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Abstract— Acute respiratory distress syndrome (ARDS)
is a fulminant inflammatory lung injury that develops in
patients with critical illnesses, affecting 200,000 patients
in the United States annually. However, a recent study
suggests that most patients with ARDS are diagnosed late
or missed completely and fail to receive life-saving treat-
ments. This is primarily due to the dependency of current
diagnosis criteria on chest x-ray, which is not necessarily
available at the time of diagnosis. In machine learning, such
an information is known as Privileged Information - infor-
mation that is available at training but not at testing. How-
ever, in diagnosing ARDS, privileged information (chest x-
rays) are sometimes only available for a portion of the train-
ing data. To address this issue, the Learning Using Partially
Available Privileged Information (LUPAPI) paradigm is pro-
posed. As there are multiple ways to incorporate partially
available privileged information, three models built on clas-
sical SVM are described. Another complexity of diagnosing
ARDS is the uncertainty in clinical interpretation of chest
x-rays. To address this, the LUPAPI framework is then ex-
tended to incorporate label uncertainty, resulting in a novel
and comprehensive machine learning paradigm - Learning
Using Label Uncertainty and Partially Available Privileged
Information (LULUPAPI). The proposed frameworks use
Electronic Health Record (EHR) data as regular information,
chest x-rays as partially available privileged information,
and clinicians’ confidence levels in ARDS diagnosis as a
measure of label uncertainty. Experiments on an ARDS
dataset demonstrate that both the LUPAPI and LULUPAPI
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models outperform SVM, with LULUPAPI performing better
than LUPAPI.
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I. INTRODUCTION

ACUTE respiratory distress syndrome (ARDS) is a ful-
minant inflammatory lung injury that develops in pa-

tients with critical illnesses including sepsis, pneumonia, and
trauma [1], [2]. Each year, 200,000 patients in the United
States suffer from ARDS, with mortality rate of 30-40% [3].
While simple interventions such as reducing ventilator tidal
volume have been shown to improve patient outcomes [4],
physician recognition of ARDS ranges from 50 to 80 percent.
Consequently, many patients do not receive these life-saving
treatments [5]. Hence, the development of a clinical decision
support system that employs machine learning to flag patients
at risk for ARDS and prompt clinicians to administer treatment
is of immediate interest.

Current ARDS diagnostic criteria require chest x-ray results
as an input, as they provide critical information about whether
ARDS is present [6], [7]. However, chest x-rays may not
always be available, particularly at the early stages of care.
Moreover, clinicians may be equivocal or even disagree about
the diagnosis in some patients using chest x-ray [8], which
may result in incorrect labels being provided by an expert.
Despite these concerns, if a chest x-ray is available, it is
informative and should be integrated into the model training
process. An additional challenge when developing an ARDS
detection systems is there exists no gold standard available
to determine which patients develop ARDS. The diagnosis of
ARDS is made based on clinical criteria [9], but even clinical
experts may disagree or have uncertainty about the diagnosis
in some patients [8]. Information about the uncertainty level
of an ARDS diagnostic label provided by clinical experts can
also prove useful when training a system for ARDS detection
[10]. Additionally, one potentially effective yet underutilized
method of assisting physicians in the recognition of ARDS is
the analysis of electronic health record (EHR) data. To our
knowledge, EHR data is currently underutilized during the
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design and training of decision support systems for ARDS
diagnosis. As such, the focus in this manuscript is on devel-
oping a machine learning framework that: 1) can diagnose
ARDS using EHR data only; 2) uses available chest x-rays in
training to fine-tune the model; and 3) accounts for diagnostic
label uncertainty.

In machine learning terminology, any source of information
that is available at the time of training but not at testing
(such as a chest x-ray in the current study) is called privi-
leged information, as introduced by Vapnik et al. [11]–[13],
while the learning task is called Learning Using Privileged
Information (LUPI). Another frequently occurring problem
in machine learning is that of Label Uncertainty (e.g., the
ARDS diagnosis uncertainty considered here), in which class
labels are corrupted by some uniform or non-uniform noise
distribution [14]. Since these two machine learning problems
are integral parts of the proposed method, Sections I-A and
I-B are dedicated to short reviews of these problems. Finally,
Section I-C outlines the proposed framework.

A. Learning Using Privileged Information

Since its introduction, LUPI has undergone many theoretical
advancements. Vapnik et al. [11]–[13] modified Support Vector
Machines (SVM) to accommodate privileged information,
calling this new formulation SVM+. In [15], Lapin proved
that the solutions for SVM+ are inclusive of the solutions for
weighted SVM, although there is no well-defined method to
reformulate an arbitrary SVM+ problem into its equivalent
weighted SVM problem. Cai et al. extended SVM+ to multi-
task learning [16]. LUPI has also been incorporated into
many other machine learning paradigms. Chen et al. generated
weak classifiers based on privileged information for boosting
algorithms [17]. In metric learning, it was shown that the
input space metric can be more precisely designed using
privileged information [18]. In addition, privileged information
can be incorporated into a three-node Bayesian network [19].
By estimating the probabilities behind privileged information,
features can be localized in a regression forest model [20].
Chen et al. enhanced each layer of a convolutional neural
network with privileged information to better generalize the
model [21]. The sparsity problem in learning to hash methods
can be ameliorated with privileged information [22]. Privileged
information improves unsupervised hierarchical text clustering
[23].

SVM+ has also proven useful in several applications. Shar-
manska et al. improved computer vision tasks with SVM+
using privileged information such as bounding boxes or text
descriptions [24]. Descriptions of facial features used as priv-
ileged information in a computer vision model helped predict
human age [25]. SVM+ outperformed SVM in bankruptcy
prediction [26]. To our knowledge, SVM+, as a standard
convex quadratic problem with linear equalities and bounding
constraints, is currently the only SVM-based model built to
address the LUPI scenario [11]–[13], [27]. Hence, in this paper
the SVM+ formulation is the starting point of the proposed
model development process.

B. Label Uncertainty

The problem of label uncertainty, and potential solutions
to it, have been explored for a number of machine learning
models. Van Hulse et al. found that label noise degraded all the
classifiers studied in their work; however, connectionist meth-
ods like SVM and neural networks fared worse than simpler
methods like naive Bayes [28]. Likewise, certain loss functions
are more robust to label noise than SVM [29]. One method
to account for label noise in SVMs was provided by Claesen
et al., who created an ensemble of SVMs using bootstrapping
and found it to result in a substantial improvement in some
cases [30]. Many approaches have been proposed to better
train on datasets with label noise for a variety of machine
learning paradigms. Frenay et al. created a taxonomy of label
noises, then surveyed methods that account for each case [14],
[31]. Label noise in deep learning algorithms was considered
in [32], [33], [34] and [35]. In active learning, a committee
of models can be created that eliminates suspicious points
[36]. The Imprecise Information Gain Ratio is reported to be
more robust against label noise in decision trees [37]. Tomasev
et al. leveraged hubness-based fuzzy k-Nearest Neighbors
classification as a label noise robust alternative to kNN [38].
AdaBoost is made more robust to label noise by using a loss
function that restricts the penalties on misclassified examples
[39].

As mentioned previously, label uncertainty can be incor-
porated as weights within a SVM model. These weights
determine the relative penalty of misclassification of training
set points. There are two types of weights that could be used
in this scenario - weights that are learned from the data itself,
and weights that are provided by the user. For an example
of the former, see [40], in which importance re-weighting is
described as the method of determining the weights. For the
later we have shown in previous work that incorporating these
weights improves the performance of a standard SVM model
[10].

C. Outline of the Proposed Approach

One limitation of SVM+ is that it assumes that privileged
information is available for all training samples during pa-
rameter estimation. This is not the case in this study, as chest
x-rays are not necessarily available for all the training samples.
As such, this paper begins with the proposal of an SVM-based
formulation, called SVMp+, to address the issue of learning
using partially available privileged information (LUPAPI).
Note that the need to formulate such a learning paradigm was
first suggested by Vapnik in [12], but to our knowledge it
has not been developed further, though Wang et al. [41] also
studied partial availability of privileged information using a
non-SVM-based model.

Another improvement considered here is to incorporate
privilege information with label uncertainty, since there are
many real-world machine learning scenarios in which the si-
multaneous use of privileged information and label uncertainty
have the potential to improve model performance. Motivated
by the potential benefit for such an integration into a unified
paradigm, label uncertainty is incorporated into the LUPAPI
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paradigm and attendant SVMp+ formulation, resulting in a
general framework of learning using label uncertainty and
partially available privileged information (LULUPAPI).

As there are multiple ways in which to incorporate partially
available privileged information into SVM, in Section II three
models are considered: 1) Vapnik’s model [12], a natural exten-
sion of SVM+; 2) the mixture model, an SVMp+ formulation
with a mixture of slack variables and a correcting function; and
3) the symmetric mixture model, an SVMp+ formulation with
a mixture of slack variables and a correcting function with
label coefficients. The end of this section describes how label
uncertainty can be integrated into the SVMp+ formulation
(LULUPAPI).

II. SVM-BASED MODELS FOR LUPAPI AND LULUPAPI
PARADIGMS

This section describes three models within the LUPAPI
framework. The first is Vapnik’s model [12], while the other
two models are different realizations of the SVMp+ formu-
lation: the mixture model and the symmetric mixture model.
These formulations provide alternative methodologies for in-
corporating partially available privileged information into an
SVM model, and the relative superiority of one model over
another may vary from one machine learning application to
another. Finally, the SVMp+ framework is modified to incor-
porate label uncertainty into the LUPAPI paradigm, resulting
in the LULUPAPI framework.

A. Vapnik’s Model: An Initial Model for Partial Availability
of Privileged Information

Fundamentally, the problem of partial availability of priv-
ileged information can be addressed using a combination of
the classical SVM and standard SVM+. In other words, one
can consider slack variables for the samples without privileged
information and the correcting function for the samples with
privileged information. This model was proposed by Vapnik et
al. [12] within the LUPI framework, but not explored further.

Suppose the training data has m samples with privileged
information and n−m samples without privileged information:

(x1,x
∗
1, y1) , . . . , (xm,x

∗
m, ym) , (xm+1, ym+1) , . . . , (xn, yn)

xi ∈ X, x∗i ∈ X∗, yi ∈ {−1, 1}

The decision rule, the slack variables, and the correcting
function hyperplane parameters are achieved simultaneously
by the following optimization:

min
w,b,w∗,b∗,ξ

1

2
‖w‖22 +

γ

2
‖w∗‖22 + C

n∑
i=m+1

ξi (1)

+ C∗
m∑
i=1

(w∗ · z∗i + b∗)

s.t. ∀ 1 ≤ i ≤ m yi (w · zi + b) ≥ 1− (w∗ · z∗i + b∗)

∀ 1 ≤ i ≤ m w∗ · z∗i + b∗ ≥ 0

∀m+ 1 ≤ i ≤ n yi (w · zi + b) ≥ 1− ξi
∀m+ 1 ≤ i ≤ n ξi ≥ 0

where C > 0, C∗ > 0, and γ > 0 are the hyperparameters.
This cost function is the most natural extension of the LUPI
model. The dual optimization problem of (1) can be written
as:

max
α,β

D (α,β) =
n∑
i=1

αi −
1

2

n∑
i,j=1

αiαjyiyjKi,j (2)

− 1

2γ

m∑
i,j=1

(αi + βi − C∗) (αj + βj − C∗)K∗i,j

s.t.
n∑
i=1

yiαi = 0 (3)

m∑
i=1

(αi + βi − C∗) = 0 (4)

∀m+ 1 ≤ i ≤ n, 0 ≤ αi ≤ C (5)
∀ 1 ≤ i ≤ m, 0 ≤ αi, 0 ≤ βi (6)

where K∗i,j , K∗
(
z∗i , z

∗
j

)
is a kernel in the correcting space

and Ki,j , K (zi, zj) is the kernel in the decision space with
the decision function

f (z) =w · z+ b =
n∑
i=1

yiαiK (zi, z) + b. (7)

Since the aforementioned Vapnik’s model was never ex-
plored further, in this paper an optimization procedure was
also developed and tested for this formulation.

B. The Proposed LUPAPI Framework: SVMp+
Formulations

In this section, two realizations of the SVMp+ formulation
of LUPAPI are provided: the mixture model and the symmetric
mixture model.

1) Mixture Model: This formulation of SVMp+ can be
thought of as SVM+ with the mixture model of slacks as:

ξ
′

i =(w∗ · z∗i + b∗) + ρξ∗i ∀ 1 ≤ i ≤ n (8)

In this case, the slack variables are considered for all training
samples, and the correcting function only for those samples
with privileged information. The decision rule, the slack
variables, and the correcting function hyperplane parameters
are achieved simultaneously by the following optimization:

min
w,b,ξ,w∗,b∗,ξ∗

1

2
‖w‖22 +

γ

2
‖w∗‖22 + C

n∑
i=m+1

ξi (9)

+ ρC∗
m∑
i=1

ξ∗i + C∗
m∑
i=1

(w∗ · z∗i + b∗)

s.t. ∀ 1 ≤ i ≤ m yi (w · zi + b) ≥ 1− (w∗ · z∗i + b∗)− ξ∗i
∀ 1 ≤ i ≤ m w∗ · z∗i + b∗ ≥ 0

∀ 1 ≤ i ≤ m ξ∗i ≥ 0

∀m+ 1 ≤ i ≤ n yi (w · zi + b) ≥ 1− ξi
∀m+ 1 ≤ i ≤ n ξi ≥ 0
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The dual optimization problem of (9) can be formulated as:

max
α,β

D (α,β) =
n∑
i=1

αi −
1

2

n∑
i,j=1

αiαjyiyjKi,j

− 1

2γ

m∑
i,j=1

(αi + βi − C∗) (αj + βj − C∗)K∗i,j (10)

s.t.
n∑
i=1

yiαi = 0 (11)

m∑
i=1

(αi + βi − C∗) = 0 (12)

∀m+ 1 ≤ i ≤ n, 0 ≤ αi ≤ C (13)
∀ 1 ≤ i ≤ m, 0 ≤ αi ≤ ρC∗, 0 ≤ βi (14)

2) Symmetric Mixture Model: In this model, the goal is
to better transfer the knowledge obtained in the privileged
information space to the decision space by allowing the
privileged information and the training label to interact, as
suggested in [13]. Instead of the mixture model of slacks in
(8), consider the following mixture for the LUPAPI model:

ξ
′

i =yi (w
∗ · z∗i + b∗) + ρξ∗i ∀ 1 ≤ i ≤ m. (15)

The problem can then be written as:

min
w,b,ξ,w∗,b∗,ξ∗

1

2
‖w‖22 +

γ

2
‖w∗‖22 + C

n∑
i=m+1

ξi (16)

+ ρC∗
m∑
i=1

ξ∗i + C∗
m∑
i=1

yi (w
∗ · z∗i + b∗)

s.t. ∀ 1 ≤ i ≤ m yi (w · zi + b) ≥ 1− yi (w∗ · z∗i + b∗)− ξ∗i
∀ 1 ≤ i ≤ m yi (w

∗ · z∗i + b∗) ≥ 0

∀ 1 ≤ i ≤ m ξ∗i ≥ 0

∀m+ 1 ≤ i ≤ n yi (w · zi + b) ≥ 1− ξi
∀m+ 1 ≤ i ≤ n ξi ≥ 0

The corresponding dual problem can be formulated as:

max
α,β

D (α,β) =
n∑
i=1

αi −
1

2

n∑
i,j=1

αiαjyiyjKi,j

− 1

2γ

m∑
i,j=1

(αi + βi − C∗) (αj + βj − C∗) yiyjK∗i,j (17)

s.t.
n∑
i=1

yiαi = 0 (18)

m∑
i=1

yi (αi + βi − C∗) = 0 (19)

∀m+ 1 ≤ i ≤ n, 0 ≤ αi ≤ C (20)
∀ 1 ≤ i ≤ m, 0 ≤ αi ≤ ρC∗, 0 ≤ βi (21)

This model is referred to as symmetric because the yi
coefficients are considered for the hyperplane in the privileged
space as well. This model differs from that proposed in [13]
in two ways - it incorporates partially available privileged
information and allows for two separate sets of slack variables
for the training and privileged spaces.

C. LULUPAPI: Incorporating Label Uncertainty within the
SVMp+ Formulations

In this section, label uncertainty is integrated into the
SVMp+ formulation of LUPAPI, yielding the Learning Using
Label Uncertainty and Partially Available Privileged Infor-
mation (LULUPAPI) model. To avoid repetition, only the
mixture model of LUPAPI (described in Section II-B.1) is
considered. In order to incorporate label uncertainty, one can
vary the parameter C for training samples in proportion to
their respective label confidence.

As the slack variables ξi (or the correcting function) permit
some misclassification with penalty parameter C to establish
soft-margin decision boundaries, data with high label confi-
dence can be given more weight and subsequent influence on
the decision boundary. This yields the LULUPAPI paradigm,
which requires the training samples

(x1,x
∗
1, y1, π1) , . . . , (xm,x

∗
m, ym, πm) , (xm+1, ym+1, πm+1) ,

(xm+2, ym+2, πm+2) , . . . , (xn, yn, πn)

xi ∈ X, x∗i ∈ X∗, yi ∈ {−1, 1} , πi ≥ 0

where πi is a quantitative measure of uncertainty in the labels.
In this case, the LULUPAPI mixture model is

min
w,b,ξ,w∗,b∗,ξ∗

1

2
‖w‖22 +

γ

2
‖w∗‖22 + C

n∑
i=m+1

πiξi

+ρC∗
m∑
i=1

πiξ
∗
i + C∗

m∑
i=1

(w∗ · z∗i + b∗) (22)

s.t. ∀ 1 ≤ i ≤ m yi (w · zi + b) ≥ 1− (w∗ · z∗i + b∗)− ξ∗i
∀ 1 ≤ i ≤ m w∗ · z∗i + b∗ ≥ 0

∀ 1 ≤ i ≤ m ξ∗i ≥ 0

∀m+ 1 ≤ i ≤ n yi (w · zi + b) ≥ 1− ξi
∀m+ 1 ≤ i ≤ n ξi ≥ 0

and the dual optimization problem is

max
α,β

D (α,β) =

n∑
i=1

αi −
1

2

n∑
i,j=1

αiαjyiyjKi,j

− 1

2γ

m∑
i,j=1

(αi + βi − C∗) (αj + βj − C∗)K∗i,j (23)

s.t.
n∑
i=1

yiαi = 0

m∑
i=1

(αi + βi − C∗) = 0

∀m+ 1 ≤ i ≤ n, 0 ≤ αi ≤ πiC
∀ 1 ≤ i ≤ m, 0 ≤ αi ≤ ρπiC∗, 0 ≤ βi
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III. AN ALTERNATING SMO ALGORITHM FOR SVMP+
FORMULATIONS OF LUPAPI AND LULUPAPI

PARADIGMS

A widely used algorithm for solving conventional SVM
and SVM+ is Sequential Minimal Optimization (SMO) [42].
SMO-style algorithms iteratively maximize the dual cost func-
tion by selecting the best maximally sparse feasible direction
in each iteration and updating the corresponding αi and βj
such that the dual constraints are also satisfied.

A variant of SMO called Alternating SMO for solving
SVM+ was introduced in [43], [44]. Inspired by this optimiza-
tion method, an alternating SMO-style algorithm for SVMp+
is proposed. The SVMp+ dual optimization problems of (2),
(10), (17), and (23) can be considered as the general form of

max
θ∈F

D (θ) ,

where θ ∈ Rk, D : Rk → R is a concave quadratic function,
and F is a convex compact set defined by linear equalities and
inequalities.

In order to achieve an alternating SMO algorithm for
SVMp+, all feasible directions for each model must be de-
termined. Feasible and maximally sparse feasible directions
were defined in [43] as follows:

Definition 1. A direction u ∈ Rk is feasible at the point θ ∈ F
if there exists λ > 0 such that θ + λu ∈ F .

Definition 2. A direction u1 ∈ Rk with n1 < k zero elements
is maximally sparse feasible if any u2 ∈ Rk with n2 < k zero
elements such that n1 < n2 is not feasible.

The cost function in equations (2), (10), (17), and (23) have
n+m variables: {αi}ni=1 and {βi}mi=1. These can be combined
into a single (n+m)-variable vector θ by concatenating the α
and β variables: θ , (α,β)

T . Thus, each maximally sparse
feasible direction is u ∈ Rn+m. It can be verified that the
cost functions in equations (2), (10), and (23) have 9 sets of
such directions, and (17) has 10. Following [43], each set of
feasible directions is denoted by Ii. The detailed descriptions
of the feasible directions and other optimization information
for Vapnik’s model (2), the mixture model (10), the symmetric
mixture model (17), and the LULUPAPI mixture model (23)
formulations can be found in Appendices I, II, III, and IV,
respectively.

A. Optimization Process
Similar to the SMO algorithm for the LUPI model ([43],

[44]), the recursive step in the proposed optimization for the
LUPAPI and LULUPAPI paradigms is finding θ = θold +
λ∗(s)us such that us ∈ ∪Ii of the corresponding feasible
directions and the step size λ∗(s) maximize the corresponding
cost function ψ (λ) = D

(
θold + λus

)
, while satisfying the

constraints. Hence, given the cost function, its constraints, and
the corresponding feasible directions, the recursive optimiza-
tion process of the proposed alternating SMO-style algorithm
is the same in both the LUPAPI and LULUPAPI contexts.

Let g
(
θold
)

and H respectively be the gradient at point

θold and the Hessian of the cost function. Using the Taylor

expansion of ψ (λ) at point λ = 0 yields

λ
′
(
θold, s

)
= argmax

λ≥0
ψ (λ) = −

∂ψ(λ)
∂λ

∂2ψ(λ)
∂λ2

∣∣∣∣∣
λ=0

= −
g
(
θold
)T

us

uT
s Hus

(24)

Let τ > 0 be small constant. Define I = {us|us ∈⋃
Ii, g

(
θold
)T

us > τ}. If I = ∅, then the algorithm stops.
Suppose I 6= ∅, define:

Ĩi = {us|us ∈ Ii, g
(
θold
)T

us > τ}.

For each non-empty Ĩi, find the vector us(i) ∈ Ĩi that has the
minimal angle with g

(
θold
)

among all the candidates in Ĩi:

s(i) = arg max
s:us∈Ĩi

g
(
θold
)T

us. (25)

In the next step, for the directions containing pairs, if s(i) =(
s
(i)
1 , s

(i)
2

)
6= ∅, fix the value of s

(i)
1 and find s

′(i) =(
s
(i)
1 , s

′(i)
2

)
such that us′(i) ∈ Ĩi and

s
′(i) = arg max

t:t=
(
s
(i)
1 ,t2

)
ut∈Ĩi

D
(
θold + λ

′
(
θold, t

)
ut

)
−D

(
θold
)

= arg max
t:t=

(
s
(i)
1 ,t2

)
ut∈Ĩi

−
(
g
(
θold
)T

ut

)2

uT
t Hut

(26)

where the last equality is achieved by substituting λ
′
(
θold, s

)
of equation (24) into D

(
θold + λ

′
(
θold, t

)
ut

)
− D

(
θold
)

.

Similarly, for the directions containing triplets, if s(i) =(
s
(i)
1 , s

(i)
2 , s

(i)
3

)
6= ∅, fix the value of s(i)1 and s

(i)
3 , and find

s
′(i) =

(
s
(i)
1 , s

′(i)
2 , s

(i)
3

)
such that us′(i) ∈ Ĩi and

s
′(i) = arg max

t:t=
(
s
(i)
1 ,t2,s

(i)
3

)
ut∈Ĩi

−
(
g
(
θold
)T

ut

)2

uT
t Hut

(27)

Among all the possible directions from us′(i) ∈ ∪Ĩi, the
optimal direction that maximizes the cost function is chosen:

s∗(i) = arg max
s′(i) 6=∅

−
(
g
(
θold
)T

ut

)2

uT
t Hut

(28)

Having chosen the optimal direction s∗(i), the value of
λ
′
(
θold, s∗(i)

)
should be clipped such that it satisfies the up-

per/lower bound constraints on {αi}ni=1 and {βi}mi=1. Clipping
functions are specific to the dual problems of each SVMp+
formulation and can be found in the Appendices.
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LULUPAPI Model

Recursive SMO-Style Optimizer

D
at

a Labels

Features

Privileged Information

Label Uncertainty

Feasible Direction
Generator

Margin Weight 
Generator

Optimization 𝜶, 𝜷

𝐼1
𝐼2

𝐼9

⋮ Decision Function

Fig. 1. Alternating SMO-style optimizer for the LULUPAPI model

B. Algorithm
Having described the framework for the proposed alternat-

ing SMO-style algorithm that solves the SVMp+ dual cost
functions of the LUPAPI and LULUPAPI models, the resultant
algorithm is codified in Algorithm 1. Note that most of the
calculations for Ii can be performed once, rather than in each
iteration, as they depend largely on the label and indices of
the training data samples. One can consider various initial
conditions for the α and β variables. Since the feasible
directions and clipping function ensure the satisfaction of
the dual problem conditions, a satisfactory initial condition
guarantees the fulfillment of these conditions in each iteration.
In all variants of the LUPAPI and LULUPAPI models, the
simplest initial condition that satisfies all of the constraints is
α
(0)
i = 0 and β(0)

i = C∗.
As mentioned earlier, while the proposed optimization pro-

cess for the LUPAPI and LULUPAPI models is the same given
the dual cost function and the corresponding feasible direc-
tions, the LULUPAPI model is always the most comprehensive
model and any given algorithm for LULUPAPI can easily
be modified to realize a LUPAPI version. For instance, any
algorithm specifically designed for the LULUPAPI mixture
model can be made into a LUPAPI mixture model by simply
replacing the uncertainty coefficients with unity. A general
schematic diagram of the LULUPAPI iterative optimizer is
depicted in Figure 1.

IV. EXPERIMENTS AND RESULTS

A number of experiments were performed to test the per-
formance of the three SVMp+ models against standard SVM,
in both the LUPAPI and LULUPAPI contexts. Recall that as
SVM+ requires the availability of privileged information for
all training samples, SVM+ cannot be utilized. The perfor-
mance of the LUPAPI and LULUPAPI models were tested
against SVM using a dataset of patients with and without
ARDS. The dataset contains privileged information and label
uncertainty related to the ARDS diagnosis, which allows for
a direct comparison of the performance of the LUPAPI and
LULUPAPI models.

A. ARDS
The ARDS dataset used in this study consisted of 485

patients with either moderate hypoxia or acute hypoxic respi-

Algorithm 1 Alternating SMO-style Optimization for SVMp+
formulations of LUPAPI and LULUPAPI
Require: Training data, training labels, τ > 0, γ > 0, C > 0,

C∗ > 0 and 0 < ε� 1.
Calculate: Kernels K and K∗, Hessian H .
Initialize: θ(0)i (i.e., α(0)

i and β(0)
i )

Initialize: Ii for each feasible direction based on the
indexes and training labels.

1: while exists a maximally sparse feasible direction us s.t.
g (θnew)

T
us > τ and

(
D (θnew)−D

(
θold
))

> ε do
2: θold = θnew

3: Calculate g
(
θold
)

4: Update Ii for all i based on θold

5: Calculate Ĩi if Ii 6= ∅
6: Calculate s(i) if Ĩi 6= ∅ using (25)
7: Calculate s

′(i) if Ĩi 6= ∅ using (26) or (27)
8: Calculate s∗(i) if ∪Ĩi 6= ∅ using (28)
9: Calculate λ∗ using the corresponding clipping function

10: Update θnew = θold + λ∗us∗

11: end while

ratory failure, treated at the University of Michigan Hospital.
We received institutional review board from the University of
Michigan to collect data for the study (HUM00104714) with
a waiver of informed consent among study participants. Each
case was independently reviewed by multiple expert clinicians
for the diagnosis of ARDS, with their confidence in that
diagnosis recorded (note that for label uncertainty, the average
confidence was used). Multiple experts reviewed the cases
as there can be disagreement between doctors reviewing the
same patients for the diagnosis of ARDS [5]. Clinical experts
also identified the time of ARDS onset for those patients who
were deemed to have developed the condition. Patients who
developed ARDS were labeled as negative before the time of
onset and positive for ARDS after. The non-privileged infor-
mation consisted of 25 clinical variables (features) extracted at
two-hour intervals from the patient’s Electronic Health Record
(EHR). The clinical features were temperature, heart rate, res-
piratory rate, systolic blood pressure, diastolic blood pressure,
positive end-expiratory pressure (PEEP), plateau pressure,
mean airway pressure, white blood cell count level, lactate
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TABLE I
LUPAPI RESULT FOR ARDS CLASSIFICATION

Train Test
Accuracy Sensitivity Specificity AUC Accuracy Sensitivity Specificity AUC

SVM 88.61 80.43 91.76 86.10 89.27 76.58 90.33 83.46
Vapnik’s Model 86.01 78.51 88.91 83.71 88.42 75.62 89.50 82.56
Mixture Model 88.09 81.28 90.72 86.00 88.78 82.23 89.34 85.78

Symmetric Mixture Model 88.56 81.59 91.26 86.42 88.94 81.13 89.60 85.37

TABLE II
ARDS CLASSIFICATION RESULTS USING SVM, SVM WITH LABEL UNCERTAINTY, LUPAPI MIXTURE MODEL, AND LULUPAPI MIXTURE MODEL.

Train Test
Accuracy Sensitivity Specificity AUC F1 Score Accuracy Sensitivity Specificity AUC

SVM 88.61 80.43 91.76 86.10 79.73 89.27 76.58 90.33 83.46
SVM with LU 87.56 78.74 90.96 84.85 79.60 89.52 80.03 90.32 85.17

LUPAPI 88.09 81.28 90.72 86.00 79.17 88.78 82.23 89.34 85.78
LULUPAPI 87.96 83.59 89.65 86.62 79.46 88.38 85.40 88.63 87.01

TABLE III
MCNEMAR X2 TEST ASSESSMENT OF STATISTICAL SIGNIFICANCE OF

PERFORMANCE IMPROVEMENTS EXCLUSIVELY AMONG ARDS
PATIENTS. IN THIS TABLE, EACH ROW REPRESENTS THE null

CLASSIFIER, AND EACH COLUMN REPRESENTS THE alternative
CLASSIFIER. FOR EXAMPLE, LULUPAPI VERSUS SVM HAS THE

MCNEMAR TEST STATISTIC X2 = 56.70, WHICH IS EXTREMELY IN

FAVOR OF LULUPAPI (p-VALUE << 0.001), WHILE LUPAPI VERSUS

SVM WITH LABEL UNCERTAINTY RESULTS IN THE MCNEMAR TEST

STATISTIC X2 = 10.22 (p-VALUE = 0.0014). IF THE NULL

CLASSIFIER OUTPERFORMS THE ALTERNATIVE CLASSIFIER, THE VALUE

IS REPRESENTED WITH AN “X".

SVM SVM with LU LUPAPI LULUPAPI
SVM 0 12.80 39.02 56.70

SVM with LU X 0 10.22 33.58
LUPAPI X X 0 15.61

LULUPAPI X X X 0

acid level, bicarbonate level, carbon dioxide level, pH level,
brain natriuretic peptide level (BNP), troponin level, albumin
level, and pulse oximetry value. Privileged information for
each patient consisted of the average of scores among multiple
clinical experts reviewing chest radiographs performed during
the hospitalization. Each clinician gave each chest x-ray a
rating of 1-8, scoring their belief that the x-ray was consistent
with ARDS (8 for high-confidence ARDS and 1 for high-
confidence non-ARDS). As such, privileged information is the
average of these scores if the chest x-ray is available.

In the experiment for classifying ARDS, the dataset was
first split into training and testing sets as shown in Figure 2. In
order to avoid bias toward patients, all samples from the same
patient were kept exclusively in either training or testing. This
yielded 323 patients in the training dataset, and the rest in the
testing set. Also, due to the strong inter-dependency between
samples of longitudinal patient data, the IID (independent and
identically distributed) assumption was invalid. Therefore, the
time-series sampling method proposed in [10] was performed
to reduce inter-correlation among the longitudinal clinical data
from each patient used in model training. After sampling, there
were 4661 samples in the training dataset, with 1298 positive
for ARDS. Since there was no sampling in the testing dataset,
there were 9362 samples in the test dataset.

Within the training set, 5-fold cross-validation was per-

formed. Five folds were formed, split by patients. At each
round, four folds were used for training and one for testing. 4-
dimensional hyperparameter optimization with a linear kernel
was performed separately for SVM and each of the LUPAPI
models, with the hyperparameters ranging over the following
intervals: [0.1, 5] for C and C∗, [1, 5] for ρ, and [0.5, 2] for γ.
The results are depicted in Table I. Based on these results, the
mixture model and the symmetric mixture model outperformed
SVM while Vapnik’s model underperformed.

485 total patients 

Patients with ARDS Patients without ARDS 

Pre-normalized, testing set 
(162 patients) 

Pre-sampled, pre-normalized 
training set (323 patients) 

Pre-normalized training set 

Training set Testing set 

2/3 

1/3 2/3 

1/3 

Sampling method from 
Reamaroon et al 

Normalization based on 
maximum for each feature 

Normalization based 
on training data 

Fig. 2. Flowchart of this study’s protocol with 5-fold cross-validation as
suggested in [10]. Hyperparameter optimization was performed by grid
search.

In order to analyze the effect of incorporating label un-
certainty into the LUPAPI model, the LULUPAPI model of
Section II-C was used to classify ARDS. Clinicians reported
the level of confidence in their diagnosis, denoted by li, using
a 1-8 scale in which 1 is not ARDS with high confidence and
8 is ARDS with high confidence. To quantitatively measure
uncertainty in the labels, i.e., πis in equation (22), a margin
weight generator πi = (|li − p1| − p2)p3 + p4 was used with
p1 = 4.5, p2 = 3, p3 = 0.2, and p1 = 0.9. This scaled
lis from the range 1-8 into the range 0.4-1 such that high-
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TABLE IV
COMPARISON OF ARDS CLASSIFICATION RESULTS USING LUPAPI MIXTURE MODEL, LULUPAPI MIXTURE MODEL AND DEEP LEARNING METHODS.

Train Test
Accuracy Sensitivity Specificity AUC Accuracy Sensitivity Specificity AUC

LUPAPI 88.09 81.28 90.72 86.00 88.78 82.23 89.34 85.78
LULUPAPI 87.96 83.59 89.65 86.62 88.38 85.40 88.63 87.01

Shallow NN (2 layers, 10 nodes) 87.52 86.65 87.77 87.31 79.98 84.99 79.56 82.23
Shallow NN (2 layers, 50 nodes) 87.89 84.81 89.08 86.94 83.41 82.97 89.05 85.39

Shallow NN (2 layers, 100 nodes) 87.41 82.43 89.33 85.88 87.97 66.67 89.76 78.22
LSTM (25 layers, 10 nodes) 90.94 83.10 93.97 88.53 88.39 64.33 90.41 77.34
LSTM (25 layers, 50 nodes) 91.99 84.67 94.82 89.74 88.91 70.39 90.47 80.43
LSTM (25 layers, 100 nodes) 92.62 85.79 95.25 90.52 87.40 71.76 88.71 80.24

confidence cases li=1 and li=8 were mapped to πi = 1 and
low-confidence cases li=4 and li=5 were mapped to πi = 0.4.
Table II summarizes the results of SVM, SVM with label
uncertainty, the LUPAPI mixture model, and the LULUPAPI
mixture model. As can be seen, while separate incorporation
of label uncertainty and privileged information improved the
SVM result (SVM with label uncertainty and LUPAPI in Table
II), the best test AUC was achieved by simultaneous use of
label uncertainty and privileged information (LULUPAPI in
Table II). As can be seen in these tables, any improvement
in AUC is correlated with improvement of sensitivity. This is
mainly due to the imbalanced nature of data (fewer ARDS
cases), which also results in a slight drop in accuracy.

The McNemar test [45] was employed to assess the sta-
tistical significance of improvements in performance of the
proposed models over SVM. Since this test is insensitive to
the proportion of positive versus negative cases [46], the test
was applied exclusively to positive cases. Table III summarizes
the results of the McNemar tests and verifies the statistical
significance of incorporating both label uncertainty and partial
available privileged information in detection of patients with
ARDS.

Beyond comparisons with SVM-based methods, the LU-
PAPI and LULUPAPI models were also benchmarked against
multiple popular deep learning methods. A “shallow” neural
network (two-layer feedforward network) with one hidden
layer of either 10, 50, or 100 nodes was trained to create
a less complex neural network more suitable for this type of
data. In addition, a long short-term memory (LSTM) network,
a specialized type of artificial recurrent neural network for
time-series sequential data [47], was also trained to provide
a performance comparison to a state-of-the-art deep learning
algorithm. The LSTM network was composed of 25 layers
with either 10, 50, or 100 hidden units. Both the shallow neural
network (Shallow NN) and LSTM models were implemented
with the Keras deep learning library using the Adam optimizer
algorithm [48] with 500 epochs (mini-batch size of 32) and
cross entropy as the loss function. Table IV summarizes the
results of this experiment. As can be seen, LUPAPI and
LULUPAPI outperformed the deep learning methods.

V. DISCUSSION

For the ARDS dataset in the previous section, a LUPAPI
or LULUPAPI formulation was the best performing model. In
the LUPAPI experiments on the ARDS dataset as depicted in
Table I, the mixture model was the best performing model,

achieving an AUC of 85.78, a 2.8% improvement over SVM.
Using the same mixture model, but incorporating label un-
certainty, the LULUPAPI formulation in Table II achieved an
AUC of 87.01, a 4.3% improvement over SVM. The statistical
tests in III verify the statistical significance of improvements
in performance. Additionally, Table IV shows that LULUPAPI
formulation achieved 2.39% improvement over the most com-
petitive deep learning method.

Though the LUPAPI and LULUPAPI frameworks improved
performance overall, Vapnik’s model underperformed the mix-
ture models and SVM on the ARDS dataset. Based on the
experiments, the primary reason for such performance is
due to the offset parameter b of the decision function (the
detailed calculation of which can be found in the Appendices).
For the mixture models and SVM, the set N (defined in
the Appendices) includes fewer αis, corresponding to fewer
support vectors that would be used to calculate the offset
parameter. This is in turn due to the consideration of slack
variables for all samples, regardless of privileged information
availability. However, for Vapnik’s model the set N consists of
more αis that negatively effects the offset parameter precision.

With respect to time complexity, the proposed alternating
SMO-style algorithm for the LUPAPI model is O (n). This is
similar to the SMO algorithm for conventional SVM and the
alternating SMO algorithm for the LUPI model (the SVM+
formulation), and results from the feasible direction vectors
having a constant number of nonzero components. However,
the experiments showed that given the same parameters and
stoppage criterion, Vapnik’s model required more iterations for
convergence.

The experimental results also support the claim that if the
hyperparameter optimization is performed thoroughly, perfor-
mance of the mixture model (9) is always lower-bounded by
SVM. This claim can also be verified using the dual forms,
noting the bound on αi and the inclusion of SVM feasible
directions in the feasible directions of (9).

VI. CONCLUSION

In this paper, a unified framework for handling machine
learning tasks in which privileged learning is partially avail-
able is presented, while simultaneously correcting for label
uncertainty. As there are multiple means of incorporating
partially available privileged information into SVM, three
models were considered: Vapnik’s model [12]; and two new
SVMp+ formulations, the mixture and symmetric mixture
models. An alternating SMO-style optimization algorithm was
provided that solves all model formulations.
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While Vapnik’s model (1) is a natural extension of the
SVM+ framework, the experiments showed that only the
two SVMp+ models (9) and (16) outperform SVM on the
real-world ARDS dataset. Moreover, on the ARDS dataset,
which contained both partially available privileged information
and label uncertainty, the LULUPAPI model incorporating
both outperformed the LUPAPI model that solely consid-
ered privileged information. Even though these models were
developed with clinical decision support systems in mind,
the proposed models can be applied to many other machine
learning applications in healthcare and other domains.

APPENDIX I
VAPNIK’S MODEL

Let θ be a (n+m)-variable vector as the concatenation of
the α and β variables: θ , (α,β)

T .

A. Feasible Directions and the Clipping Function
It can be verified that the cost function in equation (2) has 9

sets of maximally sparse feasible directions (defined in Section
III) as follows:

Direction 1: I1 , {us|s = (s1, s2) , n + 1 ≤ s1, s2 ≤
n+m, s1 6= s2; us1 = 1, us2 = −1, θs2 > 0, ∀i /∈ sui = 0}.

Direction 2: I2 , {us|s = (s1, s2) , 1 ≤ s1, s2 ≤ m, s1 6=
s2, ys1 = ys2 ; us1 = 1, us2 = −1, θs2 > 0, ∀i /∈ s ui = 0}.

Direction 3: I3 , {us|s = (s1, s2) , m + 1 ≤ s1, s2 ≤
n, s1 6= s2, ys1 = ys2 ; us1 = 1, θs1 < C, us2 = −1, θs2 >
0, ∀i /∈ s ui = 0}.

Direction 4: I4 , {us|s = (s1, s2) , m + 1 ≤ s1, s2 ≤
n, s1 6= s2, ys1 6= ys2 , ∀i /∈ s ui = 0; us1 = us2 = 1, θs1 <
C, θs2 < C or us1 = us2 = −1, θs1 > 0, θs2 > 0}.

Direction 5: I5 , {us|s = (s1, s2, s3) , 1 ≤ s1, s2 ≤
m, n + 1 ≤ s3 ≤ n +m, s1 6= s2, ys1 6= ys2 , ∀i /∈ s ui =
0; us1 = us2 = 1, us3 = −2, θs3 > 0 or us1 = us2 =
−1, θs1 > 0, θs2 > 0, us3 = 2}.

Direction 6: I6 , {us|s = (s1, s2, s3) , 1 ≤ s1 ≤
m, m + 1 ≤ s2 ≤ n, n + 1 ≤ s3 ≤ n +m, ys1 = ys2 , ∀i /∈
s ui = 0; us1 = 1, us2 = −1, θs2 > 0, us3 = −1, θs3 >
0 or us1 = −1, θs1 > 0, us2 = 1, θs2 < C, us3 = 1}.

Direction 7: I7 , {us|s = (s1, s2, s3) , 1 ≤ s1 ≤ m, m+
1 ≤ s2 ≤ n, n + 1 ≤ s3 ≤ n +m, ys1 6= ys2 , ∀i /∈ s ui =
0; us1 = us2 = 1, θs2 < C, us3 = −1, θs3 > 0 or us1 =
us2 = −1, θs1 > 0, θs2 > 0, us3 = 1}.

Direction 8: I8 , {us|s = (s1, s2, s3) , 1 ≤ s1, s2 ≤
m, m + 1 ≤ s3 ≤ n, s1 6= s2, ys1 6= ys2 , ys3 = ys2 , ∀i /∈
s ui = 0; us1 = 1, us2 = −1, θs2 > 0, us3 = 2, θs3 <
C or us1 = −1, θs1 > 0, us2 = 1, us3 = −2, θs3 > 0}.

Direction 9: I9 , {us|s = (s1, s2, s3) , 1 ≤ s1, s2 ≤
m, m + 1 ≤ s3 ≤ n, s1 6= s2, ys1 6= ys2 , ys3 = ys1 , ∀i /∈
s ui = 0; us1 = 1, us2 = −1, θs2 > 0, us3 = −2, θs3 >
0 or us1 = −1, θs1 > 0, us2 = 1, us3 = 2, θs3 < C}.

Generally, a move from an old feasible point θold to a
new feasible point θold = θold + λus in the direction of
us ∈ ∪Ii will satisfy all the constraints corresponding to the
dual problem if the step size λ fulfills the bounding constraints
(5) and (6). In Section III-A it was shown how the best
direction and the corresponding step size parameter λ are

chosen. After determining the direction and step size, the clip-
ping function, equation (29), ensures that the aforementioned
boundary conditions of the dual form are satisfied.

B. Offset Parameter of the Decision Function

In order to calculate the offset parameter b of the decision
function, suppose α and β are the solution of the SVMp+ dual
problem (2). Define the two sets N , {i|1 ≤ i ≤ m, αi >
0} and N

′
, {i|m + 1 ≤ i ≤ n, 0 < αi < C}. By the

conditions in SVMp+ (1), for the support vectors the Karush-
Kuhn-Tucker (KKT) conditions state [44], [49]:

∀i ∈ N yi (w · zi + b) = 1− (w∗ · z∗i + b∗) (31)

∀i ∈ N
′

yi (w · zi + b) = 1 (32)

Define:

Fi ,w · zi|i∈N =
n∑
j=1

yjαjKij |i∈N

F
′

i ,w · zi|i∈N ′ =
n∑
j=1

yjαjKij |i∈N ′

fi ,γw
∗ · z∗i |i∈N =

m∑
j=1

(αj + βj − C∗)K∗ij |i∈N

The equalities in equations (31) and (32) can be rewritten as:
b+ b∗ = 1− fi

γ − Fi ∀i ∈ N, yi = 1

b− b∗ = −1 + fi
γ − Fi ∀i ∈ N, yi = −1

b = 1− F ′i ∀i ∈ N ′ , yi = 1

b = −1− F ′i ∀i ∈ N ′ , yi = −1

Define N+ = {i|i ∈ N, yi = 1} and S+ =∑
i∈N+

(
1− fi

γ − Fi
)

, N− = {i|i ∈ N, yi = −1} and

S− =
∑
i∈N−

(
−1 + fi

γ − Fi
)

, N
′

+ = {i|i ∈ N
′
, yi = 1}

and S
′

+ =
∑
i∈N ′+

(
1− F ′i

)
, N

′

− = {i|i ∈ N
′
, yi = −1}

and S
′

− =
∑
i∈N ′−

(
−1− F ′i

)
. Solving the four equations

gives two possible answers: b = 1
2

(
S+

|N+| +
S−
|N−|

)
and b =

1
2

(
S
′
+

|N ′+|
+

S
′
−

|N ′−|

)
. The following average for the offset pa-

rameter was used:

b =

[
|N |

|N |+ |N ′ |

(
S+

|N+|
+

S−
|N−|

)

+

∣∣∣N ′ ∣∣∣
|N |+ |N ′ |

(
S
′

+∣∣N ′+∣∣ + S
′

−∣∣N ′−∣∣
)

APPENDIX II
MIXTURE MODEL

Let θ be a (n+m)-variable vector as the concatenation of
the α and β variables: θ , (α,β)

T .
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λ∗
(
θold, s∗(i)

)
= min
k∈s∗(i), uk>0

m+1≤k≤n

C − θ
old
k

uk
, min
j∈s∗(i)
uj<0

(
λ
′
(
θold, s∗(i)

)
,

∣∣∣∣∣θold
j

uj

∣∣∣∣∣
) (29)

λ∗
(
θold, s∗(i)

)
=



min

ρC∗−θold
k

uk
, min
j∈s∗(i)
uj<0

(
λ
′
(
θold, s∗(i)

)
,

∣∣∣∣ θold
j

uj

∣∣∣∣)
 1 ≤ k ≤ m, k ∈ s∗(i), uk > 0

min

C−θold
k

uk
, min
j∈s∗(i)
uj<0

(
λ
′
(
θold, s∗(i)

)
,

∣∣∣∣ θold
j

uj

∣∣∣∣)
 m+ 1 ≤ k ≤ n, k ∈ s∗(i), uk > 0

(30)

A. Feasible Directions and the Clipping Function
For the cost function in equation (10) and its constraints,

the sets of feasible directions are as follows:
Direction 1: I1 , {us|s = (s1, s2) , n + 1 ≤ s1, s2 ≤

n+m, s1 6= s2; us1 = 1, us2 = −1, θs2 > 0, ∀i /∈ sui = 0}.
Direction 2: I2 , {us|s = (s1, s2) , 1 ≤ s1, s2 ≤ m, s1 6=

s2, ys1 = ys2 ; us1 = 1, θs1 < ρC∗, us2 = −1, θs2 > 0, ∀i /∈
s ui = 0}.

Direction 3: I3 , {us|s = (s1, s2) , m + 1 ≤ s1, s2 ≤
n, s1 6= s2, ys1 = ys2 ; us1 = 1, θs1 < C, us2 = −1, θs2 >
0, ∀i /∈ s ui = 0}.

Direction 4: I4 , {us|s = (s1, s2) , m + 1 ≤ s1, s2 ≤
n, s1 6= s2, ys1 6= ys2 , ∀i /∈ s ui = 0; us1 = us2 = 1, θs1 <
C, θs2 < C or us1 = us2 = −1, θs1 > 0, θs2 > 0}.

Direction 5: I5 , {us|s = (s1, s2, s3) , 1 ≤ s1, s2 ≤
m, n + 1 ≤ s3 ≤ n +m, s1 6= s2, ys1 6= ys2 , ∀i /∈ s ui =
0; us1 = us2 = 1, θs1 < ρC∗, θs2 < ρC∗, us3 = −2, θs3 >
0 or us1 = us2 = −1, θs1 > 0, θs2 > 0, us3 = 2}.

Direction 6: I6 , {us|s = (s1, s2, s3) , 1 ≤ s1 ≤ m, m+
1 ≤ s2 ≤ n, n + 1 ≤ s3 ≤ n +m, ys1 = ys2 , ∀i /∈ s ui =
0; us1 = 1, θs1 < ρC∗, us2 = −1, θs2 > 0, us3 = −1, θs3 >
0 or us1 = −1, θs1 > 0, us2 = 1, θs2 < C, us3 = 1}.

Direction 7: I7 , {us|s = (s1, s2, s3) , 1 ≤ s1 ≤ m, m+
1 ≤ s2 ≤ n, n + 1 ≤ s3 ≤ n +m, ys1 6= ys2 , ∀i /∈ s ui =
0; us1 = us2 = 1, θs1 < ρC∗, θs2 < C, us3 = −1, θs3 >
0 or us1 = us2 = −1, θs1 > 0, θs2 > 0, us3 = 1}.

Direction 8: I8 , {us|s = (s1, s2, s3) , 1 ≤ s1, s2 ≤
m,m+1 ≤ s3 ≤ n, s1 6= s2, ys1 6= ys2 , ys3 = ys2 , ∀i /∈ sui =
0; us1 = 1, θs1 < ρC∗, us2 = −1, θs2 > 0, us3 = 2, θs3 <
C or us1 = −1, θs1 > 0, us2 = 1, θs2 < ρC∗, us3 =
−2, θs3 > 0}.

Direction 9: I9 , {us|s = (s1, s2, s3) , 1 ≤ s1, s2 ≤
m, m + 1 ≤ s3 ≤ n, s1 6= s2, ys1 6= ys2 , ys3 = ys1 , ∀i /∈
s ui = 0; us1 = 1, θs1 < ρC∗, us2 = −1, θs2 > 0, us3 =
−2, θs3 > 0 or us1 = −1, θs1 > 0, us2 = 1, θs2 <
ρC∗, us3 = 2, θs3 < C}.

It can be verified that when moving from any feasible point
θold in the direction of us ∈ ∪Ii and applying the clipping
function of equation (30), the constraints corresponding to dual
problems are satisfied.
B. Offset Parameter of the Decision Function

In order to calculate the offset parameter b of the decision
function, suppose α and β are the solution of the SVMp+ dual
problem (10). Define the two sets N , {i|1 ≤ i ≤ m, 0 <
αi < ρC∗} and N

′
, {i|m + 1 ≤ i ≤ n, 0 < αi < C}.

The rest of the calculations are similar to the previous case in
Appendix I.

APPENDIX III
SYMMETRIC MIXTURE MODEL

Let θ be a (n+m)-variable vector as the concatenation of
the α and β variables: θ , (α,β)

T .
A. Feasible Directions and the Clipping Function

Using the cost function in equation (17), the sets of feasible
directions are

Direction 1: I1 , {us|s = (s1, s2) , n + 1 ≤ s1, s2 ≤
n+m, s1 6= s2, ys1−n = ys2−n; us1 = 1, us2 = −1, θs2 >
0, ∀i /∈ s ui = 0}.

Direction 2: I2 , {us|s = (s1, s2) , n + 1 ≤ s1, s2 ≤
n+m, s1 6= s2, ys1−n 6= ys2−n, ∀i /∈ s ui = 0; us1 = us2 =
1 or us1 = us2 = −1, θs1 > 0, θs2 > 0}.

Direction 3: I3 , {us|s = (s1, s2) , 1 ≤ s1, s2 ≤ m, s1 6=
s2, ys1 = ys2 ; us1 = 1, θs1 < ρC∗, us2 = −1, θs2 > 0, ∀i /∈
s ui = 0}.

Direction 4: I4 , {us|s = (s1, s2) , 1 ≤ s1, s2 ≤ m, s1 6=
s2, ys1 6= ys2 , ∀i /∈ sui = 0; us1 = us2 = 1, θs1 < ρC∗, θs2 <
ρC∗ or us1 = us2 = −1, θs1 > 0, θs2 > 0}.

Direction 5: I5 , {us|s = (s1, s2) , m + 1 ≤ s1, s2 ≤
n, s1 6= s2, ys1 = ys2 ; us1 = 1, θs1 < C, us2 = −1, θs2 >
0, ∀i /∈ s ui = 0}.

Direction 6: I6 , {us|s = (s1, s2) , m + 1 ≤ s1, s2 ≤
n, s1 6= s2, ys1 6= ys2 , ∀i /∈ s ui = 0; us1 = us2 = 1, θs1 <
C, θs2 < C or us1 = us2 = −1, θs1 > 0, θs2 > 0}.

Direction 7: I7 , {us|s = (s1, s2, s3) , 1 ≤ s1 ≤ m, m+
1 ≤ s2 ≤ n, n+ 1 ≤ s3 ≤ n+m, ys1 = ys2 = ys3−n, ∀i /∈
s ui = 0; us1 = −1, θs1 > 0, us2 = 1, θs2 < C, us3 =
1 or us1 = 1, θs1 < ρC∗, us2 = −1, θs2 > 0, us3 =
−1, θs3 > 0}.

Direction 8: I8 , {us|s = (s1, s2, s3) , 1 ≤ s1 ≤ m, m+
1 ≤ s2 ≤ n, n + 1 ≤ s3 ≤ n + m, ys1 = ys2 , ys3−n 6=
ys1 , ∀i /∈ s ui = 0; us1 = −1, θs1 > 0, us2 = 1, θs2 <
C, us3 = −1, θs3 > 0 or us1 = 1, θs1 < ρC∗, us2 =
−1, θs2 > 0, us3 = 1}.

Direction 9: I9 , {us|s = (s1, s2, s3) , 1 ≤ s1 ≤ m, m+
1 ≤ s2 ≤ n, n + 1 ≤ s3 ≤ n + m, ys1 6= ys2 , ys3−n =
ys1 , ∀i /∈ s ui = 0; us1 = 1, θs1 < ρC∗, us2 = 1, θs2 <
C, us3 = −1, θs3 > 0 or us1 = −1, θs1 > 0, us2 =
−1, θs2 > 0, us3 = 1}.

Direction 10: I10 , {us|s = (s1, s2, s3) , 1 ≤ s1 ≤ m,m+
1 ≤ s2 ≤ n, n+1 ≤ s3 ≤ n+m, ys1 6= ys2 , ys3−n = ys2 , ∀i /∈
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λ∗
(
θold, s∗(i)

)
=



min

ρC∗ − θold
k , min

j∈s∗(i)
uj<0

(
λ
′
(
θold, s∗(i)

)
,

∣∣∣∣ θold
j

uj

∣∣∣∣)
 1 ≤ k ≤ m, k ∈ s∗(i), uk > 0

min

C − θold
k , min

j∈s∗(i)
uj<0

(
λ
′
(
θold, s∗(i)

)
,

∣∣∣∣ θold
j

uj

∣∣∣∣)
 m+ 1 ≤ k ≤ n, k ∈ s∗(i), uk > 0

(33)

λ∗
(
θold, s∗(i)

)
=



min

ρπkC
∗−θold

k

uk
, min
j∈s∗(i)
uj<0

(
λ
′
(
θold, s∗(i)

)
,

∣∣∣∣ θold
j

uj

∣∣∣∣)
 1 ≤ k ≤ m, k ∈ s∗(i), uk > 0

min

Cπk−θold
k

uk
, min
j∈s∗(i)
uj<0

(
λ
′
(
θold, s∗(i)

)
,

∣∣∣∣ θold
j

uj

∣∣∣∣)
 m+ 1 ≤ k ≤ n, k ∈ s∗(i), uk > 0

(34)

s ui = 0; us1 = 1, θs1 < ρC∗, us2 = 1, θs2 < C, us3 =
1 or us1 = −1, θs1 > 0, us2 = −1, θs2 > 0, us3 =
−1, θs3 > 0}.

As described in the paper, after determining the best feasible
direction and the corresponding step size, the clipping function
of equation (33) ensures that the boundary conditions of the
dual form are satisfied.
B. Offset Parameter of the Decision Function

If (17) is considered, the two sets N , {i|1 ≤ i ≤ m, 0 <
αi < ρC∗} and N

′
, {i|m + 1 ≤ i ≤ n, 0 < αi < C} are

defined. By the conditions for (16), for the support vectors,
the KKT conditions state:

∀i ∈ N yi (w · zi + b) = 1− yi (w∗ · z∗i + b∗)

∀i ∈ N
′

yi (w · zi + b) = 1

Define (note that fi is not the same as the previous cases
in Appendices I and II):

Fi ,w · zi|i∈N =

n∑
j=1

yjαjKij |i∈N

F
′

i ,w · zi|i∈N ′ =
n∑
j=1

yjαjKij |i∈N ′

fi ,γw
∗ · z∗i |i∈N =

m∑
j=1

(αj + βj − C∗) yjK∗ij |i∈N

The aforementioned conditions can be written as
b+ b∗ = 1− fi

γ − Fi ∀i ∈ N, yi = 1

b+ b∗ = −1− fi
γ − Fi ∀i ∈ N, yi = −1

b = 1− F ′i ∀i ∈ N ′ , yi = 1

b = −1− F ′i ∀i ∈ N ′ , yi = −1

Note that not only is fi not the same as previous cases, but
the second equation has also been changed. Define N+ =

{i|i ∈ N, yi = 1} and S+ =
∑
i∈N+

(
1− fi

γ − Fi
)

, N− =

{i|i ∈ N, yi = −1} and S− =
∑
i∈N−

(
−1− fi

γ − Fi
)

,

N
′

+ = {i|i ∈ N
′
, yi = 1} and S

′

+ =
∑
i∈N ′+

(
1− F ′i

)
,

N
′

− = {i|i ∈ N ′ , yi = −1} and S
′

− =
∑
i∈N ′−

(
−1− F ′i

)
.

Solving the four equations gives two possible answers: b =

1
2

(
S+

|N+| +
S−
|N−|

)
and b = 1

2

(
S
′
+

|N ′+|
+

S
′
−

|N ′−|

)
. The following

average for the offset parameter was used:

b =

[
|N |

|N |+ |N ′ |

(
S+

|N+|
+

S−
|N−|

)

+

∣∣∣N ′ ∣∣∣
|N |+ |N ′ |

(
S
′

+∣∣N ′+∣∣ + S
′

−∣∣N ′−∣∣
)

APPENDIX IV
LULUPAPI MIXTURE MODEL

Let θ be a (n+m)-variable vector as the concatenation of
the α and β variables: θ , (α,β)

T .

A. Feasible Directions and the Clipping Function

For the cost function in equation (23) and its constraints,
the sets of feasible directions are as follows:

Direction 1: I1 , {us|s = (s1, s2) , n + 1 ≤ s1, s2 ≤
n+m, s1 6= s2; us1 = 1, us2 = −1, θs2 > 0, ∀i /∈ sui = 0}.

Direction 2: I2 , {us|s = (s1, s2) , 1 ≤ s1, s2 ≤ m, s1 6=
s2, ys1 = ys2 ; us1 = 1, θs1 < ρC∗πs1 , us2 = −1, θs2 >
0, ∀i /∈ s ui = 0}.

Direction 3: I3 , {us|s = (s1, s2) , m + 1 ≤ s1, s2 ≤
n, s1 6= s2, ys1 = ys2 ; us1 = 1, θs1 < Cπs1 , us2 = −1, θs2 >
0, ∀i /∈ s ui = 0}.

Direction 4: I4 , {us|s = (s1, s2) , m + 1 ≤ s1, s2 ≤
n, s1 6= s2, ys1 6= ys2 , ∀i /∈ s ui = 0; us1 = us2 = 1, θs1 <
Cπs1 , θs2 < Cπs2 or us1 = us2 = −1, θs1 > 0, θs2 > 0}.

Direction 5: I5 , {us|s = (s1, s2, s3) , 1 ≤ s1, s2 ≤
m, n + 1 ≤ s3 ≤ n +m, s1 6= s2, ys1 6= ys2 , ∀i /∈ s ui =
0; us1 = us2 = 1, θs1 < ρC∗πs1 , θs2 < ρC∗πs2 , us3 =
−2, θs3 > 0 or us1 = us2 = −1, θs1 > 0, θs2 > 0, us3 =
2}.

Direction 6: I6 , {us|s = (s1, s2, s3) , 1 ≤ s1 ≤ m, m+
1 ≤ s2 ≤ n, n + 1 ≤ s3 ≤ n +m, ys1 = ys2 , ∀i /∈ s ui =
0; us1 = 1, θs1 < ρC∗πs1 , us2 = −1, θs2 > 0, us3 =
−1, θs3 > 0 or us1 = −1, θs1 > 0, us2 = 1, θs2 <
Cπs2 , us3 = 1}.

Direction 7: I7 , {us|s = (s1, s2, s3) , 1 ≤ s1 ≤
m, m + 1 ≤ s2 ≤ n, n + 1 ≤ s3 ≤ n +m, ys1 6= ys2 , ∀i /∈
s ui = 0; us1 = us2 = 1, θs1 < ρC∗πs1 , θs2 < Cπs2 , us3 =



12 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2017

−1, θs3 > 0 or us1 = us2 = −1, θs1 > 0, θs2 > 0, us3 =
1}.

Direction 8: I8 , {us|s = (s1, s2, s3) , 1 ≤ s1, s2 ≤
m, m + 1 ≤ s3 ≤ n, s1 6= s2, ys1 6= ys2 , ys3 = ys2 , ∀i /∈
s ui = 0; us1 = 1, θs1 < ρC∗πs1 , us2 = −1, θs2 > 0, us3 =
2, θs3 < Cπs3 or us1 = −1, θs1 > 0, us2 = 1, θs2 <
ρC∗πs2 , us3 = −2, θs3 > 0}.

Direction 9: I9 , {us|s = (s1, s2, s3) , 1 ≤ s1, s2 ≤
m, m + 1 ≤ s3 ≤ n, s1 6= s2, ys1 6= ys2 , ys3 = ys1 , ∀i /∈
s ui = 0; us1 = 1, θs1 < ρC∗πs1 , us2 = −1, θs2 > 0, us3 =
−2, θs3 > 0 or us1 = −1, θs1 > 0, us2 = 1, θs2 <
ρC∗πs2 , us3 = 2, θs3 < Cπs3}.

It can be verified that when moving from any feasible point
θold in the direction of us ∈ ∪Ii and applying the clipping
function of equation (34), the constraints corresponding to dual
problems are satisfied.

B. Offset Parameter of the Decision Function

In order to calculate the offset parameter b of the decision
function, suppose α and β are the solution of the SVMp+
dual problem (23). Define two sets N , {i|1 ≤ i ≤ m, 0 <
αi < ρπiC

∗} and N
′
, {i|m+ 1 ≤ i ≤ n, 0 < αi < Cπi}.

The rest of the calculations are then similar to the previous
case in Appendix I.

APPENDIX V
ABBREVIATIONS

TABLE V
ABBREVIATION TABLE

Abbreviation Explanation
SVM Support Vector Machine

SVM+ SVM with privilege information
SVMp+ SVM with partially available privilege information

SMO Sequential Minimal Optimization
LU Label Uncertainty

LUPI Learning Using Privilege Information
LUPAPI Learning Using Partially Available Privileged Information

LULUPAPI Learning Using Label Uncertainty and Partially Available
Privileged Information

KKT Karush-Kuhn-Tucker
AUC Area Under the Curve
IID Independent and Identically Distributed
NN Neural Network

LSTM Long Short-Term Memory
ARDS Acute Respiratory Distress Syndrome
EHR Electronic Health Record
PEEP Positive End-Expiratory Pressure
BNP Brain Natriuretic Peptide
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