needs to be suf-
ficiently large, and at least the W-cycle should be used. Later in [22,23], Reusken
considered FAS for a class of semi-linear second order elliptic boundary value prob-
lems with mild nonlinearity. Within this nice class of nonlinear problems, he was
able to show the convergence of FAS under weaker assumptions on the nonlinear
operators. We want to mention that the proofs in their work are based on the
linearization of the FAS iterations, and the rate of convergence is in some sense
local. For example, in [23], Reusken showed that the V-cycle FAS converges locally
in a ball with radius shrinking from coarse to fine levels.

In this paper we consider a special class of nonlinear equations that can be viewed
as Euler equations of certain convex objective functions. The convergence of MG
methods for convex optimization problems has been studied in [26,27] under the
framework of subspace correction methods [29]. In [27], Tai and Xu considered
some unconstrained convex optimization problems and developed global and uni-
form convergence estimates for a class of subspace correction iterative methods.
Their approach is based on an abstract space decomposition which is assumed
to satisfy the so-called stable decomposition property and strengthened Cauchy
Schwarz inequality. We point out that in each subspace, the original objective
function is used, which is, strictly speaking, naturally defined on the finest level.
Furthermore, the local problem should be solved exactly, which is more expensive
than what is required in the FAS scheme.

We shall borrow the theoretical framework established in [27] to analyze a hybrid
of the FAS and subspace correction methods, what we will call the fast subspace
descent (FASD) method. In contrast to the subspace correction method considered
in [27], in which an exact subspace solver is used, we recast FASD as a subspace
correction method with an inexact subspace solver, which reduces the computa-
tional cost significantly. In particular, we show that one step of preconditioned
gradient descent iteration in each subspace is good enough to guarantee the global
convergence for convex optimization problems.

Several other FAS-like algorithms for solving optimization problems have been
considered in the literature [11,12,17,19], including those that are line search-
based recursive or trust region-based recursive algorithms. Only basic convergence
is established in these works. Here we shall prove a global linear convergence for a
class of strongly convex optimization problems.

We establish the convergence of the algorithm in the framework of subspace cor-
rections [27]. We first show that, with a one dimensional line search approach, the
FASD method converges globally and uniformly under the standard assumptions
on the space decomposition. In addition, we borrow some techniques from the op-
timization literature [21] in order to properly handle the inexactness of the local
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solver used in FASD. We introduce a fixed step size to guarantee that the objec-
tive function is decreasing globally. For the analysis of the original FAS method,
which is obtained from the new FASD method via a simple modification, we im-
pose an additional approximation property of the subspace problems and show that
FASD converges globally and uniformly. We emphasize that our work represents
not only a theoretical advance for the convergence analysis of FAS-type schemes,
but also is algorithmically simpler, and even more flexible, than the original FAS.
We show that, both theoretically and numerically, each local nonlinear problem can
be approximated by a linear problem, and, consequently, the computational cost is
reduced significantly.

The paper is organized as follows. In Section 2, we present the optimization
problem, with its associated Euler equation, in a general Hilbert space framework.
We conclude the section with the assumptions on the space decomposition. The
successive subspace optimization (SSO) method is recalled in Section 3. The con-
vergence analysis of SSO, based on slightly weaker assumptions compared with [27],
is presented in the same section. The main global and uniform convergence anal-
yses for FASD with the exact line search and approximate (quadratic) line search
are derived in Sections 4 and 5, respectively. The original FAS method is analyzed
in Section 6. In Section 7, an application problem is considered.

2. PROBLEM AND ASSUMPTIONS

Given an energy, or objective function, F(v) defined on a Hilbert space V, which
is equipped with inner product (-,-)y and norm || - ||y, we consider the following
minimization problem:

(1) u = argmin, ¢y, E(v).

We now make some assumptions that guarantee that the minimizer exists and is
unique.

2.1. Assumptions on the energy. We assume that the energy functional E(-) :
V — R is Fréchet differentiable for all points v € V. For each fixed v € V, E'(v) :
YV — R is the continuous linear functional equal to the first Fréchet derivative at v.
We further impose the following assumptions on the energy:

(E1) (Strong convexity): There is a constant p > 0 such that
(2) pllw = |3, < (B'(w) = E'(v),w —v)

for all v,w € V, where (-, -) is the duality pairing between V' and V.
(E2) (Lipschitz continuity of the first order derivative): For fixed ug € V, there
exists a constant L such that, for all v,w € B:={v e V| E(v) < E(up)},

I

(3) [E'(w) = E"(v)|[v < Lilw = vllv,
where (f.0)
)
[fllv == sup (f,v)= sup :
e vewvio} llvlly
vlly=

Other authors, for example Ciarlet [8], use the term elliptic for the property in
assumption (E1). We should also point out that assumption (E1) is equivalent to
the property that the derivative is strongly monotone [1].

The following results are classical, and the proof, which is skipped for the sake
of brevity, can be found in [9, p. 35], [8, Thm. 8.2-2], or [1, Thm. 3.3.13].
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Theorem 2.1. If E satisfies assumption (E1), then, for all w,v € V,
H 2
(4) E(w) = B(v) 2 (E'(v),w = v) + 5 [lw =]y,

Consequently, E is strongly convex and coercive. Furthermore, there is a unique
element u € V with the property that

E(u)<E(w) YveV and E(u) < E(w) VYv#u,
and this global minimizer satisfies Fuler equation
(5) (B'(u),w) =0 Ywe.
The strong convexity and the Lipschitz continuity imply the following estimates.
Lemma 2.2. Suppose E satisfies assumptions (E1) and (E2). For all v,w € B,
llw = vl < (B'(w) = E'w),w = v) < L |w—v]]3.
Furthermore the lower bound holds for all v,w € V.

Proof. The lower bound is just assumption (E1). To get the upper bound, observe
that (E2) implies that, for all w,v € B, and for any z € V,

(E'(w) = E'(v),2)| < |E"(w) = E"(v) |l [Izlly, < Lllw = vy, |2y, -
Setting z = w — v gives the desired inequality. O
Proposition 2.3. If E satisfies (E1), the sublevel set B is conver.

Proof. Suppose that v,w € B. Then E(w) < E(up) and E(v) < E(up). Since E is
strictly convex, for any ¢ € [0, 1],

E(ug) > (1 —t)E(w) +tE(v) > E((1 — t)w + tv).
Thus, (1 —t)w +tv € B for any t € [0,1]. O

Now, we consider the relation between the energy and the norm centered at the
minimizer. The following estimates can be easily proved using Taylor’s theorem
with integral remainder; see, e.g., [21].

Lemma 2.4 (Quadratic energy trap). Suppose E satisfies assumptions (E1) and
(E2). For allv,w € B,

©) & lw—olf} + (B'(0), w ) < Blw) ~ B@) < (B'(0),w ) + 5w vl

Furthermore the lower bound holds for all v,w € V. In addition, suppose u € B is
the minimizer of E; then for all w € B,

I 2 L 2
7) Bl =l < Bw) ~ B(u) < 5 Jw—ully
Again the lower bound holds for all w € V.

Based on assumption (E1), the upper bound can be replaced by a norm of the
gradient. Since the proof is less standard, we include it here.

Lemma 2.5. Suppose that E satisfies assumption (E1) and u € V is the minimizer
of E; then for allv €V,

(8) 0 < E(v) — Eu) < inE'(v)na.
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Proof. Fix the point v € V. Now, for any w € V, using the lower bound of (6), we
have

E(w) = E(v) + (E'(v),w —v) + %Hw =} = g(w).
For fixed v € V, the minimizer of g(w) is w* :=v — i%E'(v), where RE'(v) is the
Riesz representation in V of E’(v). Therefore,
B(w) > glw) > g(w”) = B) = 5= [RF W) = ) = 5-1E' W)l
Then (8) is obtained by letting w = u in the above inequality. |
We shall often use the following simple variant of Lemma 2.4.

Lemma 2.6 (Convexity of energy sections). Suppose that E satisfies (E1) - (E2),
& € B is arbitrary, and W C 'V is a closed subspace. Define the energy section

J(w):=E(+w) YweW.

Then J : W — R is differentiable, strongly convex, and there exists a unique element
n € W such that £ +n € B, n is the unique global minimizer of J, and

(E"(&+n),w) = (J'(n),w)=0 YweW.
Furthermore, for allw € W with w+ & € B,

Ellw = nll} < T(w) = J(n) = BE +w) — B +n) < 5wl

N | B

The lower bound holds for any w € W, without restriction.

The ratio L/u is called the condition number of the derivative F’; see [21, p. 63].
The rate of convergence of iterative methods for solving (1) usually depends on
the condition number. Here we assume L/p is uniformly bounded, as long as we
remain in B. Then the Riesz map PR : V' — V can be used as a preconditioner and
the corresponding preconditioned gradient descent method will converge [10].

Implementing preconditioned gradient descent methods in V requires the com-
putation of the Riesz map PR which is equivalent to inverting a symmetric positive
definite (SPD) operator (an SPD matrix of size dim V x dim V when dimV < +00).
Of course we can also use multilevel methods to compute R and use steepest de-
scent, nonlinear conjugate gradient, or the Newton method as the outer iteration.
In the following, we shall provide optimization methods that only require computing
inverses with much smaller sizes.

2.2. Assumptions on the space decomposition. Suppose that
V=Vi+Vo+ -+ Vn, ViCV, i=1,...,N,

is a space decomposition of V using closed subspaces V; for ¢« = 1,2,...,N. We
shall use the following assumptions on the space decomposition.

(SS1) (Stable decomposition): There is a constant C4 > 0, such that, for every
v € V, there exists v; € V;, ¢ =1,--- , N, with the property that

N N
v=Y"u and Y[l < CAllol}-

i=1 i=1
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(SS2) (Strengthened Cauchy Schwarz inequality): There is a constant Cs > 0,
such that, for any w; ; € B, u; € Vs, v; € V;, with w; ; +u; € B,

N N N vz /N
D0 (Blwij+uy) — E'(wij),v) < Cs (ZIWH;Z;) <Z”Ui“$}>

i=1 j=i+1 i=1

1/2

When E” exists and is continuous, by the mean value theorem and standard

Cauchy Schwarz inequality

(E"(wij + uj) = E'(wi3),vi) = (E" (&)uy, v1) < |E" () lwslIvllvillv-
Thus a naive verification of (SS2) could use the constant C's = LN, which would
be large if N is large. When the inner product induced by the Hessian E”(&;) is
spectrally equivalent to a V-inner product, a better constant Cg, which is indepen-
dent of N, can be obtained. This is the reason we call it the strengthened Cauchy
Schwarz inequality.

We note that the constant Cs > 0 can be related to the Lipschitz constant in
assumption (E2). Unless F was quadratic, we could not assume in general that
the strengthened Cauchy Schwarz inequality would hold without restriction to the
bounded sublevel set B, as indicated in assumption (SS2).

3. SUCCESSIVE SUBSPACE OPTIMIZATION METHODS

For k > 0 and a given approximate solution u* € V, one step of the successive
subspace optimization (SSO) method [25] is given in Algorithm 1.

Algorithm: u**+! = SSO(u*)

Uozuk;

fort=1: N do
Define an energy section along V;:

Ji(w) == E(vi1 +w) Yw €V
Compute the subspace correction:
9) e; = argmin, ¢y, Ji(w);
Apply the subspace correction:

Vi = Vi1 + €4

end
uFtl =y

Algorithm 1: Successive subspace optimization method.

Remark 3.1. Note that e; computed in (9) of Algorithm 1 is uniquely defined, owing
to the strong convexity inherited by the energy section J;. In fact, the correction
satisfies

(E'(v;),w) = (E'(vie1 + €;),w) = (J'(&;),w) =0 YweEV;.
The orthogonality relation satisfied by the corrected approximation, v;, specifically,
(E'(v;),w) =0 Ywe,

is sometimes referred to as the fundamental orthogonality (FO) of the solver.
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Remark 3.2. We point out that, when V; is one dimensional, then the computation
of the subspace correction is identical to a nonlinear Gauss-Seidel method. In fact,
the SSO method can be considered as a generalization of the nonlinear Gauss-Seidel
methodology.

We aim to prove a linear reduction of the energy difference for one iteration of
the SSO algorithm:

(10) E(u*!) = B(u) < p(E(u*) - E(u)),

where u is the minimizer of E and u**! = SSO(u¥), with a contraction factor
€ (0,1). Ideally p is independent of the size of the problem. The algorithm and

convergence theory has been developed in [25,27] for a convex energy in Banach

spaces. For completeness, we include a simplified version for Hilbert space here.
We will utilize the following simple result.

Theorem 3.3. Suppose that {di}72 o, {0k}, {Mk}iy are sequences of non-
negative real numbers, the first two having the relationship

O =dg —dgy1, k=0,1,2,---.
Assume that there are constants Cr,,Cy > 0, independent of k, such that
Crnp <6 and  dipyy < Cymg.

Then

Cu
CL+Cy
Consequently {d} converges monotonically, and (at least) linearly to 0.

Proof. Observe that

(11) djsr < de, k=0,1,2,-.

Cuy Cu Cuy
dpy1 < Cymy = =—Crmi < =0, = —(d, — d
k+1 = LUtk Cy LTk = Cr k CL( k k+1)
which implies (11). Proving that {dx} is strictly decreasing to zero is straightfor-
ward, and the proof is omitted. O

We will apply the last result with the following definitions:
(12) dy = E(uf) — E(u) and 6 := E(u*) — B(u**1).

The quantity dj is the difference between the current energy and the minimum
energy, also known as the optimality gap, and J;, is the energy decrease associated
to the k + 1th iteration. They are connected, as desired, by the trivial identity

Op = di — diy1.

See Figure 1 for an illustration. We define 7y, in terms of the subspace corrections

via,
N
=Y ey,
i=1

and we assume the following upper and lower bounds.

Lower bound on energy decay. There exists a positive constant C';, such that
for any Kk =0,1,2,---

N
(13) E(uF) — @) =6, > Compe = CL Y _ el

i=1
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B(v)

FI1GURE 1. The sequences {d;} and {d;}.

Upper bound on optimality gap. There exists a positive constant Cy such that
forany £k =0,1,2,---

N
(14) E@WF!) — B(u) = dpyr < Come = Cu Y _ [lei[3-
i=1

If these bounds hold, then, as a corollary to Theorem 3.3, we have the following.

Corollary 3.4. Assume that the lower bound (13) and upper bound (14) hold with
positive constants Cp, and Cy, respectively. We then have

Cu

E(uk-l,-l) —E(u)<p (E(uk) _ E(U)) y  PI= M’

and E(u*) converges monotonically, and (at least) linearly to E(u), at the linear
rate p. Furthermore, uF converges at least linearly to u.

Proof. The linear convergence of E(u*) to E(u) at the rate p is guaranteed by
Theorem 3.3. Using (7), with w = u*, we have

Hoy ok 2 k
§Hu quv < E(u”) — E(u),
which guarantees the linear convergence of u* to u. O

Verifying the lower bound is relatively easy since F is convex. Solving the convex
optimization problem in each subspace will definitely decrease the energy, and this
decrease can be quantified in terms of the norms of the corrections. We make
essential use of the fundamental orthogonality property.
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Theorem 3.5. Let u* be the kth iteration and u*+1 = SSO(u*). If E is strongly
convez in the sense of satisfying (E1), then

N
8y = E(u") — E(F*Y) > 0y ; leil3, Cr:= g
Proof. Recalling Lemma 2.6, we observe that J; (defined in Algorithm 1) is strictly

convex over V; and is Fréchet differentiable, as it inherits the structure of E. It
follows that

(Ji(e;),w) =0 Ywe.

But the object on the left-hand side is simply a directional derivative of the full
energy, and it is easy to see that

(Ji(ei),w) = (B (vi—1 + €;),w) = (E'(v;),w) Yw €V,

Therefore, the fundamental orthogonality, E'(v;) = 0 in V/, holds. As e; = v; —
vi—1 € V;, in view of Lemma 2.6, we have

(15) B(vim) = E() = Ji(0) = Jiles) = & el

The sum of the left-hand side telescopes, and we have

N

N
E@h) — B@*) = Y (B@i1) = B@) 2 5 lleill3-

i=1 i=1

O

Remark 3.6. In view of (15), the convexity of E can be relaxed to the local con-
vexity of the energy sections .J; in each subspace V;. Namely we may have a non-
convex energy F which, restricted to each subspace, is convex and the lower bound
still holds. For example, the energy used in the optimal delaunay triangulation
(ODT) [7] is nonconvex globally. But restricted to one vertex, it is convex, and
the corresponding 1-D optimization problem has a closed form solution, which is
known as ODT mesh smoothing [5]. Theorem 3.5 guarantees the energy decreasing
property of ODT mesh smoothing.

The upper bound is more delicate and relies on the assumptions about the de-
composition of spaces. The result is given in the following theorem.

Theorem 3.7. Let uF+! be the k + 1st iteration in the SSO algorithm. Suppose
that the space decomposition satisfies assumptions (SS1) and (SS2) and the energy
E satisfies assumption (E1); then we have

N
i1 = B = Bu) <Cu Y el  Cu =

i=1

C3Ch
2u

Proof. Using Lemma 2.5, with the choice v = u*+1 in (8), we have

1
dpy1 = EuFHY) — B(u) < EHE’(u’““)II%/-
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For any w € V, we choose a stable decomposition w = vazl w;; then

N
(B'(u* ), w) = Z(E'(uk“),wﬁ

@
Il
-

(B'(uF Y — B (v;), w;)

I
M=

.
Il
-

(E'(vj) — E'(vj-1), w;)
1

[
I

-
Il

15

12 , N
< Cs (2 m-n%) (Z ||wj|%>
i=1 i=1

N 1/2
< CsCa <Z ||ei||%> ]y

i=1

1/2

=

Here we use the fact that we solve the minimization problem on each subspace
exactly and the energy decreases, therefore, v; € B for all j and E'(v;) = 0 in V].
Then we have

1
E(uFtY) — B(u) < ﬂllE’(u’““)H%f

2
1 (B'(u"), w)
— [ sup Y W
2p \ wewv\fo} [w]lv

N
1
< 2—03031 > leally
K i=1
which finishes the proof. O

Based on the lower bound given in Theorem 3.5 and the upper bound given
in Theorem 3.7, we can conclude the convergence of SSO. Comparing with the
results in [27], we use slightly weaker assumptions, and the constant Cyr seems to
be slightly better.

Corollary 3.8. Let u* be the kth iteration and u*+' = SSO(u*). Suppose that
the space decomposition satisfies assumptions (SS1) and (SS2) and the energy E
satisfies assumption (E1); then we have

C3Ch
CIC% + 12

As we have pointed out previously, the Lipschitz continuity and constant L
are implicitly contained in assumption (SS2) (the strengthened Cauchy Schwarz in-

equality) and the constant Cs. We will show how this can be so with an application
at the end of the paper.

E(u"+) — B(u) < p(B(b) — B(w) with p=

4. FAST SUBSPACE DESCENT METHOD WITH EXACT LINE SEARCH

In this section, we present the theory for the convergence of the fast subspace
descent (FASD) method listed in Algorithm 2. To recap, in the SSO method,
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Algorithm 1, we need to solve the optimization problem

géi\l}i E(vi—1 +w)
in each subspace exactly, which requires evaluation of the global energy E and its
derivative E’ in the space V. Although the size of the optimization problem is
reduced to dim V;, such evaluations are still in the original space of size dim V),
which may be expensive.

4.1. Algorithm definition. Denote by I; : V; — V the natural inclusion and
R; = I, : V' — V! the natural restriction of functionals. Thus, for all w € V;,

(RiE'(vi—1),w) = (E'(vi—1), R{ w) = (E'(vi-1), Liw).

Often times we just drop R; and I;, as their actions can be assumed implic-
itly. We need to evaluate the gradient R;E’(v;—1 + Iw), as well as the Hessian
R;E"(v;—1+ Lyw)I; and its inverse, if Newton’s method is used, several times. This
is practical only if the natural inclusion I; is efficient to realize, e.g., a one dimen-
sional subspace generated by one basis function of V and the resulting method is
the so-called non-linear Gauss-Seidel iteration.

Instead of solving the minimization problem using the original energy FE, in
our FASD algorithm (Algorithm 2) we utilize a locally-defined energy E; in each
subspace V; and solve a perturbed optimization problem. For the moment, let
us assume that F; : V; — R is Fréchet differentiable in V;. We will give further
assumptions shortly. In addition to prolongation and restriction operators, we also
need a projection operator @; : V — V;. Ideally, Q;v yields a good approximation
of v in the subspace V;. Recall that as a projection operator Q;v; = v; for v; € V;.

Algorithm: u**! = FASD(u*)
_ k.
Vo =U"

fori=1:N do

Compute the so-called subspace 7-perturbation: let & = Q;v;_1 and
(16) 7= E.(&) — RiE'(v;_1) € V);
Solve the subspace residual problem: Find 7n; € V;, such that
(17) (Bi(ni),w) = (rj,w) Yw e Vs
Compute the search direction:
(18) si=mn; —& € Vi;
Orthogonalize the subspace correction via the exact line search:
(19) €; 1= o s,
where
(20) o = argmin, g E(vi—1 + as;);
Apply the subspace correction:
(21) v =01 &g

end

uF = oy

Algorithm 2: Fast subspace descent (FASD) method.
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We shall view our fast subspace descent (FASD) method as a hybrid of the SSO
and FAS methods. For the proof of convergence, it helps to treat FASD as an SSO
iteration with an inexact local solver. We could also say that FASD (Algorithm 2)
is essentially FAS with an additional line search step.

Our FASD algorithm is listed in Algorithm 2. In the orthogonalization step, cf.
(19), we perform a line search to find the optimal step size which still requires the
evaluation of some of the “fine level” functions E(v;_1 + as;), E'(v;—1 + as;), and
E"(v;—1 + as;) in V. The computational cost is reduced compared with evaluation
of v;_1 + w for multiple w € V;. Algorithm 2 is an intermediate step towards the
convergences proof of original FAS. In Section 5, we shall analyze an algorithm that
uses a simpler choice of step size, one that is closer to the original FAS method. In
Section 6, we shall consider the original FAS, which corresponds to FASD with the
step size a; = 1.

4.2. Strong convexity of local energy and well-posedness. To show the well-
posedness of the local problem (17), and therefore Algorithm 2, we need some as-
sumptions on the energies F;. As mentioned, we assume E; : V; — R is Fréchet
differentiable for all points v € V;. In addition, we introduce the following assump-
tions on the local energy, F;, which is just the local version of (E1):

(E3) (Strong convexity/ellipticity): There exists a constant p; such that for all
v,w € V;
(Ej(w) = Bj(v),w —v) > pil|w = ][}

For the local optimization problem, expressed in equation (17), we are not min-
imizing an approximated energy F;, i.e., not solving E/(Q;v; 1 + s;) = 0. Instead
a so-called 7-perturbation is added to the right-hand side. Still, this optimization
problem is uniquely solvable.

Lemma 4.1. Assume E; satisfies the strong convexity assumption (E3). Then
there exists a unique solution to the residual equation (17).

Proof. The residual equation (17) is the Euler equation for the minimization prob-
lem

(22) min (E;(v) = (7i,v))

As E; is strictly convex, and the linear shift (7;,v) will not affect the convexity,
the global minimizer of (22) exists, is unique, and satisfies the Euler equation (17).
Detailed proofs can be found in [9, p. 35], [8, Thm. 8.2-2], or [1, Thm. 3.3.13]. O

Remark 4.2. We note that Algorithm 2 (FASD) generalizes Algorithm 1 (SSO).
They yield the same approximations in the case that
El(’l]) = E(Ui,1 —Qivi_1+ ’I]) Vne.

The projection @; just needs to satisfy the usual property Q;n = n for all n € V;.
As a consequence of this choice, 7; = 0 and, for all w € V;,

(B'(vi-1 + s:),w) = (B'(vi-1 — Qivi—1 +m),w) = (Ej(n;), w) = 0.
With these choices in FASD, the last step (orthogonalization) is redundant because
<E'(vi,1 + Si), 81> =0

upon taking w = s;. In other words, the orthogonality is valid with o = 1 for
SSO.
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4.3. Lower bound. The first correction that we obtain in Algorithm 2, namely,
s; = m; — &, where & = @Q;v;_1 is the full approximation, is used as the search
direction for a line optimization. The line optimization confers an orthogonalization
property to the corrected approximation v;. Due to this orthogonalization and the
convexity of E, the proof of the lower bound for FASD is almost exactly the same
as that for the SSO method.

Theorem 4.3. Suppose that E satisfies (E1) and E; satisfies (E3), and let u* be
the kth iteration in the FASD algorithm (Algorithm 2). Then

Proof. We apply a similar technique as in the proof of Theorem 3.5. Due to the
line search, we still have an orthogonality property that can be utilized, namely,

(E'(v;),w) =0, w € span{s;}.
Then, applying Lemma 2.6, with the subspace W = span{s;}, and noting that
v; — Vi1 =¢&; = ) 8; € span{s;},
we have
B(vim) = B(v) 2 Sllois = will} = Sleall,
and consequently

N N
k k+1 M 2
E(u®) — Z (vi-1) §ZH€ZHV

i=1

O

We will later need the following simple result, which follows because of the strong
convexity assumption (E3).

Lemma 4.4. Let s; be computed as in Algorithm 2 and suppose that E; satisfies
assumption (E3). Then s; is a descent direction in the sense that

(—E'(vi-1), 80) > pallsill > 0.
Proof. The local problem (17) can be rewritten as follows: find n; € V; s.t.
(23) (Ei(m) — Ej(&),w) = —(RiE'(vi1),w) ¥ w €V

Here recall that & = Q;v;—1 € V; and n; = &; + s;. Choosing w = s; and using the
strong convexity of E;, we obtain the inequality

(—RiE'(vi1), si) = (Ei(n;) — E{(&), 84) > pal|ssl|3 > 0.
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4.4. Lipschitz continuity of E; and estimates of «f. As Theorem 4.3 implies,
the energy is always decreasing and iterates will remain in the sublevel set B, but
the search region, and, e.g., the point &; + s;, may not be contained in B. To be
able to use Lipschitz continuity, we introduce an enlarged set

(24) Bt :={v eV |dist(v,B) <X},

where y is given by
L (Bluo) ~ E(w)
X = ———(E(ug) — E(u)).
frmnin; 7
We then introduce an assumption on the Lipschitz continuity of E! with respect to
the projection of BT:
(E4) (Lipschitz continuity of the first order derivative): There exists a constant
L; > 0, such that
1Ei(w) — Ej(v)llvr < Lilw — vy
for all w,v € B; := Q;BT.
Remark 4.5. Observe that we must assume that (E3) holds for (E4) to make sense.
In other words, we cannot assume (E4) without first assuming (E3), since p; is
involved in the definition of x and, therefore, BT. Regarding B, note that it is not

a sublevel set. However, it is straightforward to verify that both B* and B; = Q;B*
are convex. The proofs are omitted for the sake of brevity.

Later, we will show that & + s; € B; so that we can take advantage of the
Lipschitz continuity of E! in our analysis. Notice that the Lipschitz continuity of
E! is imposed for the set Q;B", which is related to B used in (E2). Interestingly,
there is no relationship between F and E; that is explicitly assumed for the moment.
Indeed E and F; are just related through the upper and lower bound of the first
derivatives and norms. In general, based on the assumptions (E3) and (E4), we
have the following lemma, which gives results analogous to those in Lemmas 2.2
and 2.4.

Lemma 4.6. Assume E; satisfies assumptions (E3) and (E4). For any v,w € B;,
i llw = vl < (Bj(w) — Ej(v),w —v) < L |w — o]},
and
Wi 2 / / L; 2
5 llw=vlly, + (Ei(v),w —v) < By(w) = Ei(v) < (Ej(v),w —v) + - [lw vl
Though it is not required, if it happens that u; € B;, where u; € V; is the global

minimizer of E;, then for all w € B;,

17 L;
5 llw— willy < Ei(w) = Ei(u;) < - llw— w3 -
The lower bounds above hold for all w € V;, without restriction.

In order to better understand the choice of the step size, we introduce the scalar
function f;. See Figure 2 and equation (25).

Proposition 4.7. Suppose that E satisfies assumption (E1) and the local energy
E; satisfies assumption (E3). Define the one dimensional energy section

(25) fila) = E(vi—1 + as;).
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filay)

FIGURE 2. The function f; defined in (25). f; is a one dimensional
energy section. It is straightforward to prove that its minimizer,
o, is positive.

Then
FL0) = (B (vi—1), 83) < —pq lIsall5, -
Furthermore, af > 0, and, for all a € (0,a]], fi(o) < fi(0).
Proof. Lemma 4.4 implies f/(0) < 0. As f/ is continuous, we conclude that the

minimizing point is positive, af > 0, and for all o € (0,«]], fi(a) < fi(0) =
E(’Ui_l). O

Lemma 4.8. Assume E satisfies assumptions (E1) — (E2). Then f;(«), defined in
(25), is differentiable and strongly convex in the following sense: for all o, f € R,

(fi(@) = F(B)(a=B) = (o= B)ullsil[3-
Furthermore, f] is Lipschitz in the following sense: for all 0 < «, 8 < a4,
[f{(a) = fi(B)] < Llsill3|e — Bl
where ar,; = (1++/u/L)ag.
Proof. The proof is based on the following identity:
file) = fi(B) = (E'(vi—1 + asi) — E'(vi—1 + Bs;), 8i).
Then, by assumption (E1),
(file) = fi(B) (= B) = (E'(vi—1 + as;) — E'(vi_1 + Bsi), as; — Bs;)
> pll (= B)sill -

To use the Lipschitz inequality involving E’, we need to ensure that the points
of evaluation are inside the set B, which imposes an upper bound on « and f.
As f{(0) < 0 and f/(aj) = 0, by coercivity, there exists af ; > «f, such that
fi(0) = fi(ag ), and, for alla € (0, a7 ;), fi(a) < fi(0). This implies v; 1+as; € B
for all @ € (0,a9 ;). See Figure 3.
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We then show f/ is Lipschitz with constant L||s;||%, on the interval [0, af, ;). For
all o, B € (0,08 ;), a# B,

|f¢/(0‘) - f{(5)| = |<El(Uz‘—1 + as;) — El(?}i—1 + B3si), 51|

= ! [(E(v;_1 + as;) — E'(v;_1 + B3;), (. — B)s;)]
lov — |
1
< o ‘LH( - B)silly
= L|\8i||v|0¢ - Bl

We now estimate ag ;. As fj(a;) =0 and f; is Lipschitz in (0, ;), we have

L
25 llsill-

0< fi(aOL,z) fl( ) < ( ar; — & )

On the other hand, and again from Lemma 2.6,

filag ;) = fila;) = fi(0) = fi(aj) > peg)

ag ;> api= <1+1/L>a >a; >0

then follows. Note that we need only f/ is Lipschitz with the same constant on the
smaller interval [0, az, ;] C [0,ag ;]. The proof is complete. O

The desired bound

To use the Lipschitz continuity of E;, we require & +s; € B; = Q;B", which will
be proved by a lower bound of the optimal step size.

Lemma 4.9. Assume the energy E satisfies assumptions (E1) — (E2) and the local
energy E; satisfies the strong convexity assumption (E3); then we have the lower
bound

i *
fgai.

ajg ;> ap; = <1+,/L)a > af >%>O

Proof. Recall that e; = afs; € span{s;}, and, due to the line search, we still have
an orthogonality property that can be utilized, namely,

Consequently,

(E'(v;),w) =0 Yw € span{s;}.
Thus E’(v;—1+¢;) = 0 in the dual of span{s;}. By step 2 in the FASD Algorithm 2,
—E'(vi1) = Ej(&i + s:) — Ei(&) in V.
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The lower bound is obtained by the strong convexity of F; and Lipschitz continuity
of E":
1

1
o Llsill} = —Lleil} 2 —

K3 2

= (E'(vi—1 + &) — E'(vi—1), 8i)
= —(E'(vi-1), si)

= (Ei(& + si) — Ei(&), s:)

> puillsill3-

(E'(vic1 + &) — E'(vie1), &)

v

Note that v;_1 + &; € B by Lemma 4.8 so that we can use Lipschitz continuity of
E'. O

Next we show the norm of s; is bounded and thus &; + s; € B;.
Lemma 4.10. The point &; + s; is in the set B;.

Proof. To show that & + s; € B;, it suffices to show that v;_; + s; € Bt, since
&+ s;i = Qi(vi—1 + s;). To start, we know that v;_1 € B; so by the definition of
BT in (24), it suffices to prove that ||s;||% < x. By Theorem 4.3 and Lemma 4.9,

we have
0 2 #\2 2 2 2 2
Tzlsillv < (@) [lsilly = lleilly < ;(E(vi—l) —E(v)) < ;(E(UO) — E(u)),
which implies
Jsilly € — sy (E(uo) — B(w) =
silly < iy 72 UQ U X-
Therefore,
dist(B,v;—1 + 8:) < [Isilly < VX,
and the result is proven. O

4.5. Upper bound. With our estimates of o in place, we are now ready to es-
tablish an upper bound for the iterates in our FASD Algorithm 2.

Theorem 4.11. Suppose the space decomposition satisfies (SS1) and (SS2), the
energy E satisfies (E1) — (E2), and E; satisfies (E3) — (E4). Then we have the
upper bound

N
E@Y) — E(u) < Cu Y [eill?,
i=1

where Cy := C% [Cs + L (1 4+ max;{L;/u: )]° / (2w).

Proof. Note, for any w € V, we choose a stable decomposition w = Zivzl w;; then

(B'(uf*1),w) = Z<E’(uk+1),wi>

=2 (B = B'(vi), wi) + (B (vi), wi)

=1; + 1o,
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where
N N

I := Z(E’(uk"'l) — E'(v;),w;) and Iy:= Z(E’(vz),m}
i=1 i=1
Using the stability of the decomposition (SS1) and the strengthened Cauchy
Schwartz inequality (SS2), I; can be estimated in exactly the same way as in The-
orem 3.7. Therefore,

N 1/2
I <CsCa (Z ||5i||$;) llwllv-

i=1
For Iy, we insert 7; — EJ(&; + s;), which is zero in V!, use the Lipschitz continuities,
the standard Cauchy Schwartz inequality, to get

I
WE

I (E'(vi) = E'(vi—1) = Ei(& + 5:) + E{(&), wi)

1

o
Il

(Llledllv + Lillsillv) [[willv

Mz

1

Z( =) Jelvlhusly
- 1/2
< LCx (1 + max M_> <Z ”51”1)) [wlly.

-1

o
Il

In the last estimate, we used the relation s; = o
given in Lemma 4.9.
Putting the estimates together, we have,

Il <4 feor s (1, 2] et

Using inequality (8) in Lemma 2.5 with v = u**!, the result follows. O

¢; and the lower bound of o

Remark 4.12. Our theory suggests we can simply choose
1 1
(26) Ei(w) = 5llw =&} = Slw = Qi ¥Yw e Vi

for then (E3) and (E4) hold with L; = u; = 1. Moreover, the local problem becomes
like that of the linear preconditioned gradient descent method:

(27) (’I]i — gi’w)vi = —<RiEl(vi,1), w} Yw € V.
In this case (23) has the closed form solution
—&i =8 = —RiR;E'(vi 1),

where fR; is the Riesz map V/ — V; and its realization is the inverse of an SPD
matrix of size dim V;. In fact, we can even use, for any fixed g; € V; that we like,

1
Ei(w) = 3llw - gll}3 YweV,

and the same basic result is true (by linearity): s; = —R;R;E'(v;_1).
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In any case, solving a linear local problem can dramatically reduce the compu-
tational cost of the FASD. See Section 7 for a practical discussion of this point. In
this setting, FASD is closely related to the coordinate descent methods analyzed
in [20]. See also, for example, [10]. Another advantage of using (26) is that one
does not need to worry about the particular choice of B;. The quadratic energy in
(26) is globally Lipschitz with Lipschitz constant 1.

Remark 4.13. We can also choose the local quadratic energy

(28) Ei(ﬂ)):—Hw EillTr e, = <E"(§z)(w i)yw—2&) YweV;

Here, recall that & = Q;v;—; and E” (EZ) should be understood as the restriction of
the bilinear form E”(¢;) on subspace V; x V;. Then the local problem becomes one
damped Newton’s iteration in subspace V;

*(RiEH(gi)Ii)ilRiEl(’Uifl).

In this setting, the block Newton’s method proposed in [18] can be interpreted as a
FASD with an appropriate space decomposition. We will investigate the randomized
version in a future paper.

Corollary 4.14. In addition to the hypotheses of the last theorem, let us assume
that E; is quadratic, chosen as in (26). Then,

O C +2L
E(uM) - B(u) < A T2 Zn &ill3.

4.6. Convergence. Using Theorems 4.3 and 4.11, and Corollary 3.4, we obtain
the following linear convergence result.

Corollary 4.15. Let uF be the kth iteration and u**' = FASD(u*). Suppose
that the space decomposition satisfies assumptions (SS1) and (SS2), the energy E
satisfies assumption (E1) — (E2), and the energy E; satisfies assumption (E3) —
(E4); then we have
BE(u**) — E(w) < p(BE(u*) — E(u)),
with
C3[Cs + L (1 + maxi{Li/pi})]”
C2 [Cs 4 L (1 + max;{ L/ })]” + p2’
Furthermore if E; is quadratic, chosen as in (26), then
O3 (Cs+2L)
C% (Cs +2L)° +

5. FAST SUBSPACE DESCENT METHOD WITH APPROXIMATE LINE SEARCH

In this section, we consider the FASD algorithm with approximated line search.
The method is detailed in Algorithm 3. The key difference between this algorithm
and Algorithm 2 is that a fixed step size «; is employed rather than computing o
via a line search. In this case, there is no need to repeatedly evaluate E and its
derivatives in the subspace. We need only compute R;E’(v;_1) once for the local
problem (for use in the computation of 7; and «;).
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In the next section, Section 6, we shall also consider the original FAS, which
corresponds to FASD with the step size c; = 1. We prove its convergence based on
an additional approximation property.

Algorithm: «**! = FASD-ALS(u")

Uozuk;

fori=1: N do

Compute the subspace 7-perturbation: let & = Q;v;_1 and
(29) 7= E.(&) — RiE'(v; 1) € V};
Solve the subspace residual problem: Find 7; € V;, such that
(30) (El(n;), w) = (1;,w) Yw € V.
Compute the search direction and the quadratic step size:
(31) sii=m —& €V,
g._ (RiF'(vi1),si)
32 KA AFY
Apply the subspace correction:

(33) v =01 + ol

end

uFtl =y

Algorithm 3: FASD algorithm with approximate line search (ALS).

Recall the scalar function f;(@) := E(vi—1 + as;), with f;(0) = E(v;—1), f1(0) =
(E'(vi—1), si) < 0. Using f;(0) and f/(0), we define the quadratic function

(34) 4i(@) = £:(0) + f1(0)ar + L'S;“%az

See Figure 3. The optimal step size for FASD is, of course, o = argmin,p fi(a).
Our choice for this new algorithm is
q /i (0) (RiE'(vi1), 8i)

a; = argmin qi(a) = — = —
: acr (@) = 7y sl

which satisfies the following estimate.

Lemma 5.1. Assume the energy E satisfies the Lipschitz continuity assumption
(E2) and the local energy E; satisfies the strong convexity assumptions (E3); then

i q
fgai <a;j.

Proof. The lower bound is obtained by the definition of o and Lemma 4.4. To
prove the upper bound, we notice that, due to line search,
fi(@}) = (E'(vi-1 +ajsi),si) = 0
and thus
alL|isill}y = —(RiE'(vi-1), 5) = (E'(vi-1 + afs;) — E'(vi1), 51) < af L|si[3-
O
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FIGURE 3. The functions f;, defined in (25), and its quadratic
approximation ¢;, defined in (34). The quadratic minimizer o is
always to the left of o by construction.

Now, since the optimal linear search procedure is broken, the orthogonality con-
ditions with respect to the corrections are broken, and establishing the lower bound
is a little more complicated.

Theorem 5.2. Let u* be the kth iteration and u*+1 = FASD-ALS(u*). Suppose
that E satisfies assumption (E1) — (E2) and the local energy E; is strongly convez,
satisfying assumption (E3). Then, we have

N
L
B~ B 2 00 lalsil}, Cu= 3
Proof. 1t suffices to prove

B(oi1) ~ B(wr) = F(0) - f(a?) > £ ladsi]”

By Lemma 4.8, for a € [0, ;], f! is Lipschitz continuous with constant L||s;||3.
Then for a € [0, ar, ],

Fi(0) — (@) = fi(a) — £:(0) — afi(0) — KD 2 o

2
Namely f;(a) < g;(«) for all a € [0,ar]. As o = argmin, g ¢;(a), and of < of,
we get
£i(a) < gi(a?) = mingi(@) = £(0) = = |£(0)]* = £:(0) - £||04q8i||%-
v v a€R 2L||81||% ¢ 20

In the last step, we have used the definition of o] and this completes the proof. [
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Since af has the same lower bound as o, we can derive the upper bound in
exactly the same way as the proof of Theorem 4.11, only replacing €; = aj's; by
als; and using the lower bound from Lemma 5.1. Thus, we only state the theorem
below, and the proof is omitted.

Theorem 5.3. Let u* be the kth iteration and u*+1 = FASD-ALS(u*). Suppose
the space decomposition satisfies (SS1) and (SS2), the energy E satisfies (E1) —
(E2), and E; satisfies (E3) — (E4). Then we have the upper bound

N
E@W") — E(u) < Cu ) _ |lafsi]P,
i=1

where Cyy := C% [Cs + L (1 4+ max;{L;/ui})]* /(2u).
We summarize the linear convergence result below.

Corollary 5.4. Let u¥ be the kth iteration and u*t' = FASD-ALS(u*). Suppose
that the space decomposition satisfies assumptions (SS1) and (SS2), the energy E
satisfies assumption (E1) — (E2), and the energy E; satisfies assumption (E3) —
(E4); then we have

E(*) = B(u) < p(B(u*) - E(w)),

with
b C4[Cs + L (1 + maxi{Li/pi})]”
C3% [Cs + L (1 + maxi{Li/ui})]* + L

The Lipschitz constant L is used in the step size «; which can be replaced by
a local Lipschitz constant for the scalar function f;(«) for @ € (0, ;) and popular
line search algorithms can be used.

Remark 5.5. Consider a special case that V := R™ with an orthogonal decompo-
sition V = V1 @ Vo @ - ® Vn, V; C V. If we simply choose Ej(w) = 1w — &]J?
V w € V;, where || - || denotes the standard ¢?-norm induced by the standard ¢2-
inner product (-,-) defined on R™, then we have s; = —R; E'(v;—1) and the FASD
algorithm (Algorithm 3) becomes the block coordinated descent method discussed
in [2,20]. Therefore, Corollary 5.4 gives a convergence analysis of the cyclic variant
of the block coordinate descent method. To the best of our knowledge, the only
convergence results for the cyclic block coordinated descent method was presented
in [2]. Here, we give a linear convergence result from a subspace decomposition
point of view for the strongly convex case and our result can be generalized to
other related methods as well, for example, the preconditioned block coordinated
descent method.

6. ORIGINAL FAS METHOD: FASD WITHOUT LINE SEARCH

Notice that the original FAS does not have the last line search step. Traditional
FAS, listed as Algorithm 4, applies the subspace correction via

. FAS FAS
vi = vt s, o 0 =1,
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Algorithm: ! = FAS(u¥)

vozuk;

fori=1:N do

Compute the subspace T-perturbation: let & = Q;v;_1 and
(35) Tii= Ei(&) — RiE'(vi-1) € V5
Solve the subspace residual problem: Find 7; € V;, such that
(36) (Ei(ni), w) = (15, w) Yw € Vi3
Compute the correction
(37) si=mn —& €V
Apply the subspace correction:
(38) v = v_1 + 8.

end

uFtl = vy

Algorithm 4: Traditional FAS: FASD with no line search.

Previously, our choice of step size was motivated by the choice of step size in the
gradient descent method [21]. We shall prove afS = 1 is also allowed — that is to
say, it leads to a convergent algorithm — provided that the following approximation
property is satisfied.

(AP) Both E and FE; are twice Fréchet differentiable. Furthermore, there exists
a constant 0 < € < u/2 so that for all w € B,n; € V; and all u;,v; € V;

(B (w 4 mi)ui, vi) = (B} (Qiw + mi)us, vi)| < efluillvllvillv.

For quadratic energy, R;E"I; is the coarse matrix on V; formed by the triple
product, via the so-called Galerkin method, and E/ is the matrix obtained using
the bilinear form associated to the local energy FE;. They should be close in a
certain norm.

The original FAS is to choose E; = E|y, so that is E = E” on V; x V;. Assume
furthermore E” is also Lipschitz continuous. Then (AP) can be verified

(39) IE" (w +mi) = B"(Qiw + ) || < Cllw — Qiw].

Note that in this case the local problem FE’(n;) = 7; is cheaper than solving the
Euler equation E’(v;—1 +¢;) = 0 in SSO.

Lemma 6.1. Assume the energy E satisfies the assumptions (E1) and (E2), and
the approzimation assumption (AP) holds. Then, E! satisfies the Lipschitz condi-
tion and strongly convexity condition as follows:

(1= )l — wl} < (Bi(v) — Eiw),v —w) < (L+ )l —w|} Vv,weBY,
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Proof. For any v, w € V;, by Taylor’s theorem with integral reminder, we have

(Ei(v) - Ej(w),v — w)

2 k2

1
- / (B () (0 —w), 0 — w)dt

1
+ / (B () (v —w),v —w) — (B"(2(2)) (v — w),v — w)dt
0
= (E'(v) = E'(w),v — w)

1
+ / (B (2(t)) (v —w), v —w) — (E"(2(t)) (v — w),v — w)dt,
0
where z(t) = tv + (1 — t)w € V;, and thus Q;z = z. When v,w € BNV;, using
assumptions (E2) and (AP), we have
(Ei(v) = Ej(w),v —w) < Llv—wl} + ellv —wl} = (L +e)[lv —w]}.
On the other hand, when v, w € BNV;, using assumptions (E1) and (AP), we have
(EBi(v) = Bj(w),v —w) > pllo —wl}) — elv —wl} = (u — &)]|o —w]}.

O

Theorem 6.2. Let u¥ be the kth iteration and uk+1 = FAS(u*), as in Algorithm 4,
with local step size of»S = 1. Suppose that E satisfies assumption (E1) and the

i

approzimation assumption (AP) holds with € < p/2. Then, we have
ad u
B0~ B 2 OL Y sl = (5-¢)-

Proof. Recall that §; = Q;v;—1 and @;s; = s;. Using equation (36) and Taylor’s
theorem with integral remainder, we first estimate [(E’(v;), s;)| by

(B (vi), )] = {E"(vie1 4 80), 80) —(E"(vi-1), 50) —[(E{(& + i), 80) —(E{(&), 50)]]

/0 (E"(y(®)) sisi) — (B{ (Qiy(t)) si 5i) dt‘

< / (E"(y(1)) 510 51) — (BV(Quy(8)) 51y 50)] dlt
0
< ellsil3,

where y(t) := (1 —t)v;—1 +t(vi—1 +8;) = v;—1 +1s;. Note that v;_; € Band s; € V;
which allows us to use assumption (AP) in the last step.
Using assumption (E1) — specifically estimate (4) of Theorem 2.1 — we get

(10)  E(vim1) = B(vi1 +51) = = (E'(vimy + 1), ) + Slsilld = (5 = ) il

O

The upper bound for FAS (where afAS = 1) is easy, as there is now no need to
have a lower bound of the step size.
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Theorem 6.3. Let u* be the kth iteration and u*+! = FAS(u*) with local step size
a; = 1. Suppose the space decomposition satisfies (SS1) and (SS2), the energy E
satisfies (E1) — (E2), and assumption (AP) holds. Then we have the upper bound

N
E(™) ~ E(w) < Cu)_ sl
i=1

where Cyy = C4(Cs +€)2/(2u).

Proof. For any w € V, we choose a stable decomposition w = Efvzl w;; then

N

(B (), w) = S (B (), wy)

1

4
N

4 (B'(uf*h) — E' (v;),wi) + Z(E'(vi), w;)
=1 +1Ip. B

I
M=

The first term is bounded as before. Therefore,

N 1/2
I, <CsCy (Z ||Si||$;> [[w]ly.

i=1
For the second term, we insert 7, — E/(§;+ ;) = —E'(vi—1) + E(&) — El(& + s4),
which is zero in V!, and use Taylor’s theorem with integral remainder, followed by
assumption (AP), to get
N
I =Y (E'(vi) — E'(vi-1) — [E}(& + 8:) — B{(&)],wi)

i=1

N
< e lsillvllwilly
=1

N 1/2
< eCy <Z ||5i||$;> [w][y-
=1

O

Corollary 6.4. Let u* be the kth iteration and u*T' = FAS(u*). Suppose that the
space decomposition satisfies assumptions (SS1) and (SS2), the energy E satisfies
assumption (E1) — (E2), and the energy E; satisfies assumption (AP) with e < u/2;
then we have
B(ub*) — B(u) < p(B(u*) — B(w),
with
(Cs +9°C3

Cs + €)2C% + p(p — 2¢)°

a

7. APPLICATION AND NUMERICAL EXPERIMENTS

In this section we shall apply our theory to a model nonlinear problem with
polynomial nonlinearity and provide numerical examples to illustrate the efficiency
of a variant of FAS (Algorithm 4) with a local quadratic energy.
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7.1. A model nonlinear problem. Suppose that Q@ c R¢, d = 2,3, is a star-
shaped polytope, i.e., a polygon in 2-D or a polyhedron in 3-D. Suppose that
2<p<oo,whend=2 and 2 < p < 6, when d = 3. We consider the following
problem: given f € L?(Q), find u € H}(Q) such that

(41) (JulP~2u, &) + &% (Vu, VE) = (f.£) V&€ H(Q),
where £ > 0 is parameter. One can show that the unique solution of (41) is the
unique minimizer of a certain strictly convex energy.

Theorem 7.1. Suppose that Q C R?, d = 2,3, is a star-shaped polytope, i.e., a
polygon in 2-D or a polyhedron in 3-D. Suppose that 2 < p < oo, when d =2, and
2 <p <6, when d=3. For any v € H}(Q), define the energy

42 B) = Ll + Svul?
(42) (v) -—5||V||Lp+§|| v||®=(fv).

The energy functional E defined in (42) is twice Fréchet differentiable and satisfies
assumptions (E1) and (E2) with respect to the space V = HE (), equipped with
the norm ||Vv|| for v € V. Therefore E has a unique global minimizer in H}(Q).

Furthermore, u € H(Q) is the unique minimizer of (42) iff it is the solution of
(41).

Proof. We verify that E satisfies our assumptions. The first Fréchet derivative of
E at a point v may be calculated as follows: for any & € HZ(Q),

FEWHO| = (0.0 = (W00 +2 (.99 = (1.6,

The second Fréchet derivative exists for p > 2 and is a continuous bilinear
operator. Given a fixed v € HJ (), the action of the second variation on the
arbitrary pair (£,1) € H}(Q) x H{ () is given by

(E"()€n) = (p—1) (WP~ m) + £ (VE, V).
Without loss of generality, we choose ug = 0, so that E(ug) = 0. Recall that
B ={veV| E(v)<E(up)}. Observe that B is convex, since E is convex. For
v € B, E(v) <0, and we have

1 g2 g2
» [vllZs + 5||Vv||2 < (f,v) < [ fllllvll < Cole, Co) I FII? + ZHVUHQa

where Cp = Cp(Q2) > 0 is the constant in the Poincare inequality:
vl < Cp(Q) [Voll ¥ v € Hy(Q).

Thus, for v € B, the follow norms are bounded:

(43) [vll e + Vo]l < C1 = Ci(uo, &, p, f)-
By the mean value theorem, there exists a z = tv 4+ (1 — t)w, for some ¢ € [0, 1],
such that

(B'(w),€) — (E'(v),€) = (B"(2)¢,w —v) V&€ Hy(9).
If w,v € B, then, since B is convex, z € B. By (43) ||z||,, < C;. Using Holder’s
inequality, we have

(E" e < (0= D) 1T 1€l o 1nll o+ IVEN - V]
< |(p = DR |Iwll7:" +&°| IVE] - 1Vl
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Therefore,

[(E'(w),&)—(E'(v),8)]| = (E"(2)€,w —v)]
< |0 = DCBCT? +22] Vel - IV (w — ).
Namely (E2) holds with L := (p — 1)C2CP 2 + 2.
To see that E is uniformly elliptic, for any w,v € V, there is an n € V,
(E'(w) = E'(v),w —v) = (B"(2)(w — v),w —v),
=(p—1) (WP (w —v),w —v) +&*(V(w —v), V(v —v))
2
> 2 ||V(w—v)|".
(E1) holds with p = 2.
It follows that there is a unique global minimizer of the energy (42):
u = argmin, ¢ g1 (o) E(v).
Consequently, there is a unique solution to the Euler problem which is equation

(41). O

Now, suppose that Q@ C R2 is a polygonal domain and 7y is a conforming
triangulation of Q. Let 7 be the triangulation obtained by quadri-secting 7.
Specifically, if K; € Ty, is one of the four daughter triangles (i = 1,--- ,4) obtained
by quadri-secting K € Tp — that is by connecting the midpoints of K — then

hk, =Hgk/2,i=1,---,4. A family of meshes constructed in this way is known to
be globally quasi-uniform.
Define

Spi={v e C(Q)NH)(Q)|v|, € PL(K) VK € Tn}

with a similar definition for Sg. Then, Sy C Sy, and the containment is proper.
We shall consider the minimization of energy E restricted to S which is a
subspace of H}((2)

E
min E(v),

and thus now V = S, with norm |v|; = ||Vv||. Notice that (E1) and (E2) still hold,
as Sp, C HY(Q).

Next we give a two-level space decomposition of V as follows. Let N = {xi}ﬁvzl C
R? be the set of interior nodes of 75, and define the Lagrange nodal basis

B ={¢i € Sp, 1 <i <N | ¢hilxy) =iy, 1 <i,j < N}.

By, is a bona fide basis for Sy, and we may use the following decomposition:

N
(44) V=> V=05,
i=0

where Vo = S, V; = span({¢;}), 1 <i < N. (Note that we give the coarse space
the index 0.)
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The fact that this forms a stable decomposition is well known, i.e., assumption
(SS1) holds.

Lemma 7.2. The decomposition of the finite element space Sy described in (44)
satisfies assumption (SS1).

Proof. Let Qp : L*(Q2) — Sg be the L?-projection into Sp:
(Quu,w) = (v,w) Y wée Sy.

For any v € Sp, let 0 = (I — Qu)v € S denote the error, and suppose that
v = vazl v; is the nodal decomposition of the error in S,. By the standard
approximation property of @y on quasi-uniform grids, an inverse inequality, and
the stability of nodal decompositions in the L?-norm, we have

N N
Sl <0 hal? < oh )] < ol
1=1 i=1

By the H!'-stability of Qz on quasi-uniform grids, we also have |Qxv|; < |v];. In

~

conclusion, assumption (SS1) holds if, for v € S, we use the decomposition

N
v=Quv+(v—Quv)=Quuv+ Y b
i=1
O

Lemma 7.3. Let E be defined as in (42), and let V = S}, be decomposed into
subspaces as in (44). Then assumption (SS2) holds.

Proof. Suppose that w;; € B, u; € V4, v; € Vj, with w; ; +u; € B. By Taylor’s
theorem,

N N

D0 (B (wij +w)— E'(wi), v))

i=0 j=i+1

(E"(2i4)vj, ui)

I
M-
WE

s
I
=

<.
Il
L
¥

i+1

M) =
M=

|(p — 1) (\zid\p*Qui,vj) +€2 (VUZ, V’Uj)| ,
1

I
o

i 4

+

J

for some z; ; € B between w; ; € B and w; ; + u; € B, which satisfies the bound
(43). The functions u;, 1 < ¢, < N, are local, though ug may have global support.
The support of v;, 1 <4 < N, denoted 5;, is exactly equal to the union of those
triangles that have the node x; as a vertex. Define

N(Z) :{]>1|SJOSZ;£®}
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Observe that # (N (¢)) is bounded by an integer that is much smaller than N. We
have, using the continuous and discrete Cauchy Schwartz inequalities,

N N N
Z Z (V“i’Wj):Z Z (Vui’vvj)siﬂsj
i=0 j=i+1 =0 jEN (i)
N
<2 X

i=0 jEN(i)

N
Y (Va2 S Vel

1=0 jeN (i) i=0 jEN (1)

[N

IN

N 3 N 2
2 2
(cTzuw ) oS Ivo ) .
j=0

i=0

IN

where C' > 0 is a mesh-structure-dependent parameter. Since our mesh is shape
regular and quasi-uniform, C'7 is independent of NV and h.
Similarly,

S5 (e ) =3 X (et

i=0 jEN(7) i= OJEN()

Ur“ ’U-])SiﬂSj

< Z Z ||Zw||Lp(s ns;) ”ui”Lp(Simsj) ||vj||Lp(5imsj)
i= OJEN(

<Z Z |ZZJ||LP(Q |ul||LP(SﬁS)”UJ||LPSﬁS)

1=0 jEN (i)
N
-2
Z cy ||Ui”Lp(simsj) ||Uj||Lp(5msj)
=0 jEN (i)
N 3
- 2
<cr? Z Z lwillze(sins;)
i=0 jEN (i)
N :
2
Z Z ”'Uj”Lp(sinsj)
=0 jEN (i)
1 1
N 2 N 2
- 2 2
<Y 2<CTZIIWIILP> <CTZIIWIILP)
i=0 i=0
N 3 /N 3
- 2 2
<crior <ZC§ V|| ) <ZC§ ||Vvi||Lp>
i=0 i=0
1 1
N 2 N 2
_ 2 2
~crorci (L rvw) (Sient )
i=0 i=0
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Therefore, there is a Cs > 0 such that

N N N % N
2 2
DY (B(wij+w) = E'(wi),v5) < Cs (Z [V | ) > IV
=0

=0 j=i+1 =0

2

In particular, Cs := LCy. Assumption (SS2) holds. a

For our FAS-like algorithm, we apply SSO (nonlinear Gauss-Seidel) to each sub-
space V; on the fine level, which is equivalent to, according to Remark 4.2, using
E;(n) := E(vi.1 — Q;v;—1 +1n). On the coarse space, we use Ey = El|y,. The
assumption (AP) can be verified by (39) and a standard approximation property
of the projection Qp, i.e., |lw— Qpw| < CH||wl||;. We then have e = C'H for this
case and, therefore, the condition € < y1/2 = £2/2 in Theorem 6.2 holds when H is
small enough. For finite element functions w € Vj, when near the minimizer, we
could expect w € H3?79 for any 0 < § < 1 and thus a higher-order approximation
lw — Qrwl| < CH3/276||w||3/2,5 may hold.

7.2. Numerical examples. In this subsection, we present some numerical results
for the nonlinear problems described in the previous two subsections to illustrate our
theoretical results. For both problems, we will use piecewise linear finite elements
to define S}, and we use different versions of FAS to solve the discretized nonlinear
equations. Our algorithms are implemented in MATLAB based on the software
package iFEM [6]. The numerical experiments are conducted on a System76 Galago
with an Intel Core i7-8550U CPU and 32GB RAM.

We mainly focus on three different implementations of FAS (Algorithm 4),
based on different choices of space decomposition and local energy. The geo-
metric multigrid setting is considered here, i.e., we have a set of uniformly re-
fined meshes and nested linear finite element spaces V! ¢ V2 C --- C V7, where
V! = span{¢{, ¢, - - - ,¢>§Vé}, with ¢f being the ith nodal linear finite element basis
element on level £.

(1) The first implementation is the original FAS. We consider standard multi-
level nodal-based space decomposition V = Z‘Zzl 25\21 span{¢t} and the
local energy E; is defined as the restriction of E on the subspace span{¢ }.
Newton’s method is used to solve the local nonlinear problem and we set
the tolerance to be 107!% and at most 100 iterations are allowed (in general,
less than 5 iterations are needed for solving the local problems in all of our
numerical tests). We use a small tolerance to make sure each local problem
is solved exactly in order to be consistent with our theoretical analysis.

(2) The second implementation is a simplified version of FAS based on Re-
mark 4.12 and we refer to it as “FASql”. We again consider the multilevel
nodal-based space decomposition V = ZZ:I Ziv:el span{¢!} but quadratic
energy E; defined as in (26) is used, which requires that we solve a linear
system for each local correction. In fact, since nodal-based space decompo-
sition is used here, we solve a scalar linear equation on each subspace.

(3) The third implementation is a further simplified version and we refer it
as “FASq2”. In this case, we use space decomposition V = Zizl V¢ and
consider quadratic energy (26). As mentioned in Remark 4.12; this involves
the Riesz map which can be computed by inverting an SPD matrix defined
on V¢, For our example, this is equivalent to solving a discrete Laplacian
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Therefore, we solve the

discrete Laplacian matrix approximately by just applying one step of the
symmetric Gauss-Seidel (SGS) method. This is because we use multilevel
space decomposition here and the SGS method is usually used as a smoother
in multigrid methods for solving discrete Laplacian matrix. Of course, other

types of iterative methods can also be used here, such as Richardson’s
method or Jacobi’s method. For the sake of simplicity, we only consider

SGS method here.

In all of our numerical experiments, we use Newton’s method to solve the nonlinear
We use 10710 as the tolerance and the maximal
number of iterations is 100, which means that the coarse problem is solved exactly.
Moreover, we use a; = 1 in the tests to make sure our implementation is simple

TABLE 1. Numerical results of FAS (varying p and ¢, fix h = 1/64)

FAS =1 2=12 ] =1/4] 2=1/8 [2=10"1[&=102]2=10"3
p=4 | 15 (0.195) | 15 (0.103) | 14 (0.189) | 14 (0.186) | 14 (0.186) | 12 (0.164) | 10 (0.133)
p=55| 14 (0.195) | 14 (0.192) | 14 (0.189) 14 (0.189) | 14 (0.189) | 12 (0.166) | 11 (0.162)
p=6 | 15(0.195) | 15 (0.192) | 14 (0.190) | 14 (0.190) | 14 (0.189) | 13 (0.167) | 11 (0.167)
p=8 | 15(0.196) | 15 (0.193) | 15 (0.192) ” (0.191) | 14 (0.190) | 13 (0.176) | 12 (0.173)
p=10 || 15 (0.198) | 15 (0.196) | 15 (0.194) | 15 (0.192) | 14 (0.191) | 13 (0.178) | 12 (0.170)
p=20 | 16 (0.216) | 16 (0.221) | 16 (0.210) | 15 (0.197) | 15 (0.194) | 14 (0.182) | 13 (0.178)
p=40 | 18 (0.267) | 18 (0.273) | 17 (0.248) | 16 (0.209) | 16 (0.204) | 14 (0.188) | 13 (0.180)
»=80 | 21 (0.333) | 21 (0.338) | 20 (0.304) | 18 (0.243) | 17 (0.226) | 15 (0.192) | 14 (0.200)
TABLE 2. Numerical results of FASql (varying p and ¢, fix h = 1/64)
FASql 2=1 2 =1/2 g’ =1/4 ] 2=1/8 62 =101 [e2=102[e2=10"3
p=1 || 15 (0.193) | 15 (0.189) (0 185) (0 180) | 13 (0.179) | 23 (0.331) 5
p=55 | 15 (0.192) | 15 (0.189) | 14 (0.186) | 14 (0.184) | 14 (0.183) - -
p=6 | 15(0.192) | 15 (0.189) (0 187) (0 185) | 14 (0.183) - -
p=8 || 15 (0.193) | 15 (0.190) | 14 (0.190) | 14 (0.191) | 14 (0.186) - -
p=10 | 15 (0.195) | 15 (0.193) (0 191) (0 192) | 14 (0.187) - -
p=20 || 16 (0.211) | 16 (0.215) | 16 (0.215) | 16 (0.216) | 16 (0.220) ; -
p=10 |18 (0260) | 18 (0:281) | 19 (0:298) | 21 (0:334) | 23 (0367) - -
p=280 | 21 (0.342) | 23 (0.383) (0 107) | 109 (0.844) - -

FASq2 2=1 [ e2=1/2 ] 2=1/4 52 =1/8 [e2=10"1[2=10"2]e2=10"°
p=4 |14 (0.190) | 14 (0.187) | 14 (0.183) | 14 (0.181) [ 14 (0.181) - -
p=5.5 || 14 (0.189) | 14 (0.189) | 14 (0.183) | 14 (0.185) | 14 (0.187) - -
p=06 || 14 (0.188) | 14 (0.186) | 14 (0.185) | 14 (0.188) | 14 (0.190) - -
p=38 14 (0.190) | 14 (0.190) | 14 (0.188) | 14 (0.193) | 15 (0.196) - -
p=10 || 15 (0.191) | 15 (0.191) | 15 (0.193) | 15 (0.199) | 15 (0.202) - -
p=20 15 (0.211) | 16 (0.223) | 17 (0.239) | 18 (0.265) | 20 (0.290) - -
p=40 | 18 (0.264) | 19 (0.300) | 21 (0.334) (0 452) | 49 (0.643) - -
p=280 | 21 (0.350) | 24 (0.393) | 32 (0.504) - - -

In Tables 1, 2, and 3, we report the numerical results of FAS, FASq1, and FASq2,
respectively. Here, we fix the finest mesh size h = 1/64 and the coarsest mesh size
is 1/4 but change p and ¢ to adjust the nonlinearity. In this case, bigger p and/or
smaller € lead to stronger nonlinearity.
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TABLE 4. Computational complexity comparison with ¢ = 1 and

p==6
FAS FASq2
h #iter | CPU time || #iter | CPU time
1/32 15 1.65 14 0.03
1/64 15 7.86 14 0.05
1/128 16 45.60 14 0.16
1/256 16 391.08 15 0.49
1/512 16 >1,000 15 1.67
1/1024 16 >1,000 15 7.12

The number of iterations and convergence rates (in the parenthesis) are listed
in Tables 1, 2, and 3. Notation “-” means that the method stagnates or diverges.
As we can see, FAS is the most robust one and converges for all the choices of
our parameters. The number of iterations are quite stable, ranging from 10 —
21 iterations, and the convergence rate is about 0.2. This is consistent with our
theoretical results presented in Section 6. For FAS, the local energy F; is defined
as the restriction of E on the subspace. Then assumption (AP) holds with € < u/2.
Therefore, according to Corollary 6.4, FAS converges robustly. For FASql and
FASq2, both implementations perform well when p is relatively small and/or € is
relatively large. We can clearly see that the number of iterations grows when p gets
larger or ¢ gets smaller. Both implementations fail to converge when nonlinearity is
strong, while FASql seems to be slightly more robust than FASq2 since it converges
for a slightly larger set of parameters. This observation is also consistent with
Corollary 6.4. For both FASql and FASq2, the local energy F; is the quadratic
energy (26). When p is relatively small and/or € is relatively large, the nonlinearity
of the model problem is relatively weak, and the quadratic energy provides a good
approximation in the sense that assumption (AP) holds with € < u/2. According to
Corollary 6.4, the methods should converge. However, when p gets larger and/or &
gets smaller, the problem becomes more nonlinear and the quadratic energy is not
a good approximation of the original energy E any more. Then assumption (AP)
does not hold with € < /2 and, according to Corollary 6.4, the method may not
converge. Although FASql and FASq2 might not converge for strongly nonlinear
problems, the advantage of using quadratic energy on local subspaces is that we
only need to solve linear problems locally, which could save computational cost
considerably.

Next, we compare the CPU time of FAS and FASq2. The reason we choose
FASq2 to compare is that FASq2 only involves a symmetric Gauss-Seidel smoother
on each level, which basically has the same cost as the multigrid method for solving
linear problems. This could dramatically improve the computational complexity
for solving our model problem (41). The results are shown in Table 4.

In Table 4, we fix e = 1 and p = 6 and change h. As we can see, for these
choices of p and ¢, the quadratic energy provides a good approximation of the global
energy restricted to the subspace, therefore, the number of iterations of FASq2 is
similar with the number of iterations of FAS and remains robust with respect to
the mesh size h. The CPU time of FAS grows faster than linear, which is due to
the inefficiency of large for loops in our current MATLAB implementation.
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In contrast, FASq2 is significantly faster than FAS and scales linearly. This
demonstrates that, when nonlinearity is mild, we can use a simple quadratic energy
and save considerable computational cost.

On the other hand, we want to point out that FAS is more robust than FASq2,
as shown before. We have also tested the quadratic energy defined by the Hessian
at the previous iteration, cf., (28), which is more or less equivalent to using one
approximated Newton’s iteration, and the results are similar. Therefore, in practice,
we should consider the trade-off between robustness and efficiency in order to decide
which kind of local energy should be used on each subspace.
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