Journal of Systems Architecture 110 (2020) 101766

Contents lists available at ScienceDirect EMBEDDED
b

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

Attacking vision-based perception in end-to-end autonomous driving)

Check for

models™ Sl

Adith Boloor®*, Karthik Garimella?, Xin He", Christopher Gill?, Yevgeniy Vorobeychik?,
Xuan Zhang®

2 Washington University in St. Louis United States
b University of Michigan, Ann Arbor United States

ARTICLE INFO ABSTRACT

Keywords:

Machine learning
Adversarial examples
Autonomous driving
End-to-end learning
Bayesian optimization

Recent advances in machine learning, especially techniques such as deep neural networks, are enabling a range
of emerging applications. One such example is autonomous driving, which often relies on deep learning for per-
ception. However, deep learning-based perception has been shown to be vulnerable to a host of subtle adversarial
manipulations of images. Nevertheless, the vast majority of such demonstrations focus on perception that is disem-
bodied from end-to-end control. We present novel end-to-end attacks on autonomous driving in simulation, using
simple physically realizable attacks: the painting of black lines on the road. These attacks target deep neural net-
work models for end-to-end autonomous driving control. A systematic investigation shows that such attacks are
easy to engineer, and we describe scenarios (e.g., right turns) in which they are highly effective. We define several
objective functions that quantify the success of an attack and develop techniques based on Bayesian Optimization
to efficiently traverse the search space of higher dimensional attacks. Additionally, we define a novel class of hi-
jacking attacks, where painting lines on the road cause the driverless car to follow a target path. Through the use
of network deconvolution, we provide insights into the successful attacks, which appear to work by mimicking
activations of entirely different scenarios. Our code is available on https://github.com/xz-group/AdverseDrive

1. Introduction

With billions of dollars being pumped into autonomous vehicle re-
search to reach Level 5 Autonomy, where vehicles will not require hu-
man intervention, safety has become a critical issue [3]. Remarkable
advances in deep learning, in turn, suggest such approaches as natu-
ral candidates for integration into autonomous control. One way to use
deep learning in autonomous driving control is in an end-to-end (e2e)
fashion, where learned models directly translate perceptual inputs into
control decisions, such as the vehicle’s steering angle, throttle and brake.
Indeed, recent work demonstrated such approaches to be remarkably
successful, particularly when learned to imitate human drivers [4].

Despite the success of deep learning in enabling greater autonomy,
a number of parallel efforts also have exhibited concerning fragility of
deep learning approaches to small adversarial perturbations of inputs
such as images [5,6]. Moreover, such perturbations have been shown
to effectively translate to physically realizable attacks on deep models,

such as placing stickers on stop signs to cause miscategorization of these
as speed limit signs [2]. Fig. 1(a) offers several canonical illustrations.

There is, however, a crucial missing aspect of most adversarial at-
tacks to date: manipulations of the physical environment that have a
demonstrable physical impact (e.g., a crash). For example, typical at-
tacks consider only prediction error as a measure of outcome and focus
either on a static image, or a fixed set of views, without consideration of
the dynamics of closed-loop autonomous control. To bridge this gap, our
aim is to study end-to-end adversarial examples. We require such adver-
sarial examples to: 1) modify the physical environment, 2) be simple to
implement, 3) appear unsuspicious, and 4) have a physical impact, such
as causing an infraction (lane violation or collision). The existing attacks
that introduce carefully engineered manipulations fail the simplicity cri-
terion [5,7], whereas the simpler physical attacks, such as stickers on a
stop sign, are evaluated solely on prediction accuracy [2].

The particular class of attacks we systematically study is the painting
of black lines on the road, as shown in Fig. 1(b). These are unsuspicious
since they are semantically inconsequential (few human drivers would
be confused) and are similar to common imperfections observed in the

* This research was partially supported by NSF awards CNS-1739643, 1IS-1905558 and CNS-1640624, ARO grant W911NF1610069 and MURI grant

WO911NF1810208.
* Corresponding author.

E-mail addresses: adith@wustl.edu (A. Boloor), kvgarimella@wustl.edu (K. Garimella), xinhe@umich.edu (X. He), cdgill@wustl.edu (C. Gill),

yvorobeychik@wustl.edu (Y. Vorobeychik), xuan.zhang@wustl.edu (X. Zhang).

https://doi.org/10.1016/j.sysarc.2020.101766

Received 29 August 2019; Received in revised form 19 February 2020; Accepted 16 March 2020

Available online 4 April 2020
1383-7621/© 2020 Elsevier B.V. All rights reserved.

A. Boloor, K. Garimella and X. He et al.

Domain Input Adversary Result

v

Image
misclassification
Physical
[
physical attack misclassification
(@)
End-to-end
Autonomous
Driving
physical attack
safe driving collision

(b)

Fig. 1. (a) Existing attacks on machine learning models in the image [1] and
the physical domain [2]; (b) conceptual illustration of potential physical attacks
in the end-to-end driving domain studied in our work.

real world, such as skid marks or construction markers. Furthermore, we
demonstrate a systematic approach for designing such attacks so as to
maximize a series of objective functions, and demonstrate actual phys-
ical impact (lane violations and crashes) over a variety of scenarios, in
the context of end-to-end deep learning-based controllers in the CARLA
autonomous driving simulator [8].

We consider scenarios where correct behavior involves turning right,
left, and driving straight. Surprisingly, we find that right turns are by
far the riskiest, meaning that the right scenario is the easiest to attack;
on the other hand, as expected, going straight is comparatively robust
to our class of attacks. We use network deconvolution to explore the
reasons behind successful attacks. Here, our findings suggest that one
of the causes of controller failure is partially mistaking painted lines
on the road for a curb or barrier common during left-turn scenarios,
thereby causing the vehicle to steer sharply left when it would other-
wise turn right. By increasing the dimensionality of our attack space
and using a more efficient Bayesian optimization strategy, we are able
to find successful attacks even for cases where the driving agent needs to
go straight. Our final contribution is a demonstration of novel hijacking
attacks, where painting black lines on the road causes the car to follow
a target path, even when it is quite different from the correct route (e.g.,
causing the car to turn left instead of right).

This paper is an extension our previous work [9], with the key addi-
tions of new objective functions, a new optimization strategy, Bayesian
Optimization, and a new type of adversary in the form of hijacking self-
driving models. In this paper, we first talk about relevant prior work
on deep neural networks, adversarial machine learning in the context
of autonomous vehicles, in Section 2. Then in Section 3 we define the
problem statement and present several objective functions that math-
ematically represent the problem statement. In Section 4, we intro-
duce some optimization strategies. In Section 5, we discuss our experi-
mental setup including our adversary generation library and simulation
pipeline. Section 6 shows how we were able to successfully generate ad-

Journal of Systems Architecture 110 (2020) 101766

versaries against e2e models, and presents a new form of attack, dubbed
the hijacking attack where we control the route of the e2e model.

2. Related work
2.1. Deep neural networks for perception and control

Neural Networks (NN) are machine learning models that consist of
multiple layers of neurons, where each neuron implements a simple
non-linear function (such as a sigmoid function), and where the output
is some prediction. Deep Neural Networks (DNNs) are neural networks
with more than two layers of neurons, and have increasingly become the
state-of-the-art approach for a host of vision based perception problems
in the context of autonomous vehicles. Deep convolutional neural net-
works have been used to detect pedestrians, vehicles and other objects
that could serve as obstacles on an autonomous vehicle’s path [10-15].
These networks have been trained on large image datasets such as Ima-
genet [16] and KITTI [17] for detection with nearly human level accu-
racy. DNNs, along with traditional computer vision practices have been
used extensively for lane detection, which is a key part of the self-driving
pipeline [18-21]. Furthermore, DNN models have been created for the
image segmentation task where the camera images are segmented into
different classes such as roads, vehicles, pedestrians, traffic lights, and
other hazards [22-25]. Rather than traditional depth estimation algo-
rithms which use stereo images or LiDAR point clouds, DNNs have been
used to estimate depth using just single images as input [26-29]. This
is an important component of perception in self-driving vehicles so that
distances to other vehicles and obstacles can be estimated.

2.2. End-to-end self-driving

While these perception modules are used in various stages of self-
driving stacks, end-to-end driving models are capable of directly learn-
ing driving decisions from camera images. End-to-end (e2e) learning
models for self-driving are comprised of a DNN that accept raw input
data like camera images and directly calculate the desired output such as
steering angle, throttle, and brake. Rather than explicitly decomposing a
complex problem into its constituent parts and solving them separately,
e2e self-driving models directly generate driving decisions from a set of
inputs. This is achieved by applying gradient-based learning methods to
the entire e2e neural architecture. End-to-end models have been shown
to have good performance when learning lane-following tasks; one such
example is the Autonomous Land Vehicle In a Neural Network model
(ALVINN), a 3-layer neural network which took as input a camera im-
age and laser range finder value to output a steering direction in order to
follow the road [30]. More recently, e2e learning models driven by Con-
volutional Neural Networks (CNN) which learn using online imitation
learning policies have been shown to be successful in learning off-road
driving policies [31]. Previous research has also shown that e2e learn-
ing models can be extended to not only make driving decisions but also
jointly estimate localization for a fixed environment [32]. In addition to
CNN-based e2e models, e2e Long Short Term Memory (LSTM) networks,
a form of Recurrent Neural Networks (RNN), have been able to train
from only a front camera image in order to predict longitudinal con-
trol (i.e. the speed of the autonomous vehicle) [33]. More recently, e2e
learning has shown promise in multi-modal learning in which both the
driving decision and predicted speed of vehicle are learned simultane-
ously [34]. Self driving simulators such as CARLA [8] have accelerated
the development of research in multi-modal e2e models. For example,
several types of multi-modal e2e models have been developed within
the CARLA simulator which include models trained from RGB images as
well as RGB + Depth (RGBD) images [35]. In contrast to e2e models, self-
driving stacks such as Apollo [36] and Autoware [37] decompose the
autonomous driving problem into several sub-modules and solve each
component individually. Despite having complete autonomous driving

A. Boloor, K. Garimella and X. He et al.

stacks which include trained DNN models for perception, a series of real-
world crashes involving autonomous vehicles demonstrate the stakes,
and some of the existing limitations of the technology [38-41].

2.3. Attacks on autonomous vehicles

Adversarial examples (also called attacks and adversaries) [5,42—
44] are deliberately calculated perturbations to the input which result
in an error in the output from a trained DNN model. The idea of using
adversarial examples against static image classification models demon-
strated that DNNs are highly susceptible to carefully designed pixel-level
adversarial perturbations [5,7,45]. More recently, adversarial attacks
have been implemented in the physical domain [2,6,46], such as adding
stickers to a stop sign that result in misclassification [2]. Additionally,
it has been shown that state-of-the-art autonomous driving stacks such
as Apollo [36] which rely upon LiDARs are susceptible to physically re-
alizable attacks. In particular, carefully engineered 3D physical objects
have been constructed and tested both in simulation and the real-word
that remain undetected by Apollo’s perception module [47]. Moreover,
LiDAR spoofing attacks have been shown to fool the Apollo perception
stack to detect a fake object in front of the vehicle thus affecting the
planning component. [48,49]. The camera-based object detection com-
ponents of these driving stacks have also been shown to be susceptible to
physical adversaries [2,50]. Recently, researchers have briefly demon-
strated that placing stickers on the road can make the Tesla autopilot
perceive a lane marker when it does not exist [51].

In this work, we focus on attacking vision based end-to-end self-
driving models such as the Imitation Learning and Reinforcement Learn-
ing models [8] using physical adversaries.

3. Modeling framework

In this paper, we focus on exploring the influence of a physical adver-
sary that successfully subverts RGB camera-based e2e driving models.
We define physical adversarial examples as attacks that are physically
realizable in the real world. For example, deliberately painted shapes
on the road or on stop signs would be classified as physically realizable.
Fig. 1(b) displays the conceptual view of such an attack involving paint-
ing black lines. We define our adversarial examples as patterns. To create
an adversarial example that forces the e2e model to crash the vehicle,
we need to choose the parameters of the pattern’s shape that maximize
the objective functions that we present. This may cause the vehicle to
veer into the wrong lane or go offroad, which we characterize as a suc-
cessful attack. Conventional gradient-based attack techniques are not
directly applicable, since we need to run simulations (using the CARLA
autonomous driving simulator) both to implement an attack pattern, and
to evaluate the end-to-end autonomous driving agent’s performance.

At the high level, our goal is to paint a pattern (such as a black line)
somewhere on the road to cause a crash. We formalize such attacks in
terms of optimizing an objective function that measures the success of
the attack pattern at causing driving infractions. Since driving infrac-
tions themselves are difficult to optimize because of discontinuity in the
objective (infraction either occurs, or not), one of our goals it to identify
a high-quality proxy objective. Moreover, since the problem is dynamic,
we must consider the impact of the object we paint on the road over a
sequence of frames that capture the road, along with this pattern, as the
vehicle moves towards and, eventually, over the modified road segment.
Crucially, we modify the road itself, which is subsequently captured in
vision, digitized, and used as input into the e2e model’s controller.

To formalize, we now introduce some notation. Let § refer to the
pattern painted on the road, and let [denote the position on the road
where we place the pattern. We use L to denote the set of feasible loca-
tions at which we can position the adversarial pattern §, and S the set of
possible patterns (along with associated modifications; in our case, we
consider either a single black line, or a pair of black lines, with mod-
ifications involving, for example, the distance between the lines, and

Journal of Systems Architecture 110 (2020) 101766

their rotation angles). Let a; be the state of the road at position [, and
a; + 6 then becomes the state of the road at this same position when the
pattern 6 is added to it. The state of the road at position [is captured
by the vehicle’s vision system when it comes into view; we denote the
frame at which this location initially comes into view by F;, and let A be
the number of frames over which the road in position [is visible to the
vehicle’s vision system. Given the road state q; at position [, the digital
view of it in frame F is denoted by Ir(a;) or simply I. Finally, we let
0r = g,,(Ir) denote the predicted steering angle given observed digital
image corresponding to frame F. With this formalism established, we
introduce several candidates for a proxy objective function that would
quantify the success of an attack.

3.1. Candidate objective functions

3.1.1. Steering angle summations
First, we denote the vector of predicted steering angles during an
episode with an attack § starting from frame F, to frame F,, , as:

05 =105, 0r,,> 0,1 M

We define two objective functions as:

A
Collide Right : max g 6, (2a)
N
Collide Left : min ; 6, (2b)
subjectto: €L, 6€S. (2¢)

Eq. (2a) says that to optimize an attack that causes the vehicle to
veer off towards the right and collide, we need to maximize the sum of
steering angles for that particular experiment for the frames in which
the pattern is in view. And similarly in Eq. (2b), we need to minimize
the steering sum, to make the vehicle veer left. We convert Eq. (2b) to a
maximization problem for consistency in our search procedures that we
will describe. Using Eq. 2 as the objective function allows us to have con-
trol over which direction we would like the car to crash. The following
two metrics, the absolute steering angle difference and path deviation,
lose this ability to distinguish direction-based attacks, since they are es-
sentially L-1 and L-2 norms.

3.1.2. Absolute steering angle differences

Again, let’s denote the predicted steering angles with an attack 5 over
the frames F; to F,, as (:55 as shown in Eq. (1). Now, let’s denote the
predicted steering angles without any attack over the same frames as
Opaseline- This represents an episode where no attack is added to the
road (we refer to this as the baseline run) and the car travels the intended
path with minimal infractions. We can now define our second candidate
metric as:

nll%x “@5 - Gbaseline”l (3a)

subjectto: /€L, 6€S. (3b)

Eq. (3a) optimizes an attack over the frames A that cause the largest
absolute deviation in predicted steering angles with respect to the pre-
dicted steering angles when no pattern has been added to the road.

3.1.3. Path deviation
First denote the (x, y) position of the agent from frames F; to Fj, ,
with an attack § as:

f’a =[G 0 gt Vi) s Spgens Yigea)l C))

Define Ppasetine as the position of the agent with no attack added to the
road over the same frames (the baseline run). We can optimize the path

A. Boloor, K. Garimella and X. He et al.

deviation from the baseline path:

n}%x ”56 - I_jbaselinellz (5a)

subjectto: le€L, 6€S. (5b)

Similar to Eq. (3a), we can use this metric to optimize deviation
from the baseline route, except we are now attacking the position of the
vehicle which is directly influenced by the outputs of the e2e models.

4. Approaches for generating adversaries

We now describe our approaches for computing adversarial patterns
or, equivalently, optimizing the objective functions defined above.

4.1. Random and grid search

Each pattern we generate (labeled earlier as §) can be described by
a set of parameters such as length, width, and rotation angle with re-
spect to the road. Two naive methods of finding successful attacks would
be to generate a pattern through either a random or grid search (using
a coarse grid) and evaluate this pattern using one of the above objec-
tive functions. Algorithm 1 shows this setup. The function RunScenario()

Algorithm 1 Adversary search algorithm.

Require: Strategy € Random, Grid

i<0

MetricsList « []

loop
§; < GenerateAttack(Strategy)
results < RunScenario(§;)
y; < CalculateObjectiveFunction(results)
MetricsList.append(y;)
i—i+1

end loop

return arg max MetricsList

runs the simulation and returns data such as vehicle speed, predicted
acceleration, GPS position, and steering angle. We use these results to
calculate one of the objective functions (CalculateObjectiveFunction()).
As our goal is to maximize this metric, we use MetricsList to store the
results of the objective function at each iteration. Finally, we return the
parameters that maximized our objective function.

4.2. Bayesian optimization search policy

Algorithm 1 works well when the number of parameters for § are rel-
atively small. For a larger pattern space, and to enable us to explore the
space more finely, we turn to Bayesian Optimization, which is designed
for optimizing an objective function that is expensive to query without
requiring gradient information [52]. It has been shown that Bayesian
Optimization (BayesOpt) can be useful for optimizing expensive func-
tions in various domains such as hyper-parameter tuning, reinforcement
learning, and sensor calibration [53-56]. In our case, since we use an
autonomous driving simulator, it is expensive to run a simulation with a
generated attack in order to find, for example, the sum of steering an-
gles as shown in Eq. (2). On average, one episode takes between 20 to
40 seconds depending upon the scenario; consequently, it is important
for the optimization to sample efficiently.

At the high level, our goal is to generate physical adversaries that
successfully attack e2e autonomous driving models, where a successful
attack can be quantified as trying to maximize some objective function
f(8). Our goal, therefore, is to find a physical attack, §*, such that:

§* = arg max 18, (6)

where §* € R? and d is the number of parameters of the physical attack.
We first assume that the objective f can be represented by a Gaussian

Journal of Systems Architecture 110 (2020) 101766

Process, which we denote by GP(f, u(6), k(5, 5”)) with a mean function of
u(6) and a covariance function k(8, ") [57]. We assume the prior mean
function to be u(8) = 0 and the covariance function to be the Matérn 5/2
kernel:

k(5,6')=<1+ﬂ+ﬁ)exp<—@>, (@)

14 322

where r is the Euclidean distance between the two input points, ||5 —
8'|l,, and ¢ is a scaling factor optimized during simulation run-time.
Let’s suppose that we have already generated several adversaries and
evaluated our objective function f for each of these adversaries. We
can denote this dataset as D = {(6;, 1), -+, (8,_1, ¥,—1)}. Therefore, if we
would like to sample our function f at some point along the input space 6,
we would obtain some posterior mean value u 5(5) along with a poste-
rior confidence or standard deviation value of ¢ 1p(6). As noted earlier,
our objective function f is expensive to query. When we use Bayesian op-
timization to find the parameters that define our next adversary §,, we
instead maximize a proxy function known as the acquisition function,
u(8). Compared to the objective function, it is trivial to maximize the
acquisition function using an optimizer such as the L-BFGS-B algorithm
with a number of restarts to avoid local minima. In our case, we utilize
the Expected Improvement (EI) acquisition function. Given our dataset,
D, we first let y,.« be the highest objective function value we have seen
so far. The EI can be evaluated at some point é as:

u(6) = E[max(0, £(8) = ymax)]- ®

Given the properties of a Gaussian Process, this can be written in closed
form as follows:

7= ﬂf|D(5) — Ymax .

9
o7 1p(6) ©

u(8) = (4 7p(8) = Ymax)P(2) + 0 £ p(8)$(2), 10)

where @ and ¢ are the cumulative and probability distribution functions
of the Gaussian distribution, respectively. Effectively, the first term in
the above acquisition function leads to exploiting information from pre-
viously generated adversaries to generate parameters for §, while the
second term prefers exploring the input space of the adversary param-
eters. Given this setup, Algorithm 2 presents a Bayesian Optimization
approach for generating and searching for adversarial patterns.

Algorithm 2 Bayesian adversary search algorithm.

i«0

MetricsList « []

loop
6; < arg max u(d)
results < RunScenario(5;)
y; < CalculateObjectiveFunction(results)
MetricsList.append(y;)
Update Gaussian Process and D with (§;, y;)
i—i+1

end loop

return arg max MetricsList

In this algorithm, the Gaussian process is updated in each iteration,
and the acquisition function reflects those changes. An initial warm-
up phase where the adversary parameters are chosen at random and
the simulation is queried for the objective function is used for hyper-
parameter tuning.

While Bayesian Optimization has been shown to be an efficient
search policy, it is best suited to search spaces with limited dimension-
ality, typically less than 20 bounded parameters [58]. Our experiments
described in Section 5 contains a search space of 4 bounded parameters,
a dimensionality sufficiently small for Bayesian Optimization to be ef-
fective. In general, our methodology can be applied to vision based e2e

A. Boloor, K. Garimella and X. He et al.

models since the camera input has a direct effect on the objective func-
tions described in Section 3.1. However, in the context of autonomous
driving stacks such as Apollo [36] and Autoware [37] in which the ob-
jective functions are influenced by several perception modules (e.g. cam-
era, LiDAR, Radar), our adversary generation method would need to be
modified to directly influence all modules.

5. Experimental methodology

This section introduces the various building blocks that we use to
perform our experiments. Fig. 2 shows the overall architecture of our
experimentation method, including the CARLA simulator block, the
python client block, and how they communicate with each other to gen-
erate and test the attack patterns on the simulator.

5.1. Autonomous vehicle simulator

Autonomous driving simulators are often used to test autonomous
vehicles for the sake of efficiency and safety [59-62]. After testing pop-
ular autonomous simulators [36,63-65], we choose to run our exper-
iments on the CARLA [8] (CAR Learning to Act) autonomous vehicle
simulator, due to its feature-set and ease of source code modification.
With Unreal Engine 4 [66] as its backend, CARLA has sufficient flexi-
bility to create realistic simulated environments, with a robust physics
engine, lifelike lighting, 3D objects including roads, buildings, traffic
signs, vehicles and pedestrians. Fig. 2 shows how the simulator looks in
the third person view. It allows us to acquire sensor data like the cam-
era image for each frame (camera view), vehicle measurements (speed,
throttle, steering angle and brake) and other environmental metrics like
how the vehicle interacts with the environment in the form of infrac-
tions and collisions. Since we use e2e models that use only the RGB
camera, we disable the LiDAR (Light Detection And Ranging), semantic
segmentation, and depth cameras. Steering angle, throttle and brake pa-
rameters are the primary control parameters to drive the vehicle in the
simulation. CARLA (v0.8.2) comes with two maps: a large training map
and a smaller testing map which are used for training and testing the
e2e models respectively. CARLA also allows the user to run experiments
under various weather conditions like sunset, overcast and rain, which
are determined by the client input. To keep consistent frame rate and
execution time, we run CARLA using a fixed time-step.

Journal of Systems Architecture 110 (2020) 101766
5.2. End-to-end driving models

The CARLA simulator comes with two trained end-to-end models:
Conditional Imitation Learning (IL) [67] and Reinforcement Learning
(RL) [8]. Their commonality ends at using the camera image as the input
to produce output controls that include steering angle, acceleration, and
brake. The IL model uses a trained network which consists of demonstra-
tions of human driving on the simulator. In other words, the IL model
tries to mimic the actions of the expert from whom it was trained [68].
The IL model’s structure comprises of a conditional, branched neural
architecture model where the conditional part is a high-level command
given by the CARLA simulator at each frame. This high-level command
can be left, right or straight at an intersection, and lane follow when not at
an intersection. At each frame, the image, current speed, and high-level
command are used as inputs to the branched IL network to directly out-
put the controls of the vehicle. Therefore, each branch is allocated a
sub-task within the driving problem (making a decision to cross an in-
tersection or following the current lane). The RL model uses a trained
deep network based on a rewards system, provided by the environment
based on the corresponding actions, without the aid of human drivers.
More specifically, for RL, the asynchronous advantage actor-critic (A3C)
algorithm was used. It is worth mentioning that the IL model performed
better than the RL model in untrained (test) scenarios [8]. Because of
this, we focus our research primarily on attacking the IL model.

5.3. Physical adversary generation

5.3.1. Unreal engine

To generate physically realizable adversaries in a systematic man-
ner, we modify CARLA’s source code. The CARLA simulator (v0.8.2)
does not allow spawning of objects into the scene which do not already
exist in the CARLA blueprint library (which includes models of vehicles,
pedestrians, and props). With the Unreal Engine 4 (UE4), we create a
new Adversarial Plane Blueprint, which is a 200 x 200 pixel plane or
canvas with a dynamic UE4 material, which we can overlay on desired
portions of the road. The key attribute of this blueprint is that it reads a
generated attack image (a.png file) and places it within CARLA in real
time. Hence this blueprint has the ability to continuously read an image
via an HTTP server. The canvas allows the use of images with an al-
pha channel which allows attacks which are partly transparent, like the
one shown in Fig. 3. Then, we clone the two maps that are provided by
CARLA and choose regions of interest within each of them where attacks

pedestrian | SIMULATOR VISUALIZATION |
i fraffic_
maj
weather
accel - R
brake un
- H
w Q
« >
3 g
2 1
© I
B
=
=
z
]
s
[
s
s £
] enerate 3| cccel: 0.514 accel: 0.526
= Start/ End brake: 0.011 brake: -0.020
© 2 steer: 0.040 steer: —0.078
g Positions
1~ map -m [frame 70 |
£
> | [scenario J|'E
& 3 = / —
end-to-end — ﬁ% Python | Data. ” Process || Connected Proceess |
g2 P 2
2g
§< @ | CcARLA | Unused } ----- >“ Visualization l)
o =
[Bash Command | #001 #060 #207 #300

Fig. 2. Architecture overview of our simulation infrastructure including the interfaces between the CARLA simulator and the pattern generator scripts. Visualization

of the camera and the third person views from one attack episode are also shown.

A. Boloor, K. Garimella and X. He et al.

Journal of Systems Architecture 110 (2020) 101766

Fig. 3. Attack Generator Capabilities. (a) shows the most basic
attack which is a single line. (b) and (c) show attacks using two
lines, but (b) has a constraint that the lines always need to be
parallel, (d) shows the ability of the generator to generate N
number of lines with various shapes and color.

-

(a) Single Line (b) Double Line (c) Two Lines

Table 1
Different types of attacks and their respective parameters and con-
straints. var - variable, const - constant, NA - Not Applicable

Attack Type

params Single Line Double Line Two Lines N-Lines
lines 1 2 2 N
position var var var var
rotation var var var var
length const const const var
width const const const var
gap NA var NA NA
color const const const var
opacity const const const var
dimensions 2 3 4 N x 6

spawn. Some interesting regions are at the turns and intersections. We
place the Adversarial Plane Blueprint canvas in each of these locations.
When CARLA runs, an image found on the HTTP server gets overlaid on
each canvas. Finally, we compile and package this modified version of
CARLA. Hence we are able to place physical attacks within the CARLA
simulator.

5.3.2. Pattern generator library

We built a pattern generator that creates different kinds of shapes as
shown in Fig. 3 using the pattern parameters (Table 1). For the pattern
generator, we explore parameters like the position, width, and rotation
of the line(s). We sweep the position and rotation from O to 200 pixels
and 0-180 degrees respectively to generate variations of attacks. Sim-
ilarly, we create a more advanced pattern which involves two parallel
black lines called the double-line pattern as described in Table 1. It com-
prises of the previous parameters, namely, position, rotation, and width,
with the addition of a new gap parameter which is the distance between
the two parallel lines. Lastly, we remove the parallel constraint on dou-
ble lines to increase the search space of the attacks while preserving
simplicity. Fig. 2 shows some examples of the generated double line
patterns which can be seen overlaid on the road in frames 55 and 70.

Additionally, our library has the ability to read a dictionary ob-
ject containing the number of lines, the parameters (position, rotation,
width, length and color) for each line, and produce a corresponding at-
tack pattern as shown in Fig. 3 (d). Once the pattern is generated, it is
read via the HTTP server and is placed within the Carla simulator.

5.3.3. OpenAl-gym environment for carla

Since CARLA runs nearly in real-time, experiments take a long time
to run. In order to efficiently run simulations with our desired parame-
ters, we convert the CARLA setup to an OpenAI-Gym environment [69].
While the OpenAI-Gym framework is primarily used for training rein-
forcement learning models, we find the format helpful as we are able
to easily run the simulator with a set of initial parameters like the task
(straight, right, left), the map, the scene, the end-to-end model and the
desired output metric (eg. average infraction percent for that episode).
With this set up, we are able to use an optimizer to generate an attack
with a set of defined constraints, run an episode and get the resulting
output metric.

(d) N-Lines

5.4. Experiment setup and parallelism

To ensure a broad scope to test the effectiveness of the different at-
tacks in various settings, we conduct experiments by changing various
environment parameters like the maps (training map and testing map),
scenes, weather (clear sky, rain, and sunset), driving scenarios (straight
road, right turn, and left turn), e2e models (IL and RL) and the entire
search space for the patterns. Here, we describe the six available driving
scenarios for CARLA:

1. Right Turn: the agent follows a lane that smoothly turns 90 degrees
towards the right.

2. Left Turn: the agent follows a lane that smoothly turns 90 degrees
towards the left.

. Straight Road: the agent follows a straight path.

. Right Intersection: the agent takes a right turn at an intersection.

. Left Intersection: the agent takes a left turn at an intersection.

. Straight Intersection: the agent navigates straight through intersec-
tion.

Ul AW

We choose the baseline scenarios (no attack) where the e2e mod-
els drive the vehicle with minimal infractions. We run the experiments
at 10 frames per second (fps) and collect the following data for each
camera frame (a typical experiment takes between 60 to 100 frames
to run): camera image from the mounted RGB camera, vehicle speed,
predicted acceleration, steering and brake, percentage of vehicle in the
wrong lane, percentage of vehicle on the sidewalk (offroad), GPS posi-
tion of the vehicle, and collision intensity. Fig. 2 shows this dataflow
which is sufficient to assess the ramifications of a particular attack in an
experiment.

To search the design space thoroughly, we build a CARLA docker
which allows us to run as many as 16 CARLA instances simultaneously,
spread over 8 RTX GPUs [70].

6. Experimental results

Through experimentation, we demonstrate the existence of conspicu-
ous physical adversaries that successfully break the e2e driving models.
These adversaries do not need to be subtle or sophisticated modifica-
tions to the scene. Although they can be distinguished and ignored by
humans drivers with ease, they effectively cause serious traffic infrac-
tions against the e2e driving models we evaluate.

6.1. Simple physical adversarial examples

6.1.1. Effectiveness of attacks

To begin, we generate two types of adversarial patterns: single line
(with varying positions and rotation angles), and double lines (with
varying positions, rotation angles, and distance between the lines). In
Fig. 4(a), we define different safety regions of the road in ascending
order of risk. We start with the vehicle’s own lane (safe region), the op-
posite lane (unsafe), offroad/sidewalk (dangerous) and regions of colli-
sions (very dangerous) past the offroad region. Fig. 4(b)(c)(d)(e) shows
that by sweeping through the three scenarios (straight road driving,
right turn driving, left turn driving) with the single and double line pat-
terns, for both the training map and testing maps, we see that some pat-

A. Boloor, K. Garimella and X. He et al.

Journal of Systems Architecture 110 (2020) 101766

Fig. 4. Comparison of the infractions caused

Collision

Offroad Infraction

by different patterns. (a) Driving Infraction
regions; (b)(c) Infraction percentages for IL;

(d)(e) Infraction percentages for RL; NA - No

| Other Lane Infraction |

Attack, SL - Single Line pattern, DL - Double

—

Lines pattern; Straight - Straight Road Driving,
Right - Right Turn Driving, Left - Left Turn Driv-
ing

Offroad Infraction

Collision

Trained Map (IL)
Right Left

100

80

80

60 60

Trained Map (RL)
ight Right

Left

40 40

- safe
20 otherlane 20

e offroad

E collision . collision

~ NA SL DL NA SL DL NA SL DL ~ NA SL DL NA SL DL NA SL DL
(b) (d)
Test Map (IL) Test Map (RL
tht(_'ﬁt() Left

. safe safe
20 otherlane otherlane
. offroad s offroad
N collision = collision

NA SL DL

100 Straight i L_eft- 00, Straight
8 o0/
60 60/
0 a0
=

20

()

terns cause infractions. Here we use a naive grid search approach to tra-
verse the search space with the Steering Sum optimization metric defined
in Eq. (2a). First, we observe the transfer-ability of adversaries since
some of our generated adversarial examples cause both IL (Fig. 4(b))
and RL (Fig. 4(d)) models to produce infractions. Second, attacks are
more successful against the RL model than the IL model. Additionally,
we notice that the double line adversarial examples cause more severe
infractions than their single line counterparts. Lastly, we observe that
Straight Road Driving and Left Turn Driving are more resilient to attacks
that cause stronger infractions.

6.1.2. Analysis of attack objectives

To find the optimal adversary which produce infractions like colli-
sions for the case of Right Turn Driving scenario, the optimizer has to
find a pattern that maximizes the first candidate objective function: the
sum of steering angles as hypothesized in Eq. (2). A positive steering
angle denotes steering towards the right and a negative steering angle
implies steering towards the left. Fig. 5(a)(b) show the sum of steer-
ing angles and the sum of infractions respectively, for each of the 375
combinations of double line patterns. The infractions are normalized
because collision data is recorded in SI units of intensity [kg x m/s],

NA SL DL
(e)

NA SL DL

whereas the lane infractions are in percentages of the vehicle area in
the respective regions. Fig. 5 also shows the three lowest points (min-
ima) for the steering sum and the three highest points (maxima) for the
collisions plot. In Fig. 5(c), we use the argmin and argmax on the set of
attacks to observe the shapes of the corresponding adversarial examples
for both the steering sum and infraction results. We observe that the
patterns that minimize the sum of steering angle and correspondingly maxi-
mize the collision intensity are very similar. Thus, the objective based on
maximizing or minimizing steering angles is clearly yielding valuable in-
formation for the underlying optimization problem. However, this does
not mean that it’s the best objective, among the three choices we con-
sidered above. We explore this issue in greater depth in the next subsec-
tion, as we move towards studying more complex attacks using Bayesian
optimization.

6.2. Exploration of large design spaces

In Fig. 4, we observe that when we switch from a Single Line attack
(with 2 dimensions) to a Double Line attack (with 3 dimensions), in most
cases, there is a significant increase in the number of successful attacks.
It is reasonable to assume that as we increase the number of degrees of

A. Boloor, K. Garimella and X. He et al.

Double Line Patterns on Training Map

"]
s
o 100
5
o 75 1
c
‘= 50
(7]
(]
¥ 25
- —— steer sum
O 00 {— noattack
S ® minima #1
b “251 e minima #2
£ 50 ® minima #3
£ r r "
‘g 0 50 100 150 200 250 300 350
Pattern ID #
2 10 Opposite Lane
.g Offroad
8 08 Collision
& 06 @ collision maxima #1
£ ® collision maxima #2
'g 04 ® collision maxima #3 | |
2 s i If il |}
E”], | . il I
S 00 jld | \
=z T T T T T T
100 150 200 250 300 350

0 50
Pattern ID #

Journal of Systems Architecture 110 (2020) 101766

Fig. 5. Adversary against "Right Turn Driv-

Optimized Patt
oot aalis ing”. (a) Adversarial examples significantly

argmin(steer) argmax(col)

changes the steering control. (b) Some patterns

#210 #215 cause minor infractions whereas others cause
level 3 infractions. (c) The patterns that cause
the minimum steering sum and maximum col-
lisions look similar.

#229 @ #232

#238 #205

/

Comparison of Search Optimizers

Left traight Right
o —— Bayesian Optimization / i 700
é 8001 —=— Ra_ndom SearchA 400 i 600
g —— Grid Search (Naive) H
o ; : 500
g : 300 :
g | | 400
=1 i H
& 400 : 200 : 300
k] . i
@ ! 200
£ 200 : 100 :
2 100
0 . } : : 0 : : immm o : | , ;
0 200 400 600 800 1000 O 200 400 600 800 1000 O 200 400 600 800 1000
Iterations lterations Iterations
() (b) (©

Fig. 6. A comparison of different search algorithms for generating successful attacks. In each driving scenario: Left Turn (a), Straight Road (b), and Right Turn
(c) Driving, the Bayesian approach not only finds more unique, successful adversaries in the same number of iterations but also finds these attacks at a faster rate.
BayesOpt randomly samples the adversary search space for the first 400 iterations (shown before the dashed line) to tune the hyper-parameters of the kernel function.
After these randomly sampled points, BayesOpt utilizes an acquisition function to sample the search space. While a dense grid search would eventually find at the
least the same number of attacks as BayesOpt, we constrain our experiments to 1000 iterations given our computational resources.

freedom in the attack, it should be possible to also increase the success
rate. We lend further support to this intuition by considering an attack
called the Two Line attack, shown in Fig. 3(c), with 4 dimensions by
removing the constraint that the two lines must be parallel. As shown in
Fig. 4, attack success rates increase considerably compared to the more
restricted attack.

However, increasing the dimensionality of the attack search space
makes grid search impractical. For example, the Single Line attack with
grid search requires around 375 iterations to sweep the search space
at a 20 pixel resolution. Preserving the same parameter resolution (or
precision) would require 1440 iterations for Double Lines, and 12,960
iterations for the Two Line attack. Naive search would require around 45
days to sweep through the search space for a single scenario on a modern
GPU. Additionally, using a sparser resolution for the attack parameters
means that we would not find potential attacks which can only be found
at a higher resolution.

We address this issue by adopting the Bayesian Optimization
framework (BayesOpt) for identifying attack patterns (introduced in
Section 4.2). This requires a change in our search procedure as shown
in Algorithm 2. In short, it uses the prior history of the probed search
space to suggest the next probing point.

Fig. 6 shows the comparison between the 3 optimization techniques
we employ for the straight, left-turn, and right-turn scenarios. We see
that for all three cases, BayesOpt outperforms the naive grid search and
the random search methods. In Fig. 6, BayesOpt uses 400 initial ran-
dom points to sample the search space and subsequently samples 600
optimizing points. Hence, we observe that for the first 400 iterations,
BayesOpt follows closely with random search, and after probing those
initial random points, we observe a significant increase in the number
of successful attacks.

Because we observe many more successful attacks against the
Left and Right Turn scenarios as compared to the Straight Scenario,
Fig. 6 further supports our notion that driving straight is harder to attack
as compared to the right and left turn scenarios.

Equipped with BayesOpt, we now systematically evaluate the rela-
tive effectiveness of the different objective functions. Table 2 shows the
infractions caused by each of the objective functions (path deviation,
sum of steering angles, and absolute difference in steering angles with
the baseline). For Left Turn, Straight Road, and Right Turn Driving, we
list the percentage out of 600 simulation runs using BayesOpt that were
safe, incurred collisions, off road infractions, or opposite lane infrac-
tions. We observe that the absolute difference in steering angles with

A. Boloor, K. Garimella and X. He et al. Journal of Systems Architecture 110 (2020) 101766

Table 2
Comparison of Candidate Objective Functions as listed in Section 3 (in %). £ st. angles - sum of steering angles, abs. st. diff. - absolute steering difference
Left Straight Right

Metric safe collision offroad opp. lane safe collision offroad opp. lane safe collision offroad opp. lane

¥ st. angles 18.2 0 0 81.8 99 0 0 1 72.2 9.5 13.8 24.5

path deviation 64.6 0 0 354 23.8 2.5 2.8 76.2 57.2 24.0 28.3 40.2

abs. st. diff. 0.2 0 0 99.8 22.7 7.5 9.3 773 0 95.2 99.2 100

Paths Taken by e2e Model Fig. 7. Paths taken by e2e model in Left Turn,

Straight Road, and Right Turn Driving with no

Left Corner Straight Right Corner attack (baseline), an unsuccessful attack, and a
successful attack (a). Cumulative sum of steer-

; '\ oA ing angles for each scenario (b). While the suc-

' \\ i cessful attack is able to cause the e2e agent to

\ Al incur an infraction or collision in each scenario,

|
|
|
{ the steering sum metric is unable to capture dis-
i tinguish between the successful and unsuccess-
[ful attack in two of the three scenarios.

= baseline
== unsuccessful attack
== successful attack

(@
Steering Sum Objective Function

Left Corner Straight 10 Right Corner
01 19 £ Pr——
- - 5
N-«]
0 [P24 // 7
€ £ \\ 1’ 0 N 4 roN
a =i \ 7 N
o \ 4 x \
£ -4 - / \
2 -2 \\ / N\
& v -10 \
-6 ' }/’ \\
-3 |”L -15 Y
v \
L. . . = = J L. . = = A =201, - = = =
0 20 40 60 80 0 20 40 60 80 0 25 50 75 100
Frame Number Frame Number Frame Number
(b)
respect to the baseline run is the strongest metric when coupled with turn driving scenario, we observe that there is indeed a large difference
BayesOpt to discover unique, successful attacks. While the most natural between the steering sums for a strong attack and a weak attack, but
metric would seem to be steering sum, it is in practice considerably less in the other two scenarios, we notice that the baseline, unsuccessful
effective than maximizing absolute difference in the steering angle. The attack and successful attack have very similar steering sums. Hence, the
path deviation objective function performs well in right turn and straight optimizer has a difficult time distinguishing between an unsuccessful
scenarios, but fails to find optimal attacks in the left turn driving scenario. and successful attack. In straight driving scenario, we see that the steering
Overall it still under-performs when compared to the absolute steering sum for a successful attack begins increasing and then sharply decreases,
difference objective function. even though the vehicle has deviated significantly from the baseline
path. This is due to the ability of the IL e2e model to recover in this
6.3. Importance of selecting a reliable objective function case, resulting from data augmentation at training time where initial
position of the car was randomly perturbed. The sum of steering angles
In Section 6.2, we evaluate three different objective functions: path objective function is unable to capture this behavior. For the case of
deviation, sum of steering angles and absolute steering difference. We ob- left turn driving, we discover that the successful attack not only causes a
serve that the choice of the right objective function is crucial for success, change in steering angle, but also a change in throttle, resulting in the
and this choice is not necessarily obvious. vehicle speeding up and reaching a position further along the baseline
Most surprisingly, perhaps, we find that the objective that uses the path, which opens up new possibilities for generating attacks as well as
steering angles to guide adversarial example construction is not the best causing new types of infractions.
choice, even though it is perhaps the first that comes to mind, and one The absolute steering difference mitigates the above issues by sum-
used in prior work [61]. We now investigate why this choice of the ming up the absolute steering differences between the baseline and at-
objective can fail. tack cases. This allows the objective function to counteract the recovery
Fig. 7 shows three driving scenarios (left turn, driving straight, and ability of the e2e models. However, we do lose the ability to directly
right turn) respectively. Fig. 7(a) shows the paths taken by the vehicle control the direction towards which we desire the vehicle to crash.
for 3 cases: a baseline case where there is no attack, an unsuccessful attack
case where an attack pattern does not cause the e2e model to deviate 6.4. Vehicle hijacking attacks
significantly from the baseline path, and a successful attack case where
an attack causes a large deviation resulting in an infraction. Fig. 7(b) Thus far, our exploration of adversarial examples against au-
shows the sum of steering angles for each of the corresponding cases in tonomous driving models focused on causing the car to crash, or cause
Fig. 7(a). Note that for Left Turn Driving, we try to maximize Eq. (2a), other infractions. We now explore a different kind of attack: vehicle hi-

which is to collide to the right, and for Straight Driving and Right Turn jacking. In this attack, the primary purpose is to stealthily lead the car
Driving, we maximize Eq. (2b), which is to collide to the left. For the right along a target path of the adversary’s choice.

A. Boloor, K. Garimella and X. He et al.

= = Base Route
—=- Successful Hijack
=== Unsuccessful Hijack
== = Hijack Route

@ Starting Position

Fig. 8. Illustration of a hijack attack where we use an attack to trick the vehicle
to deviate from its normal path (base route) to a target hijack route. It demon-
strates a successful hijack where we make a vehicle otherwise turning right at
an intersection, to turn left.

When attacking the IL model, previous experiments have only tar-
geted the Lane Follow branch of this model. Now, we focus our attacks
on three different branches of the IL Model: Right Intersection, Left Inter-
section, and Straight Intersection. Here, we define a successful attack to
be an adversary that 1) causes no infractions or collisions and 2) causes
the agent to make a turn chosen by the attacker rather than the ground
truth at a particular intersection (e.g. the attacker creates an adversary
to make the agent turn left instead of go straight through an intersec-
tion). With this definition, an attack that causes the agent to incur an
infraction is not considered to be a successful attack. In order to pro-
duce such attacks, we modify our experimental setup. After choosing a
particular intersection, we run the simulation with no attack to record
the baseline steering angles over the course of the episode. The high-
level command provided by CARLA directs the agent to take a particu-
lar action at that intersection (for example, go straight). We then modify
the CARLA high-level command to the direction desired by the attacker
(for example, take a right turn). After running the simulation, we store
these target steering angles over the entire episode. Finally, we revert
the CARLA high-level command to the original command provided to
the agent during the baseline simulation run and begin generating at-
tacks at the intersection. We modify our optimization problem to min-
imize the difference in the steering angles recorded during an episode
with an attack ((:)5 as defined in 3.1) and the steering angles of the target
run (defined as étarget):

r?isnlleﬁ_gtarget“l (11a)

subjectto: €L, 6€S. (11b)

CARLA (v0.8.2) does not include a four-way intersection in their pro-
vided maps, which constrain our experiments to a three-way junction as
shown in Fig. 8. Of the six possible hijacking configurations, we are able
to generate adversaries that successfully hijacked the car to take a de-
sired route rather than the baseline route for five configurations. For
example, Fig. 8 shows the car being hijacked to take a right turn instead
of going straight. While we are able to produce attacks that incurred
an infraction in each scenario shown in Fig. 8 (the gray paths), these
episodes did not count as successful hijacks as the car did not take the
target route. Table 3 shows the rate of successful attacks for the six avail-
able hijacking scenarios in CARLA v0.8.2. To conclude, we are able to

Journal of Systems Architecture 110 (2020) 101766

Table 3
Success rate of Hijacking Attacks for six scenarios.

Hijack Success Rates % Successful % Unsuccessful

Straight — Right 14.8 85.2
Straight — Left 0.0 100.0
Left — Straight 23.7 76.3
Left — Right 14.3 85.7
Right — Left 14 98.6
Right — Straight 25.9 74.1

modify our optimization problem and generate adversaries at intersec-
tions which caused the agent to take a hijacking route, rather than the
intended route.

6.5. Interpretation of Attacks using DeConvNet

In this section, our goal is to better understand what makes the at-
tacks effective. We begin by quantitatively analyzing the range of pa-
rameters of attacks that will generate the most robust attacks in the
context of right turns. For simplicity, we analyze the Double Line attack
whose parameters include rotation angle, position, and gap size. Fig. 9
shows a histogram of the collision incidence rates versus the pattern IDs,
and its corresponding parameters for an experiment with 375 iterations.
Fig. 9(b), in particular, shows that some parameters play a stronger role
than others in generating a successful attack. For example, in this partic-
ular setting Double Line attacks, successful adversaries have a narrow
range of rotation angles (90 - 115 degrees). Fig. 9(b) also shows that
smaller gap sizes perform slightly better than larger ones.

To better understand the working mechanisms of the successful at-
tack to the underlying imitation learning algorithm, we use network de-
convolution, using a state-of-the-art technique, DeConvNet [71]. Specif-
ically, we attach each CONV block (a convolution layer with ReLU and
a batch normalizer) to a DeConv counterpart, since the backbone of the
imitation learning algorithm is a convolutional neural network which
consists of eight CONV blocks for feature extraction and two fully con-
nected (FC) blocks for regression. Each DeConv block uses the same
filters, batch norm parameters, and activation functions as the CONV
block, except that the operations are reversed. In this paper, DeCon-
vNet is used merely as a probe to the already trained imitation learning
network: it provides a continuous path to map high-level feature maps
down to the input image. To interpret the network, the imitation learn-
ing network first processes the input image and computes the feature
maps throughout the network layers. To view selected activations in
the feature maps of a layer, other activations are set to zero, and the
feature maps backtrack through the rectification, reverse-batch norm,
and transpose layers. Then, activations that contribute to the chosen ac-
tivations in the lower layer are reconstructed. The process is repeated
until the input pixel space is reached. Finally, the input pixels which
give rise to the activations are visualized. In this experiment, we choose
the top-200 strongest/largest activations in the fifth convolution layer
and mapped these activations down to the input pixel space for visu-
alization. The reasons behind this choice are twofold: 1) The strongest
activations stand out and dominate the decision-making in NNs and the
top-200 activations are sufficient to cover the important activations, and
2) activations of the fifth CONV layer are more representative than other
layers, since going deeper would mean that the amount of non-zero ac-
tivations reduces significantly, which invalidates the deconvolution op-
erations, while shallow layers fail to fully capture the relation between
different extracted features.

We conduct a case study to understand why an attack works.
Specifically, we take a deeper look inside the imitation network when
adversaries are attacking the autonomous driving model for the right
turn driving scenario. The baseline case without any attack is depicted
in Fig. 10(a) while the one with a successful double-line attack is shown
in Fig. 10(b). In the first row of Fig. 10, the input images from the

A. Boloor, K. Garimella and X. He et al.

Pattern ID

st A . i

Journal of Systems Architecture 110 (2020) 101766

Fig. 9. (a) Histogram showing strong adver-

T ! saries. (b) Depiction of range of rotation, po-
e a T ; ' sition and gap parameters for the most robust
! R collision :150 : adversaries.
1
80 4 ' 1100 I
] I [
i 1507 I
i I I
i 1 O T -]
" 1 0 30 60. 90 120 150.
&0 i 1 Position 1
]
g : :
o L]
= 1 |
E 40 1 I
i 1 I
1 B — S |
| 0 40 80 120 1601
I Gap size !
1]
20 % |100 I
1 I
1 L]
1 50 4 [
1 I
1 I
o p O
0 40 80 120 160 200 240 280 320 950 . = _20_ _6(1 _lD_Q _1‘10_120:
(a) (b)
Right Turn (no attack) Right Turn (with attack) Left Turn (no attack)
o Mo L
E
£
2
5]
5 - — e
2 \
> - —
5 e —— >
g .
Q

Steer Angle: +0.58 (+33.2 deg)
(CY

Steer Angle: -0.18 (-10.4 deg)
(b)

Steer Angle: -0.24 (-13.8 deg)
©

Fig. 10. Attacks against Right Turn Driving: The top row shows the camera input while the bottom deconvolution images show that the reconstructed inputs from
the strongest activations determine the steering angle. (a) Right Turn Driving without attack, (b) Right Turn Driving with attack and (c) Left Turn Driving without

attack for comparison

front camera mounted on the vehicle are displayed, which are fed to
the imitation learning network. In Fig. 10(a), the imitation learning
network guides the vehicle to turn right at the corner, as the steering
angle output is set to a positive value (steering + 0.58). The highlighted
green regions in the reconstructed inputs in the corresponding second
row show the imitation network makes this steering decision mainly
following the curve of the double yellow line. However, when delib-
erate attack patterns are painted on the road as shown in Fig. 10(b),
the imitation network fails to perceive the painted lines which could
be easily ignored by a human; instead, the network regards the lines
as physical barriers and guides the vehicle to steer left (steering
-0.18) to avoid a fictitious collision, leading to an actual collision. The
reconstructed image below confirms that the most outstanding features
are the painted adversaries instead of the central double yellow lines.

We speculate that the vehicle recognizes the adversaries as the road
curb. And Fig. 10(c) confirms our speculations. In this case, the vehicle
is turning left and the corresponding reconstructed image shows the
curb would contribute the strongest activations in the network which
will make the steering angle a negative value (steering -0.24) to turn
left. The similarity of the reconstructed inputs between cases (b) and
(c) suggests that the painted attacks are misrecognized as a curb which
leads to an unwise driving decision. To summarize, the deliberate
adversaries that mimic important road features are very likely to be
able to successfully attack the imitation learning algorithm. This also
emphasizes the importance of taking more diverse training samples
into consideration when designing autonomous driving techniques.
Note that since the imitation learning network makes driving deci-
sions solely based on current camera input, using one frame per case

A. Boloor, K. Garimella and X. He et al.

for visualization is enough to unravel the root causes of an attack’s
success.

7. Conclusion

In this paper, we develop a versatile modeling framework and simu-
lation infrastructure to study adversarial examples on e2e autonomous
driving models. Our model and simulation framework can be applied be-
yond the scope of this paper, providing useful tools for future research
to expose latent flaws in current models with the ultimate goal of im-
proving them. Through comprehensive experiment results, we demon-
strate that simple physical adversarial examples that are easily realiz-
able, such as mono-colored single-line and multi-line patterns, not only
exist, but can be quite effective under certain driving scenarios, even for
models that perform robustly without any attacks. We demonstrate that
Bayesian Optimization coupled with a strong objective function is an
effective approach to generating devastating adversarial examples. We
also show that by modifying the objective function, we are able to hijack
a vehicle where we cause the driverless car to deviate from its original
route to a route chosen by an attacker. Finally, our analysis using the
DeConvNet method offers critical insights to further explore attack gen-
eration and defense mechanisms. Our code repository is available at:
https://github.com/xz-group/AdverseDrive.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgements

We would like to thank Dr. Ayan Chakrabarti for his advice on mat-
ters related to computer vision with this research and Dr. Roman Gar-
nett for his suggestions regarding Bayesian Optimization. We would
also like to thank the CARLA team for their technical support regard-
ing the CARLA simulator. This research was partially supported by
NSF awards CNS-1739643, 1IS-1905558 and CNS-1640624, ARO grant
W911NF1610069 and MURI grant W911NF1810208.

References

[1] LJ. Goodfellow, J. Shlens, C. Szegedy, Explaining and harnessing adversarial exam-

ples (2015) arXiv:1412.6572.

K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao, A. Prakash, T. Kohno,

D. Song, Robust physical-world attacks on deep learning models, 2017.

[3] R. Fan, J. Jiao, H. Ye, Y. Yu, L. Pitas, M. Liu, Key ingredients of self-driving cars,

2019.

[4] M. Bojarski, P. Yeres, A. Choromanska, K. Choromanski, B. Firner, L.D. Jackel,

U. Muller, Explaining how a deep neural network trained with end-to-end learning

steers a car (2017) arXiv:1704.07911.

Y. Vorobeychik, M. Kantarcioglu, Adversarial Machine Learning, Morgan and Clay-

pool, 2018.

[6] T. Dreossi, S. Jha, S.A. Seshia, Semantic adversarial deep learning, CAV, 2018.

[7] N. Papernot, P.D. McDaniel, S. Jha, M. Fredrikson, Z.B. Celik, A. Swami, The limi-
tations of deep learning in adversarial settings, 2016 IEEE European Symposium on
Security and Privacy (EuroS&P) (2016) 372-387.

[8] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, V. Koltun, Carla: An open urban driv-
ing simulator, CoRL, 2017.

[9] A. Boloor, X. He, C. Gill, Y. Vorobeychik, X. Zhang, Simple physical adversar-
ial examples against end-to-end autonomous driving models, in: 2019 IEEE Inter-
national Conference on Embedded Software and Systems (ICESS), 2019, pp. 1-7,
doi:10.1109/ICESS.2019.8782514.

[10] C. Papageorgiou, T. Poggio, A trainable system for object detection, International
journal of computer vision 38 (1) (2000) 15-33.

[11] J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You only look once: Unified, real-time
object detection, in: Proceedings of the IEEE conference on computer vision and
pattern recognition, 2016, pp. 779-788.

[12] G. Prabhakar, B. Kailath, S. Natarajan, R. Kumar, Obstacle detection and classifica-
tion using deep learning for tracking in high-speed autonomous driving, in: 2017
IEEE Region 10 Symposium (TENSYMP), IEEE, 2017, pp. 1-6.

[13] C. Caraffi, T. Vojif, J. Trefny, J. Sochman, J. Matas, A system for real-time detection
and tracking of vehicles from a single car-mounted camera, in: 2012 15th Interna-
tional IEEE Conference on Intelligent Transportation Systems, 2012, pp. 975-982.

[2

=

[5

[}

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]
[32]
[33]
[34]
[35]
[36]

[37]
[38]

[39]

[40]

[41]
[42]
[43]

[44]
[45]

[46]

[47]

Journal of Systems Architecture 110 (2020) 101766

X. Chen, K. Kundu, Y. Zhu, A.G. Berneshawi, H. Ma, S. Fidler, R. Urtasun, 3d object
proposals for accurate object class detection, in: C. Cortes, N.D. Lawrence, D.D. Lee,
M. Sugiyama, R. Garnett (Eds.), Advances in Neural Information Processing Systems
28, Curran Associates, Inc., 2015, pp. 424-432.

A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolu-
tional neural networks, Commun. ACM 60 (2012) 84-90.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei, Imagenet: A large-scale hi-
erarchical image database, 2009 IEEE Conference on Computer Vision and Pattern
Recognition (2009) 248-255.

A. Geiger, P. Lenz, C. Stiller, R. Urtasun, Vision meets robotics: The kitti dataset,
The International Journal of Robotics Research 32 (11) (2013) 1231-1237.

B. Huval, T. Wang, S. Tandon, J. Kiske, W. Song, J. Pazhayampallil, M. Andriluka,
et al., An empirical evaluation of deep learning on highway driving (2015) arXiv
preprint arXiv:1504.01716.

J. Li, X. Mei, D. Prokhorov, D. Tao, Deep neural network for structural prediction and
lane detection in traffic scene, IEEE transactions on neural networks and learning
systems 28 (3) (2016) 690-703.

J. Kim, M. Lee, Robust lane detection based on convolutional neural network and
random sample consensus, in: International conference on neural information pro-
cessing, Springer, 2014, pp. 454-461.

A. Gurghian, T. Koduri, S.V. Bailur, K.J. Carey, V.N. Murali, Deeplanes: End-
to-end lane position estimation using deep neural networksa, in: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2016,
pp. 38-45.

V. Badrinarayanan, A. Kendall, R. Cipolla, Segnet: A deep convolutional encoder-de-
coder architecture for image segmentation, IEEE Transactions on Pattern Analysis
and Machine Intelligence 39 (12) (2017) 2481-2495.

D. Levi, N. Garnett, E. Fetaya, I. Herzlyia, Stixelnet: A deep convolutional network
for obstacle detection and road segmentation., BMVC, 2015. 109-1

M. Ren, R.S. Zemel, End-to-end instance segmentation with recurrent attention, in:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2017, pp. 6656-6664.

G.L. Oliveira, W. Burgard, T. Brox, Efficient deep models for monocular road seg-
mentation, in: 2016 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), IEEE, 2016, pp. 4885-4891.

D. Eigen, C. Puhrsch, R. Fergus, Depth map prediction from a single image using a
multi-scale deep network, in: Advances in neural information processing systems,
2014, pp. 2366-2374.

Y. Kuznietsov, J. Stuckler, B. Leibe, Semi-supervised deep learning for monocular
depth map prediction, in: Proceedings of the IEEE conference on computer vision
and pattern recognition, 2017, pp. 6647-6655.

F. Liu, C. Shen, G. Lin, Deep convolutional neural fields for depth estimation from a
single image, in: Proceedings of the IEEE conference on computer vision and pattern
recognition, 2015, pp. 5162-5170.

H. Zhan, R. Garg, C. Saroj Weerasekera, K. Li, H. Agarwal, I. Reid, Unsupervised
learning of monocular depth estimation and visual odometry with deep feature re-
construction, in: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018, pp. 340-349.

D. Pomerleau, ALVINN: an autonomous land vehicle in a neural network, in:
D.S. Touretzky (Ed.), Advances in Neural Information Processing Systems 1, [NIPS
Conference, Denver, Colorado, USA, 1988], Morgan Kaufmann, 1988, pp. 305-313.
Y. Pan, C.-A. Cheng, K. Saigol, K. Lee, X. Yan, E. Theodorou, B. Boots, Agile au-
tonomous driving using end-to-end deep imitation learning, 2017.

A. Amini, G. Rosman, S. Karaman, D. Rus, Variational end-to-end navigation and
localization, 2018.

L. George, T. Buhet, E. Wirbel, G. Le-Gall, X. Perrotton, Imitation learning for end
to end vehicle longitudinal control with forward camera, 2018.

Z. Yang, Y. Zhang, J. Yu, J. Cai, J. Luo, End-to-end multi-modal multi-task vehicle
control for self-driving cars with visual perception, 2018.

Y. Xiao, F. Codevilla, A. Gurram, O. Urfalioglu, A.M. Lépez, Multimodal end-to-end
autonomous driving, 2019.

Baidu, Apollo, (http://apollo.auto/).

TierlV, autoware, 2019, (https://www.autoware.ai/).

S. Alvarez, Research group demos why tesla autopilot could crash into a sta-
tionary vehicle, 2018, (https://www.teslarati.com/tesla-research-group-autopilot-
crash-demo/).

T.S., Why uber’s self-driving car killed a pedestrian, 2018, (https://www.economist.
com/the-economist-explains/2018/05/29/why-ubers-self-driving-car-killed-a-
pedestrian).

T. Lee, Driverless car from gms cruise and motorcycle collide in san francisco,
2017, (https://arstechnica.com/cars/2017/12/driverless-car-from-gms-cruise-and-
motorcycle-collide-in-san-francisco/).

A. Davies, Google’s self-driving car caused its first crash, 2016, (https://www.
wired.com/2016/02/googles-self-driving-car-may-caused-first-crash/).

A. Chernikova, A. Oprea, C. Nita-Rotaru, B. Kim, Are self-driving cars secure? eva-
sion attacks against deep neural networks for steering angle prediction, 2019.

N. Akhtar, A. Mian, Threat of adversarial attacks on deep learning in computer vi-
sion: A survey, 2018.

D. Lowd, C. Meek, Adversarial learning, KDD, 2005.

1.J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A.C. Courville, Y. Bengio, Generative adversarial nets, NIPS, 2014.

J. Lu, H. Sibai, E. Fabry, D.A. Forsyth, No need to worry about adversarial examples
in object detection in autonomous vehicles (2017) arXiv:1707.03501.

Y. Cao, C. Xiao, B. Cyr, Y. Zhou, W. Park, S. Rampazzi, Q.A. Chen, K. Fu, Z.M. Mao,
Adversarial sensor attack on lidar-based perception in autonomous driving (2019)
arXiv:1907.06826.

A. Boloor, K. Garimella and X. He et al.

[48]

[49]

[50]

[51]

[52]

[53]
[54]
[55]
[56]
[57]
[58]
[59]
[60]

[61]

[62]
[63]
[64]
[65]

[66]
[67]

[68]
[69]
[70]

[71]

Y. Cao, C. Xiao, D. Yang, J. Fang, R. Yang, M. Liu, B. Li, Adversarial objects against
lidar-based autonomous driving systems (2019) arXiv:1907.05418.

H. Shin, D. Kim, Y. Kwon, Y. Kim, Illusion and dazzle: Adversarial optical channel
exploits against lidars for automotive applications, 2017. https://eprint.iacr.org/
2017/613

C. Xie, J. Wang, Z. Zhang, Y. Zhou, L. Xie, A.L. Yuille, Adversarial examples for
semantic segmentation and object detection (2017) arXiv:1703.08603.

T.K.S. Lab, Tencent keen security lab: Experimental security research of
tesla autopilot, 2019, (https://keenlab.tencent.com/en/2019/03/29/Tencent-Keen-
Security-Lab-Experimental-Security-Research-of-Tesla-Autopilot/).

E. Brochu, V.M. Cora, N. de Freitas, A tutorial on bayesian optimization of expensive
cost functions, with application to active user modeling and hierarchical reinforce-
ment learning, 2010.

P.1. Frazier, A tutorial on bayesian optimization, 2018.

M.O. R. Garnett, S. Roberts., Bayesian optimization for sensor set selection, 2010.
J.C. Barsce, J.A. Palombarini, E.C. Martinez, Towards autonomous reinforcement
learning: Automatic setting of hyper-parameters using bayesian optimization, 2018.
J. Snoek, O. Rippel, K. Swersky, R. Kiros, N. Satish, N. Sundaram, M.M.A. Patwary,
Prabhat, R.P. Adams, Scalable bayesian optimization using deep neural networks,
2015.

C.E. Rasmussen, Gaussian processes for machine learning, MIT Press, 2006.

R. Moriconi, M.P. Deisenroth, K.S.S. Kumar, High-dimensional bayesian optimiza-
tion using low-dimensional feature spaces, 2019.

S. Shah, D. Dey, C. Lovett, A. Kapoor, Airsim: High-fidelity visual and physical sim-
ulation for autonomous vehicles, FSR, 2017.

H. Fan, F. Zhu, C. Liu, L. Zhang, L. Zhuang, D. Li, W. Zhu, J. Hu, H. Li, Q. Kong,
Baidu apollo em motion planner (2018) arXiv:1807.08048.

Y. Tian, K. Pei, S. Jana, B. Ray, Deeptest: Automated testing of deep-neural-net-
work-driven autonomous cars, 2018 IEEE/ACM 40th International Conference on
Software Engineering (ICSE) (2018) 303-314.

C.E. Tuncali, G. Fainekos, D. Prokhorov, H. Ito, J. Kapinski, Requirements-driven
test generation for autonomous vehicles with machine learning components, 2019.
C. Quiter, M. Ernst, deepdrive/deepdrive: 2.0, 2018, (https://doi.org/10.5281/
zenodo.1248998). 10.5281/zenodo.1248998

NVIDIA, Driveworks, (https://developer.nvidia.com/drive/drive-software).
Microsoft, Microsoft airsim, 2018, (https://github.com/microsoft/AirSim).

Epic Games Inc., What is unreal engine?, 2019, (https://www.unrealengine.com).
F. Codevilla, M. Miiller, A. Lopez, V. Koltun, A. Dosovitskiy, End-to-end driving via
conditional imitation learning, 2018 IEEE International Conference on Robotics and
Automation (ICRA) (2018) 1-9.

A. Attia, S. Dayan, Global overview of imitation learning, 2018.

G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, W.
Zaremba, Openai gym, 2016.

NVIDIA Corporation, What is geforce rtx?, 2019, (https://www.nvidia.com/en-us/
geforce/20-series/rtx/).

M.D. Zeiler, R. Fergus, Visualizing and understanding convolutional networks,
ECCV, 2014.

Adith Boloor is a PhD student in Computer Science at Wash-
ington University in St. Louis. He has a Master’s degree in
Robotics from Washington University, and a Bachelor’s de-
gree in Mechanical Engineering from Purdue University. He
has worked on mutli-agent systems, additive manufacturing,
humanoid robots, autonomous vehicles and deep learning. His
research interests include adversarial machine learning in the
context of self-driving vehicles. He was invited to give a talk
at CVPR 2019 for his work on creating end-to-end self driving
agents.

Karthik Garimella is a MSc student in Computer Engineering
at Washington University in St. Louis. Before starting there, he
completed his undergraduate degree in Physics from Hendrix
College. He has worked as a scientific software developer for
several NASA sites, including Oak Ridge National Lab, God-
dard Space Flight Center, and the Jet Propulsion Laboratory.
His research interests include machine learning and artificial
intelligence for autonomous systems.

Journal of Systems Architecture 110 (2020) 101766

Xin He (M’17) is a postdoctoral research fellow at the Uni-
versity of Michigan, Ann Arbor. He received the PhD degree
in computer science from the Institute of Computing Technol-
ogy (ICT), Chinese Academy of Sciences (CAS), Beijing, China,
in 2017. His research interests include computer architecture,
especially on application specific acceleration, deep learning,
neural network accelerator, and approximate computing. He
is a member of the IEEE.

Professor Gill’s research focuses on assuring properties of
real-time and embedded systems in which software complex-
ity, interactions with unpredictable environments, and hetero-
geneous platforms demand novel solutions that are grounded
in sound theory. A major goal of his work is to assure that
constraints on timing, memory footprint, fault-tolerance, and
other system properties can be met across heterogeneous ap-
plications, operating environments and deployment platforms.
He has led or contributed to the development, evaluation,
and open-source release of numerous real-time systems re-
search platforms and artifacts, including the Kokyu real-time
scheduling and dispatching framework that was used in sev-
eral AFRL and DARPA projects and flight demonstrations; the
nORB small-footprint real-time object request broker; the Cy-
berMech platform (collaborative with Purdue University) for
parallel Real-Time Hybrid Simulation; and the RT-Xen real-
time virtualization research platform, from which the RTDS
scheduler was transitioned into the Xen software distribution.

Yevgeniy Vorobeychik joined Washington University in St.
Louis in 2018. He was an assistant professor of computer sci-
ence and biomedical informatics at Vanderbilt University from
2013 until 2018, and a principal research scientist at Sandia
National Laboratories from 2010 until 2013. Between 2008
and 2010 he was a postdoctoral research associate at the Uni-
versity of Pennsylvania Computer and Information Science de-
partment. He received a PhD and MSE in Computer Science
and Engineering from the University of Michigan and a BS de-
gree in Computer Engineering from Northwestern University.
He received an NSF CAREER award in 2017 and was invited to
give an IJCAI-16 early career spotlight talk. He was nominated
for the 2008 ACM Doctoral Dissertation Award and received
honorable mention for the 2008 IFAAMAS Distinguished Dis-
sertation Award.

Dr. Xuan ‘Silvia’ Zhang is an Assistant Professor in the Pre-
ston M. Green Department of Electrical and Systems Engineer-
ing at Washington University in St. Louis. Before joining Wash-
ington University, she was a Postdoctoral Fellow in Computer
Science at Harvard University. She received her B. Eng. degree
in Electrical Engineering in 2006 from Tsinghua University
in China, and her MS and PhD degree in Electrical and Com-
puter Engineering from Cornell University in 2009 and 2012
respectively. She works across the fields of VLSI, computer ar-
chitecture, and cyber physical systems and her research inter-
ests include adaptive power and resource management for au-
tonomous systems, hardware/software co-design for machine
learning and artificial intelligence, and efficient computation
and security primitives in analog and mixed-signal domain.
Dr. Zhang is the recipient of DATE Best Paper Award in 2019
and ISLPED Design Contest Award in 2013, and her work has
also been nominated for Best Paper Award at DATE 2019 and
DAC 2017.

	Attacking vision-based perception in end-to-end autonomous driving models
	1 Introduction
	2 Related work
	2.1 Deep neural networks for perception and control
	2.2 End-to-end self-driving
	2.3 Attacks on autonomous vehicles

	3 Modeling framework
	3.1 Candidate objective functions
	3.1.1 Steering angle summations
	3.1.2 Absolute steering angle differences
	3.1.3 Path deviation

	4 Approaches for generating adversaries
	4.1 Random and grid search
	4.2 Bayesian optimization search policy

	5 Experimental methodology
	5.1 Autonomous vehicle simulator
	5.2 End-to-end driving models
	5.3 Physical adversary generation
	5.3.1 Unreal engine
	5.3.2 Pattern generator library
	5.3.3 OpenAI-gym environment for carla

	5.4 Experiment setup and parallelism

	6 Experimental results
	6.1 Simple physical adversarial examples
	6.1.1 Effectiveness of attacks
	6.1.2 Analysis of attack objectives

	6.2 Exploration of large design spaces
	6.3 Importance of selecting a reliable objective function
	6.4 Vehicle hijacking attacks
	6.5 Interpretation of Attacks using DeConvNet

	7 Conclusion
	Declaration of Competing Interest
	Acknowledgements
	References

