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Ongoing accumulation of plant
diversity through habitat connectivity
in an 18-year experiment

Ellen I. Damschen, Lars A. Brudvig?, Melissa A. Burt>t, Robert J. Fletcher Jr.*,
Nick M. Haddad®, Douglas J. Levey’, John L. Orrock’, Julian Resasco®, Joshua J. Tewksbury”*°

Deleterious effects of habitat fragmentation and benefits of connecting fragments could be
significantly underestimated because changes in colonization and extinction rates that drive
changes in biodiversity can take decades to accrue. In a large and well-replicated habitat
fragmentation experiment, we find that annual colonization rates for 239 plant species in
connected fragments are 5% higher and annual extinction rates 2% lower than in
unconnected fragments. This has resulted in a steady, nonasymptotic increase in diversity,
with nearly 14% more species in connected fragments after almost two decades. Our results
show that the full biodiversity value of connectivity is much greater than previously
estimated, cannot be effectively evaluated at short time scales, and can be maximized by

connecting habitat sooner rather than later.

abitat loss and fragmentation are leading

threats to biodiversity in ecosystems across

the globe (1-4). In a world replete with

small, isolated fragments, where 70% of

the world’s forest area is within just 1 km
of an edge, biodiversity loss is mounting (7).
Increasing habitat connectivity is a key conser-
vation strategy to minimize biodiversity losses
by facilitating dispersal and rescuing declining
populations from extinction (5). However, it is
not known if restoring connectivity among hab-
itat fragments will increase biodiversity by pro-
moting the colonization of new species.

A well-established body of ecological theory
predicts the importance of connectivity for bio-
diversity. Metapopulation theory (6, 7) illustrates
how increasing connectivity is predicted to lead
to greater regional population persistence by
promoting colonization of new habitats, in-
creasing recolonization of habitats where extinc-
tion has occurred (recolonization rescue), and
buffering existing populations against extinction
via increased immigration (demographic rescue).
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Metacommunity theory (8, 9) and island bio-
geography theory (10) integrate these population-
level effects of connectivity to yield predictions
regarding biodiversity. These developments pro-
vide strong theoretical reasons to expect that
modifying connectivity can increase biodiversity by
increasing colonization and decreasing extinction,
but they also caution that nonintuitive effects
(e.g., synchronization of population dynamics or
modification of interactions) are possible (8, II).

Despite the presumed importance of connec-
tivity for community diversity in both basic and
applied ecology (12, 13), empirical evidence for pre-
dictions from theory has been mixed (14-16). A
primary challenge in evaluating these predictions
in empirical systems is that ecological processes
vary greatly in space and time: The dynamic
nature of colonization and extinction processes
necessitates well-replicated, large-scale, and long-
term studies to draw meaningful inference about
the ultimate role of connectivity in affecting di-
versity. For example, changes in biodiversity due
to either lost or restored connectivity do not
occur instantaneously. In fragmented habitats,
species can continue to persist for years before
eventually going extinct (17), resulting in an
“extinction debt” paid over decades or even
centuries (I8, 19). Similarly, “colonization credits”
can accrue when habitat connectivity is restored
among species-impoverished habitats, catalyzing
the potential for biodiversity gains (20-23). Spe-
cies may not colonize immediately because of
low dispersal rates, which are difficult to mea-
sure, making the extent of colonization credits
unknown (20, 23). This lack of information is
important because colonization credits could
forestall or even reverse extinction debt.

We tested the long-term effects of habitat con-
nectivity on plant colonization and extinction
dynamics and their resulting impacts on species
richness over nearly two decades in a habitat
fragmentation experiment at the Savannah
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River Site in South Carolina, USA. This experiment
manipulates connectivity through the creation of
habitat corridors—thin strips of habitat that con-
nect otherwise isolated habitat fragments (24).
Ten experimental landscapes each contain four
1.375-ha fragments of equal area that are either
unconnected or connected to a central 1-ha frag-
ment by a 150 m-by-25 m corridor (Fig. 1). Frag-
ments and corridors are being restored to longleaf
pine savanna, a threatened ecosystem within a
global biodiversity hotspot (25), and are sur-
rounded by dense pine plantations that limit
herbaceous plant growth. For 18 years, we censused
occupancy of all plant species as communities
assembled after each restored fragment’s cre-
ation. Connected and unconnected fragments
were randomly assigned and did not differ in spe-
cies richness at the start of the experiment [fig. S1;
see also supplementary materials and methods (26)].

Habitat connectivity has increased rates of
colonization and decreased rates of extinction. As
communities assembled, connectivity increased
the average annual species colonization rate by
5% and decreased the average annual extinction
rate by 2% beyond expected successional dy-
namics (Fig. 2A and fig. S2). These apparently
small differences in annual rates are persistent
and have compounded over time, generating
large increases in species richness in fragments
connected by corridors, magnifying coloniza-
tion credits (Fig. 2B and fig. S3). These impacts
occur across 239 plant species with diverse life
histories, including species of conservation and
restoration concern from the longleaf pine eco-
system (fig. S6) and species that vary in their
dispersal ability (fig. S7).

Higher colonization rates and lower extinc-
tion rates have shortened the average time for a
species to colonize a fragment (Fig. 3) and have
driven a large increase in plant species rich-
ness (Fig. 2B and figs. S3 and S5). Corridor-
connected fragments now support, on average,
24 additional plant species compared with un-
connected fragments (200 versus 176 in connected
versus unconnected fragments, respectively; fig.
S3), an increase of 14%. Notably, connectivity’s
effects on species richness continue to accumu-
late; our best-fit models of species richness dif-
ferences over time show no asymptote. Moreover,
connectivity’s impacts on colonization and extinc-
tion rates remain consistent across the 18 years
of this study (Fig. 2 and figs. S4 and S5) (26).

Our results underscore that typical experi-
ments of 1 to 5 years in duration (7, 27) likely
underestimate the impact of long-term connec-
tivity restoration on community diversity. Con-
nectivity’s impacts are not fully realized until
the ongoing, lagged assembly processes and re-
sponses equilibrate. Theory from spatial ecology
and community assembly predicts that connec-
tivity’s effect on diversity will eventually reach
an asymptote because of local ecological pro-
cesses constraining species richness (e.g., com-
petition) and because local communities draw
from a finite number of species in the region
(10, 28). Long-term empirical investigations of
how landscape configuration alters colonization
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Fig. 1. A long-term habitat connectivity experiment. (A) One of 10 experimental landscapes

(N = 10), each containing a center fragment that is connected or unconnected (winged and
rectangular) to peripheral fragments of open longleaf pine savanna surrounded by dense pine
plantations [additional details in (26)]. [Credit: Google Earth 2019] (B) Plant communities within
fragments have assembled over nearly two decades and are being restored to native longleaf pine
savanna using frequent, low-intensity fires that mimic the historic fire regime. See (26) for further
information on the study design. [Credits (left to right): M. A. Burt, N. M. Haddad, and E. |. Damschen]
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Fig. 2. Connectivity reduces extinction and increases colonization rates over two decades, result-
ing in accruals of species in connected fragments. (A) Average colonization rates are 5% greater and
extinction rates are 2% lower for species in connected fragments than rates for those in unconnected
fragments. These rates are constant over time. The net accrual of colonization credits increases
biodiversity in connected fragments. (B) Plant species richness in connected fragments has increased at a
greater rate than in unconnected fragments. Shown is the difference in estimated species richness over
time, illustrating greater increases in richness in connected versus unconnected fragments. This rate
increase has been consistent for nearly two decades and has resulted in connected fragments having
24 more plant species than unconnected fragments (fig. S3). A linear model (on the logit scale) is the best
fit for the difference in species richness between connected and unconnected fragments over time (26).
Shaded regions represent 95% confidence intervals.

We show that connectivity directly alters col-
onization and extinction dynamics among
fragments, providing mechanisms for observed
landscape-level biodiversity patterns (30). Our

and extinction rates are critical for determining and
predicting human-induced changes to the environ-
ment; communities will almost never exhibit in-
stantaneous responses or equilibrial dynamics (29).
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Fig. 3. Connectivity reduces colonization
timing, resulting in colonization credits. The
average cumulative probability of each
individual species colonizing connected
fragments is 1 to 6 years earlier than in
unconnected fragments, resulting in reduced
colonization lags and increased colonization
credits. For example, the point at which a
single species has a 50% likelihood of
colonizing a habitat fragment (dotted lines)
occurs a full 2 years earlier in connected
versus unconnected fragments. Shaded
regions represent 95% confidence intervals.

results contrast with hypotheses that attribute
biodiversity change to habitat area alone and
those that do not attempt to isolate underlying
mechanisms (74). In our study system, connec-
tivity leads to wholesale temporal shifts in com-
munity assembly, driven by lags in colonization
that generate colonization credits, regardless of
whether an equilibrium is achieved. Connecting
fragments with corridors results in a 1- to 6-year
reduction in the time it takes an individual
species to colonize new habitat fragments, rel-
ative to the time needed for colonization of
unconnected fragments (Fig. 3). For example,
the 50% likelihood of a single species colonizing
a fragment (dotted lines in Fig. 3) occurs a full
2 years earlier in connected fragments than for
that same species in unconnected fragments
(Fig. 3). These temporal shifts in the speed of
colonization (Fig. 3 and fig. S8) have unexplored
and potentially important ramifications for time-
dependent ecological processes (e.g., priority ef-
fects). Although less explored, our results also
suggest that corridor-mediated changes in the
movement of individuals and alleles may affect
evolutionary processes by altering effective pop-
ulation size and gene flow (31). Our results raise
the need for theory to better integrate temporal
duration in conservation and management.
Conservation strategies to mitigate bio-
diversity losses due to habitat fragmentation
and loss are urgently needed, and habitat cor-
ridors feature prominently in global conserva-
tion plans (4). Our study shows that efforts to
increase connectivity will pay off over the long
term. Conservation plans that ignore connectivity,
such as plans that focus solely on habitat area, will
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leave unrealized the substantial, complementary,
and persistent gains in biodiversity attributable
specifically to landscape connectivity (30, 32).
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Habitat connectivity enhances diversity

Fragmentation of ecosystems leads to loss of biodiversity in the remaining habitat patches, but retaining
connecting corridors can reduce these losses. Using long-term data from a large, replicated experiment, Damschen et
al. show quantitatively how these losses are reduced. In their pine savanna system, corridors reduced the likelihood of
plant extinction in patches by about 2% per year and increased the likelihood of patch colonization by about 5% per year.
These benefits continued to accrue over the course of the 18-year experiment. By the end of monitoring, connected
patches had 14% more species than unconnected patches. Restoring habitat connectivity may thus be a powerful
technique for conserving biodiversity, and investment in connections can be expected to magnify conservation benefit.
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