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Pulse oximetry is a noninvasive and low-cost physiological monitor that measures blood oxygen levels. While the
noninvasive nature of pulse oximetry is advantageous, the estimates of oxygen saturation generated by these
devices are prone to motion artifacts and ambient noise, reducing the reliability of such estimations. Clinicians
combat this by assessing the quality of oxygen saturation estimation by visual inspection of the photo-
Cost-sensitive SVM plethysmograph (PPG), which represents changes in pulsatile blood volume and is also generated by the pulse
Decision tree ensemble oximeter. In this paper, we propose six morphological features that can be used to determine the quality of the
ARDS PPG signal and generate a signal quality index. Unlike many similar studies, this approach uses machine learning
and does not require a separate signal, such as ECG, for reference. Multiple algorithms were tested against 46 30-
min PPG segments of patients with cardiovascular and respiratory conditions, including atrial fibrillation,
hypoxia, acute heart failure, pneumonia, ARDS, and pulmonary embolism. These signals were independently
annotated for signal quality by two clinicians, with the union of their annotations used as the ground-truth.
Similar to any physiological signal recorded in a clinical setting, the utilized dataset is also unbalanced in
favor of good quality segments. The experiments showed that a cost-sensitive Support Vector Machine (SVM)
outperformed other tested methods and was robust to the unbalanced nature of the data. Though the proposed
algorithm was tested on PPG signals, the methodology remains agnostic to the dataset used, and may be applied
to any type of pulsatile physiological signal.

1. Introduction

Pulsatile physiological signals are often noninvasive recordings of
blood-related physiological measurements used in health monitoring.
The quality of these recordings is a major concern in healthcare [1,2], as
many vital physiological measurements (e.g., respiratory rate, heart
rate, and oxygen saturation) are extracted from these signals. The pul-
satile nature and similarity of patterns across these signals [3] makes it

possible to develop a general algorithm for quality assessment. Addi-
tionally, due to the optical sensors used for noninvasive recording of
pulsatile signals, the prominent noise sources contaminating these sig-
nals are also the same, i.e., motion artifacts and ambient light [3]. Thus,
in this paper six morphological features and a machine learning
framework are introduced in order to measure the quality of any pul-
satile physiological signal and detect segments of poor quality. As an
initial application, the algorithm was tested on PPG signals generated
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from pulse oximeters.
1.1. Pulse oximetry

Pulse oximetry is a low-cost noninvasive tool that has been widely
employed in healthcare to extract vital signs such as oxygen saturation
and heart rate from the recorded pulsatile signal. Arterial oxygen satu-
ration (SaO,) is defined as the ratio of oxygenated hemoglobin to the
combined amount of oxygenated and deoxygenated hemoglobin present
in arterial blood, and it is indicative of cardiovascular and respiratory
status. A photoplethysmograph (PPG), which represents changes in
pulsatile blood volume signal, is recorded by the pulse oximeter and is
used in estimating the oxygen saturation non-invasively. The estimated
value of SaO; using pulse oximetry is called peripheral oxygen satura-
tion (SpO,). Currently pulse oximeters use a weighted average method
to compute values of SpO,, however this estimate is prone to many ar-
tifacts including ambient light, motion, and those due to low perfusion
[3]. Thus, the reliability of SpOs is highly dependent upon the quality of
the PPG signal. Signal quality is becoming more relevant due to the
increasing use of telemedicine, as well as the need to reduce false alarms
in intensive care units [1,2]. Additionally, studies have shown that
medical data quality affects the performance of clinical decision support
systems significantly [4 7].

In the literature there are several studies of pulsatile signal quality
(especially PPG signal), but many of these works use either an incom-
plete dataset, other simultaneous signals, or did not take a machine
learning approach. For instance, in Ref. [8] a novel online algorithm
based on gradient ascent was proposed to estimate the quality of pul-
satile signals. However, the ECG signal was used as an input (and
reference) of their algorithm.

In Ref. [9] four morphological and temporal features are extracted
and used as states in a Kalman filter to adaptively accept or reject signals
based on their quality. In Ref. [10], a novel method using repeated
Gaussian filters for localizing segments of pulses was developed, with
cross-correlation of consecutive pulse segments used to calculate a
signal quality index. However, their proposed algorithm has no learning
process and the threshold on SQI is calculated experimentally. In
Ref. [11] three SQI algorithms are proposed to analyze the effect of
motion artifact on PPG signal, with only one of them solely relying on
PPG signal while the other two rely on red and infrared signals. In
Ref. [12], authors defined an SQI and focused on reliability of heart rates
obtained from ECG and PPG collected using wearable sensors. Their
proposed SQI algorithm is essentially a cascade of decision rules on RR
intervals and heart rate combined with adaptive template matching. In
Ref. [13] kurtosis and Shannon entropy were used in a statistical
framework for detecting motion and noise artifact with multi-site (i.e.,
ear, finger, and forehead) PPG signals. In each segment of PPG, the
kurtosis and entropy are compared with thresholds and their fusion is
used as a metric for artifact detection. It was concluded that forehead
and finger sensors have the highest and lowest contamination respec-
tively. In Ref. [14], a framework was proposed in which PPG beats are
detected and their quality estimated by comparing the beats with a
template. For each beat a quality index is calculated using the normal-
ized root mean squared error of each beat with respect to the template
derived from the surrounding pulses using dynamic time warping
barycenter averaging. The principle drawback of the proposed algo-
rithm is its limitation to offline settings. In Ref. [15], an algorithm was
presented in which beats are first localized, after which they are
resampled to enforce equal beat duration, with beat quality estimated by
calculating the similarity between consecutive beats. In this framework,
spline interpolation is used as the resampling method to ensure the
equality of beat duration, and the Pearson correlation coefficient is used
to measure the similarity between the two consecutive resampled PPG
beats. The classification in this method relies on a threshold that is
determined by enforcing the quality of sensitivity and specificity of
training data. In Ref. [16], a real-time PPG quality assessment is
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presented with focus on reduction of the energy consumption and false
alarms. The proposed method determines the quality of a PPG segment
in a four-step hierarchical decision-making process, with each step
comparing a feature against a threshold. The features used are maximum
absolute amplitude, local amplitude maxima, the zero-crossing rate, and
autocorrelation. The potential limitations of the aforementioned ap-
proaches include not employing any machine learning method and
reliance upon empirical thresholds that determine the quality of PPG
segments.

In many pulsatile signal quality assessment methodologies,
morphological or Signal Quality Index (SQI)-based features are extrac-
ted and utilized by machine learning algorithms. In Ref. [17] dynamic
time-warping (DTW) is first used to align each beat to match a running
template, after which four signal quality metrics are extracted. In their
best performing method, the four signal quality metrics, a fusion SQI,
and the number of beats are presented to a multilayer perceptron (MLP)
neural network. The algorithm s performance was tested on an
expert-labeled database of 1055 six-seconds segments of PPG. The
weights of the trained MLP are specific to the type of data on which it is
trained, requiring re-training in order to assess the quality of each type
of pulsatile signal. In Ref. [18] the author developed a signal quality
algorithm for PPG using eight SQIs, including perfusion, kurtosis, and
skewness. Four classifiers were tested to classify the 106 1-min re-
cordings into excellent, acceptable, or unfit, with skewness yielding the
best performance. In Ref. [19], PPG signals of patients with atrial
fibrillation were divided into segments of 30 s, after which 42 temporal
and spectral features (e.g., mean, median, standard deviation, Shannon
entropy, median frequency, and spectral entropy) were extracted from
each segment. Three machine learning methods (support vector ma-
chine, k-nearest neighbors, and decision tree) were then investigated,
with support vector machine outperforming the other two methods.

In studies such as [1,2,20], multiple intensive care unit signals were
considered to estimate the signal quality for false alarm reduction. More
specifically, in Ref. [1] a relevance vector machine (RVM) was trained
with 114 physiological and signal quality features extracted from the
ECG, PPG, and arterial blood pressure waveforms to reduce false alarms
in an intensive care unit (ICU). In Ref. [2] a temporal vector of samples
from many waveforms including respiration waveform, PPG, and mul-
tiple ECG leads were used in an adaptive filtering and prediction algo-
rithm called MCAF to generate point-by-point SQI. In Ref. [20] a
supervised machine learning algorithm was used to classify alerts as real
or artifacts in online noninvasive vital sign data streams (heart rate,
respiratory rate, peripheral oximetry) to reduce alarm fatigue and
missed true instability.

The proposed method in this paper is primarily related (in terms of
feature space) to Ref. [21], in which morphological features such as
pulse amplitude, trough depth difference between successive pulse
troughs, and pulse width are used in conjunction with multiple heuristic
thresholds to divide 104 1-min fingertip PPG signals into good and
artifact signals. The result of their proposed algorithm was then
compared with expert-generated labels. This approach is limited by its
use of heuristics and its need for a simultaneous ECG signal for
reference.

To overcome the limitations of prior works, in this paper an auto-
matic machine learning framework is designed based on features
extracted solely from the PPG signal to classify beats and intervals as
good or poor quality. A cohort of patients with hypoxia, acute heart
failure, pneumonia, acute respiratory distress syndrome (ARDS) and
other respiratory conditions was created for this study. PPG signals from
this cohort were manually annotated by two clinicians to produce a gold
standard, to which the performance of the algorithm was compared.
Additionally, the proposed algorithm is also tested against a public
dataset.
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Fig. 1. Exemplary segment of PPG signals designated with bad quality from both experts (clinicians). A signal segment not annotated as bad quality is assumed to

be of good quality.
2. Material

The primary dataset used in this study is part of an ongoing ARDS
project, consisting of patients treated at Michigan Medicine. In an effort
to compare the proposed algorithm to published methods, the publicly
available dataset CapnoBase was used. However, the primary focus of
this paper is on the ARDS database.

2.1. ARDS dataset

As a part of ongoing research at Michigan Medicine, a retrospective
cohort of adult patients hospitalized between November 2016 and June
2017 with moderate hypoxia, acute heart failure, pneumonia, acute
respiratory distress syndrome (ARDS) and other respiratory conditions
was created. All these patients required mechanical ventilation during
the first 7 days of their hospitalization. We acquired data from bedside
telemetry monitors of all patients, which is currently stored in the
Michigan Center for Integrative Research in Critical Care (MCIRCC)
Databank. The PPG recording equipment used in this study is Masimo
LNCS DCI adult reusable sensor with GE Medical PDM interface. The
sampling frequency of the PPG signals in the dataset is 60 Hz.

For the current pulse oximetry quality study, 46 30-min segments of
PPG signal from different patients with various cardiovascular and res-
piratory conditions including atrial fibrillation, hypoxia, acute heart
failure, pneumonia, ARDS, and pulmonary embolism were extracted. 27
(out of 46) of these patients are male, the average age of the patients is
57 years old, and 37 (out of 46) are Caucasian. Among these 46 30-min
segments, only 12 segments are almost entirely normal, 20 segments
contain long episodes of atrial fibrillation and sinus tachycardia, and the
rest contain sporadic short-term abnormalities (finger tapping,

premature atrial contractions and etc). Two clinicians independently
reviewed PPG signals for uniform, pulsatile changes in the waveform,
based on their experience interpreting such waveforms in clinical set-
tings. Waveforms without a clear pulsatile signal (regardless of
arrhythmic episodes, only based on morphology) that a clinician would
not have trusted as accurate in a clinical setting were annotated as poor
quality segments. Also, certain pulsatile waveforms suspicious for arti-
fact, e.g., finger tapping, were also annotated as poor quality. Fig. 1 il-
lustrates a 24-second segment of PPG signal annotated for signal quality
by both clinicians. The union of their labels is used as ground-truth for
the algorithm. This cohort is primarily used in order to develop and
validate the proposed algorithms.

2.2. CapnoBase dataset

The CapnoBase (CB) dataset [10] consists of 42 8-min finger trans-
missive PPG recordings (29 pediatric, 13 adult) collected during elective
surgery and routine anesthesia with a sampling frequency of 300 Hz.
This dataset also includes signal annotations adjudicated by a research
assistant.

3. Methodology

In this section, an overview of signal annotation, the proposed al-
gorithm, and validation framework is provided. The advantages of the
proposed methodology are three-fold: 1) applicability to any source of
pulsatile physiological signals; 2) independence from any synchronized
reference signal; 3) adaptivity to any dataset. As discussed below, the
adaptivity of the proposed framework to any pulsatile physiological
signal or any dataset is due to the normalization within the defined
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Fig. 2. The preprocessed (filtering and peak detection) PPG with the following signals/measurements: (1) beat waveform with positive peak, (2) beat waveform with
negative peak, (3) negative-to-negative peak jump, (4) positive-to-positive peak jump, (5) positive and negative pulse duration, and (6) backward and forward

AC components.

morphological features and the auto-calibration of the algorithm to the
non-artifact changes of the signal. This approach can be applied to any
source of pulsatile waveform; thus, in this section it is assumed that the
signal under assessment is PPG.

3.1. Algorithm development and features

One of the advantages of the algorithm is that it only uses PPG, and
no other synchronized signal such as ECG is needed. Additionally, it is
fully automated. The input of the algorithm is a PPG signal and its
sampling frequency, and the output is a classification of segments into
“good” or “poor” quality. For any interval, the output can be a number
between 0 and 1 that can be construed as a signal quality index (SQI).

3.1.1. Preprocessing and calibration

In the preprocessing phase, a raw PPG signal is first filtered using a
band-pass Butterworth filter with a 0.5-5 Hz pass band as suggested in
Ref. [21]. The next step is peak detection, wherein potential peaks are
only considered if the minimum temporal distance between two
consecutive beats is 70% of the mean PPG beat period. Heart rate is
adaptively extracted from the power spectrum of the most recent 20 s of
PPG signal, as the frequency between 1 Hz and 3 Hz having maximum
power spectrum determines the heart rate.

Unlike many algorithms in the literature that use ECG a reference for
beat detection (e.g., Ref. [21]),the proposed algorithm is independent of
any other signal. Moreover, positive and negative peaks are detected
independently, resulting in two heart rate signals that should be
approximately the same. As described later, the difference between
these two heart rate signals is used as a feature of the algorithm, for any
significant dissimilarity is due to abnormality in beat morphology. Fig. 2
depicts examples of raw and filter PPGs with detected positive and
negative peaks.

3.1.2. Morphological features

First, six morphological signals/measurements are extracted that are
used later to extract features (Fig. 2): (1) beat waveform with positive
peak (the interval between two negative peaks), (2) beat waveform with
negative peak (the interval between two positive peaks), (3) change in
absolute amplitude between two consecutive negative peaks, (4) change
in absolute amplitude between two consecutive positive peaks, (5) heart
rates extracted from positive peaks and negative peaks (or pulse width)
and (6) absolute positive to negative peak amplitude, i.e., the AC

component. The next step is to use the extracted signals/measurements
to calculate morphological features. All of the proposed features are
based on some distance or dissimilarity from baseline values or tem-
plates. One can think of these templates and baseline values as adaptive
averages extracted from normal beats/signals that have already been
seen. For now, assume the algorithm is provided with these adaptive
averages and focus on the features; later it is described how these av-
erages can be calculated.

Let f; be the sampling frequency and suppose .7 = {tk keN, tg =

k fls} is the set of time samples in the PPG signal. Assume fppg : .7 — 7 is
the PPG signal amplitude function and 7" is the bounded set of these

amplitude values, i.e. 7" = {vk|ke N, tc € .7, v = fepg(tx) € R}. The
features are then extracted as follows:

3.1.2.1. Normalized pulse duration. Suppose " and .7~ are respec-
tively the set of positive and negative peak locations defined as
P ={p/lieN,pj €7 Vie|p_p;/|CT,

jite PT) ZfPPG(I)}
P~ ={p;lieN, p; €7 :Vie pl,,p/]CT,

fora i) < fora(2).}
(#)? or
negative peaks (p;,,p;) € (") define the normalized pulse dura-
tion, Vp;, as

Vpi Vp
vp

Then for each consecutive pair of positive peaks (p;";,p;") €

Vpi

where

(pi1,pi) € (30+)2
(pi1,pi) € (307)2

+ +

Vpi=pi —pis1 = {P,- 17,‘:1

Pi —Pi

and Vp is the baseline value (as defined in section 3.1.3) of pulse

duration. An example of Vp; can be seen in Fig. 2. Given that for every

interval between two consecutive positive (negative) peaks there is a

negative (positive) peak, each value of Vp; is only associated with the

interval between the first positive (negative) peak to the next negative
(positive) peak.
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3.1.2.2. Normalized negative-to-negative peak jump. Define the set
o = fopg(#7) ={P; |ie N, ¥p; € #, P; = ferg(p;)} as the set of
negative peak amplitudes, and let VP~ be the baseline value for
negative-to-negative peak jump and VP be the baseline value for
amplitude change from negative to positive (or positive to negative)
peaks, i.e., the baseline value for the AC component. For each pair of
consecutive negative peaks (p; , p;) € (#7)?, the normalized
negative-to-negative peak jump, VP; , is defined as

s VP[NP -

VB =S

where VP; = ‘Pi’ - P |

3.1.2.3. Normalized positive-to-positive peak jump. Similar to previous
section, suppose ./ " = fppg (#”") = {P/ i€ N, Vp; € 7", P{ = forc(p{")}
is the set of positive peak amplitudes and VP is the baseline value for
positive-to-positive peak jump. For each pair of consecutive positive peaks
;. pi) € (#7)?, the normalized positive-to-positive peak jump,
VP;, is defined as

=5 VP VPt
Pr=—"t
vE A\

where VP = [P} — P}

3.1.2.4. Normalized beat amplitude jump. Suppose .%#=.7"U 2" is the
set of positive and negative peak locations and ./ = .# ~U.«/ " is the set of
peak amplitudes. Then for any consecutive positive and negative peak
(piz »pi) € 72, the normalized beat amplitude jump, VP, is defined
as

_ VP, VP

VP vP

where VPi = ‘Pi — PH |

3.1.2.5. Dissimilarity measure of positive-peaked beats. As described in
Ref. [17], due to nonlinear and non-stationary changes in beat
morphology, a nonlinear time-based stretching or compression of beats
is necessary to perform effective template matching. As mentioned
earlier in this section, beat waveforms with positive peak (interval be-
tween two negative peaks, see Fig. 2) are extracted and normalized into
the range [0,1]. Then, dynamic time warping (DTW) is used to align the
PPG with a template as constructed in section. 3.1.3. A brief description
of DTW algorithm for PPG is provided in Ref. [17]. Finally, KL diver-
gence [22] is used to measure the difference between the aligned PPG
beat and the template, which is formulated as

m o
+ ) + i
DT BY) =3 ) log

where B* = {b|1<k<m} and T* = {t{|1 < k< m} are two aligned
time series of beats and template with positive peak, both of which are of
length m and normalized such that Y1 ;b = "', = 1. In the pro-
posed algorithm, D(T" || B') is used as the dissimilarity measure of
positive-peaked beats feature.

3.1.2.6. Dissimilarity measure of negative-peaked beats. Applying the
same procedure as described above, a dissimilarity measure of
negative-peaked beats, i.e. D(T~ || B™), is calculated in which B~ =
{bg|1 <k<m}and T~ = {t; |1 < k< m} are two time series of beat and
template with negative peak, both of which are of length k and
normalized such that Zlebi’ = Zleti’ =1.
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3.1.3. Templates and baseline values

As described in section 3.1.2, the proposed features D(T~ || B~) and
D(T~ || B) require templates, while the features Vp;, VP, VP;, and
VP; need baseline values. One of the distinct components of the pro-
posed algorithm is that these templates and values are generated indi-
vidually for each waveform. In this section it is described how to
generate these templates.

3.1.3.1. Initial template and baseline value generation. Our proposed al-
gorithm uses the first T seconds of each waveform in the calibration
phase, during which preprocessing and then peak detection is performed
on the segment. Based on this segment and the peak locations, the
baseline value Vp is the averaged pulse duration, VP~ the average
negative-to-negative peak jumps, VP' the average positive-to-positive
peak jumps, and VP the average amplitude change from negative to
positive peaks. In the results presented in this paper, T = 20 seconds is
chosen.

Formally, suppose #§ 5, = {p; [i€ N, p; € .7, 0 <p; <20} and
Py a0 =1pi [iEN, pj € 7, 0 <p; < 20} are the sets of positive and
negative peak locations in the [0-20] time interval, and assume there are
m positive and m negative peaks in the 20s segment, i.e.,
P 20| = |#4_20| =m (the procedure is the same if the number of

positive and negative peaks are not equal). Similarly, .7/ ,, =
fora(P5_20) and #g_pq = forg(Py_z9) - AlSO Po_20= Py 50U P s
and /_20 = ¥y_o0 U/ {_y, are the sets of all (positive and negative)
peaks and their amplitudes in the 20-second segment. Then

| o
VPt — —ZV’PG pf) — fep Pitl)

v

l m
1 ;prm pi) —fora Piy)

1 2m
VP = m; fora (Pi) — fers (Piz1)

are the initial baseline values that will be used in the proposed algo-
rithm. The value of Vp is calculated based on the power spectrum of the
20 s segment, as the frequency between 1 and 3 Hz that has the highest

power is the inverse of the heart rate frequency [3], i.e., VLP.

In order to extract an initial template with positive peak T+, first the
m — 1 positive-peaked pulses are sorted with respect to their pulse
width. If the template pulse duration is chosen to be the mode of pulse
duration (the most frequent pulse duration) in the 20-second segment,
then the template T* can be calculated as the average of beats that have
the same temporal duration as the mode of pulse duration. If the mode of
pulse duration is not unique, the median of pulse duration (the middle
value for pulse duration) in the 20-second segment is chosen, and then
the beats that have the width closest to the median of pulse duration will
be aligned (e.g., by using DTW) or interpolated and then averaged to
achieve the template T*. The same procedure is applied to negative-
peaked beats in order to extract the template with negative peak T~.

3.1.3.2. Updating template and baseline values. As mentioned above, the
first T seconds of each waveform is used as the calibration phase to
extract initial individual-specific templates and baseline values, with
T = 20 seconds chosen for this paper. Since it’s possible that the first
segment is noisy, the initial baseline values and templates may be
invalid. Thus, two criteria for accepting a segment as valid are imposed:

1. The number of positive or negative peaks should be more than 0.95 x
T; i.e., on average a heartbeat should occur at least every 0.95s.

2. At least one third of pulse widths (pulse durations) are within 5% of
pulse duration mode/median (as mentioned in the previous section,
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if the mode of pulse duration is not unique, the median of pulse
duration is chosen for template width).

If both of these conditions are satisfied, the first T seconds are
accepted for initial baseline values extraction, otherwise the T-second
window is iteratively slid for 1 s until both conditions are satisfied (e.g.,
intervals of [0,20] [1,21], etc.).

Due to the non-stationary nature of the source, after the initial
calculation of the baseline values and templates, an adaptive algorithm
for updating these baseline values and templates is necessary, particu-
larly if the PPG signal has long duration. As such, after calculating the
features of each segment using the baseline values and templates of the
previous segment, these baseline values and templates are then updated
to be used in the subsequent segment. Similarly, an interval is accepted
for updating the baseline values and templates if it also satisfies the two
aforementioned criteria.

3.1.4. A simple algorithm
Through feature extraction, each sample is represented as

where p, P, P, P,DT B andDT B are the features
described in section 3.1. Using a simple algorithm based on decision
rules, these values can be compared with thresholds for classification
purposes. The hypothetical thresholds for a simplistic algorithm can be
achieved experimentally using training data. After choosing the
thresholds, the six features can be used to classify each beat, more
specifically each interval between any two peaks (positive to negative
peaks or negative to positive peaks), into a good or poor quality interval.
In this case, a simple algorithm assigns the poor quality label to each
interval between two consecutive peaks if any of the six features are
greater than the threshold. Formally speaking, for an interval set 17

pi 1 pi between any two consecutive peaks (note that I ),

define the feature function feeature 6 as a function from the

set of time samples and bounded set of PPG values to the feature space.
The set of poor quality intervals is then

where 1 6 % is a vector of thresholds on the six features,

and the inequality is performed component-wise. Obviously the set of

Poor Good
B

good quality signal is the complement of ie.

Poor C Poor

. This algorithm is used later for threshold
optimization as described in section 4.1.4.

3.1.5. Interval classification and signal quality index

One of the primary reasons for measuring PPG quality and reliability
is that other important signals such as oxygen saturation utilize PPG in
their formation. In general, oxygen saturation values are averaged over a
moving window of PPG signal. In the ARDS dataset, the pulse oximetry
hardware (PPG recording device) calculates every value of oxygen
saturation based on the last 8s of PPG signal. Consequently, having
isolated poor quality beats/intervals is insufficient to label a PPG
segment as poor quality. Thus, for an interval  of length 8s such
that ti t; tr 8 t tx ,thesignal quality index (SQI) for
that window is defined as
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testing six similar models on each 1-dimensional sample feature followed by
decision rule, which basically is a logical or operation on the six outcomes.
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which is always a number between zero and one. As discussed in section
3.4, the SQI for any given interval will be compared with a pre-
determined rate (threshold) for classification.

3.2. Learning models and decision rules

In this paper, two different training/testing frameworks are consid-
ered: (a) A standard learning method in which a single model is trained
on 6-dimensional samples (Fig. 4a), and (b) six similar models that are
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Table 1
The unbalanced nature of the ARDS dataset at beat-scale level.

Expert 1 Expert2  Union Intersection

Percentage of poor quality 4.46 4.87 6.39 2.94
samples
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Fig. 5. Inter-rater reliability using Cohen s Kappa.

trained on each sample feature separately, followed by a decision rule
(Fig. 4b). The principle reason for considering the second model is the
nature of the proposed normalized features, i.e., for a normal PPG beat
all the features are expected to be close to zero; while for a poor quality
interval, the absolute value of at least one of these features is expected to
be greater than a threshold. To support this argument, Fig. 3 represents
the cumulative distribution function (CDF) of the absolute value of the
for both
classes. This figure shows that the larger the value of P, , the worse
the quality, and this is valid for all the features. Thus, in the second
framework, the decision rule is simply a logical or operation on the
outcomes of each trained model on individual features.

normalized negative-to-negative peak jump feature P,

3.3. Beat-scale analysis

One challenging aspect of the ARDS dataset is that the algorithms
assign labels to each interval between consecutive peaks (positive peak
to negative peak or negative peak to positive peak), while experts assign
“poor quality labels to any interval of any length not necessarily to the
beats. To perform beat-scale analysis, the signal annotations must be
converted into beat-scale labels. If any subsequence of an interval be-
tween consecutive peaks is included in a segment annotated as poor
quality segment, the label of that interval is poor , otherwise it is
labeled good . Another challenge of the dataset common to many
medical datasets is the unbalanced (also refer to as imbalanced
[23 27]) proportion of class samples, i.e. there are far fewer poor
quality features, compared to those of good quality. In fact, only about
5% of samples are of poor quality. Table 1 summarizes the percentage of
poor quality samples in the dataset based on two experts annotations,
their union and intersection. In this study, the union of labels is used as
ground-truth.

3.4. Fixed interval-scale analysis

As mentioned in Section 3.1.5, the values of oxygen saturation in the
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Undersampling |——>| Model (a) |
Undersampling I——>| Model (b) |

Fig. 6. A block diagram of learning process. DT: decision tree, EDT: ensemble
of decision trees, SVM: support vector machine, TO: threshold optimization.
Models (a) and (b) refer to the two training frameworks illustrated in Fig. 4.

EDT,

Feature

Extraction

TO

dataset represent an average over fixed intervals of 8. In light of this,
it s needed to determine what percentage of the 8s interval must be
considered poor quality before deeming the entire interval as poor. A
rate parameter may be used in the analysis as a threshold for the SQI
(equation (1) in each interval of 8 s. For any value of this parameter, an
interval is of poor quality if its SQI is greater than the rate. Hence, by
changing the rate from 0 to 1, sensitivity and specificity of any algorithm
and the inter-rater reliability of expert annotations can be calculated.
Fig. 5 illustrates the inter-rater reliability for annotations using Cohen s
Kappa against the aforementioned rate. As can be seen, for a fixed in-
terval of length 8 s, changing the rate does not have a significant impact
on inter-rater reliability. Consequently, a rate of 0.5 is used on the union
of annotation labels to determine the ground-truth label of these fixed
intervals, since for this rate Cohen s Kappa is maximal.

4. Experiments

Using the ARDS dataset, 100 iterations of random subsampling is
performed at the patient level. In each iteration the dataset is randomly
divided into 2 training data (31 30-min signals) and  testing data (15 30-
min signals). This results in a total of 234,739 samples at the beat-scale
level. While the results of beat-scale analysis are also provided, we
prioritize the performance of the proposed algorithm on intervals of
fixed length (fixed interval-scale analysis). Though seemingly counter-
intuitive, this approach can be considered sound, as physiological sig-
nals such as oxygen saturation are extracted based on the average value
in fixed-length PPG segments. Hence, the reliability of these values de-
pends on the quality of the fixed-length PPG segments. As mentioned
earlier, another challenge of this dataset is the unbalanced nature of the
data, hence learning methods such as a standard support vector machine
(SVM) cannot be directly applied. As such, certain modifications are
needed. In this study, for the first learning framework (Fig. 4a), SVM and
an ensemble of trees are used; while for the second framework (Fig. 4b) a
decision tree and a proposed learning method called threshold optimi-
zation are employed, which when combined with a non-uniform
undersampling approach fits the feature space well. Fig. 6 represent
the block diagram of the learning process.

Table 2

Performance comparison of decision tree (DT), the ensemble of decision trees
(EDT), SVM and threshold optimization (TO) in beat-scale analysis. The running
time is the average time needed to train the algorithms on 31 30-min PPG signals
and test on 15 30-min PPG signals.

DT EDT SVM TO
Undersampling No Yes No yes
Framework Two One One Two
Running time (sec) 5 450 375 20
Train Accuracy 96.92 100 85.37 80.82
Sensitivity 99.92 100 86.05 82.82
Specificity 96.70 100 85.31 80.67
Test Accuracy 75.02 88.85 83.02 80.66
Sensitivity 73.01 70.03 85.45 82.38
Specificity 75.14 90.04 82.82 80.50
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Fig. 7. A visual example of quality result on fixed interval-scale segments using the SVM model with rate (threshold on interval SQI) 0.7. In the first interval (0 8s)
both the algorithm and annotation have poor quality segments in beat-scale, which is less than 5.6 (8 0 7) seconds; thus, this interval is not considered poor quality
by both the algorithm and the annotation. The second interval (8 16 s) had more than 5.6 s of poor quality beat-scale segments using the algorithm, but slightly less
than 5.6 s of poor quality beat-scale segments using the annotation, therefore this interval is labeled as poor quality using the algorithm, but not using the annotation.
The last interval (16 24 s) has more than 5.6 s poor quality beat-scale segments in both algorithm and annotation.
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Fig. 8. Comparison of ROC curves for the four methods used in this study.

4.1. Results

In this section, each learning method (decision tree, the ensemble of
decision tree, support vector machine, and threshold optimization) is
briefly described and their performance results with respect to both
beat-scale and fixed interval-scale analyses are provided. Each result is
the average of multiple simulations, each with different randomly
generated training (31/46) and testing (15/46) sets. ROC curves are
calculated for the fixed interval-scale analysis using the testing sets only.

4.1.1. Classification and regression trees (CART)

Using the second framework (Fig. 4b), a decision tree algorithm
(CART, [28]) is used as its performance is more robust to unbalanced
data. Table 2 includes the average decision tree model performance on
both training and test dataset. As can be observed from the results, the
decision tree overfit the training dataset. Thus, to overcome this issue,
an ensemble of decision trees (Section 4.1.2) is employed.

Fig. 8 includes the ROC curves for the decision tree model in the fixed
interval-scale analysis. Based on this figure, the best performance of the
decision tree model yields a sensitivity of 88.96 and specificity of 86.30
for a rate of 0.45.

4.1.2. The ensemble of decision trees

Based on the first framework (Fig. 4a), an ensemble of decision trees
model is used to improve performance by reducing overfitting and better
handle the unbalanced data set. To combat overfitting, the maximal
number of decision splits was set to be equal to the number of obser-
vations in the training sample. To ameliorate the unbalanced nature of
the data, the RUSBoost algorithm [29] is employed. In this algorithm, an
intelligent undersampling technique is used to balance the class distri-
bution, which results in a simple algorithm with faster training times
and favorable performance. Table 2 includes the result of the algorithm
for beat-scale analysis.

Fig. 8 includes the ROC curve for the ensemble of decision trees al-
gorithm in the fixed interval analysis. Based on this figure, the best result
is sensitivity of 91.56 and specificity of 91.97 with rate of 0.4.

4.1.3. SVM

In order to train an SVM to implement the first framework (Fig. 4a),
the optimization problem needs to be modified to properly handle the
unbalanced data. Consider a soft-margin SVM for binary classification
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with the following formulation:
I R
min 5wl + CZ@

sty Wxi+b)>1-¢  £>0
where (x;,Y;) are sample input/label pair, w and b are parameters of the
separating hyperplane, ¢; are slack variables and C > 0 sets the relative
importance of maximizing the margin and minimizing the amount of
slack to penalize misclassifying an observation. In order to revise the
optimization problem of binary classification to handle unbalanced
data, C is weighted by class populations such that

Cr = Cay, k:O,l,

where wy is the weight of class k, n is the total number of observations,
and ny is the number of observations in class k. This is indeed a cost-
sensitive SVM with the following formulation [24]:

N TS
I{vnglinH + C()Zé +C Zfi

ity =0 iyi=1

sty Wxi+b) > 1-¢ &>0

As mentioned earlier, for a normal PPG beat, all the features are
expected to be close to zero; while for a poor quality interval, the ab-
solute value of at least one of these features is expected to be greater than
a threshold. This suggests that a Gaussian kernel is good option, thus an
SVM model with Gaussian kernel is considered. Table 2 contains the
results of the SVM model in beat-scale analysis.

Fig. 8 includes the ROC curve for the fixed interval-scale perfor-
mance of SVM. It can be seen that the best result has 93.25% sensitivity
and 91.90% specificity for rate of 0.7. Fig. 7 depicts a visual example of
the SVM model used for classifying PPG signal quality on three intervals.

4.1.4. Threshold optimization

As it was mentioned earlier (Section 3.1.4) and represented in
Fig. 4b, another learning algorithm that is considered here involves
determining the optimum threshold for each feature. One approach is an
algorithm that chooses a threshold that balances the trade-off between
sensitivity and specificity. However, this algorithm is inefficient as “poor
quality” can be reflected only in one feature, while the labels are
assigned to all six features of the sample. For instance, a jump in positive
peaks may only be reflected in normalized positive-to-positive peak
jump and normalized beat amplitude jump. Moreover, unbalanced data
makes such an optimization method even harder. An optimal algorithm
would use the sample labels to extract distinct labels for each feature,
and then uses those feature labels to find an optimal threshold. However,
as developing such an algorithm is challenging, instead the following
method is proposed.

In the proposed threshold optimization algorithm, first the good
quality class is undersampled using a non-uniform undersampling
method. First, using the training data for a predefined 0 < q < 1, the g-
quantile of each feature is calculated, keeping only the samples for
which at least one feature is greater than the g-quantile of that feature.
These samples are used to find a threshold for each feature that balances
sensitivity and specificity. Since only about 6% of samples are of poor
quality, the 0.94-quantile is chosen for the non-uniform undersampling
procedure.

Applying the aforementioned non-uniform undersampling and the
threshold optimization algorithm, the results of beat-scaled analysis are
included in Table 2.

Fig. 8 also includes the ROC curve for the fixed interval-scale analysis
of the proposed threshold optimization algorithm. Based on this figure,
the best case has 90.05% sensitivity and 89.48% specificity with a rate of
0.65.
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Table 3

Comparison of the best performance of decision tree (DT), the ensemble of de-
cision trees (EDT), SVM and threshold optimization (TO) in interval-scale
analysis. Please note that the rate in the table corresponds to the best
performance.

Best Performance DT EDT SVM TO

Sensitivity 88.96 91.56 93.25 90.05

Specificity 86.30 91.97 91.90 89.48

Corresponding Rate 0.45 0.4 0.7 0.65
Table 4

Comparison of quality assessment between the proposed algorithm using cost-
sensitive SVM and the best-case scenario of the frameworks proposed in Refs.
[10,14] on the publicly available Capnobase (CB) dataset.

Best Performance Proposed Method [10] [14]
Sensitivity 98.27 96.44 98.87
PPV 100 99.80 99.22

5. Discussion and comparison with other methods

Tables 2 and 3 and Fig. 8 compare the results of all four methods for
beat-scale, the best performance of fixed interval-scale, and fixed
interval-scale ROC curves, respectively. As summarized in Table 2, the
decision tree model and threshold optimization both used the second
framework in their learning process, while the ensemble of decision
trees and SVM used the first framework. The ensemble of decision trees
and threshold optimization are the two algorithms that used under-
sampling. Both of these methods were also significantly faster to train
than those which used the first framework. In comparing model per-
formance on the training and testing datasets, the tree based algorithms
overfitted the training data, while SVM and the threshold optimization
algorithm have almost the same performance on both datasets.

In addition to Table 2, the effect of uniform and non-uniform
undersampling has been tested on SVM and decision tree: non-uniform
undersampling used in threshold optimization reduces the perfor-
mance of both algorithms, while uniform undersampling has no signif-
icant effect on SVM (in its cost-sensitive SVM formulation) and a
negative effect on decision tree performance. Based on Fig. 8 and
Table 3, SVM and the ensembles of decision trees outperform the other
two methods in the fixed interval-scale analysis.

Overall, the cost-sensitive SVM with Gaussian kernel outperform the
rest, while the proposed threshold optimization is significantly faster.

5.1. Comparison with other methods

An exact comparison of the proposed framework with other state-of-
the-art algorithms on the ARDS dataset cannot be achieved, as the al-
gorithms and their attendant procedures are not publicly available, nor
are the threshold (or hyperparameter) optimization processes of those
methods thoroughly described. Additionally, as previously mentioned
many of these algorithms also require an ECG signal as input. This dif-
ficulty in comparison is common, as many of the previously proposed
PPG signal quality assessment methods did not compare the perfor-
mance of their SQI algorithm with any other methods [1,2,9-13,15,17,
18,21]. As a result, instead of comparing the proposed algorithm with
other approaches on the ARDS dataset, the performance of the algorithm
is compared with two other algorithms on the publicly available Cap-
noBase (CB) database used in those studies [10,14].

In this experiment on dataset there are 57149 samples at the beat-
scale (Section 3.3). Similar to the previous experiment, 100 iterations
of random subsampling at the patient level is performed to divide the CB
dataset into % training data and } testing data. The cost-sensitive SVM
(described in Section 4.1.3) is used for machine learning, as it out-
performs other methods on the ARDS dataset. Finally, for SQI
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Table 5

The effect of window length on the prediction of poor quality segments.
Length (Sec) 1 2 3 4 5 6 7 8 9 10
Sensitivity 72.77 76.22 82.53 88.39 92.70 96.55 98.27 98.27 98.27 98.27
PPV 82.50 92.68 96.42 98.33 100 100 100 100 100 100

calculations, the fixed interval-scale analysis (described in Section 3.4)
on windows of length 8 s with the rate 0.9 is performed. Table 4 sum-
marizes the comparison of the proposed framework with the best-case
scenario of other algorithms (best-case in Refs. [10,14]: assuming that
if beat detection is correctly performed, then quality assessment would

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.

org/10.1016/j.imu.2019.100222.
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