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Abstract—Acute respiratory distress syndrome (ARDS) is a
fulminant inflammatory lung injury that develops in patients
with critical illnesses including sepsis, pneumonia, and trauma.
However, many patients with ARDS are not recognized when
they develop this syndrome nor given outcome-improving treat-
ments. Because ARDS is a clinical syndrome, physicians may
not be certain about a patient’s diagnosis (label uncertainty).
In addition, the diagnosis requires a chest x-ray, which may
not be always be available in a clinical setting (privileged
information). For this paper, we implemented the Learning
Using Label Uncertainty and Partially Available Privileged
Information (LULUPAPI) paradigm, built on classical SVM,
to detect ARDS using Electronic Health Record (EHR) data
and chest radiography. In comparison to SVM, this resulted in
a 3.55 percent improvement of test AUC.

I. INTRODUCTION
200,000 patients in the United States each year suffer from

Acute Respiratory Distress Syndrome (ARDS), a fulminant
lung injury. Patients with ARDS have a mortality rate of 30-
40% [1]. Simple interventions such as reducing ventilator
tidal volume have been shown to improve patient outcomes
[2]. However, physician recognition of ARDS ranges from
50 to 80% depending on the severity of condition; as a
consequence, many patients do not receive these life-saving
treatments [3]. One potentially effective, yet underutilized,
method of assisting physicians in recognition of ARDS is the
analysis of electronic health record (EHR) data. Algorithms
that process information provided by EHR data and bedside
monitoring devices can flag patients at risk for ARDS and
prompt clinicians to administer treatment.

Such an algorithm presents three particular problems.
First, physicians may be equivocal in their diagnoses of
ARDS for some patients, and labels present in the training set
given for the diagnosis of ARDS by physician experts may be
incorrect. Unaccounted for, these incorrect labels will corrupt
the trained model. This problem is referred to as Label
Uncertainty (LU). Second, chest radiographs are necessary
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to diagnose ARDS, and therefore chest x-ray results are
typically present in the training set. However, an ideal
algorithm developed to assist physicians with the diagnosis of
ARDS should not depend on chest x-ray results, as they may
not always be available at the time of ARDS development.
Yet, the radiographs of the training set contain information
that may be helpful in classifying patients, so it is desirable to
use the radiographs only to train the algorithm. In this case,
the radiographs are referred to as privileged information (PI),
and this problem as Learning Using Privileged Information
(LUPI). Third, the assumption of the availability of privi-
leged information for all the training samples is unrealistic.
One could divide the dataset into train and test such that all
the training samples have privileged information. However,
this would create bias, since radiographs are usually ordered
for the patients that already seem unhealthy. Hence, partial
availability of privileged information should be taken into
consideration. Combining these three problems yields the
problem of Learning Using Label Uncertainty and Partially
Available Privileged Information (LULUPAPI). While the
current analysis focuses on the diagnosis of ARDS, the
LULUPAPI problem is present in a wide range of other
clinical problems both in the hospital (e.g., sepsis) and in
outpatient settings (e.g., depression).

There are many proposed approaches to train with label
uncertainty. Frenay et al. classified label noises and proposed
algorithms that were either robust to, tolerant of, or cleansed
label noise [4]. Natarajan et al. considered label noise as
a stochastic, class-conditional process and obtained bounds
for empirical risk minimization [5]. Duan et al. divided the
data between having a higher noise rate and lower before
implementing their own classification algorithm [6]. Vembu
et al. leveraged noisy labels to help in optimization by
considering labels with higher annotator disagreement as
likely to be nearer the decision boundary than others [7].

Learning using privileged information accelerates machine
learning by more closely mimicking human teacher-student
interactions [8]. In human interactions, the teacher provides
the student with additional information specific to each ex-
ample, such as explanations. This allows the student to learn
more information from each example and so learn faster [8].
Learning using privileged information has proven successful
in several applications. Sharmanska et al. found that learning
using privileged information aided computer vision tasks [9].
Ribeiro et al. found that SVM+, a modification of SVM
that leverages privileged information, improved bankruptcy



prediction compared to regular SVM [10]. Liang et al.
modified SVM+ to handle multi-task learning and found that
it proved more effective than regular SVM [11].

For this paper, we incorporated label uncertainty with
partial availability of privileged information (the LULUPAPI
paradigm) to detect patients with ARDS.

II. LULUPAPI
The LULUPAPI model can be implemented based on the

classical SVM problem. Given a set of training data
(x1, y1) , . . . , (xn, yn) xi ∈ X, yi ∈ {−1, 1}

SVM first maps training data x ∈ X into vector (space)
z ∈ Z. It then constructs the optimal separating hyperplane
by learning the decision rule f (z) = w · z+ b where w and
b are hyperplane parameters and the solution of

min
w,b,ξ

1

2
∥w∥22 + C

n∑
i=1

ξi (1)

s.t. ∀ 1 ≤ i ≤ n, yi (w · zi + b) ≥ 1− ξi

∀ 1 ≤ i ≤ n, ξi ≥ 0

where C > 0 is a hyperparameter.
In the LUPI paradigm [12], [13], [14], [15], [16], in

addition to the standard training data, xi ∈ X, yi ∈
{−1, 1}, a “teacher” provides a “student” with privileged
information, x∗

i ∈ X∗, which is only available for the
training examples and not for the test examples. Hence,
the LUPI model requires triplets (xi,x

∗
i , yi) for training.

This problem is known as SVM+. In SVM+, in addition to
mapping the data vector x ∈ X into vector (space) z ∈ Z,
the privileged information x∗ ∈ X∗ is mapped into vector
(space) z∗ ∈ Z∗, and the slack variables ξi of SVM are
replaced by the correcting function φ (z∗) = w∗ · z∗ + b∗.
As mentioned earlier, the LUPI paradigm assumes that
privileged information is available for all the training data;
however, this is not necessarily the case. In many practical
applications, privileged information is only available for a
fraction of the training data. Therefore, assume the training
data is provided as m triplets (xi,x

∗
i , yi) of samples with

privileged information and n −m pairs (xi, yi) of samples
without privileged information. In order to incorporate label
uncertainty, we can allow variability in parameter C through
training samples based on label confidence. In other words,
since the slack variables ξi (or the correcting function)
permit some misclassification with penalty parameter C to
establish soft-margin decision boundaries, data with high
label confidence can be given more weight and influence on
the decision boundary. This yields the LULUPAPI paradigm,
which requires the training samples
(x1,x

∗
1, y1, π1) , . . . , (xm,x

∗
m, ym, πm) , (xm+1, ym+1, πm+1) ,

(xm+2, ym+2, πm+2) , . . . , (xn, yn, πn)

xi ∈ X, x∗
i ∈ X∗, yi ∈ {−1, 1} , πi ∈ R,

where πi is a quantitative measure of uncertainty in the
labels. In the most natural formulation, we can consider the
correcting function for the samples with privileged informa-
tion and slack variables for the samples without privileged

information. However, as suggested in [13], for the samples
with privileged information, replacing slack variables with a
smooth correcting function φ (z∗) = w∗ · z∗ + b∗ may not
always be the best choice. Instead, we can use a mixture of
slacks as ξ

′

i = (w∗ · z∗i + b∗) + ρξ∗i for 1 ≤ i ≤ m and
ρ ∈ R. Then the formulation of LULUPAPI is

min
w,b,ξ,w∗,b∗,ξ∗

1

2
∥w∥22 +

γ

2
∥w∗∥22 + C

n∑
i=m+1

πiξi (2)

+ ρC∗
m∑
i=1

πiξ
∗
i + C∗

m∑
i=1

(w∗ · z∗i + b∗)

s.t. ∀ 1 ≤ i ≤ m yi (w · zi + b) ≥ 1− (w∗ · z∗i + b∗)− ξ∗i

∀ 1 ≤ i ≤ m w∗ · z∗i + b∗ ≥ 0

∀ 1 ≤ i ≤ m ξ∗i ≥ 0

∀m+ 1 ≤ i ≤ n yi (w · zi + b) ≥ 1− ξi

∀m+ 1 ≤ i ≤ n ξi ≥ 0

where C > 0, C∗ > 0 and γ > 0 are hyperparameters. The
term γ

2 ∥w∗∥22 restricts the VC-dimension of the function
space. This formulation has many interesting properties,
e.g. its performance is always lower bounded by SVM’s
performance. The dual optimization problem of (2) can be
written as

max
α,β

D (α,β) =

n∑
i=1

αi −
1

2

n∑
i,j=1

αiαjyiyjKi,j (3)

− 1

2γ

m∑
i,j=1

(αi + βi − C∗) (αj + βj − C∗)K∗
i,j

s.t.
n∑

i=1

yiαi = 0 (4)

m∑
i=1

(αi + βi − C∗) = 0 (5)

∀m+ 1 ≤ i ≤ n, 0 ≤ αi ≤ πiC (6)
∀ 1 ≤ i ≤ m, 0 ≤ αi ≤ ρπiC

∗, 0 ≤ βi (7)

where Ki,j , K (zi, zj) and K∗
i,j , K∗ (z∗i , z∗j) are

the kernels in the decision space and the correcting space
respectively, with the decision function

f (z) =w · z+ b =
n∑

i=1

yiαiK (zi, z) + b. (8)

In next section, we propose an SMO-style algorithm for
LULUPAPI optimization.

III. OPTIMIZATION ALGORITHM
A widely used algorithm for solving the SVM dual

problem is sequential minimal optimization (SMO) [17]. An
SMO-style algorithm was previously used for LUPI with
ubiquitous privileged information [15], [16]. Inspired by
these works, we suggest an SMO-style algorithm for solving
LULUPAPI. Our proposed algorithm works in an iterative
way. The problem of equation (3) can be considered as the
general form of

max
θ∈F

D (θ)



LULUPAPI Model

Recursive SMO-Style Optimizer

D
at

a Labels

Features

Privileged Information

Label Uncertainty

Feasible Direction
Generator

Margin Weight 
Generator

Optimization 𝜶, 𝜷

𝐼1
𝐼2

𝐼9

⋮ Decision Function

Fig. 1. SMO-style optimizer for the LULUPAPI model

where θ ∈ Rk, D : Rk → R is a concave quadratic
function, and F is a convex compact set of linear equalities
and inequalities. At each iteration our algorithm finds the
maximally sparse feasible directions defined as follows:
Definition 1. A direction u ∈ Rk with n1 < k zero elements
is a maximally sparse feasible direction at the point θ ∈ F
if ∃λ > 0 such that θ + λu ∈ F and any u2 ∈ Rk with
n2 < k zero elements such that n1 < n2 is not feasible.
These directions are irreducible working sets that satisfy

each constraint (4,5,6,7). Among these directions, the al-
gorithm chooses that which maximizes the cost function.
The cost function in equation (3) has n +m variables, i.e.,
{αi}ni=1 and {βi}mi=1. We abbreviate θ , (α,β)

T as a
n+m vector of variables, the concatenation of the α and β
variables. Hence each maximally sparse feasible direction is
u ∈ Rn+m. It can be verified that (3) has 9 groups of such
directions:

1) I1 , {us|s = (s1, s2) , n+1 ≤ s1, s2 ≤ n+m, s1 ̸=
s2; us1 = 1, us2 = −1, θs2 > 0, ∀i /∈ s ui = 0}.

2) I2 , {us|s = (s1, s2) , 1 ≤ s1, s2 ≤ m, s1 ̸=
s2, ys1 = ys2 ; us1 = 1, θs1 < ρC∗πs1 , us2 =
−1, θs2 > 0, ∀i /∈ s ui = 0}.

3) I3 , {us|s = (s1, s2) , m + 1 ≤ s1, s2 ≤ n, s1 ̸=
s2, ys1 = ys2 ; us1 = 1, θs1 < Cπs1 , us2 = −1, θs2 >
0, ∀i /∈ s ui = 0}.

4) I4 , {us|s = (s1, s2) , m + 1 ≤ s1, s2 ≤ n, s1 ̸=
s2, ys1 ̸= ys2 , ∀i /∈ s ui = 0; us1 = us2 = 1, θs1 <
Cπs1 , θs2 < Cπs2 or us1 = us2 = −1, θs1 >
0, θs2 > 0}.

5) I5 , {us|s = (s1, s2, s3) , 1 ≤ s1, s2 ≤ m, n + 1 ≤
s3 ≤ n+m, s1 ̸= s2, ys1 ̸= ys2 , ∀i /∈ sui = 0; us1 =
us2 = 1, θs1 < ρC∗πs1 , θs2 < ρC∗πs2 , us3 =
−2, θs3 > 0 or us1 = us2 = −1, θs1 > 0, θs2 >
0, us3 = 2}.

6) I6 , {us|s = (s1, s2, s3) , 1 ≤ s1 ≤ m, m + 1 ≤
s2 ≤ n, n+ 1 ≤ s3 ≤ n+m, ys1 = ys2 , ∀i /∈ s ui =
0; us1 = 1, θs1 < ρC∗πs1 , us2 = −1, θs2 > 0, us3 =
−1, θs3 > 0 or us1 = −1, θs1 > 0, us2 = 1, θs2 <
Cπs2 , us3 = 1}.

7) I7 , {us|s = (s1, s2, s3) , 1 ≤ s1 ≤ m, m+1 ≤ s2 ≤
n, n+1 ≤ s3 ≤ n+m, ys1 ̸= ys2 , ∀i /∈ sui = 0; us1 =
us2 = 1, θs1 < ρC∗πs1 , θs2 < Cπs2 , us3 = −1, θs3 >
0 or us1 = us2 = −1, θs1 > 0, θs2 > 0, us3 = 1}.

8) I8 , {us|s = (s1, s2, s3) , 1 ≤ s1, s2 ≤ m, m + 1 ≤
s3 ≤ n, s1 ̸= s2, ys1 ̸= ys2 , ys3 = ys2 , ∀i /∈ s ui =

0; us1 = 1, θs1 < ρC∗πs1 , us2 = −1, θs2 > 0, us3 =
2, θs3 < Cπs3 or us1 = −1, θs1 > 0, us2 =
1, θs2 < ρC∗πs2 , us3 = −2, θs3 > 0}.

9) I9 , {us|s = (s1, s2, s3) , 1 ≤ s1, s2 ≤ m, m + 1 ≤
s3 ≤ n, s1 ̸= s2, ys1 ̸= ys2 , ys3 = ys1 , ∀i /∈ s ui =
0; us1 = 1, θs1 < ρC∗πs1 , us2 = −1, θs2 > 0, us3 =
−2, θs3 > 0 or us1 = −1, θs1 > 0, us2 = 1, θs2 <
ρC∗πs2 , us3 = 2, θs3 < Cπs3}.

It can be proved that moving from any feasible point θold

in the direction us ∈ ∪Ii still satisfies constraints (4,5). The
optimization step is θnew = θold + λ∗(s)us, where us ∈
∪Ii and the step size λ∗(s) maximizes the corresponding
cost function, ψ(λ

′
) = D(θold + λ

′
us), while satisfying the

constraints. Let g(θold) and H respectively be the gradient
at point θold and the Hessian of cost function (3). Then the
Taylor expansion of ψ(λ

′
) at point λ

′
= 0 yields

λ
(
θold, s

)
= argmax

λ′≥0
ψ
(
λ

′
)
= −

g
(
θold

)T

us

uT
s Hus

(9)

which can be used to find the optimal feasible direction
s(i) = arg max

t:t=
(
s
(i)
1 ,s

(i)
2

)
ut∈Ii

D
(
θold + λ

′
(
θold, t

)
ut

)
−D

(
θold

)

= arg max
t:t=

(
s
(i)
1 ,s

(i)
1

)
ut∈Ii

−
(
g
(
θold

)T

ut

)2

uT
t Hut

(10)

Now that the best direction is chosen, we need to ensure
that λ(θold, s) does not overstep the bounding constraints
(6,7). Therefore, we define the following clipping function:

λ∗
(
θold, s(i)

)
= min

j,k∈s(i)

uj<0, uk>0

{
λ
(
θold, s(i)

)
,
∆k − θoldk

uk
,

∣∣∣∣∣θoldj

uj

∣∣∣∣∣
}

where ∆k = ρC∗πk for 1 ≤ k ≤ m, and ∆k = Cπk for
m+1 ≤ k ≤ n. By iteratively choosing the best direction and
applying the clipping function to the step size, the algorithm
converges while satisfying all the constraints. The schematic
of the LULUPAPI iterative optimizer is depicted in figure 1.

IV. EXPERIMENT

The ARDS dataset used in this study consisted of 485
patients with moderate hypoxia or acute hypoxic respiratory
failure, recorded at the University of Michigan Hospital.



TABLE I
CLASSIFICATION RESULTS ON ARDS DATASET USING TWO SVM AND FOUR LULUPAPI CASES: (1) NO UNCERTAINTY, I.E. πi = 1 FOR 1 ≤ i ≤ n

(LEARNING USING PARTIALLY AVAILABLE PRIVILEGED INFORMATION), (2) UNCERTAINTY ONLY FOR NON-PRIVILEGED INFORMATION I.E. πi = 1

FOR 1 ≤ i ≤ m, (3) UNCERTAINTY ONLY FOR PRIVILEGED INFORMATION I.E. πi = 1 FOR m+ 1 ≤ i ≤ n AND (4) UNCERTAINTY FOR ALL SAMPLES.

Train Test
Accuracy Sensitivity Specificity AUC Accuracy Sensitivity Specificity AUC

SVM 88.61 80.43 91.76 86.10 89.27 76.58 90.33 83.46
SVM with Uncertainty 87.56 78.74 90.96 84.85 89.52 80.03 90.32 85.17

LULUPAPI (1) 88.09 81.28 90.72 86.00 88.78 82.23 89.34 85.78
LULUPAPI (2) 88.52 84.21 90.19 87.20 88.28 83.47 88.69 86.08
LULUPAPI (3) 87.53 83.28 89.18 86.23 87.99 85.26 88.22 86.74
LULUPAPI (4) 87.96 83.59 89.65 86.62 88.38 85.40 88.63 87.01

The non-privileged information included 25 clinical features
(such as temperature, heart rate, etc.) at two-hour intervals
from the patient’s EHR record. Each patient in the dataset
was reviewed by 2 or 3 clinical experts for the diagnosis
of ARDS, as well as the time of ARDS onset. In order to
account for their level of confidence, clinicians reported their
diagnosis confidence, denoted by li, using a 1-8 scale in
which 1 is no ARDS with high confidence and 8 is ARDS
with high confidence. To quantitatively measure uncertainty
in the labels (the πi in equation 3), we used a margin weight
generator πi = (|li − p1| − p2)p3 + p4. We set p1 = 4.5,
p2 = 3, p3 = 0.2, and p1 = 0.9. This scaled the li with range
1-8 into the range 0.4-1 such that high-confidence cases li=1
and li=8 were mapped to πi = 1 and low-confidence cases
li=4 and li=5 were mapped to πi = 0.4. The privileged
information was a one-dimensional feature representing the
average of chest x-ray evaluation scores, given by three
clinicians, such that 8 designated high confidence ARDS and
1 high confidence non-ARDS. In order to avoid bias toward
patients, the dataset was split 2/3 and 1/3 into training and
holdout sets such that all samples from the same patient were
kept exclusively in either training or testing. This yielded
323 patients in the training data, and the rest in the holdout
set. Due to the strong inter-dependency between samples of
longitudinal patient data, the IID assumption was not valid.
Hence the time-series sampling method proposed in [18]
was performed to reduce the inter-correlation among the
longitudinal clinical data from each patient used in model
training and thereby limit overfitting. After sampling, there
were 4661 samples in the training data, of which 4317 had
privileged information, across 1298 ARDS cases. Since there
was no sampling in the test dataset, there were 9362 samples
in the test dataset. Within the training set, 5-fold cross-
validation was performed for 4-dimensional hyperparameter
optimization in the interval [0.1, 5] for C and C∗, [1, 5] for
ρ, and [0.5, 2] for γ. The bins were split by patient. At
each round, four bins were used for training and one for
testing with linear kernels. Table I summarizes the results
of SVM, SVM with label uncertainty, and four cases of
LULUPAPI. As can be seen, while separate incorporation
of label uncertainty and privileged information improved the
SVM result (SVM with Uncertainty and LULUPAPI (1)
in Table I), the best test AUC occurred by simultaneous
incorporation of label uncertainty and privileged information
(LULUPAPI (4) in Table I).
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