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Abstract—Scientific domains ranging from bioinformatics to
astronomy and earth science rely on traditional high-performance
computing (HPC) codes, often encapsulated in scientific work-
flows. In contrast to traditional HPC codes that employ a few
programming and runtime approaches that are highly optimized
for HPC platforms, scientific workflows are not necessarily
optimized for these platforms. As an effort to reduce the gap
between compute and I/O performance, HPC platforms have
adopted intermediate storage layers known as burst buffers. A
burst buffer (BB) is a fast storage layer positioned between the
global parallel file system and the compute nodes. Two designs
currently exist: (i) shared, where the BBs are located on dedicated
nodes; and (ii) on-node, in which each compute node embeds a
private BB. In this paper, using accurate simulations and real-
world experiments, we study how to best use these new storage
layers when executing scientific workflows. These applications are
not necessarily optimized to run on HPC systems, and thus can
exhibit I/O patterns that differ from that of HPC codes. Thus,
we first characterize the I/O behaviors of a real-world workflow
under different configuration scenarios on two leadership-class
HPC systems (Cori at NERSC and Summit at ORNL). Then, we
use these characterizations to calibrate a simulator for workflow
executions on HPC systems featuring shared and private BBs.
Last, we evaluate our approach against a large I/O-intensive
workflow, and we provide insights on the performance levels and
the potential limitations of these two BBs architectures.

Index Terms—Scientific workflow, Simulations, Burst buffers,
High-Performance Computing, Performance Characterization

I. INTRODUCTION

The scientific workflow abstraction is one of the pillars that
support large-scale science discoveries [1], [2]. In the past few
years, several shifts have been observed, from the perspective
of both scientific workflows and high-performance computing
(HPC) architectures. Evolving from traditionally compute-
intensive and loosely-coupled settings, next-generation scien-
tific workflows are moving towards tightly-coupled and data-
and I/O-intensive configurations [3], [4]. At the same time,
HPC platforms have begun to leverage new storage technolo-
gies such as non-volatile memory and SSDs. For instance,
most recent supercomputers include burst buffers nodes [3]. A
burst buffer (denoted as BB in this paper) is an intermediate
storage layer between the compute nodes and the long-term
storage [5] – primarily designed to improve the performance
of the checkpoint/restart resiliency protocol used in HPC
codes by reducing the pressure on the parallel file system

(denoted as PFS in this paper). Many studies have focused on
improving the performance of checkpointing phases via multi-
level checkpointing [6], [7], or via file systems optimizations
for BBs [8].

BBs have also been used to improve the I/O perfor-
mance of scientific applications. With the advent of Big
Data and extreme scale computing, data-intensive workflows
process/generate large volumes of data, making I/O the key
element hindering workflow execution performance. Conse-
quently, recent works [9], [10] have conducted preliminary
studies on how the use of BBs could mitigate I/O overheads of
“staging in/out" (intermediate) workflow data in HPC systems.
Although these studies have demonstrated substantial perfor-
mance gain when compared to the traditional PFS approach,
there is still a need for conducting an in-depth analysis of
BBs capabilities regarding different workflow structures and
task requirements – some tasks may generate small numbers
of very large files, while others may generate large numbers
of very small files. Such analysis may unveil limitations of
current BB solutions for supporting current and emerging
high-profile applications, such as scientific workflows, due to
their I/O needs and task-dependency structures.

The objective of this work is twofold: (i) understand the be-
havior and impact of using new deep-memory hierarchies such
as BBs to accelerate the execution of scientific workflows; and
(ii) leverage this understanding to implement and calibrate
a simulator framework that can in turn be used to explore
how different BB architectures impact workflow execution
performance.

To achieve the above we conduct a comprehensive anal-
ysis of the impact of BBs on the performance, and perfor-
mance variability, of a real-world production workflow on
two leadership-class HPC systems (Cori at NERSC [11], and
Summit at ORNL [12]). We leverage the gathered performance
data to develop a performance model, which in turns makes
it possible to evaluate different BB configurations in simula-
tion. Several studies [13]–[15] have focused on developing
efficient data placement schemes and performance models
targeting dual memory systems (i.e., systems with one large
slow memory and one small fast memory). Unfortunately, the
design space for heuristics that optimize the data placement
between PFS and BB is enormous. As a result, it cannot be
explored effectively by relying on time- and energy-consuming
experiments conducted on real platforms. As an alternative,978-1-7281-6677-3/20/$31.00 c©2020 IEEE



our proposed lightweight simulation approach, which achieves
a great trade-off between accuracy and usability, makes it
possible to explore this design space thoroughly and quickly. It
thus provides the necessary foundation for developing efficient
data placements heuristics for optimizing workflow execution
on BB-equipped platforms.

Specifically, this work makes the following contributions:
1) Collection of performance data from a real-world scien-

tific workflow executions on two leadership-class HPC
systems equipped with two different BBs designs;

2) An in-depth analysis of the workflow performance re-
garding resource allocation and BBs configurations;

3) An application model for I/O-intensive workflows that
accounts for the use of BBs on HPC systems – along
with an experimental evaluation of the proposed model
under different configuration scenarios;

4) A simulation framework for experimental evaluation of
potential future designs of, or data placement solutions
enabled by burst buffers systems; and

5) Extensive evaluation of the simulation framework using
a large-scale I/O-intensive bioinformatics workflow, and
comparison of simulation results with actual experiments
performed in previous work.

This paper is organized as follows. Section II reviews the re-
lated research. Section III presents collected experimental data
for a real-world use case in two leadership-class HPC systems.
Section IV describes our model and simulation framework, and
assesses their accuracy using the collected experimental data.
Finally, Section V concludes with a brief summary of results
and a discussion of future research directions.

II. BACKGROUND AND RELATED WORK

The gap between computational and I/O performance in
current HPC systems remains critical [3]. To reduce this
gap, many HPC centers have adopted a fast intermediate
storage layer called burst buffers (BBs) [5]. The BB concept
was first developed to improve checkpointing performance,
i.e., to alleviate the I/O pressure created by frequent check-
points [16]. Several studies [6], [17], [18] have explored using
BBs to improve checkpointing performance. For instance,
BurstMem [19] is a log-structured BB system build on top
of Memcached, a distributed caching system for optimizing
I/O access patterns, e.g., checkpoint/restart or data staging.
GekkoFS [20] is a temporary, highly scalable parallel file sys-
tem (PFS) specifically optimized to scale metadata operations
for accesses to a single directory or even to a single file, which
are known to not scale well on traditional PFSs.

Currently, two leading implementations of BBs are com-
peting in the HPC landscape. The first considers on-node
local BBs – each compute node has its own local BB. The
second considers dedicated BB nodes where all compute nodes
can store data. Some studies have attempted to determine
architectural advantages and limitations of each approach
regarding classic HPC I/O behaviors [21], [22]. However, these
works target simplistic scenarios restricted to a few workloads

that do not necessarily expose the relevant trade-offs inherent
to the different BBs implementations.

Recent studies [9], [10], [16], [23], [24] have demonstrated
the utility of BBs for accelerating scientific workflows by
reducing costly disk I/O. These studies show substantial per-
formance improvements over the traditional PFS scenario. The
evaluation of the I/O performance of two data analytics work-
flows executing on a leadership-class supercomputer (Cori at
NERSC) showed that there is significant performance variation
under different I/O patterns conditions [24]. Specifically, by
distinguishing data and metadata operations, it is demonstrated
that a sequential workflow pipeline does not use enough I/O
parallelism to saturate the BB bandwidth. It is also noted
that workflows using database back-ends and Python scripts
are often limited by metadata performance. Data management
for scientific workflows has also been studied. In particular,
MaDaTS [25] is a software architecture for managing data
used by scientific workflows on recent HPC architectures that
feature multiple storage layers. MaDaTS proposes a virtual
data space that acts as an intermediate storage representation
to hide the complexity of the physical storage system to the
workflow execution.

On the modeling and simulation aspect, the CODES simu-
lation framework [26] has been extensively used to model BB
performance [16], [27]–[29]. CODES is a parallel discrete-
event simulation that accurately aims to model the network
topology, the I/O stacks, and the storage layers. Few theoretical
models have been proposed. In [30] the authors employ a
probabilistic model to capture the behavior of periodic HPC
application running on a shared BB architecture. Simulation
has also been used in a provisioning system to provide accu-
rate, multi-tenant simulations that model realistic application
and storage workloads from HPC systems [31]. Although these
proposed models yield fairly accurate estimates, they do not
consider task-dependency structures, as present in scientific
workflows, in which data stage-in between dependent tasks
may severely impact overall execution performance.

III. EXPERIMENTAL EVALUATION

In this section, we perform experiments to measure the
actual performance of I/O read and write operations from/to
BBs for processing the I/O-bound tasks of a real-world data-
intensive workflow.

A. Experimental Platform

Although BBs have become popular in supercomputers,
determining the optimal BB architecture is still an open
question. Currently, two main representative architectures have
been deployed: (i) shared burst buffers (remote-shared BB),
and (ii) on-node burst buffers (node-local BB) [32]. Below,
we briefly describe these architectures and underline their
differences.

1) Shared burst buffers: The Cori system, at the National
Energy Research Scientific Computing Center (NERSC), pro-
vides remote-shared, allocatable BBs. Cori is a Cray XC40
which delivers about 30 PetaFlops using 2,388 Intel Haswell
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Figure 1. BB architectures on two leadership-class HPC systems. Burst
Buffers are in red, processing units in green, and I/O nodes in blue.

nodes and 9,688 Intel Xeon Phi KNL nodes connected through
a Cray Aries interconnect. The BB resides on specialized
nodes that bridge the internal interconnect of the compute
system and the storage area network (SAN) fabric of the
storage system through the I/O nodes. Each BB node hosts
a Xeon processor, 64 GB of DDR3 memory, and two 3.2
TB NAND flash SSD modules attached over two PCIe gen3
x8 interfaces, which is attached to a Cray Aries network
interconnect over a PCIe gen3 x16 interface. Each BB node
provides approximately 6.4 TB of usable capacity and a
peak of approximately 6.5 GB/sec of sequential read and
write bandwidth. In this paper, we only run experiments
using the Haswell nodes. The architecture is depicted in Fig-
ure 1(a). NERSC’s burst buffer implementation provides two
performance tuning modes: striped and private. The former
distributes files over multiple BB nodes, while in the latter
each compute node gets its own namespace, which potentially
affords improved performance for metadata handling. In this
paper, we investigate both performance tuning modes.

2) On-node burst buffers: The Summit system, at the
Oak Ridge National Laboratory (ORNL), provides node-local,
allocatableBBs. Summit is an IBM Power System AC922
which delivers about 200 PetaFlops using 4,608 nodes, with
two POWER9 and six Nvidia Volta V100s per node, connected
through a dual-rail Mellanox EDR InfiniBand interconnect.
The BB resides on each compute node and are equipped with
1.6 TB Samsung PM1725a NVMe solid state drivers, which
in total amount to 7.3 PB. Each local BB has an expected
peak write performance of 2.1 GB/s, and an approximately
peak read performance of 6 GB/s. The architecture is depicted
in Figure 1(b).

B. Scientific Application

The SWarp cosmology workflow [24] is used in large-
scale sky surveys for combining overlapping raw images
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Figure 2. Overview of the SWarp workflow composed of a data stage-in
task Sin, and several pipelines composed of Resample and Combine tasks
(respectively, Ri and Ci tasks). The 16 input images are shown in red, and
the 16 corresponding weight maps are shown in blue.

of the night sky into high quality reference images. The
workflow is composed of thousands of embarrassingly parallel
SWarp pipelines, in which each pipeline produces an image
for a predefined resolution of the sky. For this experimental
evaluation, we consider an instance of the SWarp workflow in
which average input to each workflow pipeline has 16 input
images (32 MiB each) and 16 input weight maps (16 MiB
each). SWarp is written in C and multithreaded with POSIX
threads. The multithreading strategy involves different threads
operating on different regions of the same image.

Figure 2 shows an overview of the workflow structure.
The entry task is a stage-in task, after which a number
of independent pipelines must be executed. Although each
pipeline is composed of two sequential compute tasks, we
argue that these tasks and the combined pipelines can be
used as a proxy application to estimate I/O performance of
scientific workflows. This is mainly due to the multithreading
characteristics of the tasks (note that several similar tasks
belonging to different pipelines will run in parallel), which
in turn increases the number of concurrent I/O operations at
runtime. While the I/O pattern of individual tasks is simple, the
complex workflow structure allow us to evaluate a number of
key experimental scenarios (discussed hereafter), and therefore
draw conclusions that can be related to most patterns that
commonly occur in production scientific workflows.

C. Experimental Scenario

Figure 3 shows an overview of our experimental approach.
We first perform real-world executions of SWarp on Cori
and Summit when varying the number of cores, the number
of pipelines that run in parallel, and the proportion of files
read/written from/to the BB. We then investigate the perfor-
mance impact of using each of the two different BBs modes
(private and striped, as proposed by Cray’s implementation
of the shared BB architecture used in Cori), as well as the
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Figure 3. Overview of the experimental scenario from real experiments to
model and simulations.

two representative architectures implementations (Cori and
Summit). This is depicted in the top part of Figure 3.

Unfortunately, it is not feasible to explore experimentally all
relevant scenarios at scale via real-world executions on Cori
and Summit. This is because these systems are shared with
other users, which limits the number and scale of experiments
that can be feasibly conducted. But it is also because it
is desirable to explore scenarios for platform configurations
that differ from that of the Cori and Summit systems. As a
result, we use experimental data obtained on these systems,
as described hereafter, to calibrate (and validate) a simulator
for workflow executions on HPC platforms equipped with
BBs. This is depicted in the bottom part of Figure 3. The
simulator is a software artifact that models the functional and
performance behaviors of software and hardware stacks of
interest for workflow executions, and thus allows us to explore
storage management options at scale for arbitrary platform
and workflow configurations. The simulator is described in
Section IV.

D. Experimental Results

In this sub-section, we explore the parameter space of
workflow executions on Cori and Summit HPC systems. We
aim to characterize the behavior of the two representative
implementations, as well as the different modes (private and
striped) in the shared approach, so that we can derive a model
for enabling accurate simulation of scientific workflows on
HPC systems with burst buffers. To ensure statistically valid
results, each run is averaged over 15 executions on a dedicated
single compute node. As I/O measurements are extremely
sensitive to background load and both systems are heavily
used, we reduce potential interference via the usage of Slurm
(Cori) and LSF (Summit) directives – we insure no other jobs
are running concurrently on the same node and that symmetric
multi-threading (SMT) is deactivated. Note that, in this work,
the stage-in task is always sequential.

Impact of data staging into burst buffers. Although BBs
have been known to significantly improve the performance
of workflow applications [10], [24], there is a perceived cost
for staging workflow input data into the intermediate storage

0 50 75 10025
Input files in burst buffers (%)

0.0

2.5

5.0

7.5

10.0

E
xe

cu
tio

n 
tim

e 
(s

) Private (Cori)
Striped (Cori)
On-node (Summit)

Figure 4. Execution time of the Stage-In task of the SWarp workflow with
one pipeline and 32 cores per tasks, vs. the percentage of input files stored
in BBs.

layer. Figure 4 shows a comparison of the execution perfor-
mance (in terms of executed time in seconds) of the Stage-In
task of the SWarp workflow – including both representative
implementations, and the two modes (private and striped) for
the shared approach. For this experiment, we vary the number
of workflow input files staged into the BB. As expected,
Stage-In execution time increases linearly with the amount
of data transferred. The on-node implementation (Summit)
outperforms the shared implementation (Cori) up to a factor
of 5, which is mostly due to the latency experienced for
the remote connection. Notice that both private and striped
modes present substantial variations on the measurements (ass
seen in the curve envelopes). This variation is due to the
variations in competing load on the system (since BBs are
shared across user jobs). Also notice an unexpected (poor)
behavior when 75% of the input files are staged into the BB
when using the striped mode. In spite of our best efforts
we were not able to pinpoint the reason for this behavior,
which is reproducible. Our best guess is that this behavior
may be due to a particular threshold defined in the system
configuration that triggers a different mode of operation, which
in turn leads to improved performance as the percentage of
files stored in BBs further increases. Providing a definite
explanation would require an experimental investigation of the
system configuration parameters, which can only be done by
platform administrators.

On the importance of the BB mode. The implementation of a
shared BB design is complex, and must address the challenges
of consistency, coherency, and performance. As there are far
more compute nodes than I/O and BB nodes, a given BB
allocation is usually spread over multiple BB nodes to ensure
satisfactory access time. Note that files can also be striped over
multiple BBs. As a result, performance in such systems is hard
to predict. Recall that Cori provides support to two modes of
BB implementations: private and striped (also called shared).
In the private mode, access to files in the BB are limited to
the compute node (CN) that created them, while in the striped
mode files can be accessed by any CN participating in the
computation. Figure 5 shows the performance impact for a
single pipeline (each task running on 32 cores) when using the
two modes. For each scenario, we assess the performance gain
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Figure 5. Execution performance of the Resample and Combine tasks of the SWarp workflow with one pipeline and 32 cores per tasks. Storage layers (BB
or PFS) indicate where all intermediate files written by Resample and read by Combine tasks are stored.

when intermediate files written by Resample and consumed
by Combine tasks (Figure 2) are entirely stored into the BB
or the PFS. While Resample tasks are impacted by both I/O
read operations of input files and I/O write operations of
intermediate files (in this case either written to the BB of PFS),
Combine tasks are solely impacted by I/O read operations.

In Figure 5(a), read operations mostly impact the per-
formance of the Resample tasks in the private mode – as
more input files are stored in the BB nodes, the better the
performance. Clearly, writing output files to BB nodes is
far more efficient than to the PFS (up to a factor of 1.5).
A similar trend is observed for the Combine tasks in the
private mode (Figure 5(d)), though the execution performance
is nearly constant since all read operations are performed on a
single storage layer. When compared to the striped mode (Fig-
ures 5(b) and 5(e)), the private mode outperforms it by up to
two orders of magnitude. Nevertheless, we observe a counter-
intuitive result with the striped mode, where the performance
slightly decreases when most of the workflow data resides
in the BB. Additionally, performing read operations from the
PFS yields better performance than from the BB nodes. This
is mostly due to the fact that SWarp I/O pattern is 1 : N
where one task accesses many files, while the striped mode is
optimized for a N : 1 communication pattern, where many
tasks access the same shared file. Therefore, this confirms
the well-established fact that understanding the application’s
communication pattern is critical for effective use of BBs.

For the on-node implementation (Summit, Figures 5(c)
and 5(f)), I/O performance increases for both Resample and
Combine tasks, with slightly better performance when larger
volumes of data are stored in the local BB. In addition, the on-
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Figure 6. SWarp workflow with one pipeline and 32 threads per tasks and
all input files staged into burst buffers.

node implementation outperforms the shared implementation
up to three orders of magnitude. Notice that the performance
of the PFS in Summit yields fairly good performance for the
studied workflow (slowdown as low as 0.2). We argue then
that data movement between local BBs (e.g., when using more
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Figure 7. Execution performance of the SWarp workflow when varying the number of pipeline running on one compute node (1 core per pipeline). All file
(input and intermediate) are stored into burst buffers.

than a single node) would not significantly slow down the
application execution. This result indicates that the on-node
implementation would likely scale well for large-scale work-
flow applications (which we demonstrate in Section IV-C).

Impact of the number of cores per task. Figure 6 shows
the performance impact when varying the number of cores.
Not surprisingly, Resample benefits from parallelism up to 8
cores in the shared implementation, then performance slightly
degrades as the number of cores increases (in particular for the
striped mode). For the on-node implementation, the plateau
for performance improvement is reached at 16 cores. By
contrast, Combine does not benefit from increased parallelism.
Combine reads all input files at once and combines them into
a singe larger file – this operation involves synchronization
and locks; Resample, instead, produces for each input file a
corresponding output file in parallel. This result indicates that
the performance gap between striped and private modes, and
between shared and on-node representative implementations
are not in general correlated with the number of cores.

Impact of the number of pipelines. The SWarp workflow is
composed of many parallel independent pipelines (Figure 2),
thus we study the performance impact when varying the
number of pipelines running concurrently in a single compute
node (Figure 7). As compute nodes in Cori have 32 cores
each, we ran workflows composed of 1 to 32 pipelines (each
workflow runs on a single core). As the number of pipelines
increases, Resample and Combine tasks are slowed down by
up to a factor of 3 in Cori (regardless of the BB allocation
mode). As each workflow is only composed of a single Stage-
In task, the impact of concurrent access to the BB nodes is
minimal. Theoretically, if we ignore sharing interference, the
makespan of a SWarp instance with a single pipeline should
be nearly the same as an instance with 32 pipelines – as each
pipeline is independent and the BB bandwidth is typically
significantly larger than the PFS bandwidth (up to 5×). And
yet, the results show a measurable slowdown as the number
of concurrent pipelines increases. This, surprisingly, indicates
that the contention for the BB bandwidth plays an important
role in the workflow performance. In other words, the effective
bandwidth achieved by this workflow implementation is well
below the peak bandwidth on the Cori system. This is likely

due to the fact that this implementation uses standard POSIX
I/O operations, which are not known for being particularly
efficiency (unlike, e.g., MPI-IO operations used by HPC
codes). Notice that the performance decrease as the number
of pipelines increases on the on-node implementation is nearly
negligible for the Stage-In and Resample tasks, while a more
significant performance decrease is observed for the Combine
tasks.
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Figure 8. Resample variation when varying the number of pipelines. All files
produced or read by the workflow tasks are into the burst buffer (On-node
mode is the lowest).

On the difficulty of measuring I/O at scale on a shared
machine. Obtaining I/O measurements is a challenging task,
mainly due to the inherently concurrent aspect of I/O systems,
the large number of processes, and continuous users interaction
with I/O subsystems. Thus, the speed at which one accesses
storage or memories is not deterministic and varies between
executions. We investigated the potential difference between
BB modes and implementations in terms of performance
stability in the face of these types of interference (Figure 8). As
expected, the on-node implementation outperforms the shared
implementation by up to two orders of magnitude. The absence
of network latency for the Summit BB architecture leads to
more stable measurements. For the shared BB architecture, the
private mode outperforms the striped mode (improvements of
one order of magnitude), and further yields a more stable per-
formance behavior – when using the striped mode execution
performance can vary by ∼15%.
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Summary of findings. This experimental evaluation allows us
to draw the following conclusions for the execution of the
SWarp workflow on both Cori and Summit: (i) performance
is highly dependent on access pattern and BB mode, in
particular for the shared implementation; (ii) the number of
cores plays an important role on performance but does not
impact the relative performance trends obtained among the BB
architectures; (iii) when increasing the number of pipelines
the bandwidth becomes saturated although its usage is far
below the peak; and (iv) in Cori, due to its shared aspect,
the BB design is easy to leverage but hard to achieve peak
performance (in part because performance is unstable when
dealing with relatively small files, unlike when dealing with
very large files [10]). On-node BB designs (e.g., Summit
at ORNL) yield more stable performance (Figure 9), but
they raise difficult resource allocation and data management
challenges as sharing files across multiple on-node BB is not
trivial.

IV. MODELING AND SIMULATING WORKFLOW
EXECUTIONS WITH BURST BUFFERS

In this section, we present a model for workflows execution
on HPC systems equipped with burst buffers. To evaluate
the accuracy of our model, we developed a simulator that
models the studied experimental platform, which includes
compute nodes, networking, and storage resources (PFS and
BB). This simulator is built using the WRENCH simulation
framework [33], [34], which can be used to build simulators of
complex distributed systems that are accurate, can run scalably
on a single computer, and can be implemented with minimal
software development effort. To this end, WRENCH builds on
the existing open-source SimGrid simulation framework [35],
in which the high accuracy of its simulation models have been
demonstrated via thorough invalidation and validation studies.
The simulator code and experimental scenarios used in this
section are all publicly available online [36].

A. Simulation instantiation

Our WRENCH simulator takes as input a description of
a workflow and a description of an execution platform. The
workflow description is a graph in which vertices are tasks

and edges (i.e., task dependencies) are induces by input/output
files of these tasks. Each task is annotated with a sequential
compute time. Also, a parallel efficiency can be provided to
estimate the compute time for a multi-core execution based on
Amdahl’s Law [37]. The description of the execution platform,
an XML file, specifies all available compute resources (nodes,
cores, RAM) and storage resources (disks), and the network
resources (links, routers) that interconnect them. Based on this
input, the simulator simulates the execution of the workflow
and outputs a time-stamped event trace. The date of the last
event, which corresponds to the last task completion, gives the
overall makespan.

As stated above, our simulator expects as input, for each
task, a measure of the sequential compute time (excluding
I/O operations). However, from our experimental data (see
Section III-D), we only know the observed execution time
of a task on some number of cores, and the fraction of time
that was spent in I/O operations. Therefore, we need a model
for determining the task’s purely computational sequential
execution time based on the experimental data.

Therefore, we propose a simple, yet practical, model for
determining the sequential compute time of a given task i
knowing its observed fraction of time spent in I/O (λioi ) and
the number of cores used (p). Let Ti(p) be the observed
execution time of task i using p identical cores, and let T c

i (p)
be the raw compute time (without I/O) of task i (i.e., assuming
an infinitely fast storage system). Here, Ti(p) represents the
execution time measured on the actual platform, and T c

i (1)
is the required as input to the simulator, which is to be
determined. We have the following relationship:

T c
i (p) = (1− λioi )Ti(p) , (1)

where λioi is the observed fraction of time this task spends do-
ing I/O operations. We need to compute T c

i (1). As WRENCH
uses a speedup model based on Amdahl’s Law [37] to estimate
the execution time of a parallel task, we use the same model1.
Amdahl’s Law states that the execution time of a task i running
on p cores can be expressed as:

T c
i (p) = αiT

c
i (1) + (1− αi)

T c
i (1)

p
, (2)

where αi is the fraction of the sequential execution time that
cannot be parallelized. Thus, by equating the right-hand sides
of Equations (1) and (2), we obtain:

T c
i (1) =

(1− λioi )Ti(p)

αi + (1− αi)/p
(3)

1On a side note, several other parallel execution models have been designed
over the years, such as BSP [40] or LogP [41]. These models are more
detailed than Amdahl’s Law as they consider the network to model potential
communication overhead occurring at scale, while Amdahl assumes that
communications and computations behave similarly. However, these models
require fine-grained knowledge about the execution platform in order to be
instantiated, which in turn is impracticable. The approach chosen in this paper
is to determine a first-order approximation of the raw sequential computation
time to be fed to our simulator, which accurately models the I/O time and
communication overheads.



Table I
INPUT PARAMETERS USED IN SIMULATION FOR EVALUATING THE ACCURACY OF OUR PROPOSED MODEL.

Processor Speed
Burst Buffers Bandwidth PFS Bandwidth

Network Disk I/O Network Disk I/O

Cori [11] 36.80 GFlop/s/core 800 MB/s 950 MB/s [38] 1.0 GB/s 100 MB/s
Summit [12] 49.12 GFlop/s/core 6.5 GB/s 3.3 GB/s [39] 2.1 GB/s 100 MB/s

In this paper we make assumptions to simplify the above so
that our model can be easily instantiated. A first important
assumption is about parallel efficiency – we assume that all
tasks follow a perfect speedup model (i.e., si = 0 for all i).
Note that we had implicitly made the same assumption about
I/O times (i.e., I/O time decreases linearly with the number of
cores performing the I/O operations). Hence:

T c
i (1) = p (1− λioi )Ti(p). (4)

These are quite strong assumptions that will definitely lead to
losses in accuracy, as quantified later in this section. However,
we aim to keep our approach simple, and platform- and
application-agnostic. If the Amdahl’s Law parameter (αi) is
known for each workflow task i, then the model in Equa-
tion (3) could also be used.

The value for the observed fraction of time spent doing I/O
operations for each task (λio) is obtained from [24], in which
an extensive characterization of SWarp on Cori I/O systems
was conducted (using the PFS). The value of λio for Resample
and Combine is 0.203 and 0.260, respectively. These values
were obtained on Cori, but we also use them for Summit.

Finally, Table I shows the platform parameters for processor
speeds, network bandwidths, and I/O bandwidths, passed to
the simulator.

B. Accuracy

We assess the accuracy of our model and simulator by
comparing the data gathered in Section III-D and the work-
flow makespan (turnaround time to compute all tasks in the
workflow) produced by our simulator. We consider the exact
same scenarios as that discussed in Section III-B,

Figure 10 shows the comparison between the predicted and
measured makespan when varying the fraction of the input
files that are staged into BBs. The corresponding experiment
is shown on Figure 5. The proposed simulated model yields
fairly accurate makespan – average error about 5.6% for
the private mode, and 6.5% for the on-node implementation
(Figures. 10(a) and 10(c)). Notice that the simulated makespan
slightly overestimates the execution performance for these two
scenarios – mostly due to the simplistic assumptions regarding
I/O time. For the striped mode, we observed a larger error
of about 12.8%, and an underestimation of the execution
performance. This underestimation is mostly due to the fact
our simulator does not account for the data fragmentation on
the different nodes, thus the increased latency. Additionally,
recall that the actual performance behavior of the striped
mode for the Stage-In task yields an unexpected performance

decrease when 75% of the files are staged into the BB
(Figure 4). This behavior is not captured by our simulation,
thus the increased error at 75%. The fact that the SWarp
workflow reads/writes fairly small files (several MB) explain
also the poor performance reached by the striped mode. We
expect that with larger files (in the GB range), the striped mode
would yield better performance. We note that Figure 10(a) is
the only case in the results where the simulated makespan does
not follow the same trend as the measured makespan. Although
pinpointing the root cause of this discrepancy requires further
investigation, we conjecture that the constant increase seen in
the measure makespan is due to concurrent storage access.
The files produced by the SWarp workflow might not be large
enough to benefit from a private BB. By contrast, the simulator
behaves as expected, the more the workflow uses burst buffers
the faster it runs, hence leading to the opposite trends.

Figure 11 compares actual and simulated makespans when
increasing the number of pipelines running on a single com-
pute node. This configuration is particularly interesting for
an I/O-focused study because by increasing the number of
concurrent pipelines the likelihood that sharing interference
occurs also increases. Although the overall average error is
higher (11.8%, 11.6%, and 15.9% for private, striped, and on-
node, respectively), the simulator framework yields predicted
makespan trends similar to the actual execution. This result
indicates that the competition for bandwidths among the
concurrent pipelines is captured fairly well by our model and
simulator. Also note that as the concurrency increases, the
simulated makespans tend to becomes more accurate.

Although we could have tailored the model and simulator
calibration parameters to specifically capture the observed
behavior for the striped shared mode, we argue that this
would have made the simulator platform- and configuration-
dependent. More generally, we note that fine-grained per-
formance and configuration details, required for tuning the
calibration parameters, are often not available – e.g., in order
to define the disk and network bandwidths for this evalua-
tion (Table I) we have come across several documents that
provided inconsistent information. Augmenting the simulator
with additional parameters can only improve accuracy if it is
possible to provide accurate value for these parameters, which
often turns out to be difficult.

In summary, we argue that despite the simplifying assump-
tions in our model, our simulator yields satisfactory workflow
makespan estimates while requiring minimal configuration
parameters. More importantly, our evaluation experiments
demonstrate that our proposed model and simulator can rea-
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Figure 10. Real and simulated makespan when varying the number of files staged into BBs for one pipeline where each task runs on 32 cores. (Intermediate
files produced by Resample and consumed by Combine are allocated into BBs.)
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Figure 11. Real and simulated makespan when varying the number of pipelines. All files produced or read by the workflow are allocated into BBs and each
task runs on a single core.

sonably capture relevant I/O behaviors trends.

C. Case-study for a large I/O-intensive workflow

In this section, we use our simulator to simulate the
execution of a large data-intensive workflow on the Cori
and the Summit architectures. To this end, we leverage ex-
ecution traces of the 1000Genomes workflow [42] obtained
from the WorkflowHub project [43], [44]. The 1000 genomes
project [45] provides a reference for human variation, having
reconstructed the genomes of 2,504 individuals across 26
different populations. The 1000Genomes workflow identifies
mutational overlaps using data from the 1000 genomes project
in order to provide a null distribution for rigorous statistical
evaluation of potential disease-related mutations (Figure 12).
The workflow is composed of the following tasks: (i) indi-
viduals: downloads and parses data from the 1000 genomes
project for each chromosome; (ii) populations: downloads
and parses five super populations of individuals and a set
of all individuals; (iii) sifting: computes the SIFT of all
of the single nucleotide polymorphisms (SNPs) variants, as
computed by the Variant Effect Predictor; (iv) pair overlap
mutations: measures the overlap in mutations among pairs of
individuals; and (v) frequency overlap mutations: calculates
the frequency of overlapping mutations across subsamples of
certain individuals. In this section we consider an instance of
the 1000Genomes composed of 903 tasks, which processes 22
chromosomes. The total workflow data footprint of ∼67 GB.

Figure 13 shows the predicted makespan obtained when
simulating the above 1000Genomes workflow instance on both
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Figure 12. Overview of the 1000 genomes workflow

Cori and Summit. For this experiment, we vary the number
of input files allocated in the BB. Note that these simula-
tions were performed with the same configuration scenario
and calibration parameters used to obtain the results shown
in Figures 10 and 11. The performance of the workflow
increases linearly as more files are allocated in the BB. As
expected, Summit outperforms Cori mainly due to its larger
BB bandwidth (see Table I). In addition, Cori reaches its
performance plateau when about over 80% of the input data
are allocated in the BB (bandwidth saturation). We conjecture
that a striped BB allocation would improve the performance in
this case by using more BB nodes and, therefore, alleviating
the pressure on the bandwidth. On Summit, the performance
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Figure 13. 1000Genomes workflow with 903 tasks (total input data is about
52 GB, i.e. 77% of the workflow data footprint).

plateau is reached later (when nearly all files are stored in the
BB), which is expected due to its higher bandwidth.
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Figure 14. Speedup obtained when staging input data from the 1000Genomes
workflow into BB nodes. Data from our previous study [10] are shown in blue
for comparison purposes.

Figure 14 shows the same results as in Figure 13 but in
terms of parallel speedup. This figure also shows, in blue,
results obtained in [10], which conducted a thorough perfor-
mance characterization study of the 1000Genomes workflow
on Cori, using BBs, but only for a few different fractions
of the buffer files stored in BBs. We show these results as
interesting reference point, rather than attempting to use them
for a thorough validation study, for the following reasons.
First, the results in [10] were, for technical reasons, performed
on a smaller 1000Genomes configuration (2 chromosomes)
than that used in this section for our simulated executions
(22 chromosomes). It turns out that, for 1000Genomes, dif-
ferent numbers of chromosomes modify the task-dependency
structure and thus the I/O access patterns. Second, several
aspects of the system (both hardware and software) have
been upgraded in the time between when the experiments
in [10] were conducted and the time when we performed
the experiments in this work. Third, the load on the system
is never the same between experiments, and definitely when
experiments are many months apart.

Given all the above caveats, it is not surprising that the
magnitude of the error is larger than that reported in the
previous section. Nevertheless, at 29%, the error is not com-
pletely unreasonable, and one might expect that, were the
results in [10] to be reproduced on Cori today with the 22-

chromosome workflow configuration, lower error could be
achieved. We plan to confirm this expectation experimentally
in future work.

V. CONCLUSION

In this paper, we have explored the impact of next genera-
tion I/O systems on the performance of high-profile workflows
applications. We have performed an extensive set of exper-
iments running a representative real-world scientific work-
flow on two leadership-class HPC systems provided of two
exemplary BBs I/O systems (Cori at NERSC, and Summit
at ORNL). We have conducted a comprehensive analysis of
this workflow and explored the parameter-space to underline
several challenges that should be addressed by workflows and
applications that target those systems. We have then proposed
a model for I/O-intensive workflows that accounts for the
use of BBs on HPC systems. We used the gathered data
to calibrate and validate an open-source simulator. We have
thoroughly exposed the differences between the two access
shared modes available on Cori, and compared their perfor-
mance to Summit’s on-node implementation; and discussed
their advantages and limitations. In particular, we have showed
that the striped mode can, depending on the application’s I/O
patterns, lead to poor performance and to potential substantial
sharing interference. On the other hand, Summit’s on-node
approach yields far better and more stable performance. We
have also evaluated the accuracy of our proposed model via
simulation on complex scenarios, including an evaluation of
our approach by contrasting simulated behavior to actual
executions of a large-scale data-intensive workflow previously
executed on a BB system. A natural future direction is to
leverage our simulator to explore the heuristic-space of data
placements strategies to optimize workflows executions, and
to quantify the resulting benefits.
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