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A B S T R A C T   

Pulse oximetry is a noninvasive and low-cost physiological monitor that measures blood oxygen levels. While the 
noninvasive nature of pulse oximetry is advantageous, the estimates of oxygen saturation generated by these 
devices are prone to motion artifacts and ambient noise, reducing the reliability of such estimations. Clinicians 
combat this by assessing the quality of oxygen saturation estimation by visual inspection of the photo
plethysmograph (PPG), which represents changes in pulsatile blood volume and is also generated by the pulse 
oximeter. In this paper, we propose six morphological features that can be used to determine the quality of the 
PPG signal and generate a signal quality index. Unlike many similar studies, this approach uses machine learning 
and does not require a separate signal, such as ECG, for reference. Multiple algorithms were tested against 46 30- 
min PPG segments of patients with cardiovascular and respiratory conditions, including atrial fibrillation, 
hypoxia, acute heart failure, pneumonia, ARDS, and pulmonary embolism. These signals were independently 
annotated for signal quality by two clinicians, with the union of their annotations used as the ground-truth. 
Similar to any physiological signal recorded in a clinical setting, the utilized dataset is also unbalanced in 
favor of good quality segments. The experiments showed that a cost-sensitive Support Vector Machine (SVM) 
outperformed other tested methods and was robust to the unbalanced nature of the data. Though the proposed 
algorithm was tested on PPG signals, the methodology remains agnostic to the dataset used, and may be applied 
to any type of pulsatile physiological signal.   

1. Introduction 

Pulsatile physiological signals are often noninvasive recordings of 
blood-related physiological measurements used in health monitoring. 
The quality of these recordings is a major concern in healthcare [1,2], as 
many vital physiological measurements (e.g., respiratory rate, heart 
rate, and oxygen saturation) are extracted from these signals. The pul
satile nature and similarity of patterns across these signals [3] makes it 

possible to develop a general algorithm for quality assessment. Addi
tionally, due to the optical sensors used for noninvasive recording of 
pulsatile signals, the prominent noise sources contaminating these sig
nals are also the same, i.e., motion artifacts and ambient light [3]. Thus, 
in this paper six morphological features and a machine learning 
framework are introduced in order to measure the quality of any pul
satile physiological signal and detect segments of poor quality. As an 
initial application, the algorithm was tested on PPG signals generated 
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from pulse oximeters. 

1.1. Pulse oximetry 

Pulse oximetry is a low-cost noninvasive tool that has been widely 
employed in healthcare to extract vital signs such as oxygen saturation 
and heart rate from the recorded pulsatile signal. Arterial oxygen satu
ration (SaO2) is defined as the ratio of oxygenated hemoglobin to the 
combined amount of oxygenated and deoxygenated hemoglobin present 
in arterial blood, and it is indicative of cardiovascular and respiratory 
status. A photoplethysmograph (PPG), which represents changes in 
pulsatile blood volume signal, is recorded by the pulse oximeter and is 
used in estimating the oxygen saturation non-invasively. The estimated 
value of SaO2 using pulse oximetry is called peripheral oxygen satura
tion (SpO2). Currently pulse oximeters use a weighted average method 
to compute values of SpO2, however this estimate is prone to many ar
tifacts including ambient light, motion, and those due to low perfusion 
[3]. Thus, the reliability of SpO2 is highly dependent upon the quality of 
the PPG signal. Signal quality is becoming more relevant due to the 
increasing use of telemedicine, as well as the need to reduce false alarms 
in intensive care units [1,2]. Additionally, studies have shown that 
medical data quality affects the performance of clinical decision support 
systems significantly [4 7]. 

In the literature there are several studies of pulsatile signal quality 
(especially PPG signal), but many of these works use either an incom
plete dataset, other simultaneous signals, or did not take a machine 
learning approach. For instance, in Ref. [8] a novel online algorithm 
based on gradient ascent was proposed to estimate the quality of pul
satile signals. However, the ECG signal was used as an input (and 
reference) of their algorithm. 

In Ref. [9] four morphological and temporal features are extracted 
and used as states in a Kalman filter to adaptively accept or reject signals 
based on their quality. In Ref. [10], a novel method using repeated 
Gaussian filters for localizing segments of pulses was developed, with 
cross-correlation of consecutive pulse segments used to calculate a 
signal quality index. However, their proposed algorithm has no learning 
process and the threshold on SQI is calculated experimentally. In 
Ref. [11] three SQI algorithms are proposed to analyze the effect of 
motion artifact on PPG signal, with only one of them solely relying on 
PPG signal while the other two rely on red and infrared signals. In 
Ref. [12], authors defined an SQI and focused on reliability of heart rates 
obtained from ECG and PPG collected using wearable sensors. Their 
proposed SQI algorithm is essentially a cascade of decision rules on RR 
intervals and heart rate combined with adaptive template matching. In 
Ref. [13] kurtosis and Shannon entropy were used in a statistical 
framework for detecting motion and noise artifact with multi-site (i.e., 
ear, finger, and forehead) PPG signals. In each segment of PPG, the 
kurtosis and entropy are compared with thresholds and their fusion is 
used as a metric for artifact detection. It was concluded that forehead 
and finger sensors have the highest and lowest contamination respec
tively. In Ref. [14], a framework was proposed in which PPG beats are 
detected and their quality estimated by comparing the beats with a 
template. For each beat a quality index is calculated using the normal
ized root mean squared error of each beat with respect to the template 
derived from the surrounding pulses using dynamic time warping 
barycenter averaging. The principle drawback of the proposed algo
rithm is its limitation to offline settings. In Ref. [15], an algorithm was 
presented in which beats are first localized, after which they are 
resampled to enforce equal beat duration, with beat quality estimated by 
calculating the similarity between consecutive beats. In this framework, 
spline interpolation is used as the resampling method to ensure the 
equality of beat duration, and the Pearson correlation coefficient is used 
to measure the similarity between the two consecutive resampled PPG 
beats. The classification in this method relies on a threshold that is 
determined by enforcing the quality of sensitivity and specificity of 
training data. In Ref. [16], a real-time PPG quality assessment is 

presented with focus on reduction of the energy consumption and false 
alarms. The proposed method determines the quality of a PPG segment 
in a four-step hierarchical decision-making process, with each step 
comparing a feature against a threshold. The features used are maximum 
absolute amplitude, local amplitude maxima, the zero-crossing rate, and 
autocorrelation. The potential limitations of the aforementioned ap
proaches include not employing any machine learning method and 
reliance upon empirical thresholds that determine the quality of PPG 
segments. 

In many pulsatile signal quality assessment methodologies, 
morphological or Signal Quality Index (SQI)-based features are extrac
ted and utilized by machine learning algorithms. In Ref. [17] dynamic 
time-warping (DTW) is first used to align each beat to match a running 
template, after which four signal quality metrics are extracted. In their 
best performing method, the four signal quality metrics, a fusion SQI, 
and the number of beats are presented to a multilayer perceptron (MLP) 
neural network. The algorithm s performance was tested on an 
expert-labeled database of 1055 six-seconds segments of PPG. The 
weights of the trained MLP are specific to the type of data on which it is 
trained, requiring re-training in order to assess the quality of each type 
of pulsatile signal. In Ref. [18] the author developed a signal quality 
algorithm for PPG using eight SQIs, including perfusion, kurtosis, and 
skewness. Four classifiers were tested to classify the 106 1-min re
cordings into excellent, acceptable, or unfit, with skewness yielding the 
best performance. In Ref. [19], PPG signals of patients with atrial 
fibrillation were divided into segments of 30 s, after which 42 temporal 
and spectral features (e.g., mean, median, standard deviation, Shannon 
entropy, median frequency, and spectral entropy) were extracted from 
each segment. Three machine learning methods (support vector ma
chine, k-nearest neighbors, and decision tree) were then investigated, 
with support vector machine outperforming the other two methods. 

In studies such as [1,2,20], multiple intensive care unit signals were 
considered to estimate the signal quality for false alarm reduction. More 
specifically, in Ref. [1] a relevance vector machine (RVM) was trained 
with 114 physiological and signal quality features extracted from the 
ECG, PPG, and arterial blood pressure waveforms to reduce false alarms 
in an intensive care unit (ICU). In Ref. [2] a temporal vector of samples 
from many waveforms including respiration waveform, PPG, and mul
tiple ECG leads were used in an adaptive filtering and prediction algo
rithm called MCAF to generate point-by-point SQI. In Ref. [20] a 
supervised machine learning algorithm was used to classify alerts as real 
or artifacts in online noninvasive vital sign data streams (heart rate, 
respiratory rate, peripheral oximetry) to reduce alarm fatigue and 
missed true instability. 

The proposed method in this paper is primarily related (in terms of 
feature space) to Ref. [21], in which morphological features such as 
pulse amplitude, trough depth difference between successive pulse 
troughs, and pulse width are used in conjunction with multiple heuristic 
thresholds to divide 104 1-min fingertip PPG signals into good and 
artifact signals. The result of their proposed algorithm was then 
compared with expert-generated labels. This approach is limited by its 
use of heuristics and its need for a simultaneous ECG signal for 
reference. 

To overcome the limitations of prior works, in this paper an auto
matic machine learning framework is designed based on features 
extracted solely from the PPG signal to classify beats and intervals as 
good or poor quality. A cohort of patients with hypoxia, acute heart 
failure, pneumonia, acute respiratory distress syndrome (ARDS) and 
other respiratory conditions was created for this study. PPG signals from 
this cohort were manually annotated by two clinicians to produce a gold 
standard, to which the performance of the algorithm was compared. 
Additionally, the proposed algorithm is also tested against a public 
dataset. 
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2. Material 

The primary dataset used in this study is part of an ongoing ARDS 
project, consisting of patients treated at Michigan Medicine. In an effort 
to compare the proposed algorithm to published methods, the publicly 
available dataset CapnoBase was used. However, the primary focus of 
this paper is on the ARDS database. 

2.1. ARDS dataset 

As a part of ongoing research at Michigan Medicine, a retrospective 
cohort of adult patients hospitalized between November 2016 and June 
2017 with moderate hypoxia, acute heart failure, pneumonia, acute 
respiratory distress syndrome (ARDS) and other respiratory conditions 
was created. All these patients required mechanical ventilation during 
the first 7 days of their hospitalization. We acquired data from bedside 
telemetry monitors of all patients, which is currently stored in the 
Michigan Center for Integrative Research in Critical Care (MCIRCC) 
Databank. The PPG recording equipment used in this study is Masimo 
LNCS DCI adult reusable sensor with GE Medical PDM interface. The 
sampling frequency of the PPG signals in the dataset is 60 Hz. 

For the current pulse oximetry quality study, 46 30-min segments of 
PPG signal from different patients with various cardiovascular and res
piratory conditions including atrial fibrillation, hypoxia, acute heart 
failure, pneumonia, ARDS, and pulmonary embolism were extracted. 27 
(out of 46) of these patients are male, the average age of the patients is 
57 years old, and 37 (out of 46) are Caucasian. Among these 46 30-min 
segments, only 12 segments are almost entirely normal, 20 segments 
contain long episodes of atrial fibrillation and sinus tachycardia, and the 
rest contain sporadic short-term abnormalities (finger tapping, 

premature atrial contractions and etc). Two clinicians independently 
reviewed PPG signals for uniform, pulsatile changes in the waveform, 
based on their experience interpreting such waveforms in clinical set
tings. Waveforms without a clear pulsatile signal (regardless of 
arrhythmic episodes, only based on morphology) that a clinician would 
not have trusted as accurate in a clinical setting were annotated as poor 
quality segments. Also, certain pulsatile waveforms suspicious for arti
fact, e.g., finger tapping, were also annotated as poor quality. Fig. 1 il
lustrates a 24-second segment of PPG signal annotated for signal quality 
by both clinicians. The union of their labels is used as ground-truth for 
the algorithm. This cohort is primarily used in order to develop and 
validate the proposed algorithms. 

2.2. CapnoBase dataset 

The CapnoBase (CB) dataset [10] consists of 42 8-min finger trans
missive PPG recordings (29 pediatric, 13 adult) collected during elective 
surgery and routine anesthesia with a sampling frequency of 300 Hz. 
This dataset also includes signal annotations adjudicated by a research 
assistant. 

3. Methodology 

In this section, an overview of signal annotation, the proposed al
gorithm, and validation framework is provided. The advantages of the 
proposed methodology are three-fold: 1) applicability to any source of 
pulsatile physiological signals; 2) independence from any synchronized 
reference signal; 3) adaptivity to any dataset. As discussed below, the 
adaptivity of the proposed framework to any pulsatile physiological 
signal or any dataset is due to the normalization within the defined 

Fig. 1. Exemplary segment of PPG signals designated with bad quality from both experts (clinicians). A signal segment not annotated as bad quality is assumed to 
be of good quality. 
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if the mode of pulse duration is not unique, the median of pulse 
duration is chosen for template width). 

If both of these conditions are satisfied, the first T seconds are 
accepted for initial baseline values extraction, otherwise the T-second 
window is iteratively slid for 1 s until both conditions are satisfied (e.g., 
intervals of [0,20] [1,21], etc.). 

Due to the non-stationary nature of the source, after the initial 
calculation of the baseline values and templates, an adaptive algorithm 
for updating these baseline values and templates is necessary, particu
larly if the PPG signal has long duration. As such, after calculating the 
features of each segment using the baseline values and templates of the 
previous segment, these baseline values and templates are then updated 
to be used in the subsequent segment. Similarly, an interval is accepted 
for updating the baseline values and templates if it also satisfies the two 
aforementioned criteria. 

3.1.4. A simple algorithm 
Through feature extraction, each sample is represented as 6 

where p, P , P , P, D T B and D T B are the features 
described in section 3.1. Using a simple algorithm based on decision 
rules, these values can be compared with thresholds for classification 
purposes. The hypothetical thresholds for a simplistic algorithm can be 
achieved experimentally using training data. After choosing the 
thresholds, the six features can be used to classify each beat, more 
specifically each interval between any two peaks (positive to negative 
peaks or negative to positive peaks), into a good or poor quality interval. 
In this case, a simple algorithm assigns the poor quality label to each 
interval between two consecutive peaks if any of the six features are 
greater than the threshold. Formally speaking, for an interval set pi

pi 1

pi 1 pi between any two consecutive peaks (note that pi
pi 1

), 
define the feature function ffeature

6 as a function from the 
set of time samples and bounded set of PPG values to the feature space. 
The set of poor quality intervals is then 

where 1 6
6 is a vector of thresholds on the six features, 

and the inequality is performed component-wise. Obviously the set of 
good quality signal is the complement of Poor, i.e. Good

Poor C Poor. This algorithm is used later for threshold 
optimization as described in section 4.1.4. 

3.1.5. Interval classification and signal quality index 
One of the primary reasons for measuring PPG quality and reliability 

is that other important signals such as oxygen saturation utilize PPG in 
their formation. In general, oxygen saturation values are averaged over a 
moving window of PPG signal. In the ARDS dataset, the pulse oximetry 
hardware (PPG recording device) calculates every value of oxygen 
saturation based on the last 8 s of PPG signal. Consequently, having 
isolated poor quality beats/intervals is insufficient to label a PPG 
segment as poor quality. Thus, for an interval tk of length 8 s such 
that tk ti ti tk 8 ti tk , the signal quality index (SQI) for 
that window is defined as 

(1)  

which is always a number between zero and one. As discussed in section 
3.4, the SQI for any given interval will be compared with a pre
determined rate (threshold) for classification. 

3.2. Learning models and decision rules 

In this paper, two different training/testing frameworks are consid
ered: (a) A standard learning method in which a single model is trained 
on 6-dimensional samples (Fig. 4a), and (b) six similar models that are 

Fig. 3. Cumulative distribution function (CDF) of normalized negative-to- 
negative peak jump ( Pi ). 

Fig. 4. Two training/testing framework used in this paper: (a) a framework for 
training/testing model on 6-dimensional samples (b) a framework for training/ 
testing six similar models on each 1-dimensional sample feature followed by 
decision rule, which basically is a logical or operation on the six outcomes. 
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trained on each sample feature separately, followed by a decision rule 
(Fig. 4b). The principle reason for considering the second model is the 
nature of the proposed normalized features, i.e., for a normal PPG beat 
all the features are expected to be close to zero; while for a poor quality 
interval, the absolute value of at least one of these features is expected to 
be greater than a threshold. To support this argument, Fig. 3 represents 
the cumulative distribution function (CDF) of the absolute value of the 
normalized negative-to-negative peak jump feature Pi for both 
classes. This figure shows that the larger the value of Pi , the worse 
the quality, and this is valid for all the features. Thus, in the second 
framework, the decision rule is simply a logical or operation on the 
outcomes of each trained model on individual features. 

3.3. Beat-scale analysis 

One challenging aspect of the ARDS dataset is that the algorithms 
assign labels to each interval between consecutive peaks (positive peak 
to negative peak or negative peak to positive peak), while experts assign 
“poor quality labels to any interval of any length not necessarily to the 
beats. To perform beat-scale analysis, the signal annotations must be 
converted into beat-scale labels. If any subsequence of an interval be
tween consecutive peaks is included in a segment annotated as poor 
quality segment, the label of that interval is poor , otherwise it is 
labeled good . Another challenge of the dataset common to many 
medical datasets is the unbalanced (also refer to as imbalanced 
[23 27]) proportion of class samples, i.e. there are far fewer poor 
quality features, compared to those of good quality. In fact, only about 
5% of samples are of poor quality. Table 1 summarizes the percentage of 
poor quality samples in the dataset based on two experts annotations, 
their union and intersection. In this study, the union of labels is used as 
ground-truth. 

3.4. Fixed interval-scale analysis 

As mentioned in Section 3.1.5, the values of oxygen saturation in the 

dataset represent an average over fixed intervals of 8 s. In light of this, 
it s needed to determine what percentage of the 8 s interval must be 
considered poor quality before deeming the entire interval as poor. A 
rate parameter may be used in the analysis as a threshold for the SQI 
(equation (1) in each interval of 8 s. For any value of this parameter, an 
interval is of poor quality if its SQI is greater than the rate. Hence, by 
changing the rate from 0 to 1, sensitivity and specificity of any algorithm 
and the inter-rater reliability of expert annotations can be calculated. 
Fig. 5 illustrates the inter-rater reliability for annotations using Cohen s 
Kappa against the aforementioned rate. As can be seen, for a fixed in
terval of length 8 s, changing the rate does not have a significant impact 
on inter-rater reliability. Consequently, a rate of 0.5 is used on the union 
of annotation labels to determine the ground-truth label of these fixed 
intervals, since for this rate Cohen s Kappa is maximal. 

4. Experiments 

Using the ARDS dataset, 100 iterations of random subsampling is 
performed at the patient level. In each iteration the dataset is randomly 
divided into 23 training data (31 30-min signals) and 13 testing data (15 30- 
min signals). This results in a total of 234,739 samples at the beat-scale 
level. While the results of beat-scale analysis are also provided, we 
prioritize the performance of the proposed algorithm on intervals of 
fixed length (fixed interval-scale analysis). Though seemingly counter
intuitive, this approach can be considered sound, as physiological sig
nals such as oxygen saturation are extracted based on the average value 
in fixed-length PPG segments. Hence, the reliability of these values de
pends on the quality of the fixed-length PPG segments. As mentioned 
earlier, another challenge of this dataset is the unbalanced nature of the 
data, hence learning methods such as a standard support vector machine 
(SVM) cannot be directly applied. As such, certain modifications are 
needed. In this study, for the first learning framework (Fig. 4a), SVM and 
an ensemble of trees are used; while for the second framework (Fig. 4b) a 
decision tree and a proposed learning method called threshold optimi
zation are employed, which when combined with a non-uniform 
undersampling approach fits the feature space well. Fig. 6 represent 
the block diagram of the learning process. 

Table 1 
The unbalanced nature of the ARDS dataset at beat-scale level.   

Expert 1 Expert 2 Union Intersection 

Percentage of poor quality 
samples 

4.46 4.87 6.39 2.94  

Fig. 5. Inter-rater reliability using Cohen s Kappa.  

Fig. 6. A block diagram of learning process. DT: decision tree, EDT: ensemble 
of decision trees, SVM: support vector machine, TO: threshold optimization. 
Models (a) and (b) refer to the two training frameworks illustrated in Fig. 4. 

Table 2 
Performance comparison of decision tree (DT), the ensemble of decision trees 
(EDT), SVM and threshold optimization (TO) in beat-scale analysis. The running 
time is the average time needed to train the algorithms on 31 30-min PPG signals 
and test on 15 30-min PPG signals.   

DT EDT SVM TO 

Undersampling No Yes No yes 
Framework Two One One Two 
Running time (sec) 5 450 375 20 
Train Accuracy 96.92 100 85.37 80.82  

Sensitivity 99.92 100 86.05 82.82  
Specificity 96.70 100 85.31 80.67 

Test Accuracy 75.02 88.85 83.02 80.66  
Sensitivity 73.01 70.03 85.45 82.38  
Specificity 75.14 90.04 82.82 80.50  
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4.1. Results 

In this section, each learning method (decision tree, the ensemble of 
decision tree, support vector machine, and threshold optimization) is 
briefly described and their performance results with respect to both 
beat-scale and fixed interval-scale analyses are provided. Each result is 
the average of multiple simulations, each with different randomly 
generated training (31/46) and testing (15/46) sets. ROC curves are 
calculated for the fixed interval-scale analysis using the testing sets only. 

4.1.1. Classification and regression trees (CART) 
Using the second framework (Fig. 4b), a decision tree algorithm 

(CART, [28]) is used as its performance is more robust to unbalanced 
data. Table 2 includes the average decision tree model performance on 
both training and test dataset. As can be observed from the results, the 
decision tree overfit the training dataset. Thus, to overcome this issue, 
an ensemble of decision trees (Section 4.1.2) is employed. 

Fig. 8 includes the ROC curves for the decision tree model in the fixed 
interval-scale analysis. Based on this figure, the best performance of the 
decision tree model yields a sensitivity of 88.96 and specificity of 86.30 
for a rate of 0.45. 

4.1.2. The ensemble of decision trees 
Based on the first framework (Fig. 4a), an ensemble of decision trees 

model is used to improve performance by reducing overfitting and better 
handle the unbalanced data set. To combat overfitting, the maximal 
number of decision splits was set to be equal to the number of obser
vations in the training sample. To ameliorate the unbalanced nature of 
the data, the RUSBoost algorithm [29] is employed. In this algorithm, an 
intelligent undersampling technique is used to balance the class distri
bution, which results in a simple algorithm with faster training times 
and favorable performance. Table 2 includes the result of the algorithm 
for beat-scale analysis. 

Fig. 8 includes the ROC curve for the ensemble of decision trees al
gorithm in the fixed interval analysis. Based on this figure, the best result 
is sensitivity of 91.56 and specificity of 91.97 with rate of 0.4. 

4.1.3. SVM 
In order to train an SVM to implement the first framework (Fig. 4a), 

the optimization problem needs to be modified to properly handle the 
unbalanced data. Consider a soft-margin SVM for binary classification 

Fig. 7. A visual example of quality result on fixed interval-scale segments using the SVM model with rate (threshold on interval SQI) 0.7. In the first interval (0 8 s) 
both the algorithm and annotation have poor quality segments in beat-scale, which is less than 5.6 (8 0 7) seconds; thus, this interval is not considered poor quality 
by both the algorithm and the annotation. The second interval (8 16 s) had more than 5.6 s of poor quality beat-scale segments using the algorithm, but slightly less 
than 5.6 s of poor quality beat-scale segments using the annotation, therefore this interval is labeled as poor quality using the algorithm, but not using the annotation. 
The last interval (16 24 s) has more than 5.6 s poor quality beat-scale segments in both algorithm and annotation. 

Fig. 8. Comparison of ROC curves for the four methods used in this study.  
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calculations, the fixed interval-scale analysis (described in Section 3.4) 
on windows of length 8 s with the rate 0.9 is performed. Table 4 sum
marizes the comparison of the proposed framework with the best-case 
scenario of other algorithms (best-case in Refs. [10,14]: assuming that 
if beat detection is correctly performed, then quality assessment would 
be accurate, so the overall performance assumed to be affected only with 
beat detection). The main reason for achieving higher performance on 
the CB dataset in comparison to the ARDS dataset is the quality of PPG 
signal in the CB dataset. In contrast to the ARDS dataset, the CB data is 
recorded during anesthesia, making contaminated segments of data 
obvious. As such, signal quality assessment on the ARDS dataset is more 
challenging. 

To analyze the effect of window length in a fixed interval-scale 
analysis of the quality assessment of the proposed algorithm, the same 
experiment was performed for various window lengths. Table 5 repre
sents the effect of window length on quality assessment. As can be seen, 
for short window lengths the proposed framework performs poorly, 
while for window lengths greater than 4 s it performs reasonably well. 
This behavior is expected as analyzing a window with more than one 
beat can be more indicative of the quality of that interval. 

The advantages of the proposed morphological features and frame
works are three-fold: 1) applicability to any source of pulsatile physio
logical signals due to the adaptive nature of the proposed algorithm and 
the definition of the normalized morphological features; 2) indepen
dence from any synchronized reference signal such as ECG, with the only 
essential inputs being the signal under assessment and its sampling 
frequency; 3) adaptivity to any dataset. Additionally, while many of the 
proposed signal quality assessment approaches did not use any machine 
learning methods [9 16], the proposed framework enables usage of 
machine learning to better investigate the quality of pulsatile signals. 
Also, unlike various state-of-the-art frameworks that use ECG signal as 
an input to their respective algorithms [1,2,20,21], the proposed 
framework is independent of any synchronized signal. These properties 
make the proposed framework unique. 

6. Conclusion 

In this paper, a machine learning framework with a set of morpho
logical features is introduced that is able to measure the quality of any 
pulsatile physiological signal and detect poor quality segments. 
Different machine learning algorithms were tested against the ARDS 
dataset, with cost-sensitive SVM and an ensemble of decision trees 
outperforms all other. Additionally, the cost-sensitive SVM also ach
ieved better performance in comparison with two state-of-the-art algo
rithms on a publicly available dataset. 
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