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Abstract: The blood-stage infection of the malaria parasite, Plasmodium falciparum, exhibits a
48-hour developmental cycle that culminates in the synchronous release of parasites from red
blood cells, triggering 48-hour fever cycles in the host. This cycle could be driven extrinsically
by host circadian processes, or by a parasite-intrinsic oscillator. To distinguish between
hypotheses, we examined the P. falciparum cycle in an in vitro culture system and show that the
parasite has molecular signatures associated with circadian and cell-cycle oscillators. Each of
four strains examined has a unique period, indicating strain-intrinsic period control. Finally, we
demonstrate that parasites have low cell-to-cell variance in cycle period, on par with a circadian

oscillator. We conclude that an intrinsic oscillator maintains Plasmodium’s rhythmic life cycle.

One Sentence Summary: Periodicity of the malaria parasite does not require rhythmic cues

from the host, but rather from an intrinsic parasite oscillator.

Main Text: Malaria and its causal parasite, the Plasmodium genus, are fundamentally rhythmic
entities. Patients infected with P. falciparum often exhibit 48-hour fever cycles, and these cycles
coincide with the blood stage of the infection where the parasite progresses through the asexual
intraerythrocytic cycle. After infection of the erythrocyte (red blood cell; RBC), parasites transit
through three morphologically distinct developmental stages that can be visualized by light
microscopy: rings, trophozoites, and schizonts. Parasites are in the ring stage immediately after
RBC invasion and divide asexually multiple times during the schizont stage. At the end of the
schizont stage the RBC bursts, releasing merozoites which quickly invade new host cells and
begin the cycle anew. The infecting population of parasites in the host tend to undergo this cycle
synchronously, and the subsequent release of merozoites is responsible for the characteristic
periodic fevers seen in many patients (/). The human-infecting species of Plasmodium repeat

this cycle every 24, 48, or 72 hours (depending on the species), suggesting that cycles could be
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43 driven by a host circadian cycle or a parasite-intrinsic oscillator with circadian periodicity (2).
44 Interestingly, multiple animal studies have demonstrated that Plasmodium infections appear to
45 synchronize with their host’s 24-hour circadian rhythms (2-5).
46 The source of the parasite’s rhythmic life cycle is a central, unsolved question. It is
47 possible that the intraerythrocytic cycle periodicity is driven by extrinsic temporal cues in the
48 host environment triggering the parasite’s developmental cascade (Fig. S1A). Several rhythmic
49 host factors have been suggested to effect Plasmodium dynamics, including temperature (2),
50 melatonin (6), glucose, and tumor necrosis factor o (TNFa) (7). In addition, recent studies have
51 revealed the existence of an independent 24-hour oscillator in the redox state of peroxiredoxins,
52 a highly conserved family of prominent cellular proteins; these oscillations continue even in
53 isolated RBCs (8). Thus, it is possible that Plasmodium, even grown in culture, merely responds
54 to an extrinsic oscillating program (Fig. SIA). An example can be found in plants, where several
55 rhythmic biological processes are driven by light, rather than the plant’s innate rhythm (9).
56 Alternatively, Plasmodium may possess an intrinsic biological oscillator which generates
57 its thythms independently from the host. The best-known examples of endogenous oscillators are
58 circadian biological clocks, found across a wide range of taxa and affecting a substantial array of
59 functions. These 24-hour oscillators emerge from highly interconnected, auto-regulatory gene
60 networks containing transcription-translation feedback loop motifs (70, 11). The oscillators
61 themselves are free-running, but temporally align to cyclic entrainment signals, driven by the 24-
62 hour cycle imposed by the Earth’s rotation. A wide variety of genes may be under circadian
63 control, exhibiting 24-hour cyclic expression. The period length of the circadian rhythm is set by
64 the core gene network underlying the clock (/7); mutations may result in shorted, lengthened, or
65 absent rhythms (72, 13). Similar programs of periodic gene expression are observed during cell
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division and have also been proposed to be driven by oscillating gene-regulatory networks (74,
15). Unlike circadian oscillators, cell-cycle oscillators do not necessarily exhibit 24-hour periods

and are not necessarily aligned with or entrained by light-dark cycles.

The fact that Plasmodium spp. exhibit rhythms that are usually multiples of 24 hours
suggests they may have an intrinsic oscillator network similar to a circadian oscillator. Although
Plasmodium genomes do not appear to contain orthologs of canonical circadian clock genes (3),
this does not rule out the possibility of an intrinsic network, similar in structure to either

circadian or cell cycle networks, and capable of producing rhythms at multiples of 24 hours.

In this study, we investigate the rthythmic behavior of the P. falciparum intraerythrocytic
cycle in an in vitro culture system where canonical circadian signals from the host were not
present. Using high-density time-series transcriptomics and microscopy for four strains of P.
falciparum, we compare several key molecular features of these cycles with molecular signatures
produced by circadian networks and eukaryotic cell-cycle oscillators (/4, 16). Our findings
provide strong evidence for the existence of an intrinsic oscillator in Plasmodium and suggest
parasites have evolved mechanisms to drive periodicity that may align with host circadian

thythms.

Plasmodium falciparum shows qualitative similarities to biological oscillator
transcriptomes: To assess the molecular features of the P. falciparum temporal transcriptome,
we performed high-density time-series transcriptomic analyses for the unique strains 3D7 (17),
FVO-NIH (/8), SA250 (19), and D6 (20). These strains were chosen for their diverse geographic
origins and cycle lengths, with some strains varying from the wild-type 48-hour cycle.
Synchronized parasite populations were cultured in vitro for 60-70 hours, with time points

sampled every three hours for transcriptomic analysis and microscopic observation. This
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89 sampling schedule allowed for the completion of 1-2 intraerythrocytic cycles per strain. RNA
90 was isolated from each time point and subjected to RNA-seq analysis to quantitate the abundance
91 of P. falciparum transcripts at each time point (Fig.1, File S1). For three of the four strains (D6,
92 FVO-NIH, SA250), experiments were performed on the same days in the same conditions with
93 blood from a single human donor to eliminate variability due to growth conditions (Materials and
94 Methods).
95 A key characteristic of circadian or cell-cycle oscillators is a well-ordered program of
96 periodic gene expression (/4, 16). For each P. falciparum strain, we used the periodicity-
97 detecting algorithm JTK CYCLE (21) to estimate the number of rhythmic genes (Table S1, File
98 S1 and S2). Periodic genes are largely conserved among the four strains, with the majority of
99 each strain’s periodic genes (79 — 82%) overlapping all other strains (Fig. S2), similar to
100 previous observations (22, 23). The vast majority of the mapped transcriptome (between 87.3%
101 and 92.5%) in P. falciparum appears periodically expressed (Fig. 1, Table S1, File S1-2) by
102 visual inspection. These phase-specific, oscillating genes peak in expression across the entire
103 cycle, forming a cascade of rhythmic genes, in a manner highly reminiscent of other oscillators.
104 Mammalian transcriptomic studies have noted that circadian genes tend to peak in phase
105 clusters (“rush hours”) near dawn and dusk, and clustering is thought to represent activation of
106 expression in anticipation of metabolic events (/6, 24). To evaluate timing of gene peaks in P.
107 falciparum, 3,703 periodic genes shared between all strains were mapped to a single
108 representative cycle using a “wrapping” procedure that averaged overlapping measurements,
109 similar in principle to phase dispersion minimization (25) (see Materials and Methods). This
110 approach allowed comparison between parasites with different cycle times and, using
111 microscopic assessments of intraerythrocytic-cycle phase (Fig. S3), mapping of the timing of
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112 gene peaks throughout the cycle (Fig. 2). Interestingly, we did not observe any evidence of “rush
113 hours” in any of the phases of the intraerythrocytic cycle (Fig. 2).
114 Multiple studies have shown that in both vertebrate and invertebrate circadian rhythms, a
115 subset of genes oscillate at 8- and 12-hour periods (26, 27). Although the precise mechanisms of
116 these “harmonic” rhythms have not been dissected, evidence from Clock gene mutants in mice
117 indicate they arise from the core circadian clock mechanism (28). To search for such harmonics
118 in P. falciparum, we took advantage of JTK CYCLE’s period prediction features by running the
119 algorithm with a period search range of 6 to 60 hours (6 to 54 hours in the case of D6). A
120 minority of genes (between 3.5% and 4.3%) in each strain have a predicted period length roughly
121 half that of the strain (Fig. 3, Table S2). Visualizing the expression of these genes confirms that
122 they peak twice per cycle (Fig. 3, Fig. S4). Among this set of harmonic genes, most are unique to
123 one strain; only three harmonic genes were identified in all four strains (Fig. S5).
124
125 Quantitative characteristics of biological oscillators are found in P. falciparum: Cell-cycle
126 and circadian oscillators tend to produce well-ordered programs of transcription; however,
127 substantial evolutionary divergence between species may yield novel ordering of orthologous
128 periodic genes, correlating with substantial phenotypic change that may reflect rewired networks
129 (29). We assessed the temporal ordering of the transcriptome between strains using a set of
130 periodic genes shared between all strains. For each heatmap in Fig. 4A, the genes are plotted in
131 the order of peak time of expression in the strain 3D7. Visual inspection indicates that the
132 ordering of peak gene expression is globally well-conserved between all four strains (Fig. 4A).
133 Similar qualitative levels of conservation were observed when the analysis was repeated using

134 each of the remaining strains as the ordering standard (Fig. S6).
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135 To make a quantitative determination of the similarity in ordering, a recently developed
136 method was used to measure the conservation of gene ordering between data sets (30). In brief,
137 extrema (peaks and troughs) for each gene’s normalized expression pattern were assigned a time
138 interval and a partial order was computed. The use of partial orders allows a quantitative
139 assessment while acknowledging that the order of some extrema cannot be distinguished because
140 they both fall in the same time point. To account for stochastic behavior of gene expression and
141 the relatively coarse sampling, partial orders were evaluated in the presence of 6 — 10% noise (&)
142 (Fig. 4B and C). A similarity score for each ¢ is computed between partial orders of the same
143 subset of genes from two data sets (30). We calculated conservation of gene ordering among our
144 strains of P. falciparum and compared this conservation to a collection of time-series data
145 obtained from an established circadian oscillator. For the latter, we used the high-density time-
146 series data of Zhang et al. (16), which profiled the circadian transcriptomes of 12 mouse organ
147 tissues every two hours for 48 hours. In both species we used subsets of periodic genes that
148 peaked at similar times across parasite strains or mouse tissues, which we call "in-phase" subsets,
149 and computed a null baseline by randomizing the corresponding time series within each dataset
150 (Materials and Methods).
151 We found that the ordering of similarity scores of the null baselines for circadian and
152 parasite data were comparable, with in-phase similarity scores equivalent or higher in P.
153 falciparum (Figs. 4B and 4C, Table S3). Furthermore, the percent of samples above the null
154 baseline in all three parasite strains (75 —95%) was greater than in both mouse circadian tissues
155 (61% in lung and 68% in kidney, Fig. 4C, Table S3). Although it has been observed that
156 circadian genes are not perfectly ordered across mouse tissues (/6), the observation that P.
157 falciparum strains exhibit ordering comparable to or better than circadian genes suggest that the
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158 mechanisms guiding the parasite transcriptional cycle are capable of maintaining high-fidelity
159 ordering.
160 The analyses thus far indicate that P. falciparum’s transcriptome dynamics share features
161 with known cell-intrinsic biological oscillators, yet the results could still be consistent with an
162 extrinsic mechanism for the control of periodicity. While most conventional rhythmic host cues
163 are absent in RBC culture conditions, a 24-hour peroxiredoxin clock identified in RBCs (8)
164 could be sufficient to drive intraerythrocytic cycle periodicity by repeated cascades of gene
165 expression.
166 To ascertain the intraerythrocytic cycle period length of each of our cultured strains, we
167 used several distinct metrics to avoid bias from any one method. We interpolated and wrapped
168 each strain’s transcriptome (Fig. S7) and microscopic culture progression curves for ring,
169 trophozoite, and schizont stages (Fig. S8) to find the periods that minimized overlapping error
170 for each strain (Materials and Methods, Table S4). We also measured the distances between
171 recurring expression peaks and expression troughs for each rhythmic gene and identified the
172 modal value in these peak-distance and trough-distance distributions, providing two more
173 estimates of genetic period length (Fig. S9-10, Table S2). Due to some disagreement between
174 metrics in some cases, we established a final estimated period by weighted average of all four
175 metrics (Table S2). We observe that the strains differ in period regardless of the method of
176 estimation and that the rank order of strains in terms of period length is the same.
177 While the typical in vivo P. falciparum infection exhibits a 48-hour periodicity, we
178 observed that each cultured strain had a unique period length that sometimes varied substantially
179 from 48 hours (Table S2). These variations are also apparent in visualization of each strain’s
180 periodic transcriptomes (Fig. 1), and are not due to growth conditions, as three of four strains
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181 were cultured in parallel in blood from a single donor (Materials and Methods and File S3).
182 Strain SA250 has the longest estimated cycle at 54 hours, while strain D6’s cycle is a mere 36
183 hours long. These results are incompatible with the hypothesis that the 24-hour peroxiredoxin
184 clock is responsible for controlling the parasite’s rhythm; if such were the case, period lengths in
185 all four strains would be roughly 48 hours long. The observations are, however, consistent with
186 what is known about cell-intrinsic oscillators, in which period length is genetically controlled
187 (12, 31, 32).
188 The significant diversity in cycle period lengths between P. falciparum strains raises the
189 question of how such shortening and lengthening from the wild-type 48 hours has occurred. In
190 the eukaryotic cell cycle, the length of G1 is the most flexible because factors such as cell size
191 and the availability of nutrients or growth factors all affect the ability of the cells to move into S-
192 phase. If P. falciparum’s intraerythrocytic cycle stages are analogous to the cell-cycle phases, as
193 has been suggested (33), the bulk of the change in period length between strains may be confined
194 to particular stages.
195 Using microscopy data re-wrapped to the final estimated cycle lengths (Table S4, Fig.
196 S11) stages were labeled based on dominant parasite phase (>50% of parasites) and the length of
197 each stage was calculated as a percent of the total period length. We are unable to detect a single
198 stage or stages that show particular conservation or flexibility in length, whether measured in
199 hours or in percent of the period length (Table S5). While the ring stage shows the most
200 variability, and the trophozoite stage appears the most stable, there is no consistent correlation
201 between total period lengths and stage lengths. The intraerythrocytic cycle appears to be plastic
202 in terms of lengthening and shortening throughout all stages.

203
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204 Variance in period length in P. falciparum culture is comparable to a circadian model
205 system: When Trager and Jensen published the first protocol for in vitro culture of P. falciparum
206 in 1976, they noted that an initially synchronous parasite population from a clinical malaria
207 sample eventually desynchronizes in culture, becoming a heterogenous mix of ring, trophozoite,
208 and schizont stages (34). It has come to be broadly accepted in the field that synchronized
209 parasites lose synchrony “rapidly” in culture, an observation that would appear to be largely
210 inconsistent with a robust intrinsic oscillator. However, cells synchronized in the cell-cycle lose
211 synchrony over time (35), and circadian oscillators also lose synchrony in cell-based systems in
212 the absence of entrainment cues (36) due to variance in the individual cycle times.
213 To determine whether synchrony loss due to cell-to-cell variance observed in populations
214 of P. falciparum is compatible with the variance in periods observed in cell-intrinsic circadian
215 oscillations, we fit a simple phase-oscillator model (see Materials and Methods) to the
216 microscopic staging data for the four strains along with an additional strain, HB3, from a prior
217 study (23) (Fig. S1B and C, S12). We calculated the coefficient of variation (CoV) for all P.
218 falciparum strains from this model and compared these values to the calculated CoV of single-
219 cell traces of a circadian reporter gene in human fibroblast cells (37) (Table S6). The CoV of
220 circadian cycles in the fibroblast population was estimated to be 0.0845, meaning that the period
221 lengths exhibit a standard deviation of roughly 8.45% of the average period length. Strikingly,
222 the estimated CoVs of the five P. falciparum strain cycles were similar or smaller, ranging
223 between 0.23%—10.18% of estimated mean cycle period depending on the strain (Fig. 5, Table
224 S6). Increasing or decreasing the mean cycle period by one hour does not appreciably change the
225 estimated CoV (Fig. 5, Table S6).

10
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226 These results were produced using best-fit estimates for parameters in the phase-
227 oscillator model, such as strain-specific period length and initial population synchrony (Table
228 S6). In order to ensure the model wasn’t artificially lowering estimates for period variability by
229 adjusting other parameters, we recomputed optimal model parameters while enforcing a
230 minimum allowed period variability that is larger than the empirically determined circadian
231 oscillator (see Materials and Methods, Table S7). This alteration significantly decreases the
232 model’s fit to the experimental data, particularly in the second round of replication where
233 dampening due to synchrony loss becomes more apparent (Fig. S12).
234 Recently, it was suggested that microscopic staging curves over-estimate parasite
235 population synchrony of P. falciparum in culture (38) because parasite replication during the
236 schizont stage enforces synchrony on the schizont-ring transition. To make sure that our models
237 were not unfairly biasing our estimates of variance, we explicitly added replication to the model
238 at the schizont-ring transition, assuming a parasite multiplication rate of N =4, §, or 16
239 (Materials and Methods). We find that with the addition of replication, the dynamics of the
240 experimental staging curves are better matched by modeling populations with smaller variance in
241 period length than found in the simple oscillator model (Fig. S13). Thus, including replication in
242 our model bolsters the finding that P. falciparum’s estimated period length variability, and thus
243 the rate at which the population loses synchrony, is comparable to a circadian oscillator.
244
245 Discussion: Periodic biological processes can arise from cell or organism-intrinsic oscillators or
246 may be imposed by extrinsic rhythmic factors. Classic examples of cell-intrinsic biological
247 oscillators include circadian rhythms and the eukaryotic cell cycle (/4, 32). Here we investigated

248 the origin of periodicity in the intraerythrocytic cycle of P. falciparum using an in vitro culture

11
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249 system where extrinsic rhythmic cues are largely eliminated. We find that P. falciparum shares
250 many molecular signatures of well-characterized cellular oscillators, and that the data are most
251 consistent with a model in which rhythmic behaviors are driven by a parasite-intrinsic oscillator.
252 Consistent with previous studies (22, 23, 39), we find that the majority (87.3% to 92.6%)
253 of P. falciparum’s mapped genes are rhythmic in their expression during the cycle. This large
254 periodic program of phase specific transcription is also observed in cell-cycle (~15-20% of the
255 genome) (/4) and circadian systems (~40-80% of the genome) (16, 24), although rhythmicity
256 itself does not indicate an intrinsic oscillator. Circadian control of gene expression has been
257 proposed to link various physiological processes with light/dark cycles (e.g. sleep/wake cycles)
258 (11) or to temporally separate incompatible biochemical process (40), whereas the temporal
259 program of expression in the cell-cycle is a foundational mechanism for ordering cell-cycle
260 events (4/). Unlike circadian gene expression that tends to cluster roughly near dawn and dusk,
261 there does not appear to be a consistent pattern of phase clustering in P. falciparum. Given the
262 ordered nature of P. falciparum development during the intraerythrocytic cycle, it is likely the
263 temporal program of transcription serves a purpose similar to the cell-cycle transcriptional
264 program, where just-in-time gene expression helps maintain temporal ordering. It has been
265 suggested that these parasite stages may be analogous to the familiar G1, S, G2, and M stages of
266 the eukaryotic cell cycle (33, 42), with the ring stage specifically suggested to be the equivalent
267 of G1. In a typical cell cycle, the cell-cycle period is adjusted mostly by expanding or shortening
268 in the G1 phase (43). However, in the four P. falciparum strains we examined, there was no
269 discernible pattern of stage expansion/contraction to explain the diversity in strain cycle lengths.
270 Like circadian systems from several organisms (26-28), genes that oscillate at the first
271 harmonic of the period length (i.e. twice as fast) are observed in all four P. falciparum strains.

12
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272 Importantly, the harmonic genes are half-period regardless of the different period length of the
273 strains, indicating that like circadian oscillators, harmonic expression is driven by the core
274 network and not by an alternative oscillator. The fact that strains have a unique period, despite
275 three of the four strains growing in RBC cultures from the same donor, indicates that periodicity
276 is not driven by the peroxiredoxin oscillations reported to function with a 24-hour period in
277 RBCs. Moreover, the periods are not exact multiples of 24 hours, so they are unlikely to result
278 from some alternative coupling to the peroxiredoxin cycle. These findings are supported by
279 studies that indicate genetic variation or mutation of Plasmodium genes can lead to altered cycle
280 period length (33, 42).
281 It has been suggested that synchronized populations of P. falciparum in in vitro cultures
282 lose synchrony rapidly. Rapid synchrony loss argues that without input from the host, the
283 parasite is unable to maintain a robust period. However, synchronized populations of cells under
284 circadian- and cell-cycle oscillator controls have also been shown to lose periodicity due to
285 variation in period (35, 36), raising the question of how variable the P. falciparum
286 intraerythrocytic cycle is when compared to cell-cycle or circadian controlled systems. To
287 examine this question, we used a phase-oscillator model to estimate the variation in cycle period
288 lengths between parasites in culture, and found it is comparable to variation found in circadian
289 cell lines. Thus, the degree of synchrony loss observed for synchronized P. falciparum is
290 completely compatible with a model in which the intraerythrocytic cycle is driven by a robust
291 intrinsic clock network.
292 Collectively, our findings are incompatible with a mechanism in which P. falciparum’s
293 intraerythrocytic cycle is controlled only by extrinsic cues. Our findings point to a mechanism in
294 which the cycle is driven by an intrinsic oscillator with molecular characteristics of circadian or

13
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295 cell-cycle oscillators. The control mechanisms for circadian and cell-cycle oscillators have been
296 identified as gene regulatory networks comprised of transcriptional regulators, kinases, and
297 ubiquitin ligases with negative feedback loops that drive oscillation. Within the genes we have
298 identified as periodic, we found ApiAP2 transcription factor genes (44) along with genes
299 annotated as kinases, suggesting the possibility that gene regulatory networks resembling
300 circadian- or cell-cycle oscillators may be present. It is not surprising that orthologs to known
301 circadian clock genes have not been identified in Plasmodium spp. (5), as even gene networks
302 with similar oscillating functions often do not share genes. Genes in oscillating networks from
303 different organism may not be highly conserved, but network motifs and topologies are (11, 45).
304 Farnert et al. found that in chronic infections with P. falciparum, 48-hour rhythms in
305 parasitemia levels could be observed in patients that did not exhibit fever cycles, and led them to
306 speculate that “mechanisms other than fever might be involved” (46). The existence of an
307 intrinsic oscillator in P. falciparum is a likely mechanism, and reframes the models of periodicity
308 in malarial disease as the coupling between a parasite oscillator with a 48-hour period and the
309 host circadian oscillator with a 24-hour period. Indeed, there is evidence for phase alignment
310 between Plasmodium parasites and animal models (2, 7). Plasmodium’s oscillator may entrain to
311 circadian rhythms in the host, much as circadian clocks themselves ultimately entrain to light
312 (47). The host signal(s) that the parasite uses for entrainment are as yet unsettled (6, 7). It is also
313 possible that the parasite can manipulate the host circadian cycle to achieve better alignment. In
314 mouse experiments, entrainment of the intraerythrocytic cycle to the host shows benefits for the
315 parasite (4, 48). The benefit of phase alignment to the host circadian rhythm is a likely
316 explanation for why mammalian-infecting Plasmodium species have cycle lengths that are
317 multiples of 24 hours. The lack of this selective pressure in vitro (and/or genetic bottlenecking

14
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318 during culture establishment) may also explain why cultured P. falciparum strains, such as those
319 in this study, can vary substantially from their 48-hour wild-type period length.
320 Plasmodium 1is not the only parasite with a highly rhythmic life cycle as several parasites
321 exhibit time-of-day elements in their life cycle (5). Moreover, an innate circadian rhythm was
322 recently identified in the Trypanosoma brucei, the causal organism of sleeping sickness, using
323 traditional metrics of circadian clocks (49). Recent reports indicate that nearly 80% of all genes
324 in a primate genome are under circadian control in at least one tissue (24). Given that animal
325 physiology is so broadly controlled by circadian rhythm it makes sense that pathogens have
326 evolved to take advantage of the 24-hour periodicity of the host, and it is likely that many
327 pathogens will display periodic behaviors.
328 Materials and Methods
329 Plasmodium falciparum strains, culturing and synchronization
330 P. falciparum parasites were synchronized by alanine treatment and temperature
331 cycling as described (50). Details can be found in Supplemental Material.
332
333 RNA extraction, sequencing, and read processing
334 Total RNA from frozen, packed RBCs was extracted via a phenol-chloroform protocol as
335 previously described (517). Library preparation and sequencing was performed by the Duke
336 Sequencing Core. STAR(52) was used to create a genome index for read mapping (Table S8),
337 using the P. falciparum 3D7 v3.0 genome as found on www.genedb.org, and the Sanger
338 Institute’s 3D7 annotation downloaded on March 4", 2016. Reads are presented as FPKM.
339 Details can be found in Supplemental Material.

340
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341 Periodic gene detection and ordering.
342 Genes were filtered for peak FPKM expression of at least 2 (or 3, with the addition of 1) to
343 reduce noisy genes. We used JTK CYCLE (21) to filter for periodic genes. After arriving at a
344 more precise determination of period length for each strain (see “Estimation of period length per
345 strain” and Table S2). Details can be found in the Supplementary Material.
346
347 Computing gene ordering similarities
348 A measure of similarity was developed (30) to compare the well-ordering of gene expression
349 time-series data with regard to phase shift. This similarity measure is based on the timing of
350 peaks and valleys for a collection of genes compared across data sets and is independent of
351 amplitude due to time series normalization on the interval [—0.5,0.5]. Details can be found in the
352 Supplementary Material.
353
354 Estimation of period length per strain
355 A consensus cycle length for each strain was determined on the basis of four measurements: (1)
356 error-minimizing expression cycle length, (2) error-minimizing microscopy cycle length, (3) the
357 distribution of distances in hours of the two largest expression maxima for all genes in each
358 strain, and (4) the distribution of distances of the two smallest expression minima for all genes in
359 each strain. Details can be found in the Supplementary Material.
360
361 Comparison of parasite stage lengths between strains
362 To compare the relative lengths of each parasite intraerythrocytic cycle stage (ring,

363 trophozoite, and schizont,) we re-wrapped the microscopy data using the above described
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wrapping procedure, this time to the consensus period length determined by the method

explained above. Fig. S11 visualizes this procedure and Table S4 provides RMSE values for the

wrap.

Modelling Synchrony Loss with a Population of Phase Oscillators

See Supplemental Materials for details of the model.
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Fig. 1. The majority of P. falciparum genes are periodically transcribed. Four strains of P.
falciparum were cultured in vitro and transcriptionally profiled using time-series RNA-seq.
Periodic genes were identified in each strain by JTK CYCLE, and strain-intrinsic period
length is evident. Each vertical line represents a time point, and gene expression is displayed
horizontally. Expression values are mean-normalized for each gene and depicted as a z-score

of standard deviations from the mean. Genes are ordered per strain by peak expression time.
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553 Fig. 2. The periodic genes of P. falciparum are expressed in multiple phases of the
554 intraerythrocytic cycle. Polar graphs depict the relative numbers of genes peaking per hour of
555 each strain’s cycle. The boundaries between phases (ring, trophozoite, and schizont) were
556 determined by microscopy (Fig. S3) and marked in hours (Table S5). Wrapped, interpolated
557 expression data for the set of shared periodic genes (Materials and Methods) were used to assign
558 peak times.
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561 Fig. 3. P. falciparum strains exhibit periodic genes at half the normal cycle length (harmonic
562 expression). JTK CYCLE was used to search for genes in a wide range of predicted period
563 lengths; the distribution of predicted period lengths is shown for each strain. A minority of
564 genes oscillate at approximately half the dominant period in each strain, indicated with an
565 arrow; 21 hours in 3D7, 24 hours in FVO-NIH, 27 — 33 hours in SA250, and 18 hours in D6.
566 These genes are plotted by heat map; each vertical line represents a time point, and gene
567 expression is displayed horizontally. Expression values are mean-normalized for each gene
568 and depicted as a z-score of standard deviations from the mean.
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Ordering of periodic gene expression is broadly conserved among four strains of P.
falciparum comparable to mouse circadian genes. (A) The ordering of genes for 3D7, as
determined by peak expression time, was applied to the remaining three strains (FVO-NIH,
SA250, D6). The resulting heat maps show highly conserved ordering (see Fig. 1 for
comparison). Each vertical line represents a time point, and gene expression is displayed
horizontally. Expression values are mean-normalized for each gene and depicted as a z-score
of standard deviations from the mean. (B,C) A set of periodic genes from parasite (119
genes) and mouse circadian data (107 genes) were identified which peaked in very similar
cycle phase to the reference strain (3D7) or tissue (liver). A null baseline distribution was

created, and both the baseline and “in-phase” genes were sampled 5,000 times in sets of six
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583 genes to produce estimates of gene ordering similarity across strains or tissues. (B) Mean and
584 standard deviation of ordering similarity to reference strain/tissue, averaged across all
585 samples and all applied levels of noise (6 — 10% ¢.) (C) Percent of “in-phase” samples above
586 baseline.
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Fig. 5. Variation of period lengths between cycles in P. falciparum is comparable to a circadian
model. Microscopic times-series data from this study, along with additional data from strain HB3
(23), was fit to a phase-oscillator model, yielding an estimated standard deviation of cycle length
as percent of the mean cycle length. The dashed line represents the empirical standard deviation
of the circadian cycle derived from single-cell imaging of circadian reporters in fibroblast cells
(37). Estimates are also shown if the mean cycle length is lengthened or shortened by one hour

(Table S6).
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