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Abstract. We equip Ellis and Brundan’s version of the odd categorified quantum group

for sl.2/ with a differential giving it the structure of a graded dg-2-supercategory. The

presence of the super grading gives rise to two possible decategorifications of the associated

dg-2-category. One version gives rise to a categorification of quantum sl.2/ at a fourth root

of unity, while the other version produces a subalgebra of quantum gl.1j1/ defined over the

integers. Both of these algebras appear in connection with quantum algebraic approaches

to the Alexander polynomial.
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1. Introduction

1.1. Motivations from link homology theory. Khovanov homology, categori-

fying a certain normalization of the Jones polynomial [44, 45], is the simplest of

a family of link homology theories associated to quantum groups and their rep-

resentations. Surrounding Khovanov homology is an intricate system of related

combinatorial and geometric ideas. Everything from extended 2-dimensional

TQFTs [45, 57, 21], planar algebras [3, 4], category O [87, 86, 12, 6], coherent

sheaves on quiver varieties [13], matrix factorizations [52, 53], homological mir-

ror symmetry [84], arc algebras [45, 14, 87, 11], Springer varieties [46, 87, 88],

stable homotopy theory [61, 63, 62], and 5-dimensional gauge theories [31, 96, 97]

appear in descriptions of Khovanov homology, among many other constructions.

Given that Khovanov homology provides a nexus bridging the sophisticated

structures described above, it is surprising to discover that there exists a distinct

categorification of the Jones polynomial. Ozsváth, Rasmussen, Szabó found an

odd analogue of Khovanov homology [71] that agrees with the original Khovanov

homology when coefficients are taken modulo 2. Both of these theories categorify

the Jones polynomial, and results of Shumakovitch [85] show that these categori-

fied link invariants are not equivalent.

The discovery of odd Khovanov homology was motivated by the existence of

a spectral sequence from ordinary Khovanov homology to the Heegaard Floer

homology of the double branch cover [72] with Z2 coefficients. Odd Khovanov

homology was defined in an attempt to extend this spectral sequence to Z coeffi-

cients, rather than Z2. Indeed, in [71] they conjecture that for a link K in S3, there

is a spectral sequence whose E2 term is the reduced odd Khovanov homology

Khr.K/ of K and whose E1 term is the Heegaard–Floer homology bHF .�†.K//

of the branched double cover †.K/ with the orientation reversed (with coefficients

in Z).

Khr.K/

OKhr.K/

bHF .�†.K//

Z=2
,,,l,l,l,l

,l,l
,l,l

Z‹

222r2r
2r2r

2r2r
2r

A related version of this conjecture was proven in the context of instanton homol-

ogy in [82].

There are now a number of spectral sequences connecting variants of Kho-

vanov homology to variants of Floer homology [77, 89, 7, 55, 78, 33, 5, 1, 2].

For even Khovanov homology there are many interesting connections with knot
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Floer-homology 1HFK.K/. This is a bigraded homology for knots and links

1HFK.K/ D
M

m;a2Z

1HFKm.K; a/

where m is called the Maslov (or homological) grading and a is the Alexander

grading. The graded Euler characteristic of 1HFK.K/ is the Alexander polynomial

X

m;a2Z

.�1/mta � rankZ.1HFKm.K; a// D �K.t /:

Many of the spectral sequences listed above arise via a collapse of the bigraded

homology groups to a single ı-grading. For Khovanov homology the ı-grading is

given by ı D h�q=2, where q denotes the quantum grading and h the homological.

On 1HFK the ı-grading is ı D a � m. Rasmussen conjectured a spectral sequence

between the singly ı-graded Khovanov homology Khı.K/ and the ı-graded knot

Floer homology 1HFKı.K/ [77]. Under the collapse of grading the graded Euler

characteristic becomes an integer rather than a polynomial. It is interesting to note

that if we set q D
p

�1 in the Euler characteristic formula

X

i;j

.�1/iqj rk.Khi;j /jqD
p

�1 D
X

i;j

.�1/i�j=2rk.Khi;j /

we recover the Euler characteristic of the ı-graded Khovanov homology theory.

Similarly, in 1HFK where ı D a � m, so that the parameters are related by

q2 D t , we see that q D
p

�1 corresponds to t D �1, so the Euler characteristic

specializes to

X

i;a2Z

.�1/iCa � rankZ.1HFKi .K; a// D �K.�1/:

The t D �1 evaluation of Alexander polynomial is equal to the knot determi-

nant det.K/. This invariant has another categorification via the Heegaard–Floer

3-manifold homology of the branched double cover of K,

�.bHF .†.K/// D jH 2.†.K/; Z/j D det.K/ D j�K.�1/j

see [72, Section 3]. This variant of Heegaard–Floer homology is the target of the

conjectured spectral sequence from odd Khovanov homology discussed above.

1.2. Quantum algebra and a zoo of quantum invariants. These connection

between varients of Heegaard–Floer homology and even/odd Khovanov homol-

ogy are somewhat striking given that these invariants are defined in very different
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ways. However, quantum algebra sheds some light as to why such a connection is

less surprising. It is well known that the Jones polynomial can be interpreted as a

quantum invariant associated to the quantum group for sl2 and its two dimensional

representation. Varying the semisimple Lie algebra g and the irreducible repre-

sentations coloring the strands of a link, one arrives at a whole family of quantum

invariants.

The Alexander–Conway function rL.t1; : : : ; tk/ for a k component link L is

a rational function in variables t1; : : : ; tk. Similarly, the Alexander polynomial

�L.t1; : : : ; tk/ is a Laurent polynomial in variables t
1
2

1 ; : : : ; t
1
2

1 . They are related

by

rL.t1; : : : ; tk/ D �L.t2
1 ; : : : t2

k / if k > 1,

and

rL.t / D �L.t2/

t � t�1
:

The Alexander–Conway polynomial can be formulated as a (non-semisimple)

quantum invariant in several ways. One formulation realizes rL using the quan-

tum group associated to the super Lie algebra gl.1j1/ [80]. Murakami gave a con-

struction using quantum sl2 with the quantum parameter specialized to a fourth

root of unity [69, 70]. Kauffman and Saleur give a construction based on quantum

sl.1j1/.

A comparison and review of the Up
�1.sl2/ and Uq.gl.1j1// Reshetikhin–

Turaev functors are studied in [94]. In this work, Viro shows that there is a ‘q-less

subalgebra’ U1 of Uq.gl.1j1// that is responsible for producing the Reshetikhin–

Turaev functor that is closely related to the one coming from Up
�1.sl2/. Simi-

larly, an algebra that can be defined over Z also appears in the Kauffman–Saleur

Uq.sl.1j1// construction of the Alexander–Conway polynomial rK via a special-

ization (� D 1 in their notation, see [38, Equation (2.1)]), which corresponds in

our notation to working with the subalgebra PU.sl.1j1//11 of PU.sl.1j1//, see Sec-

tion 8.5. The quantum parameter is not needed in the definition of this algebra, it

only arises in the coalgebra structure when one acts on tensor product representa-

tions.

Connections between the Alexander invariant and the Jones polynomial then

arise via an observation by Kauffman and Saleur that the R-matrix for braiding the

fundamental representations of sl2 and sl.1j1/ agree when evaluated at q D
p

�1.

This implies an identification of quantum invariants

JK.q/jqD
p

�1 D rK.t /tD
p

�1 D �K.t /tD�1: (1.1)
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Our aim in this article is to lay the groundwork for a higher representation theoretic

categorification of the knot determinant j�K.�1/j by categorifying the quantum

algebras used to define it. Our approach provides a new perspective on connec-

tions between these different approaches via the theory of covering Kac–Moody

algebras.

1.3. The oddification program. The so called ‘oddification’ program [58] in

higher representation theory grew out of an attempt to provide a representation

theoretic explanation for a number of phenomena observed in connection with odd

Khovanov homology. The idea is that Khovanov homology shares many connec-

tions throughout mathematics and theoretical physics, suggesting that many of the

other fundamental structures connected with Khovanov homology may also have

odd analogs. The oddification program looks for odd analogs of structures that are

typically non-commutative, having the same graded ranks as traditional objects

and becoming isomorphic when coefficients are reduced modulo two. Often the

odd world provides the same combinatorial relationships in a non-commutative

setting.

The nilHecke algebra plays a central role in the theory of categorified quan-

tum groups, giving rise to an integral categorification of the negative half of

Uq.sl2/ [56, 49, 79]. An oddification of this algebra was defined in [26] which can

be viewed as an algebra of operators on a skew polynomial ring. The invariants

under this action define an odd version of the ring of symmetric functions [25, 26].

The odd nilHecke algebra also gives rise to “odd” noncommutative analogs of the

cohomology of Grassmannians and Springer varieties [58, 26]. It also fits into a

2-categorical structure [27, 10] giving an odd analog of the categorification of the

entire quantum group Uq.sl2/. In each of these cases, the structures possess com-

binatorics quite similar to those of their even counterparts. When coefficients are

reduced modulo two the theories become identical, but the odd analogues possess

an inherent non-commutativity making them distinct from the classical theory.

The odd nilHecke algebra appears to be connected to a number of important

objects in traditional representation theory. It was independently introduced by

Kang, Kashiwara, and Tsuchioka [37] starting from the different perspective of

trying to develop super analogues of KLR algebras. Their quiver Hecke superalge-

bras become isomorphic to affine Hecke–Clifford superalgebras or affine Sergeev

superalgebras after a suitable completion, and the sl2 case of their construction

is isomorphic to the odd nilHecke algebra. Cyclotomic quotients of quiver Hecke

superalgebras supercategorify certain irreducible representations of Kac–Moody

algebras [35, 36]. A closely related spin Hecke algebra associated to the affine



232 I. Egilmez and A. D. Lauda

Hecke–Clifford superalgebra appeared in earlier work of Wang [95] and many of

the essential features of the odd nilHecke algebra including skew-polynomials ap-

pears much earlier in this and related works on spin symmetric groups [41, 42, 43].

1.4. Covering Kac–Moody algebras. Clark, Hill, and Wang showed that the

odd nilHecke algebra and its generalizations fit into a framework they called

covering Kac–Moody algebras [34, 22, 19, 20]. Their idea was to decategorify

the supergrading on the odd nilHecke algebra by introducing a parameter � with

�2 D 1. The covering Kac–Moody algebra is then defined over Q.q/Œ��=.�2 � 1/

for certain very specific families of Kac–Moody Lie algebras. The specialization

to � D 1 gives the quantum enveloping algebra of a Kac–Moody algebra and the

specialization to � D �1 gives a quantum enveloping algebra of a Kac–Moody

superalgebra. This idea led to a novel bar involution q D �q�1 allowing the first

construction of canonical bases for Lie superalgebras [20, 22]. In the simplest

case, the covering algebra Uq;� can be seen as a simultaneous generalization of

the modifed quantum group PU.sl2/ and the modified quantum Lie superalgebra
PU.osp.1j2//. This relationship is illustrated below.

PUq;�

PU.sl2/ PU.osp.1j2//

�!1

��⑧⑧
⑧⑧
⑧⑧
⑧

�!�1

��❄
❄❄

❄❄
❄❄

Covering Kac–Moody algebras are not an sln phenomenon. In finite type, the

covering Kac–Moody algebras Uq;�.g/ can be defined connecting the superalge-

bra of the anisotropic Lie superalgebra g D osp.1j2n/ with the quantum Kac–

Moody algebra g D so.2n C 1/ obtained by forgetting the parity in the root da-

tum [19, 34]. In particular, the only finite type family of covering Kac–Moody

algebras Uq;�.g/ have a � D 1 specialization equal to the quantum eveloping

algebra Uq.so.2n C 1// and the � D �1 specialization the quantum superalge-

bra Uq.osp.1j2n/. The connection to sl2 only arises because of the Lie algebra

coincidence sl2 Š so.3/.

The algebra/superalgebra pairs connected by covering theory are closely con-

nected by the theory of twistors developed by Clark, Fan ,Li, Wang [30, 18]. De-

note by t a square root of �1, and let PUŒt� denote the algebra PUq;� with scalars

extended by t. Then the twistor associated to a covering algebra PUq;�.g/ gives an

isomorphism

P‰W PUŒt�j�D�1 �! PUŒt�j�D1 (1.2)
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sending � 7! �� and thereby switching between a quantum group and its super

analog. This map sends q 7! t�1q. Hence, PUŒt��D1 and PUŒt��D�1 can be regarded

as two different rational forms of a common algebra PUŒt�. These two rational forms

each admit their own distinct integral forms.

The twistor isomorphism (1.2) has implications for the corresponding quantum

link invariants. Blumen showed that osp.1j2n/ and so.2n C 1/ invariants colored

by the standard .2n C 1/-dimensional representations agree up to a substitution

of variable [8]. To a knot or link K, Clark greatly extended this observation

by defining covering colored knot invariants J �
K.q; t/ associated to Uq;�.g/ and

a dominant integral weight � 2 XC. These knot invariants take values in a

larger field Q.q; t/� with �2 D � . They have the property of simultaneously

generalizing the colored so.2n C 1/ quantum invariant and the osp.1j2n/ super

quantum invariant. If we define soJ �
k

.q/ WD J �
K.q; 1/ and ospJ �

k
.q/ WD J �

K.q; t/

then Clark shows [17, Theorem 4.24] that the twistor isomorphism (1.2) gives rise

to an identification of quantum knot invariants

ospJ �
k .q/ D ˛.�; K/ soJ �

k .t�1q/ (1.3)

for some scalar ˛.�; K/ depending on the dominant weight � and the link K. In

the case when n D 1 this gives the surprising observation that the colored Jones

polynomial can be obtained from the super representation theory of osp.1j2/ with

appropriate scalars.

Here we show that the covering algebra PUq;� for n D 1 specializes at .q; �/ D
.
p

�1; 1/ to the small quantum group for sl2 (at a fourth root of unity) and at

parameters .q; �/ D .�1; �1/ to a “q-less subalgebra” of modified sl.1j1/, see

Sections 8.4 and 8.5. The quantum knot invariant twistor isomorphism (1.3) at

n D 1 specializes at q D �1 to a connection between the osp.1j2/ invariant at

parameter q D �1 and the sl2-invariant at q D t�1.�1/ D t which is a fourth root

of unity. Hence, the connection between a q-less subalgebra of quantum sl.1j1/

and sl2 at a fourth root of unity may be a special case of a twistor arising from the

covering Kac–Moody theory.

1.5. Categorification. The existence of a canonical basis for the covering alge-

bra PUq;� led Clark and Wang to conjecture the existence of a categorification of

this algebra [22]. The conjecture was proven in [27] who defined a Z�Z2-graded

categorification Uq;� of PUq;� . Later, Brundan and Ellis gave a simplified treat-

ment [10] using the theory of monoidal supercategories [9]. This work provided

a drastic simplification that makes the present work possible.

Thus far, the odd categorification Uq;� of quantum sl2 has yet to be applied to

give a higher representation theoretic interpretation of odd Khovanov homology.
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However, it is interesting to note the strong agreement between the existence of

covering Kac–Moody algebras for so.2n C 1/ and the existence of an “odd link

homology” for the same algebras predicted by the string theoretic approach to link

homology constructed by Mikhaylov and Witten using D3-branes with boundary

on fivebrane [68].

Given the expected connections to odd link homology, the conjectural spectral

sequences connecting odd Khovanov homology and knot Floer homology moti-

vates the investigation of 2-categorical differentials on the odd categorified quan-

tum group. In particular, we categorify both specializations of the covering al-

gebra at .q; �/ D .
p

�1; 1/ and .�1; �1/ corresponding sl2 at a fourth root of

unity and a subalgebra of quantum sl.1j1/, see Corollary 9.10. This is not as

straightforward as one might hope. In both algebras there are relations of the form

E2 D F 2 D 0 and such relations are known to be nontrivial to categorify.

If the identity morphism of a generator E in a category is represented dia-

grammatically by a vertical arrow, then two vertical strands represents the object

EE. Khovanov was the first to identify the representation theoretic importance of

dg-structures with a diagrammatic relation defining the differential of a crossing

to be two vertical strands. Such structures appeared in work of Lipshitz, Ozsvath,

Thurston [60] providing a combinatorial construction of Heegaard–Floer homol-

ogy. Khovanov showed that such a relation could be used to produce the nilpotent

relation E2 D 0 needed for a categorification of the positive part of gl.1j1/ [47].

This led to a categorification of the positive part of gl.mj1/[54].

Since Khovanov’s initial observations, there have been various proposals to

categorifications connected with gl.1j1/ appearing in the literature. In [28] the

tangle Floer dg algebra is identified with a tensor product of Uq.gl.1j1// repre-

sentations and dg-bimodules were defined giving the action of quantum group

generators E and F . Further, Ozvath and Szabo’s new bordered Heegaard–Floer

homology [74, 73] can be seen as a categorification of gl.1j1/ representations via

the work of Manion [67]. Motivated by contact geometry, Tian defined a cate-

gofication of Uq.sl.1j1// using triangulated categories arising from the contact

category of the disc with points on the boundary [92, 90, 91]. An approach to

categorifying tensor powers of the vector representation of Uq.gl.1j1// based on

super Schur-Weyl duality is given in [81], which is related to the bordered theory

in [66].

Here we extend Khovanov’s observation in order to categorify the specializa-

tions of the covering algebra at q2 D �� . To do this we define new dg-structures

on the 2-category Uq;� .
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1.6. Differential graded structures on categorified quantum group. Deriva-

tions on the even categorification U.sl2/ were studied by Elias and Qi [23]. They

were interested in categorifying the small quantum group for sl2 at a (prime) root

of unity. Their approach made use of the theory of Hopfological algebra initiated

by Khovanov [48] and developed by Qi [75]. The main idea in Hopfological alge-

bra is to equip a given categorification with the structure of a p-dg algebra. This

is like a dg-algebra, except that d p D 0 rather than d 2 D 0.

Within the framework of Hopfological algebra, there have been a number of

investigations into categorifications at a prime root of unity. A p-dg analog of

the nilHecke algebra was studied in [51]. In [23] Elias and Qi categorify the small

quantum group for sl2 at a (prime) root of unity by equipping the 2-categoryUwith

a p-differential giving it the structure of a p-dg-2-category. Using thick calculus

from [50], in Elias and Qi categorify an idempotented form of quantum sl2 and

some of its simple representations at a prime root of unity [24]. This involves

equipping the Karoubi envelope PU of the 2-category U with a p-dg structure.

Related categorifications studied were studied in [76]. All of these approaches

require p to be a prime root of unity and the base field to have characteristic p.

Much less in known about honest dg-structures, or categorification at a root of

unity working over an arbitrary field (see [59] for the current state of the art).

In particular, it was shown in [23] that there are no nontrivial differentials in

characteristic zero on the original categorification U.sl2/. The only clue we have

is the work of Ellis and Qi that equips the odd nilHecke algebra with an honest

dg-algebra structure [29] . Their work gives a categorification of the positive part

of Uq.sl2/ with q specialized to a fourth root of unity. There are a couple of points

here worth highlighting. First, they work with the odd nilHecke algebra defined

over an arbitrary field or Z (no need to work in characteristic p). Second, the fourth

root of unity doesn’t come from considering a funny version of chain complexes

with d 4 D 0; they use ordinary dg-algebras. However, the differential they define

on the odd nilHecke algebra is not bidegree zero. Rather it has Z � Z2 -degree

.2; N1/ leading to so called mixed complexes, or ‘half graded’ chain complexes of

vector spaces.

The effect of having mixed complexes is a collapse of the Z � Z2-bigrading,

analogous to the ı-grading from link homology theory. At the level of the

Grothendieck ring of the derived category of dg-modules, this has the effect of

imposing the relation 1 C q2� D 0 in the ground ring ZŒq; q�1; ��=.�2 � 1/.

When � D 1, this gives the Grothendieck ring the structure of ZŒ
p

�1�-algebra.

So the fourth root of unity comes from the bidegree of the differential, not from

the theory of p-dg algebras. This is discussed in greater detail in Section 3.4.



236 I. Egilmez and A. D. Lauda

Ellis and Qi suggested that their work on the differential graded odd nilHecke

algebra should extend to the odd categorified quantum group U.sl2/ to provide a

characteristic zero lift of the differentials defined on the original categorification

U.sl2/ that were studied in finite characeteristic in [23]. Here we prove this

conjecture by defining a family of differentials on the odd 2-supercategory U, see

Proposition 7.1.

1.7. Main Results. In Proposition 7.1 we classify 2-categorical differentials on

the odd 2-category Uq;� . Our classification depends on the so-called nondegen-

eracy conjecture stating that certain spanning sets form a basis for the 2-homs

in Uq;� . However, our results are independent of this conjecture as we define

explicit differentials giving the desired categorifications. Following similar argu-

ments from [23], we show that the odd 2-category Uq;� is dg-Morita equivalent to

a positivly graded dg-algebra enabling us to compute the Grothendieck ring of the

dg-2-supercategory .Uq;� ; @/ using the theory of fantastic filtrations developed by

Elias and Qi [24]. As explained in Section 3.4, we have freedom in how we treat

the Z2-grading in the Grothendieck group. In particular, the Grothendieck group

is naturally a ZŒq; q�1; ��=.�2 � 1; 1 C q2�/ module with ŒM…� D �ŒM�. We

show in Corollary 9.10 that taking � D 1 specialization results in a categorifica-

tion of PU.sl2/ at a fourth root of unity. While taking the � D �1 specialization

eliminates q entirely and we are left with a Z-module closely related to gl.1j1/. In

particular, we have relations E2 D F 2 D 0 and a super commutator relation for

E and F . In this way, Up
�1.sl2/ together with a q-less version of gl.1j1/ appear

naturally via different decategorifications of the same 2-category Uq;� .

The significants of a bidgree .2; N1/, or ı-grading preserving, differential con-

necting the odd 2-category Uq;� with quantum algebras connected to the Alexan-

der polynomial is the further evidence it provides that odd categorified quantum

groups may supply a higher representation theoretic bridge between odd Kho-

vanov homology and bHF .†.K//. An odd categorified quantum groups construc-

tion of odd Khovanov homology should have interesting interactions with the dif-

ferential defined here, inducing a spectral sequence associated to these new dif-

ferentials, and providing a higher representation theoretic categorification of the

knot determinant det.K/ D j�K.�1/j.
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2. Super dg theory

Here we consider Z � Z2-graded dg categories. This is a modest generalization

of the standard theory of dg-categories, since a Z-graded dg-category induces a

Z2-graded one by collapsing the grading modulo 2. However, we note that the Z2

grading on 2-morphisms in the 2-category U defined in Section 5 are not the mod

2 reductions of the quantum Z-grading. It is easy to see this from the bigrading on

caps and cups. We consider differentials with respect to the Z2 (or super) grading.

If the differential also has a nontrivial Z-grading (as is the case with the differential

on U) this can produce interesting effects on the Grothendieck ring. In particular,

if the differential has bidegree .2; N1/ we are led to the notion of ‘half graded’

complexes whose Grothendieck ring corresponds to the Gaussian integers, see

Section 3.4.

The natural context for discussing Z2-graded dg categories is the super cat-

egory formalism developed by Brundan and Ellis [9, 10] that we review in Sec-

tion 2.1.

2.1. 2-supercategories. Let k be a field with characteristic not equal to 2. A su-
perspace is a Z2-graded vector space V D V N0 ˚ V N1: For a homogeneous element

v 2 V , write jvj for the parity of v.

Let SVect denote the category of superspaces and all linear maps. Note that

homs HomSVect.V; W / has the structure of a superspace since and linear map

f W V ! W between superspaces decomposes uniquely into an even and odd

map. The usual tensor product of k-vector spaces is again a superspace with

.V ˝ W / N0 D V N0 ˝ W N0 ˚ V N1 ˝ W N1 and .V ˝ W / N1 D V N0 ˝ W N1 ˚ V N1 ˝ W N0:

Likewise, the tensor product f ˝ g of two linear maps between superspaces is

defined by

.f ˝ g/.v ˝ w/ WD .�1/jgjjvjf .v/ ˝ g.w/: (2.1)

Note that this tensor product does not define a tensor product on SVect, as the

usual interchange law between tensor product and composition has a sign in the

presence of odd maps

.f ˝ g/ ı .h ˝ k/ D .�1/jgjjhj.f ı h/ ˝ .g ı k/: (2.2)
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This failure of the interchange law depending on parity is the primary structure

differentiating super monoidal categories from their non-super analogs.

If we set SVect to be the subcategory consisting of only even maps, then

the tensor product equips SVect with a monoidal structure. The map u ˝ v 7!
.�1/jujjvjv ˝ u makes SVect into a symmetric monoidal category. We now define

supercategories, superfunctors, and supernatural transformations by enriching

categories over the symmetric monoidal category SVect. See [40] for a review

of the enriched category theory.

Definition 2.1. A supercategoryA is a category enriched in SVect. A superfunc-

tor F WA ! B between supercategories is an SVect-enriched functor.

Unpacking this definition, the hom spaces in a supercategory are superspaces

HOMA.X; Y / D Hom
N0
A

.X; Y / ˚ Hom
N1
A

.X; Y /

and composition is given by an even linear map. Let SCat denote the category

of all (small) supercategories, with morphisms given by superfunctors. This cat-

egory admits a monoidal structure making it a symmetric monoidal category [10,

Definition 1.2].

Definition 2.2. A 2-supercategory is a category enriched in SCat. These means

that for each pair of objects we have a supercategory of morphisms, with compo-

sition given by a superfunctor.

For our purpose, it suffices to consider a 2-supercategory to be an extension

of the definition of a 2-category to a context where the interchange law relating

horizontal and vertical composition is replaced by the super interchange law

g

f

���

Y X

Y 0 X 0

D g f
���

Y X

Y 0 X 0

D .�1/jf jjgj
g

f ���

Y X

Y 0 X 0

Effectively this means that when exchanging heights of morphisms we must take

into account their parity.

2.2. DG-superalgebras. In this section we collect some facts about differential

graded algebras in the super setting. Following [29] we grade our dg algebras by

Z=2Z. Traditional dg algebras inherit a Z2 grading by collapsing the Z-grading
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mod 2. However, in our setting we will have both a Z-grading and Z2-grading that

is not the mod 2 reduction of the Z grading.

A dg-superalgebra .A; @A/ is a superalgebra A D A N0 ˚ A N1 and an odd parity N1
k-linear map @ D @AW A ! A satisfying @2 D 0 and for any homogeneous a; b 2 A

@.ab/ D @A.ab/ D @A.a/b C .�1/jaja@A.b/: (2.3)

A left dg-supermodule .M; @M / is a supermodule M D MN0 ˚ MN1 equipped with

an odd parity k-linear map @M W M ! M such that for any homogeneous elements

a 2 A, m 2 M we have

@M .am/ D @A.a/m C .�1/jaja@M .m/:

If A and B are dg-superalgebras, then a dg .A; B/-superbimodule is a superspace

equipped with a differential and commuting left dg A-supermodule and right dg

B-supermodule structure. Given a dg .A; B/-superbimodule M , define the parity
shift superbimodule …M to have the same underlying vector space as M viewed

as a superspace with the oppposite Z2-grading

.…M/ N0 D MN1; .…M/ N1 D MN0:

The superbimodule structure on …M is defined by a�m�b WD .�1/jajavb. With this

definition the identity function on the underlying vector space defines an odd dg-

superbimodule isomorphism �M W …M ! M . For a morphism of superbimodules

f W M ! N we define …f W …M ! …N by the map .�1/jf jf . Then there is

an isomorphism �M W …2M ! M given by minus the identity. The category of

.A; B/-superbimodules equipped with the superfunctor … and odd supernatural

isomorphism �W … ! Id equips the category of dg .A; B/-superbimodules with

the structure of a …-supercategory in the sense of [9, Definition 1.7].

2.3. Graded dg-superalgebras. A graded superspace is super vector space V

equipped with an additional Z-grading

V D
M

n2Z

Vn D
M

n2Z

Vn; N0 ˚ Vn; N1

that is independent of the Z2 parity grading. A graded dg-superalgebra is a graded

superalgebra with a Z � Z2 degree .2; N1/ k-linear differential @ D @AW A ! A

satisfying (2.3). Graded dg-superbimodules are defined analogously. Given a

graded dg .A; B/-superbimodule M , define the Z-grading shift dg-superbimodule

QM by shifting the Z-grading of the underlying vector space .QM/n D Mn�1 and

leaving the parity grading untouched. For graded dg-superalgebras A and B the
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category of graded dg .A; B/ superbimodules is a graded .Q; …/-supercategory

in the sense of [9, Definition 6.4] with grading and parity shift functors Q and ….

Given a (graded) superalgebra A, denote by C.A/ the homotopy category of

(graded) dg-supermodules given by quotienting maps of dg-supermodules by null-

homotopies. Likewise, we denote by D.A/ the derived category of (graded)

dg-supermodules. Both C.A/ and D.A/ are triangulated categories. In the super

setting that we are working in, the translation functor Œ1� acts by the parity shift:

.MŒ1�/k WD …M D M kCN1; @M Œ1� WD …@M WD �@M :

2.4. DG-supercategories. For standard results on dg-categories see [39].

Definition 2.3. A supercategory A is called a dg-supercategory if the morphism

spaces between any two objects X; Y 2 A are equipped with a degree N1 differen-

tial @

@W Hom Nx
A

.X; Y / �! Hom NxCN1
A

.X; Y /;

which acts via the Leibnitz rule

@.g ı f / D @.g/ ı f C .�1/jgjg ı @.f /

on composable pairs morphisms f and g.

Given a dg-superalgebra A, consider the dg-enhanced supermodule category

A@-dmod by defining the HOM-complex between two dg modules M and N to be

HOMA.M; N / D Hom
N0
A.M; N / ˚ Hom

N1
A.M; N /:

The differential @ acts on a homogenous map f 2 HOMA.M; N / as

@.f / WD @N ı f � .�1/jf jf ı @M :

If we take A D k with trivial differential differential then k@-dmod is just the

dg-category of chain complexes of super vector spaces.

The morphism space in the homotopy category C.A/ is just the degree-zero

part of the resulting cohomology

HomC.A/.M; N / D H 0.HOMA.M; N //:

The morphism spaces HomD.A/.M; N / in the derived category are computed by

replacing M by a cofibrant replacement PM . Recall that a dg module P over A
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is called cofibrant if for any surjective quasi-isomorphism f W M ! N and any

morphism gW P ! N , there exists a morphism NgW P ! M making the diagram

P

NM

g

��

f
//

Ng
��⑧
⑧
⑧
⑧
⑧

commute. Every dg-supermodule M admits a cofibrant replacement PM , unique

up to quasi isomorphism see [29, Proposition 2.3] and there are natural isomor-

phisms

HomD.A/.M; N / Š HomC.A/.PM ; N / D H 0.HOMA.PM ; N //: (2.4)

Definition 2.4. A left (respectively right) dg-supermodule M over a dg-supercat-

egory A is a superfunctor

MWA �! k@-dmod .resp. MWAop �! k@-dmod/; (2.5)

that commutes with the @-actions on A and k@-dmod. A dg-supermodule is called

representable if M D HOMA.X; �/ for some object X of A.

2.5. DG 2-supercategories

Definition 2.5. A (strict) dg 2-supercategory .U; @/ consists of a 2-category U,

together with a differential on 2-morphisms satisfying the super Leibnitz rule for

both horizontal and vertical composition.

More explicitly, a dg-2-supercategory consists of the following data.

(1) A set of objects I D �; �; : : :, and for an �; � 2 I we have

�U� WD HomU.�; �/

is a dg-supercategory. In particular, vertical composition of 2-morphisms

obeys the dg-supercategory Leibnitz rule for morphisms.

(2) For any pair of 1-morphisms �E�, �E 0
�

in the same Hom space, the space of

2-morphisms

HOM
�U�

.�E�; �E 0
�/

is a chain complex of superspaces.
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(3) The vertical composition of 2-morphisms satisfied the Leibnitz rule. That is,

for any pair of objects �; �; 2 I , then

HOM
�U�

.�E�; �F�/ � HOM
�U�

.�E�; �F�/ �! HOM
�U�

.�E�; �F�/;

.g; f / 7�! .g ı f /

satisfies

@.g ı f / D @.g/ ı f C .�1/jgjg ı @.f /:

(4) The horizontal composition of 2-morphisms satisfied the Leibnitz rule. That

is, for any triple of objects �; �; � 2 I , then

HOM
�U�

.�F�; �F�/�HOM
�U�

.�E�; �E 0
�/ �! HOM

�U�
.�FE�; �F 0E 0

�/;

.h; f / 7�! .hf /

satisfies

@.hf / D @.h/f C .�1/jhjh@.f /:

2.6. Gradings. The notion of a dg 2-supercategory can be extended to the notion

of a graded dg 2-supercategory in a straightforward way. Denote by GSVect

the symmetric monoidal category of super vector spaces and degree preserving

linear maps. A graded supercategory is then a category enriched over GSVect.

A graded 2-supercategory is then a category enriched over the monoidal category

of all small graded supercategories. A graded super-dg-2-category is a graded

2-supercategory equipped with a differential @ of degree 2 and parity N1 satisfying

the super Leibnitz rule as in Section 2.5.

2.7. .Q; …/-envelopes of dg-2-supercategories. A graded .Q; …/-supercate-

gory is a graded supercategoryA together with superfunctors Q; Q�1; …WA ! A,

an odd supernatural isomorphism �W … ) I that is homogeneous of degree 0,

and even supernatural isomorphisms � W Q ) I , N� W Q�1 ) I that are homoge-

neous of degrees 1 and -1, respectively. This data makes Q and Q�1 mutually

inverse graded superequivalences and … a self-inverse graded superequivalence.

A graded .Q; …/-2-supercategory can be defined similarly, where each hom cat-

egory has the structure of a graded .Q; …/-supercategory, see [9, Definition 6.5]

for a precise definition.

We have already seen an example of a graded .Q; …/-supercategory coming

from the category of graded supermodules over a dg-superalgebra. Given a graded

supercategory it always possible to enhance it to a graded .Q; …/-supercategory

by taking its .Q; …/-envelope.
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Definition 2.6 ([10], Definition 1.6). Given a graded 2-supercategory U, its

.Q; …/-envelope Uq;� is the graded 2-supercategory with the same objects as U,

1-morphisms defined from

HomUq;�
.�; u/ WD ¹Qm…aF j for all F 2 HomU.�; �/

with m 2 Z and a 2 Z=2Zº

with composition law

.Qn…bG/.Qm…aF / WD QmCn…aCb.GF /:

The 2-morphisms are defined by

HomUq;�
.Qm…aF; Qn…bG/ WD ¹xn;b

m;a j for all x 2 HomU(F,G)º

viewed as a superspace with addition given by

xn;b
m;a C yn;b

m;a WD .x C y/n;b
m;a

and scalar multiplication given by

c.xn;b
m;a/ WD .cx/n;b

m;a:

The degrees are given by

deg.xn;b
m;a/ D deg.x/ C n � m; jxn;b

m;aj D jxj C a C b:

The horizontal composition is given by

yn;d
m;c � x

l;b

k;a
WD .�1/cjxjCbjyjCacCbc.y � x/

lCn;bCd

kCm;aCc
; (2.6)

and the vertical composition by

y
n;b
m;b

ı x
m;b
`;a

D .y ı x/
n;c
`;a

: (2.7)

Lemma 2.7. Let .U; @/ denote a graded dg-2-supercategory. Then the .Q; …/-en-
velope Uq;� of U admits a super dg structure defined by

@W HomUq;�
.Qm…aF; Qn…bG/ �! HomUq;�

.Qm…aF; Qn…bG/;

xn;b
m;a 7�! .�1/b .@.x//n;b

m;a :



244 I. Egilmez and A. D. Lauda

Proof. We verify that this definition satisfies the super Leibnitz rule with respect

to the horizontal composition rule (2.6) in the .Q; …/-envelope

@.yn;d
m;c � x

l;b
k;a

/

WD .�1/cjxjCbjyjCacCbc@..y � x/
lCn;bCd
kCm;aCc

/

WD .�1/cjxjCbjyjCacCbcCbCd .@.y � x//
lCn;bCd
kCm;aCc

D .�1/cjxjCbjyjCacCbcCbCd .@.y/ � x/
lCn;bCd
kCm;aCc

C .�1/cjxjCbjyjCacCbcCbCd .�1/jyj.y � @.x//
lCn;bCd
kCm;aCc

D .�1/cjxjCbj@.y/jCacCbcCd .@.y/ � x/
lCn;bCd
kCm;aCc

C .�1/cj@.x/jCbjyjCacCbcCb.�1/jyjCcCd.y � @.x//
lCn;bCd
kCm;aCc

D @.yn;d
m;c/ � x

l;b
k;a

C .�1/jyn;d
m;cjyn;d

m;c � @.x
l;b
k;a

/

and the vertical composition rule (2.7)

@.y
n;c
m;b

ı x
m;b
`;a

/ D @..y ı x/
n;c
`;a

/

D .�1/c.@.y ı x//
n;c

`;a

D .�1/c.@.y/ ı x/
n;c

`;a
C .�1/cCjyj .y ı @.y//

n;c

`;a

D .�1/c.@.y//
n;c

m;b
ı x

m;b

`;a
C .�1/jyjCcy

n;c

m;b
ı .@.x//

m;b

`;a

D .�1/c.@.y//
n;c

m;b
ı x

m;b

`;a
C .�1/jyjCbCcy

n;c

m;b
ı .�1/b.@.x//

m;b

`;a

D @.y
n;c

m;b
/ ı x

m;b

`;a
C .�1/jyn;c

m;b
jyn;c

m;b
ı @.x

m;b

`;a
/: �

Definition 2.8. The underlying 2-category Uq;� of the .Q; …/ envelope Uq;� of a

2-supercategory U is obtained by restricting Uq;� to degree zero 2-morphisms.

The 2-category Uq;� carries the structure of a .Q; …/-2-category in the sense

of [9, Definition 6.14]. If .U; @/ is a graded dg 2-supercategory then the differential

@ restricts to a degree zero map @ on Uq;� giving it that structure of a dg 2-category

.Uq;� ; @/.

3. Hopfological algebra

One of the primary reasons that triangulated categories are prevalent in categori-

fication is the need to accommodate minus signs in the Grothendieck ring. For

positive algebraic structures, typically additive categories suffice with basis ele-

ments corresponding to indecomposable objects in the categorification. Quantum

groups with their canonical basis are an excellent example of this phenomenon.
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However, as we expand categorification to include non-positive structures like the

Jones polynomial, minus signs are lifted via the shift functor Œ1� for some trian-

gulated category, with the shift functor Œ1� inducing the map of multiplication by

�1 at the level of the Grothendieck group.

In his proposal for categorification at roots of unity, Khovanov showed that

the traditional world of dg-categories, together with their homotopy and derived

categories of modules, fits into a framework of Hopfological algebra. For our

purposes, Hopfological algebra will provide a valuable perspective on the pos-

sible decategorifications of graded dg-2-supercategories. We quickly review the

relevant details of Hopfological algebra needed for these purposes. For a more

detailed review see [48, 75].

3.1. Basic setup. Let H be a finite-dimensional Hopf algebra. Then H is also

a Frobenius algebra and every injective H -module is automatically projective.

Define the stable category H -mod as the quotient of the category H�mod by

the ideal of morphisms that factor through a projective (equivalently injective)

module. The category H -mod is triangulated, see for example [32].

The shift functor for the triangulated structure on H -mod is defined by the

cokernel of an inclusion of M as a submodule into an injective (projective)

module I . We can fix this inclusion by noting that for any H -module M , the

tensor product H ˝M with a free module is a free module, and the tensor product

P ˝ M with a projective module is always projective [48, Proposition 2]. A left

integral ƒ for a Hopf algebra H is an element ƒ 2 H satisfying

hƒ D ".h/ƒ:

Using the left integral, any H -module M admits a canonical embedding into an

injective module via M 7! H ˝ M sending m 7! ƒ ˝ m. This allows us to define

a shift functor on the category of stable H -modules via

T W H -mod �! H -mod;

M 7�! .H=.Hƒ// ˝ M:
(3.1)

We now define the basic objects of interest in the theory of Hopfological

algebra that generalize dg-algebras and their modules. The reader may find Table 1

helpful for tracking the analogy. An H -module algebra B is an algebra equipped

with an action of H by algebra automorphisms. A left H -comodule algebra is an

associative k-algebra A equipped with a map

�AW A �! H ˝ A

making A an H -comodule and such that �A is a map of algebras.
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Table 1

DG-algebras Hopfological algebra

DG-algebra B H -module algebra

DG-module A WD B#H -module

B�dgmod A�mod

Homotopy category of B�dgmod AH -mod

Derived category of B-dg-modules D.B; H/

There is a natural construction to form a left H -comodule algebra from a

right H -module algebra by forming the smash product algebra A WD H#B . As a

k-vector space A is just H ˝ B , with multiplication given by

.h ˝ b/.` ˝ c/ D
X

h`.1/ ˝ .b � `.2//c;

where we use Sweedler notation for the coproduct �.`/ D
P

.`/ `.1/ ˝ `.2/ 2
H ˝ H . The left H -comodule structure on A D H#B is given by �A.h ˝ b/ D
�.h/ ˝ b. Let A�mod denote the category of left A-modules and define AH -mod

to be the quotient of A�mod by the ideal of morphisms that factor through

an A-module of the form H ˝ N . The category AH -mod is triangulated [48,

Theorem 1] with shift functor inherited from H -mod defined by sending an object

M in AH -mod to the module

T .M/ WD .H=.kƒ// ˝ M: (3.2)

Since H is a subalgebra of A D H#B , we can restrict an A-module to an H -

module, which descends to an exact functor AH -mod to H -mod. In the context

of the H -comodule algebra A D H#B we write C.B; H/ D AH -mod. Define a

morphism f W M ! N in AH -mod to be a quasi-isomorphism if it restricts to an

isomorphism in H -mod. Denote by D.B; H/ the localization of A with respect

to quasi-isomorphisms. It is shown in [48, Corollary 2] and [75, Corollary 7.15]

that D.B; H/ is a triangulated category whose Grothendieck group is a module

over K.H -mod/.

3.2. DG-algebras from the Hopfological perspective. The standard theory of

dg-algebras and their modules is equivalent to the Hopfological algebra of the

Z-graded Hopf superalgebra H D kŒD�=D2 in the category of super vector

spaces. Here deg.D/ D N1 and

�.1/ D 1 ˝ 1; ".1/ D 1; (3.3)

�.D/ D 1 ˝ D C D ˝ 1; ".D/ D 0: (3.4)

For the Hopf superalgebra kŒD�=D2 the left integral is spanned by ƒ D D.
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For a graded k-superalgebra B to admit an H -module structure this is equiv-

alent to B having a degree N1 map @W B ! B satisfying

@.ab/ D @.a/b C .�1/jaja@.b/; @2.a/ D 0;

for all a; b 2 B . Hence, an H -module algebra is the same thing as a dg-algebra.

In a similar way, if we set A WD B#H then an A module is the same thing as a

B-dg-module. Further, one can show that C.B; H/ D AH -mod is equivalent to

the homotopy category C.B/ of B-dg modules and that D.B; H/ is equivalent to

the derived category D.B/ of B-dg-modules.

3.3. Decategorification from the Hopfological perspective. To have an inter-

esting notion of Grothendieck group for the triangulated categories AH -mod it is

important that we restrict the classes of modules under consideration to avoid

pathologies that can arise. In the context of Hopfological algebra the correct

notion is that of compact hopfological modules from [75, Section 7.2]. Denote

by Dc.A; H/ the strictly full subcategory of compact hopfological modules in

D.A; H/.

Definition 3.1 ([75]). Let B be an H -module algebra over a finite dimensional

Hopf algebra H over a base field k. Define the Grothendieck group K0.Dc.B; H//

to be the abelian group generated by symbols of isomorphism classes of objects

in Dc.B; H/, modulo the relation

ŒY � D ŒX� C ŒZ�;

whenever there is a distinguished triangle inside Dc.B; H/ of the form

X �! Y �! Z �! T .X/:

Both the Grothendieck rings of categories C.B; H/ and D.B; H/ are left mod-

ules over the Grothendieck ring K0.H -mod/ (see [48, Corollary 1 and 2]). Hence,

the ground ring for decategorification provided by the theory of Hopfological al-

gebra associated to the Hopf algebra H is determined by K0.H -mod/. Note this

group has a ring structure because H -mod has an exact tensor product. When

H is quasi-triangular then K.H -mod/ is commutative, so that we do not need to

distinguish between left and right modules [75, Remark 7.17].

3.3.1. Ground ring for Grothendieck group from the Hopfological perspec-

tive. In the special case when A D k, the Grothendieck group for D.k; H/

is the same as H -mod since H acts trivially on k [75, Corollary 9.11]. Since



248 I. Egilmez and A. D. Lauda

K0.AH -mod/ is a module over K0.H -mod/ Š K0.D.k; H//, the Grothendieck

ring of D.k; H/ determines the ground ring for the Grothendieck group of

AH -mod. In the language of dg-algebras, this just says that K0 of the derived

category of chain complexes of vector spaces determines the ground ring for K0

of the category of dg-modules.

Consider the category of complexes of k-vector spaces. Considering the ho-

mological degree modulo two gives rise to a Z2 grading for the dg homotopy cat-

egory of (ungraded) chain complexes D.k/ of vector spaces where the differential

has degree deg.d/ D N1. Assuming k D Z or a field, it follows that any complex

in D.k/ is isomorphic to a direct sum of indecomposable chain complexes of the

following form:

� a single copy of k in any bidegree;

� a copy of

S D .0 �! k
d�! k… �! 0/

where we include the parity shift of … on the right hand side to accommodate

the degree of the differential.

Then the Grothendieck group is generated as a ZŒ��=.�2 � 1/-module by the

symbol Œk� with Œk…� D �Œk�. If the differential d in the complex S is given

by multiplication by a unit in k, then S is contractible and therefore isomorphic

to 0 in K0.D.k//. The contractibility of S imposes the additional relation

.1 C �/Œk� D 0: (3.5)

The classication of objects in D.k/ implies that this is the only relation, and it

forces the symbol of S to be zero even when d is not multiplication by an invertible

element. Hence, � D �1 and

K0.D.k// Š ZŒ��=.1 C �/ D Z: (3.6)

The homological shift kŒ1� is given by the cokernel of the inclusion into H ˝k

with k 7! ƒk D D ˝ k. The injective envelope H ˝ k is two dimensional as

a vector space spanned by the identity and D. We can represent H ˝ k by the

complex

k…
D�! k

where k includes into the right most term via the map D ˝ 1. Hence, the

cokernel of this inclusion gives that kŒ1� D k…. So we have recovered from

the hopfological perspective the fact that the shift Œ1� is just the parity shift … and

at the level of the Grothendieck group we have

Œ.kŒ1�/� D Œk…� D �Œk� D �Œk�:



DG structures on odd categorified quantum sl.2/ 249

We carefully reviewed the usual dg-case to set the stage for our treatment in the

‘mixed complex’ setting.

3.4. Gaussian integers. The following section is an extension of the discussion

in [29, Section 2.2.4] that was explained to us by You Qi. Consider the category of

Z � Z2-graded modules. We denote by h1i a shift of the quantum (or Z-grading),

and by … the parity shift functor. Define a differential between such modules to be

a map of bidegree .2; N1/ that squares to 0. The main difference between this case

and the previous is that our Hopf algebra input into Hopfological algebra is now

the Hopf superaglebra H D kŒD�=D2 where D has mixed degree .2; N1/. A chain

complex is a k-module equipped with such a differential. Following [29] we call

such complexes half-graded complexes for reasons that will become clear. Denote

the corresponding homotopy category by C.k/ and the derived category by D.k/.

Any category of Z � Z2 graded dg-modules with differentials of bidegree

.2; N1/ will have a Grothendieck ring that is a module over K0.D.k//, so this

Grothendieck ring controls the ground ring that appears in categorification via

half-graded complexes. Assuming k D Z or a field, it follows that any complex

in D.k/ is isomorphic to a direct sum of indecomposable chain complexes of the

following form:

� a single copy of k in any bidegree;

� a copy of

S D .0 �! …bkhai d�! …bC1kha C 2i �! 0/

with the first term in any bidegree .a; b/ and the right most copy in bidegree

.a C 2; b C N1/.

Then the Grothendieck group is generated as a ZŒq; q�1; ��=.�2 � 1/-module by

the symbol Œk� with Œkh1i� D qŒk� and Œk…� D �Œk�. If the differential d in the

complex S is given by multiplication by a unit in k, then S is contractible and

therefore isomorphic to 0 in K0.D.k//. For simplicity take a D b D 0 in S , the

contractibility of S imposes the additional relation

.1 C q2�/Œk� D 0: (3.7)

The classication of objects in D.k/ implies that this is the only relation, and it

forces the symbol of S to be zero even when d is not multiplication by an invertible

element. Hence,

K0.D.k// Š ZŒq; q�1; ��=.�2 � 1; 1 C q2�/: (3.8)
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The homological shift is now given by the inclusion of k into H ˝k via D ˝1

kh�2i… D�! k

so that kŒ1� WD kh�2i… and at the level of the Grothendieck group we have

ŒkŒ1�� D Œkh�2i…� D Œk�q�2� D �Œk�

since 1 C q2� D 0. Hence, the homological shift is multiplication by �1 on K0.

If we specialize � D �1, then the equation imposed by the contractible

complex implies that q2 D 1, so the ground ring for reduces to Z. If we specialize

� D 1 then we have the relation q2 D �1 and we get that q must be a fourth root

of unity. Hence, we have the following result.

Proposition 3.2. Given a Z � Z2 graded algebra equipped with a differential d

of bidegree .2; N1/. Then the Grothendieck group associated with the category of
Z � Z2-graded dg-modules is a module over the ring

ZŒq; q�1; ��=.�2 � 1; 1 C q2�/:

At � D �1 this is just Z and at � D 1 this is ZŒ
p

�1�.

4. Results on Grothendieck groups of dg-superalgebras

4.1. Grothendieck group of a dg-superalgebra . Despite our protracted dis-

cussion of Hopfological algebra, the decategorification of categories of dg-su-

permodules is not so unlike the decategorification of normal dg-modules. We

detoured through Hopfological algebra to highlight the fact that the Grothendieck

ring will have the structure of a module over the Gaussian integers ZŒ
p

�1�. Just

as in the usual theory of dg-modules over a dg-algebra A, to have a sensible

notion of Grothendieck group of D.A/, we pass to the compact or perfect de-

rived category Dc.A/. The category Dc.A/ is a subcategory of D.A/ consisting

compact dg-modules, that is, those dg-supermodules M such that the functor

HOMD.A/.M; �/ commutes with infinite direct sums. This is the same as consid-

ering Dc.A; H/ in the Hopfological setup with H defined in Section 3.4.

For our purposes the connection between compact dg modules and finite-cell

modules will be of particular relevance. See for example [23, Example 2.4].

A finite-cell module over a dg-superalgebra A is a dg-supermodule with a finite

filtration whose subquotients are isomorphic as dg-supermodules to dg-summands

of A. Such finite-cell modules are always compact.
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The Grothendieck group K0.A/ of a (graded) dg-superalgebra A is the quotient

of the free abelian group on the isomorphism classes ŒM� of compact (graded) dg-

supermodules M by the relation ŒM� D ŒM1� C ŒM2� whenever

M1 �! M �! M2 �! M1Œ1�

is an exact triangle of compact objects in Dc.A/. This is the same as Dc.A; H/ for

H defined in Section 3.4. The Grothendieck group K0.A/ of a graded dg-super-

category A can be defined similarly, by regarding A as a graded dg-superalgebra

A WD
M

x;y2ObA

HomA.x; y/

with orthogonal idempotents 1x for each object x 2 A.

4.2. Positively graded dg-algebras. A Z-graded dg-superalgebra is called a

positive dg-superalgebra (see [83]) if it satisfies the following:

(1) the superalgebra A D
L

i2Z Ai is non-negatively graded,

(2) the degree zero part A0 is semisimple, and

(3) the differential acts trivially on A0.

We say that A is a strongly positive dg-superalgebra is it is a positive dg-superal-

gebra with degree zero part A0 Š k.

The calculation of the Grothendieck ring of a positively graded dg-algebra is

greatly simplified.

Theorem 4.1. Let A be a positive dg-superalgebra, and A0 be its homogeneous
degree zero part. Then

K0.A/ Š K0.A0/:

Proof. This is a direct extension of the non-super result from [83] and [23,

Corollary 2.6]. �

4.3. Fantastic filtrations. In this section, we give a review of the fantastic

filtration and recall the related theorems from [23]. Fantastic filtration is an

essential tool in this work for determining the Grothendieck ring of the odd dg

2-category U defined in the next section. The key issue is that if A is a dg-

superalgebra the direct sum decomposition of A-modules does not necessarily

commute with the differential. However, if there exists a fantastic filtration F � on

an A-module Ae, where e is an idempotent, then the direct sum decomposition of

Ae as A-modules becomes a filtered direct sum decomposition of dg-modules.
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We collect several important results on fantastic filtrations from [23, Section 5]

that are easily adapted to the super dg-setting.

Lemma 4.2. Let R be a superring and the elements ui ; vi 2 R with jui j D jvi j,
where i 2 I is a finite set, satisfy the following conditions:

uiviui D ui ; viuivi D vi ; viuj D ıi;j (4.1)

then e D
P

i uivi is an idempotent and we have a direct sum decomposition
Re Š

L

i Rviui .

Note that ui vi is an idempotent for each i 2 I , as uiviuivi D ui vi ,

and moreover ¹uiviºi2I is a set of orthogonal idempotents, as for any i ¤ j ,

uiviuj vj D uj vj uivi D 0. It follows that e is an idempotent and Re Š
L

i Rviui .

For a dg-algebra A and any idempotent e 2 A, the A-module Ae is an A@-dmod

summand if for any a 2 A, we have @.ae/ 2 Ae for any be 2 Ae. By the Leibniz

rule,

@.abe/ D @.a/be C .�1/jaja@.b/e C .�1/jajCjbjab@.e/

D @.ab/e C .�1/jajCjbjab@.e/

so that @.abe/ 2 Ae if @.e/ D 0. The computation of the differential of an idempo-

tent e is important for determining if Ae is compact in the derived category D.A/,

since @.e/ D 0 implies that Ae is cofibrant and has a compact image in D.A/.

The following is a straight-forward adaptation of Lemma 5.3 in [23].

Proposition 4.3. Let .A; @/ be a dg-superalgebra, i 2I a finite index set, ui ; vi 2A

satisfying the hypothesis of Lemma 4.2. Suppose that e D
P

i ui vi , and < is a total
order on I . An I -indexed A-supermodule filtration F � of Ae is defined by

F �i WD
X

j �i

Ruj vj

and F ; WD 0, so that F �i=F <i Š Aviui as A modules. Then the following
conditions are equivalent.

(1) F � is a filtration by dg-supermodules, so that Aviui is a dg-supermodule and
the subquotient isomorphism is an isomorphism of dg-supermodules.

(2) The following equations are satisfied for all i 2 I ,

vi@.ui / D 0; (4.2)

ui @.vi/ 2 F <i : (4.3)
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Definition 4.4. If the filtration F � in Proposition 4.3 satisfies @.e/ D 0 and

@.viui / D 0 for all i 2 I , then it is called a fantastic filtration on the dg-module Ae.

The main advantage of the fantastic filtration is that it gives a filtered direct sum

decomposition of the images of idempotents as dg-modules. By a straightforward

extension of [23, Corollary 5.8] the following theorem holds.

Theorem 4.5. Let A be a dg-superalgebra, ¹ui ; viºi2I a finite set of elements of
A satifying Proposition 4.3, then there is a fantastic filtration on the dg module
Ae if and only if there exists a total order on I such that

vi@.uj / D 0 for j � i .

Moreover, in K0.A/, we have the relation

ŒAe� D
X

i2I

ŒAviui �:

4.4. Grothendieck ring of dg 2-supercategories . Recall from Section 2.7 that

if U is a graded 2-supercategory then we denote by Uq;� is .Q; …/-envelope and

by Uq;� its underlying 2-category obtained by restricting to degree zero maps. The

Grothendieck group of U is defined as

K0.U/ WD K0. PUq;�/

where PUq;� denotes the Karoubi envelope of Uq;� . The .Q; …/-2-category struc-

ture (see [9, Section 6] and Section 2.7) on Uq;� makes the Grothendieck group

K0.U/ a ZŒq; q�1; ��=.�2�1/-module with ŒQmX� D qmŒX� and ŒX…a� D �aŒX�

for X 2 HomUq;�
.�; �/.

For our discussion in the dg-setting it is helpful to recall that the hom category

Hom PUq;�
.�; �/ is equivalent to the abelian category of finitely generated graded

projective left �A�-supermodules and morphisms that preserve degree and parity,

where �A� is the graded superalgebra defined as the direct sum

�A� WD
�

M

x;y

HomU.1�x1�; 1�y1�/
�

over 1-morphisms x; yW � ! � in U. We now consider the dg-setting.

Definition 4.6. Given a graded dg 2-supercategory .U; @/ let

D.U/ WD
M

�;�2Ob.U/

D.�U�/ D
M

�;�2Ob.U/

D.�A�/; (4.4)
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where �A� is the graded dg-superalgebra obtained by summing over all objects of

the dg-supercategory �U�. Define the split Grothendieck group K0.U; @/ of .U; @/

by

K0.U; @/ D K0. PUq;� ; @/ WD
M

�;�2Ob.U/

K0.Dc.�U�// D
M

�;�2Ob.U/

K0.Dc.�A�//: (4.5)

Corollary 4.7. Let .U; @/ be a graded dg 2-supercategory where the differential @

has bidgree .2; N1/. Then the Grothendieck group of K0.U; @/ is a module over the
ring

R WD ZŒq; q�1; ��=.�2 � 1; 1 C q2�/

with ŒQmX� D qmŒX� and ŒX…a� D �aŒX� for X 2 HomU.�; �/ for some objects
�; � 2 U. At � D �1 this is just Z and at � D 1 this is ZŒ

p
�1�.

Proof. This is an immediate corollary of Proposition 3.2 applied to graded dg-

superalgebras �A� for objects �; � 2 U. �

5. The odd 2-category for sl.2/

5.1. The odd nilHecke ring. The odd nilHecke algebra ONHn is the graded

unital associative superalgebra generated by elements x1; : : : ; xn of degree 2 and

parity N1 and elements @1; : : : ; @n�1 of degree �2 and parity N1, subject to the

relations

@2
i D 0; @i@iC1@i D @iC1@i@iC1; (5.1)

xi@i C @ixiC1 D 1; @ixi C xiC1@i D 1; (5.2)

xixj C xj xi D 0 .i ¤ j /; @i@j C @j @i D 0 .ji � j j > 1/; (5.3)

xi@j C @j xi D 0 .i ¤ j; j C 1/: (5.4)

For w 2 Sn and a choice of a reduced expression w D si1 � � � si` in terms of

simple transpositions si D .i i C 1/, define

@w D @i1 � � � @i` : (5.5)

Note that @w only depends on the reduced expression up to an overall sign. For

w0 the longest word in Sa we fix a preferred choice of reduced expression.

@w0
D @1.@2@1/ : : : .@n�1 : : : @1/:
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The element

en WD .�1/.
n
3/@w0

xn�1
1 xn�1

2 : : : x0
n (5.6)

is an idempotent of ONHn, see [29, Lemma 2.17] or [26].

The superalgebra of skew polnomials OPoln is defined by

OPoln WD Zhx1; : : : ; xni=.xixj C xj xi D 0 if i ¤ j /: (5.7)

The superalgebra ONHn acts on OPoln with xi acting by multiplication and @i , the

i-th odd divided difference operator @i WOPoln ! OPoln defined by

@i .xj / D
´

1 if j D i; i C 1,

0 if j ¤ i; i C 1,
(5.8)

@i .fg/ D @i .f /g C .�1/jf jsi .f /@i.g/: (5.9)

Under this action, OPoln Š ONHnen is the unique (up to isomorphism and grading

shift) indecomposable projective ONHn-supermodule. In [26] it was shown that

there is a superalgebra isomorphism

ONHn Š ENDOƒn
.OPoln/; (5.10)

where Oƒn is the superalgebra of odd symmetric polynomials.
For a superalgebra A we denote by Asop the superalgebra with multiplication

defined by

xsopysop WD .�1/jxjjyj.yx/sop:

There is a super algebra antiinvolution

!WONHn �! ONH
sop
n

defined by sending

!.xi / D x
sop
i ; !.@i / D �@

sop
i :

In ONH
sop
n the relations are the same except for the relation

� x
sop
i @

sop
i � @

sop
i x

sop
iC1 D 1; �@

sop
i x

sop
i � x

sop
iC1@

sop
i D 1: (5.11)

5.2. The odd categorified quantum group. In [10] Ellis and Brundan give a

minimal presentation of the 2-category U that requires the invertibility of certain

maps. Here we give a more traditional presentation by including the additional

relations on 2-morphisms that are equivalent to the invertibility of these maps.
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Definition 5.1. The odd 2-supercategory U D U.sl2/ is the 2-supercategory

consisting of

� objects � for � 2 Z,

� for a signed sequence " D ."1; "2; : : : ; "m/, with "1; : : : ; "m 2 ¹C; �º, define

E" WD E"1
E"2

: : :E"m

where EC WD E and E� WD F. A 1-morphisms from � to �0 is a formal finite

direct sum of strings

E"1� D 1�0E"

for any signed sequence " such that �0 D � C 2
Pm

j D1 "j 1.

� 2-morphisms are generated by

OO
� ��C2 WE1� ! E1�

OOOO
� WEE1� ! EE1�

degree .2; N1/ degree .�2; N1/

�� JJ
�

W 1� ! FE1� ��TT
�

W 1� ! EF1�

degree .1 C �; N0/ degree .1 � �; � C 1//

WW


� WFE1� ! 1� GG ��

� WEF1� ! 1�

degree ..1 C �; 1 C �/ degree .1 � �; N0/

where we have indicated a Q-grading and parity as an ordered tuple .x; Ny/.

Note that the Z2 degree of the right pointing cap and cup are not the mod 2

reductions of the Z-degree.

The identity 2-morphism of the 1-morphism E1� is represented by an upward ori-

ented line (likewise, the identity 2-morphism of F1� is represented by a downward

oriented line).

Composites of the above diagrams are interpreted using the conventions for

supercategories from Section 2.1. The rightmost region in our diagrams is usually

colored by �. The fact that we are defining a 2-supercategory means that diagrams

with odd parity skew commute. The 2-morphisms satisfy the following relations

(see [10] for more details).
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(1) (Odd nilHecke)

The E’s carry an action of the odd nilHecke algebra with xi corresponding

to a dot and @i corresponding to a crossing. Using the adjoint structure this

induces an action of the odd nilHecke algebra on the F’s via the antiinvolu-

tion !.

OOOO

D 0;
OOOO

OOOO

OOOO

� D
OO OO

OO OO

OO OO

� (5.12)

OOO O
� D

OO

�
OO

� C
OO

�
OO

� D
OOOO

� � C
OOOO

� � (5.13)

(2) (Right adjunction axioms)

OO

OO

� � 2

�

D

OO

� � � 2

��

� � C 2
D

��

OO��
� C 2

�

(5.14)

(3) (Parity left adjoint)

OO

� � � 2
D .�1/�C1 OO

OO
� � 2

� ��

OO ��

� C 2

�

D
��

�

(5.15)

(4) (Bubble relations)

Dotted bubbles of negative degree are zero, so that for all m � 0 one has

���
m

�

D 0 if m < � � 1, �� �
m

�

D 0 if m < �� � 1. (5.16)

Dotted bubbles of degree 0 are equal to the identity 2-morphism:

���
��1

�

D Id1�
for � � 1, ���

���1

�

D Id1�
for � � �1. (5.17)
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We use the following notation for the dotted bubbles:

���
�Cm

�
WD

�
���

mC��1

; �� �
�Cm

�
WD

�
�� �
m���1

;

so that

deg

 

���
�Cm

�
!

D deg

 

�� �
�Cm

�
!

D 2m:

The degree 2 bubbles are given a special notation as follows:

�
N

WD

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

���
�C1

� D
�
���

�

; � � 0,

�� �
�C1

�

1
D

�
�� �

��

; � � 0.

(5.18)

By the superinterchange law this bubble squares to zero

� �
N

�2

D 0 (5.19)

We call a clockwise (resp. counterclockwise) bubble fake if m C n � 1 < 0

and (resp. if m � n � 1 < 0). The fake bubbles are defined recursively by the

homogeneous terms of the equation

X

r;s�0

rCsDt

���
�C2r

�� �
�C2s

�
D ıt;0: (5.20)

���
�C2nC1

�
D �

���
�C2nN

; �� �
�C2nC1

�
D �

�� �
�C2nN

(5.21)

(5) (Centrality of odd bubbles)

By the super interchange law it follows that the odd bubble squares to zero.

Further, we have

OO

N

�
D

OO

N

�

��

N

�
D

��

N

�
(5.22)
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(6) (Cyclicity propeties)

��

�
�

WD
��

OO
��

�

�
D 2

��
N

�

� OO
��

��

�
�

(5.23)

The cyclic relations for crossings are given by

����
� WD

OO ��

�� OO
�

�� OO

��OO
D

OO��

��OO
�

��OO

�� OO
(5.24)

Sideways crossings satisfy the following identities:

OO

��
� WD

OO
�

�� OO

��OO
D

��
�

OO��

OO ��
(5.25)

��

OO
� WD .�1/�C1

OO

�
��OO

�� OO
D �

�� �

OO ��

OO��
(5.26)

(7) (Odd sl(2) relations)
OO

��

�
D �

OO

��

�
C

X

f1Cf2Cf3
D��1

.�1/f2

OO
�f1

�� ��Cf2

���f3

�
;

��

OO

�
D �

��

OO

�
C

X

f1Cf2Cf3

D���1

.�1/f2

OO
�f1

���
�Cf2

�� �f3

�
:

(5.27)

Remark 5.2. There are no 1-morphisms that change the weight � by an odd

number. This implies that the 2-category splits

U Š Ueven ˚ Uodd (5.28)

where Ueven only has even weights and Uodd only has odd weights.

Let Uq;� denote the .Q; …/-envelope of the 2-category U and Uq;� the under-

lying 2-category of the .Q; …/ envelope as defined in Definition 2.8.
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5.3. Additional properties of U. For later convenience we record several rela-

tions that follows from those in the previous section, see [10] for more details. Let

bnc denote the greatest integer less than n.

(1) (Dot Slide Relations)
OO

�
n

�

D .�1/b n
2

c
OO

�
n

� ��
�n

�

D .�1/b n
2

c

��
�n

�

(5.29)

.�1/b n
2

c
OO
�

n

�

D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

OO
�

n

�

if n is even

.�1/�

OO

�
n

�

C 2

OO

�
n�1

N

�

if n is odd

(5.30)

.�1/b n
2

c

��
�

n

�

D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

��
�n

�

if n is even

.�1/�

��
�n

�

C 2

��
�n�1

N

�

if n is odd

(5.31)

(2) (Bubble Slide Relations)
OO

�� �
�Cn

�

D
X

r�0

.2r C 1/

OO

�2r�� �
�Cn�2r

�

OO

���
�Cn

�

D
X

r�0

.2r C 1/

OO

�2r
���

�Cn�2r

�

(5.32)

(3) (Pitchfork Relations)

��

OO �

D
��

OO�

����

�

D
����

�

(5.33)

OOOO
�

D OOOO
�

OO

��

�

D OO

��

�

(5.34)



DG structures on odd categorified quantum sl.2/ 261

��

OO �

D
��

OO� OO OO
�

D OO OO
�

(5.35)

OO

��

�

D � OO

��

�

�� ��

�

D �
�� ��

�

(5.36)

(4) (Curl Relations)

For all n � 0 we have

OO

�n
�

D �
n��
X

rD0

.�1/.rC1/

OO
�r

���
�Cn�r��

�

(5.37)

OO

�n
�

D
nC�C2
X

rD0

.�1/�r

OO
�r

�� �
�C�Cn�r

�

Note that the exact form of the dotted curl relation depends on the placement

of the dots inside the curl. See for example, [10, (5.18)–(5.21)]. Using the

adjunctions the relations

OO

� D
�
X

rD0

.�1/.�CrC1/

NN
�r �

�� �
�C.��r/

(5.38)

��
�

D
��
X

rD0

.�1/.�Cr/

��
�.��r/ �

���
�Cr

(5.39)

follow.

5.4. The nondegeneracy conjecture. A spanning set for the space HomU.x; y/

between arbitrary 1-morphisms x; y was defined in [27, Section 3.4] and simpli-

fied in [10, Section 8]. In both instances it was conjectured that this spanning set

is a basis. For our classification of differentials we need bases for certain hom

spaces that are a subset of the full nondegeneracy conjecture.
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Weak nondegeneracy conjecture The following Hom spaces are spanned over k

by the elements predicted by the non-degeneracy conjecture:

Hom2
U.1�; …1�/ D

D �
N

E

Hom4
U.E1�; E…1�/ D

* OO

� �
2 ;

OO
� �
N ;

OO
�

���
�C2

+

Hom2
U.EE1�; EE1�/ D

� OOOO
� � ;

OO
�

OO
� ;

OOOO
N� ;

OOOO�2 � ;

OOOO
� � �

;
OO�OO

2 � ;

OOOO
� �

N ;

OO
�

OO
�
N ; ���

�C2

OOOO
�

+

(5.40)

The results of [27, Theorem 7.1] and [10] coupled with the results from [35, 36]

imply that the 2-category U admits a 2-representation on categories of modules

over cyclotomic odd nilHecke algebras. It should be possible to show the spanning

sets above are a basis using this action. However, it is difficult to extract formulas

for the bubbles under this 2-representation so the weak form of the nondegeneracy

conjecture remains open. Note that from these assumptions and the adjunction

axioms it is possible to deduce bases for hom spaces involving caps and cups in

the corresponding degree.

6. Derivations on the odd 2-category

In this section we give a classification of derivations on the odd 2-category U

assuming the weak nondegeneracy conjecture from Section 5.4. Assuming these

spanning sets form a basis we are able to reduce degrees of freedom by comparing

coefficients of basis elements. We note that even without the weak nondegeneracy

conjecture, we arrive at well defined derivations that suit our purposes for our main

categorification result.

Here we look for derivations that are compatible with a natural dg-structure

on odd (skew) polynomials which was shown by Ellis and Qi to extend to the odd

nilHecke algebra. To that end, we restrict our attention to differentials of bidgree

.2; N1/. Recall that a derivation on a 2-category is just a derivation on the space

of 2-morphisms which satisfies the Leibniz rule for both horizontal and vertical

composition of 2-morphisms.
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6.1. General form of derivations. The most general form of a bidgree .2; N1/

differential on the generating 2-morphisms of U is given by

@

 OO

� �

!

WD ˛1;�

OO

� �
2 C ˛2;�

OO
� �
N C ˛3;�

OO
�

���
�C2

(6.1)

@
� OOOO

�

�

WD ˇ1;�

OOOO
� C ˇ2;�

OOOO
� � C ˇ3;�

OO
�

OO
� C ˇ4;�

OOOO
�
N

(6.2)

@
�

��

�
�

WD a��2
��

�
� C b��2

��

�

N

(6.3)

@
� PP

�

�

WD Na�

PP
�

�
C Nb�

NN

�

N

(6.4)

@
�

��

�
�

WD c�
��

�
� C d�

��

�
N (6.5)

@
�

��

�
�

WD c� ��
�

� C d�

��

�
N (6.6)

@
�

NN

�

�

WD Nc��2

NN
�

�
C Nd��2

NN

�N

(6.7)

for some coefficients in k. The image of all identity 2-morphisms are zero.

This definition is extended to arbitrary composites using the Leibniz rule. By

Remark 5.2 the derivations can be defined independently on Ueven and on Uodd.

In order for this assignment to define a derivation onU it must respect the defin-

ing relations of the 2-category U. For example, let us consider the right adjunction

axiom (5.14). The left-hand-side is vertical composite of two 2morphsism, call

them x and y.

OO
x

y

OO

�

D

OO
�C2 �

(6.8)
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Using the Leibniz rule for this vertical composition x ı y of x and y gives that

@.x ı y/ D @.x/y C .�1/jxj@.y/;

and the parity of x is even, jxj D 0. Hence,

@

0

B

@ OO

OO

�

�C2
1

C

A
D .a� C Na�/

OO

�
�C2 �

C .b� C Nb�/

OO

N

�C2 �

(6.9)

The image of the right hand side of (5.14) under @ is zero, hence, using the linear

independence of the 2-morphisms in (6.9) we obtain a relationship between the

coefficients

.a� C Na�/ D 0; .b� C Nb�/ D 0:

Lemma 6.1. For the map @WU ! U defined by (6.1)–(6.7) to preserve the
odd nilHecke relations, the right adjunction axioms, and the parity left adjoint
relations, the coefficients must take the form

@

� OO

� �
�

WD ˛1;�

OO

� �
2 C ˛2

OO
� �

N (6.10)

@
� OOOO

�

�

WD ˇ1;�

OOOO
� C .ˇ1;� � ˛1;�/

OOOO
� � (6.11)

C .˛1;� � ˇ1;�/
OO

�
OO

� C ˛2

OOOO
�
N

@
�

��

�
�

WD a��2 ��
�

� C b��2

��

�

N

(6.12)

@
�

PP

�

�

WD �a�

PP
�

�
� b�

NN

�

N

(6.13)

@
�

��

�
�

WD c� ��
�

� C d�

��

�
N (6.14)

@
�

NN

�

�

WD .�1/�c��2

NN
�

�
� d��2

NN

�N

(6.15)

where

2ˇ1;� D ˛1;�C2 C ˛1;�:
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Proof. This is a direct computation using the Leibniz rule. The right adjunction

axiom implies

Na� D a� and Nb� D �b�:

Similarly, the parity left adjoint equation implies

Nc� D .�1/�c� and Nd� D �d�:

The first nilHecke relation in (5.12) implies

0 D @

 

OOOO
�
!

D ˇ1;�

OOOO
� C ˇ2;�

OOOO
� � C ˇ3;�

OO
�

OO
� C ˇ4;�

OOOO
�
N

� ˇ1; �
OOOO
� � ˇ2;� �

OOOO
� � ˇ3;� �

OOOO
� � ˇ4;�

OOOO
�

N

D .�ˇ2;� � ˇ3;�/
OOOO
�

which implies

ˇ3;� D �ˇ2;�:

Making these substitutions the odd nilHecke relation (5.13) involves the terms

@

� OOOO
� �

�

D

D ˛1;�C2

OOOO
�2

� C ˛2;�C2

OOOO
� N

� C ˛3;�C2

OOOO ���
�C2

�

� ˇ1;�

OOOO

� �

� ˇ2;�

OOOO
�2

� C ˇ2;�

OOOO
�

� � � ˇ3;�

OOOO
� �

N

D .˛1;�C2 � ˇ2;�/

OOOO
�2

� � .˛2;�C2 C ˇ3;�/

OOOO
� �

N
C ˛3;�C2 ���

�C2

OOOO �

C 3˛3;�C2

OOOO
�2 � � ˇ1;�

OOOO

� � C ˇ2;�

OOOO
�

� �
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where the last equality follows from bubble slide relation (2). Similarly,

@

� OOOO

�
�

�

D �.ˇ2;� C ˛1;�/

OOOO
�2 � C .ˇ3;� C ˛2;�/

OOOO
� �

N

� ˛3;� ���
�C2

OOOO �

C .ˇ1;� � ˇ2;� � ˛1;�/

OO

�
OO

� C .ˇ2;� C ˛1;�/

OOOO

� �

� ˇ2;�

OOOO
�

� � � .ˇ3;� C ˛2;�/

OOOO
N

�

Therefore, compatibility with relation (5.13) requires

@
� OOOO� �

�

C @
� OOOO

� �

�

D 0

so assuming the weak non-degeneracy conjecture we get the following set of

equations:

˛1;�C2 � ˛1;� � 2ˇ2;� D 0;

˛2;�C2 � ˛2;� D 0;

˛3;�C2 � ˛3;� D 0;

˛3;�C2 D 0;

ˇ3;� C ˛2;� D 0;

ˇ1;� � ˇ2;� � ˛1;� D 0:

(6.16)

From which we can deduce that ˛2;� does not depend on the weight � in Ueven or

� in Ueven, so we set ˛2 WD ˛2;� D ˛2;�C2, and ˛3;� D 0 for all �. If we combine

the first and the last equations we get

2ˇ1;� D ˛1;�C2 C ˛1;�: (6.17)

Equation (6.17) is redundantly implied by preserving the second nilhecke relation

of (5.12). �

Lemma 6.2. For n � 0, the map @ in Lemma 6.1 satisfies

@

0

@

OO

�
�C2 �

n

1

A D ˛1;�ın;odd

OO

� nC1

�C2 �

C .�1/nC1n˛2

OO

�n
�C2 �

N

(6.18)

@

0

@

��

� n

��2 �

1

A D .�2a� � ˛1;�/ın;odd

��

�
��2 �

nC1 C .�1/nC1n˛2

��

� n
��2 �

N

(6.19)

Proof. The claim follows by induction on the number of dots using the Leibniz

rule. �
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6.2. Derivations and bubble relations. The remaining relations in U involve

dotted bubbles. We first compute the image of the map defined in Lemma 6.1 on

the odd bubble defined in (6.20). By a direct computation we have

@
� �
N

�

D

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

.a��2 C c��2 C ˛1;��2ı�;odd/
�
���

�C2
if � � 0

.a� C c� C ˛1;�ı�;odd/
�

�� �
�C2

if � � 0

(6.20)

Lemma 6.3. For the map @ defined in Lemma 6.1 to preserve the odd cyclicity
relation (5.23)

@

0

B

@

��
OO

��

�

�
1

C

A
D 2 @

0

@

��

N

�
1

A � @

0

B

@

OO
��

��

�
�

1

C

A

we must have
c� D �a� � ı�;odd˛1;�: (6.21)

Proof. Applying @ to (5.23) implies

.�2a��˛1;�/

��

�2

�

C ˛2

��

�N
�

D .2c�C.�1/�C1˛1;�/

��

�2

�

C ˛2

��

�N
�

so comparing coefficients of the basis elements in the weak nondegeneracy con-

jecture implies

2c� C .�1/�C1˛1;� D �2a� � ˛1;�

and the result follows. �

The lemma implies that any derivation @ must kill the odd bubble

@
� �
N

�

D 0; (6.22)

so that the centrality of the odd bubble relation (5.22) holds trivially. Note that

the real odd bubble is equal to the fake odd bubble using the relations of odd

2-category U

�
���

�C1

D
�

�� �
�C1

for all � 2 Z. This is an immediate consequence of [10, equation (5.8)].
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Lemma 6.4. The derivation of an odd labeled (real) bubble is zero. That is, for
n � 0,

@

 

�
���

�C2nC1

!

D 0; for � � 0, @

 

�
�� �

�C2nC1

!

D 0 for � � 0.

(6.23)

Proof. The proof of the statement follows easily using the relation (5.21), the

previous Lemma, and the Leibniz rule. �

Lemma 6.5. For the map @ defined in Lemma 6.1 to preserve the degree zero
bubble relation (5.17) we have

� a� � b� C c� � .�1/�d� � ˛1;�ı�;even C .� C 1/˛2 D 0 (6.24)

for all � 2 Z, so that any derivation of a dotted bubble must be given by

@

 

�
���

�Cn

!

D �ın;evenn˛2

�
���

�CnC1
for � � 0, (6.25)

@

 

�
�� �
�Cn

!

D �ın;evenn˛2

�
�� �
�CnC1

for � � 0. (6.26)

Proof. For n � 0 the image under @ of the n-labelled dotted bubble is given by

@

 

�
���

�Cn

!

(6.27)

D ın;even.a��2Cb��2�c��2C.�1/�d��2C ˛1;��2ı�;even�.nC��1/˛2/
�
���

�CnC1

for � � 0, and

@

 

�
�� �
�Cn

!

(6.28)

D ın;even.�a� � b� C c� C .�1/�C1d� � ˛1;�ı�;even � .n � � � 1/˛2/
�

�� �
�CnC1

for � � 0. The identity by (5.17) then implies that the degree zero bubble vanishes

in the image of @

0 D @

�

�
���

�C0

�

D .a��2 C b��2 � c��2 C .�1/�d��2 C ˛1;��2ı�;even � .� � 1/˛2/
�

N
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for � � 1, and

0 D @

�

�
�� �
�C0

�

D .�a� � b� C c� � .�1/�d� � ˛1;�ı�;even C .� C 1/˛2/
�

N

for � � 1,

so the result follows. �

Remark 6.6. The computations above are technically for real bubbles – those

with a positive number of dots. However, using odd infinite Grassmannian rela-

tion (5.20) and (5.21) to express fake bubbles in terms of the real bubbles, the

same formulas given in Lemmas 6.4 and 6.5 will apply to fake bubbles as well.

If we combine (6.21) with the equation (6.24) obtained from @ of degree-0

bubble is zero, we can express d� as

d� D .�1/�C1.2a� C ˛1;� C b� � .� C 1/˛2/ for all � 2 Z. (6.29)

6.3. Derivations and curl relations. Before proving the odd sl.2/-relations it

is convenient to study the image of some of the curl relations under the map @.

We continue using the definition Lemma 6.1 imposing the additional constraints

from (6.21) and (6.29).

Lemma 6.7. Fix either Ueven or Uodd. For the map @ defined in Lemma 6.1 to
preserve the curl relations

��

���

�
D

��
� for � � 0,

OO

��

� D
PP

�
for � � 0,

(6.30)

we must have

˛1 WD ˛1;� D ˛1;�C2 D ˇ1;� D ˇ1;�C2; for all � 2 Z. (6.31)

Proof. This is a straightforward computation after deriving the formulas for side-

ways crossings. For the � � 0 case we have

@

 

OO

��

�

!

D�a�

PP
�
�

C.2a��2C˛1;� � b� C b��2 C .1 � �/˛2 C .�1/�d��2/

PP

�N
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whereas

@
�

PP

�

�

D �a�

PP
�
�

� b�

PP

�N

equating coefficients of the corresponding terms implies

�b� D 2a��2 C ˛1;� � b� C b��2 C .1 � �/˛2 C .�1/�d��2

or

.�1/�C1d��2 D 2a��2 C ˛1;� C b��2 C .1 � �/˛2 for all � � 0.

Likewise, the � � 0 case implies

.�1/�d� D .� C 1/˛2 � b� � 2a� � ˛1;�C2 for all � � 0.

Hence, (6.31) must hold for all values of �. Then combining (6.31) with (6.29)

implies

˛1 WD ˛1;��2 D ˛1;�

which together with (6.17) implies

ˇ1;� D ˇ1;��2 D ˛1: �

6.4. Derivations and odd sl.2/ relations

Lemma 6.8. The map @ defined in Lemma 6.1 with the constraints from (6.31)

satisfies the following identities:

@

 

OO

��

��

OO
�

!

D .�a��2 � ˛1/

OO

��

� � .a��2 C ˛1ı�;even/

NN

��

�

@

 

��

OO

OO

��
�

!

D .a� C ˛1ı�;even/

OO

��

� C .a� C ˛1/

PP

��

�
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Proof. The sideways crossings take the form

@
� OO

��
�
�

D .a� � a��2/
OO

���
� C .b� � b��2 � ˛2/

OO

��
�
N C .˛1 C a�/

PP

��

�

@
�

��

OO
�
�

D .�a�Ca��2/
���
OO

� � .b��b��2�˛2/ ��

OO
�
NC .�a��2�˛1ı�;even/

NN

��

�

(6.32)

and the result follows by direct computation. �

Lemma 6.9. The map @ defined in Lemma 6.1 with the constraints from (6.31)

preserves the odd sl.2/ relations (5.27) without any additional constraints.

Proof. We prove the first relation in (5.27). The second can be proven similarly.

First we compute

@

0

B

B

@

X

rCnCkD��1

.�1/k

OO
�r

�� ��Ck

���n

�

1

C

C

A

D
X

r 0CnCkD�
r 0�1

.�1/n .a��2 C ˛1ı�Cr;even/

OO
�r 0

�� ��Ck

���n

�

C
X

rCn0CkD�
n0�1

.�1/n0C1Ck .a��2 C ˛1ın0;even/

OO
�r

�� ��Ck

���n0

�

C
X

rCnCk0D�

.�1/nık0;odd .�2a��2 � ˛1/

OO
�r

�� ��Ck0

���n

�

After simplifying this reduces to

� .a��2 C ˛1ı�;even/
X

nCkD�

.�1/n

OO

�� ��Ck

���n

�

� .a��2 C ˛1/
X

rCkD�

.�1/1Ck

OO
�r

�� ��Ck

��

�

The claim follow using Lemma 6.8 and the curl relations (5.38) and (5.39). �
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6.5. Classification of derivations. We summarize our results up to this point in

the following:

Proposition 6.10. There is a bidegree .2; N1/ derivation @ of the odd 2-category
Ueven or Uodd defined on generating 2-morphisms:

@

� OO

� �
�

D ˛1

OO

�
�

2 C ˛2

OO
� �

N

(6.33)

@
� OOOO

�

�

D ˛1

OOOO
� � ˛2

OOOO
�
N (6.34)

@
�

��

�
�

D a��2
��

�
� C b��2

��

�

N

(6.35)

@
�

PP

�

�

D �a�

PP
�

�
� b�

NN

�

N

(6.36)

@
�

��

�
�

D c�
��

�
� C d�

��

�
N (6.37)

@
�

NN

�

�

D .�1/�c��2

NN
�

�
� d��2

NN

�N

(6.38)

with relations

c� D �a� � ı�;odd˛1; (6.39)

d� D .�1/�C1.2a� C ˛1 C b� � .� C 1/˛2/: (6.40)

Furthermore, assuming the weak nondegeneracy conjecture from Section 5.4 this
is the most general bidegree .2; N1/ derivation on U.

7. Differentials and fantastic filtrations

7.1. Classification of differentials

Proposition 7.1. Given parameters ˛1; a�; b�; c� and d� with � 2 Z, there is a
bidegree .2; N1/ differential @ (i.e. @2 D 0) on the odd 2-category Ueven or � in Uodd

defined on generating 2-morphisms:

@

� OO

� �

�

D ˛1

OO

� �
2 @

� OOOO
�

�

D ˛1

OOOO
� (7.1)
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@
�

��

�
�

D a��2
��

�
� C b��2

��

�

N

(7.2)

@
�

PP

�

�

D �a�

PP
�

�
� b�

NN

�

N

(7.3)

@
�

��

�
�

D c�
��

�
� C d�

��

�
N (7.4)

@
�

NN

�

�

D .�1/�c��2

NN
�

�
� d��2

NN

�N

(7.5)

with relations

c� D �a� � ı�;odd˛1; (7.6)

d� D .�1/�C1.2a� C ˛1 C b�/; (7.7)

a�.a� C ˛1/ D 0: (7.8)

Furthermore, assuming the weak nondegeneracy conjecture from Section 5.4, this
is the most general bidegree .2; N1/ differential on U.

Proof. We compute @2 of each generating 2-morphism from the general derivation

in Proposition 6.10 and set the resulting equation equal to zero. This produces the

equations

˛2.2 C ˛1/ D 0;

˛1˛2 D 0;

a�.a� C ˛1/ D 0;

a�˛2 D 0;

.a� C ˛1ı�;odd/.a� C ˛1ı�;even/ D 0;

˛2.a� C ˛1ı�;odd/ D 0:

(7.9)

Hence, for @2 D 0 we must have ˛2 D 0 and a�.a� C ˛1/ D 0. �

Note that Lemmas 6.4 and 6.5 imply that the differential kills all dotted bub-

bles:

@

 

�
���

�Cn

!

D @

 

�
�� �
�Cn

!

D 0

for all � 2 Z and n � 0.

7.2. Fantastic filtrations on EF and FE. In this section we show that the odd

sl.2/-isomorphisms (5.27) give rise to differentials on U providing fantastic filtra-

tions for EF1� and FE1�. We refer the reader to Section 4.3 for the preliminaries

on the Fantastic filtration.
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For each � 2 Z define I D ¹0; 1; : : : ; j�jº. We define data ¹ui ; viºi2I giving

rise to an idempotent factorization determined by the odd sl.2/-relation. We begin

with case � � 0 corresponding to the first relation in (5.27). Recall the family of

2-categorical differentials defined in Proposition 7.1.

Consider the set of 1-morphisms

X� WD ¹EF1�;FE1�; 1�º;

and its endomorphism dg-superalgebra R D EndU.X�/. We provide a fantastic

filtration of the representable dg-supermodule associated to EF1�. Here our

investigation departs from [23] in that the most natural filtration

un WD
X

r�0

.�1/.�CnCrC1/

NN
�r �

�� ��n�r�2
.0 � n � � � 1/; u� WD

OO

��
�

vn WD
��

�
�

n .0 � n � � � 1/; v� WD �
��

OO
�

(7.10)

on the morphism EF1� leads to a trivial differential when we impose the fantastic

filtration condition

vi@.uj / D 0, for i � j . (7.11)

In Definition 7.2 we define an order � on I for which the maps in (7.10) give rise

to fantastic filtrations.

The conditions on ¹ui ; viº in (4.1) follow immediately from the axioms of U

using (5.27) , (5.37), and (5.20), see for example [10, Equations (5.13) and (5.14)].

We check vi@.uj / D 0 for 0 � i � j � � � 1.

0 D vi@.uj /

D
X

r�0

.�1/�Cj CrC1

 

.˛1ır;odd C .�1/rC�c��2/

���.rCiC2��/C�
�

�� ��C.��j �r�1/

C .�1/rC1d��2

���.rCiC1��/C�
�N

�� �.��j �r�1/C�

!
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D
i�j C1
X

r 0Dmax.0;i��C2/

.�1/iCj Cr 0�1.˛1ır 0��Ci;oddC.�1/r 0Cic��2/

���r 0C�
�

�� ��C.i�j C1�r 0/

C
i�j
X

r 0D0

.�1/�Cj d��2

���r 0C�
�N

�� � i�j �r 0C�

where we set r 0 D r � � C 2 C i in the first sum and r 0 D r � � C 1 C i in the

second. Note that only the even bubbles are nonzero in the second sum by (5.19),

so that by (5.20) this term simplifies

i�j C1
X

rDmax.0;i��C2/

.�1/iCj Cr�1.˛1ır��Ci;odd C .�1/rCic��2/

���rC�
�

�� ��C.i�j C1�r/

C ıi;j .�1/�Cj d��2
�N

D
i�j C1
X

rDmax.0;i��C2/

..�1/iCj CrC1˛1ıiCr;odd C .�1/j a��2/

���rC�
�

�� ��C.i�j C1�r/

C ıi;j .�1/j �1.2a��2 C ˛1 C b��2/ �N

(7.12)

where we used (7.6) and (7.7) to eliminate c��2 and d��2.

If we are interested in the case when i � j then this equation only provides

constraints when i D j and when j D i C 1. At i D j we get

�˛1ıi;odd C .�1/ia��2 C ˛1ıi;even C .�1/ia��2 � .�1/i.2a��2 C ˛1 C b��2/ D 0

for i � � � 2 and

.˛1ıi;even C .�1/ia��2/ C .�1/i�1.2a��2 C ˛1 C b��2/ D 0

if i D � � 1, which imply

b��2 D 0; (7.13)

a��2 D �˛1ı�;even (7.14)
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At j D i C 1 � � � 1 we must have r D 0 in (7.12) which requires

˛1ıi;odd C .�1/iC1a��2 D 0 (7.15)

or

˛1ıi;odd D �.�1/iC1a��2 D .�1/iC1˛1ı�;even: (7.16)

If � and i are both even, or if they are both odd, this implies that ˛1 D 0 and the

differential collapses. Note that if i is odd this reduces to (7.14). To avoid the

collapse of the differential we modify the total order on I .

Definition 7.2. Define a total order � on the set I D I� D ¹0; 1; : : : ; j�jº by

modifying the standard order i < j by declaring that

i C 1 � i if i; � are both even, or both odd: (7.17)

With the order .I; �/, the condition (7.11) becomes

vi@.uj / D 0, for i � j . (7.18)

With this modified order we still must verify that viC1@.ui / D 0 when i and �

have the same parity. Expressed in our previous i; j notation this condition says

vi@.uj / D 0 when i D j C1 � ��1 and j; � both even, or both odd. From (7.12)

we see that this amounts to checking that

2
X

rDmax.0;j C1��C2/

..�1/2Cr˛1ıj C1Cr;odd C .�1/j a��2/

���rC�
�

�� � �C.2�r/

(7.19)

which requires

.˛1ıj C1;odd C .�1/j a��2/ D 0 (7.20)

since the odd bubble squares to zero. Since we assume j and � have the same

parity this agrees with (7.14).

Next we consider the case i D j D �. Using the derivation of the sideways

crossing from (6.32) implies

v�@.u�/ D .a� � a��2/

���
OO

OO

��
�

C .b� � b��2/
��

OO

OO

��

N

�

C .a��2 C ˛1ı�;even/

OO

��

�
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Together with (7.13) and (7.14) the termwise vanishing of the coefficients above

imply that

a� D a��2 D �˛1ı�;even;

b� D b��2 D 0:

Then we can further simplify the remaining coefficients from (7.6) and (7.7) to

c� D .�1/�˛1; d� D ˛1 (7.21)

and all the coefficients have been reduced to a single parameter ˛1.

The only remaining cases are vi@.u�/ for i < �. With the constraints derived

thus far it is not hard to show that @.u�/ D 0, so that vi@.u�/ D 0 is satisfied for

all i < �.

Definition 7.3. Define a bidegree .2; N1/ differential @˛ on the space of 2-mor-

phisms of the odd 2-category Ueven or � in Uodd given on generating 2-morphisms:

@˛

� O O

�
�
�

D ˛

OO

�
�

2 @˛

� OOOO
�

�

D ˛
OOOO

�

@˛

�

��

�
�

D �˛ı�;even
��

�
�

@˛

�
PP

�

�

D ˛ı�;even

PP
�

�

@˛

�

��

�
�

D .�1/�˛
��

�
� C ˛

��

�
N @˛

�
NN

�

�

D ˛

NN
�

�
� ˛

NN

�N

The computations above have established the following.

Proposition 7.4. Consider either Ueven or Uodd and suppose that @˛ is as in Defini-
tion 7.3. Then the data ¹uc; vcºc2I , with the total order .I; �/ from Definition 7.2,
yield a fantastic filtration on EF1� when � � 0 and on FE1� when � � 0.

8. Covering Kac–Moody algebras

In this section we review the rank one covering Kac–Moody algebra from [19], see

also [16]. In Subsections 8.4 and 8.5 we consider specializations at certain roots

of unity. For more on covering Kac–Moody algebras at a root of unity see [15].

8.1. Covering quantum group. Set Q.q/� D Q.q/Œ��=.�2 � 1/.

Definition 8.1. The covering quantum group Uq;� D Uq;�.sl2/ associated to sl2

is the Q.q/� -algebra with generators E, F , K, K�1, J , and J �1 and relations
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(1) KK�1 D 1 D K�1K, JJ �1 D 1 D J �1J ,

(2) KE D q2EK; KF D q�2FK,

(3) JE D �2EK; JF D ��2FK,

(4) EF � �FE D JK�K�1

�q�q�1 .

Define the .q; �/-analogues of integers, factorials, and binomial coefficients

by

Œn� D .�q/n � q�n

�q � q�1
; Œa�Š D

a
Y

iD1

Œi �;

�

n

a

�

D
Qa

iD1Œn C i � a�

Œa�Š
:

Note as in [19] that
�

n

a

�

D Œn�Š

Œa�ŠŒn � a�Š

for n � a � 0 and Œ�n� D ��nŒn�. Let

A D ZŒq; q�1�; A� D ZŒq; q�1; ��=.�2 � 1/;

and

Q.q/� D Q.q/Œ��=.�2 � 1/:

The idempoteneted (or modified) form PUq;� of the covering algebra Uq;� is

obtained by replacing the unit of Uq;� with a collection of orthogonal idempotents

¹1� W � 2 Zº indexed by the weight lattice of Uq;� . In particular, there is no need

for generators K or J since

K˙1� D q˙�1�; J ˙1� D �˙�1�; (8.1)

in PUq;� , see for example [22, Section 6.1] or [16, Definition 3.1].

Definition 8.2. The idempotented form PUq;� of quantum covering sl2 is the (non-

unital) Q.q/�-algebra generated by orthogonal idempotents ¹1�W � 2 Zº and

elements

1�C2E1� D E1� D 1�C2E; 1�F1�C2 D F1�C2 D 1�F; � 2 Z; (8.2)

subject to the covering sl2 relation,

EF1� � �FE1� D Œ��1�: (8.3)

The integral idempotented form is the A�-subalgebra A
PUq;� � PUq;� generated by

the divided powers

E.a/1� D Ea1�

Œa�Š
; 1�F .a/ D 1�F a

Œa�Š
: (8.4)
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There are direct sum decompositions of algebras

PUq;� D
M

�;�2Z

1�
PUq;�1� A

PUq;� D
M

�;�2Z

1�.A PUq;�/1�

with 1�.A PUq;�/1� the ZŒq; q�1; ��-subalgebra spanned by 1�E.a/F .b/1� and

1�F .b/E.a/1� for a; b 2 ZC.

8.2. Canonical basis. Clark and Wang show in [22, Theorem 6.2] that the alge-

bra PUq;� has aA�-canonical basis PBq;� , extending Lusztig’s basis [65, Proposition

25.3.2] for sl2, given by

(i) E.a/F .b/1� for a,b 2 ZC, n 2 Z, � � b � a,

(ii) �abF .b/E.a/1� for a,b 2 ZC, � 2 Z, � � b � a,

where E.a/F .b/1b�a D �abF .b/E.a/1b�a. The importance of this basis is that the

structure constants are in NŒq; q�1; ��=.�2 � 1/. In particular, for x; y 2 PBq;�

xy D
X

x2 PBq;�

mz
x;yz

with z 2 PBq;� and mz
x;y 2 NŒq; q�1; ��=.�2 � 1/. Let �. PBq;�/� denote the set of

elements in PBq;� belonging to 1�. PUq;�/1�. Then the set PBq;� is a union

PBq;� D
a

�;�2Z

�. PBq;�/�:

8.3. Quotients of the covering algebra. The following can be found in [22,

Section 7.3]. For our purposes we take this as the definition of the (super)algebras
PU.sl2/ and PU.osp.1j2/.

Proposition 8.3. Specializing � D 1, the quotient PUq;�=h� � 1i is isomorphic to
the quantum group PU.sl2/. Specializing � D �1, the quotient PUq;�=h� C 1i is
isomorphic to PU.osp.1j2/ – the idempotent form of the quantum superalgebra for
osp.1j2/. The canonical basis of PUq;� specializes at � D 1, respectively � D �1,
to a canonical basis for PU.sl2/, resp.1 PU.osp.1j2/.

We now describe various further specializations of the q parameter. Define a

quotient of A� given by

R D ZŒq; q�1; ��=.�2 � 1; 1 C q2�/:

1 It is important to note that the positivity of the canonical basis for the superalgebra
PU.osp.1j2/ is quite unexpected and would not be possible without the parameter �.
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Here we have set q2 D �� with �2 D 1. Hence, at � D �1 we have q2 D 1 so

that R D Z. At � D 1, q2 D �1, so that R D ZŒ
p

�1�. In R we have �q D �q�1

so that the .q; �/ quantum integers become

Œn�R D �nqn � q�n

�q � q�1
D .�1/nq�n � q�n

�2q�1
D q�nC1ın;odd: (8.5)

Since A
PUq;� s has an A�-canonical basis (see [22, Section 7.1]) we change

base
PUR WD A

PUq;� ˝A�
R: (8.6)

Equation (8.5) implies

E2 D Œ2�E.2/ D 0; F 2 D Œ2�F .2/ D 0 (8.7)

in PUR. This implies Ea D F a D 0 in R for a > 1. Further, from the presentation

of A
PUq;� given in [22, Proposition 6.1] we see that there are no other relations.

Hence, we have the following.

Proposition 8.4. The R-algebra PUR has a presentation given as the nonunital
associative R-algebra given by generators ¹E1�; F1�; 1�; � 2 Zº subject to
the relations

(i) 1�1� D ı�;�,

(ii) E1� D 1�C2E; F1� D 1��2F ,

(iii) EF1� � �FE1� D Œ��R1�,

(iv) E2 D 0; F 2 D 0.

Further, PUR has an R-basis given by the elements2

PBR WD ¹E.a/F .b/1� j a; b 2 ¹0; 1º; � � b � aº
[ ¹�abF .b/E.a/1� j a; b 2 ¹0; 1º; � � b � aº;

over all � 2 Z with it understood that E.a/F .b/1b�a D �abF .b/E.a/1b�a.

The algebra PUR splits as a direct sum

PUR D PUeven
R

˚ PUodd
R

where PUeven
R

, respectively PUodd
R

corresponds to the subalgebra containing only

even, respectively odd, weights � 2 Z.

2 Our use of divided power notation is not needed in the case of the fourth root of unity. We

use this notation for ease in converting between the canonical basis at generic q.
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8.4. Small quantum sl2. In this section we connect the covering algebra at

parameters .q; �/ D .
p

�1; 1/ with the small quantum group. The small quantum

group introduced by Lusztig is a finite dimensional Hopf algebra over the field of

cyclotomic integers [64]. Here we consider the small quantum group at a fourth

root of unity.

Let
p

�1 be a primitive fourth root of unity and consider the ring of cyclotomic

integers

ZŒ
p

�1� D ZŒq; q�1�=‰4.q/ D ZŒq; q�1�=.1 C q2/; (8.8)

where ‰n denote the nth cyclotomic polynomial. Denote by PU
ZŒ

p
�1� the idempo-

tented ZŒ
p

�1�-algebra defined by change of basis

PU
ZŒ

p
�1� D A

PU ˝ZŒq;q�1� ZŒ
p

�1�:

Set Œk�p�1 to be the quantum integer Œk� evaluated at
p

�1. The divided power

relation implies that in PU
ZŒ

p
�1� the elements

Ek1� D Œk�p�1E.k/1�; F k1� D Œk�p�1F .k/1� (8.9)

are only nonzero when 0 � k � 2.

The following Proposition follows immediately from Proposition 8.3 and 8.4.

Proposition 8.5. The specialization PURj�D1 D PUq;� j�D1;qD
p

�1 is isomorphic to
the small quantum group Pup

�1.sl2/.

8.5. q-less subalgebra. In this section we consider the specialization .q; �/ D
.�1; �1/, corresponding to setting the quantum parameter q D �1 in PU.osp.1j2//.

We show this specialization has a connection with the superalgebra gl.1j1/ via its

sl.1j1/ subalgebras.

The quantum group Uq.sl.1j1/ is the unital associative Q.q/-algebra with

generators E, F , H , H �1 and relations

HH �1 D H �1H D 1;

E2 D F 2 D 0;

HE D EF; HF D FH;

EF C FE D H � H �1

q � q�1
:

(8.10)

This algebra also admits a modified form [92] given below.
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Definition 8.6. The modified form PU.sl.1j1// of quantum sl.1j1/ the (non-unital)

Q.q/-algebra obtained from Uq.sl.1j1/ by replacing the unit by a collection of

orthogonal idempotents 1� for � 2 Z such that

1�1� D ı�;�; H1� D 1�H D qn1�; 1�E D E1�; 1�F D F1�

so that

EF1� C FE1� D Œ��1�;

where here Œ�� denotes the usual quantum integer.

Since the action of E and F does not change the weight space �, there is clearly

a decomposition of algebras

PU.sl.1j1// D
M

�2Z

PU.sl.1j1//1�:

The algebra PU.sl.1j1// admits an integral form A
PU.sl.1j1// defined over A D

ZŒq; q�1�.

The relations in PU.sl.1j1// are very similar to the relations in PUR at parameters

.q; �/ D .�1; �1/. However, there isn’t a specialization of q in the usual quantum

integers (� D 1) that agree with the .q; �/ D .�1; �1/ covering integers Œn�R.

Instead, we see from (8.5) that at q D �1, the integers Œ��R are either 0 or 1.

Proposition 8.7. There are Z-algebra isomorphisms

PUeven
R

j�D�1 D PUeven
q;� j.qD�1;�D�1/ Š PU.sl.1j1//10;

PUodd
R

j�D�1 D PUodd
q;� j.qD�1;�D�1/ Š PU.sl.1j1//11

(8.11)

determined by sending E1�; F1� 2 PUR to the corresponding element in PU.sl.1j1//.

Proof. By (8.5) the quantum integer Œ��R at q D �1 is either 0 or 1. The result

follows immediately from Proposition 8.3 and 8.4. �

Remark 8.8. In Kauffman and Saleur’s work constructing the Alexander–Conway

polynomial from Uq.sl.1j1// they restrict their attention to a specialization (�D1

in their notation, see [38, Equation (2.1)]), that corresponds in our notation to re-

stricting to PU.sl.1j1//11. As noted above, the entire algebra PU.sl.1j1//11 has a

presentation over Z, rather than Q.q/. The quantum parameter enters the Alexan-

der story in the work of Kauffman and Saleur via the coproduct on Uq.sl.1j1//.

Recall the modified form of quantum gl.1j1/, defined for example in [93,

Definition 3.2].
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Definition 8.9. The idempotented form PU.gl.1j1// of quantum gl.1j1/ is the (non-

unital) Q.q/-algebra generated by orthogonal idempotents

¹1.�1;�2/W .�1; �2/ 2 Z
2º

so that

1.�1;�2/1.�0
1

;�0
2

/ D ı�1;�0
1
ı�2;�0

2
1.�1;�2/;

and elements

1�1C1;�2�1E1.�1;�2/ D E1.�1;�2/ D 1.�1C1;�2�1/E;

1�1�1;�2C1F1.�1 ;�2/ D F1.�1;�2/ D 1.�1�1;�2C1/F;

for .�1; �2/ 2 Z2, subject to the relation,

EF1.�1 ;�2/ C FE1.�1;�2/ D Œ�1 � �2�1.�1;�2/: (8.12)

Note that the action of E and F preserves the lines in Z2 of slope .�1 � �2/.

In particular, if we restrict to weights .�1; �2/ such that �1 � �2 D �, then

this subalgebra of PU.gl.1j1// is isomorphic to PU.sl.1j1//1�. Hence, we have

shown that the covering algebra PUq;� specializes at .q; �/ D .
p

�1; 1/ to the

small quantum group for sl2 and to a “q-less subalgebra” of modified gl.1j1/ at

parameters .�1; �1/.

9. Categorification results

9.1. Divided power modules . Recall the graded superalgebra ONHn from Sec-

tion 5.1 and the graded superalgebra isomorphism

ONHn Š ENDOƒn
.OPoln/; (9.1)

where OPoln is the unique (up to isomorphism and grading shift) graded indecom-

posable projective ONHn-supermodule. Taking gradings and parity into account,

this isomorphism gives rise to a graded supermodule isomorphism

ONHn Š
M

Œn�Šq;�

.OPoln/

where the direct sum over Œn�Šq;� indicates the direct sum of copies of OPoln with

appropriate parity and degree shifts, see for example [10, Lemma 11.1].

In [29] they equip the superalgebra OPoln with a dg-structure defined by

@.xi / D x2
i : (9.2)
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Denote the resulting .OPoln; Oƒn/-dg-bimodule by Zn,

Zn WD OPolnz

where Zn is a rank-one free left module with cyclic vector z. Any dg-supermodule

structure on the rank-one free left OPoln-module is determined by the value of @

on the cyclic vector. These are parameterized by ˛ 2 ¹0; 1ºa [29, Proposition

3.1]. In light of (9.1), a dg-module structure on this module induces a compatible

differentials on ONHn.

Theorem 9.1. (1) There is an equivalence of dg-superalgebras ([29, Corel-

lary 3.9])

.ONHn; @/ �! ENDOƒ
op
n

.Zn/: (9.3)

(2) For any n � 0, Zn is a finite-cell right dg-supermodule over Oƒn ([29,

Proposition 3.16]).
(3) If n � 2, then ONHn is an acyclic dg-superalgebra. Consequently, the

derived category D.ONHn/ is equivalent to the zero category ([29, Proposi-

tion 3.16]).
(4) As a left ONHn dg module, Zn is only cofibrant if n D 0; 1 and is acyclic

otherwise([29, Proposition 3.17]).

In light of the above theorem, we denote the dg-module Zn by E
.n/
C as (9.3)

gives a dg-categorification of the divided power relation En D Œn�Šq;�E.n/ in

the covering algebra Uq;� . Likewise, one has the dg-module E.n/
� which can be

realized as the dg ONHn-module with a conjugate action

E
.n/
� WD .E

.n/
C /!

where ! is defined in Section 5.1.

9.2. The Grothendieck ring of U.sl2/. This section closely follows Section

5 of [23]. In what follows we consider the graded dg 2-supercategory U D
U.sl2/ and use the notation of the dg-supercategory �U� and its corresponding

graded dg-superalgebra �A� interchangeably. Denote the abelian category of dg-

supermodules over .U; @/ by U@-dmod. It decomposes into a direct sum of dg-

supercategories

U@-dmod D
M

�;�

.�U�/@-dmod: (9.4)
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Horizontal composition induces induction functors

.�3
U�2

˝ �2
U�1

/@-dmod; �! .�3
U�1

/@-dmod; (9.5)

M � N 7�! Ind.M � N/

for any �1; �2; �3; �4 2 Z. At the level of derived categories, the induction functor

gives rise to an exact functor

IndWD.U ˝ U; @/ �! D.U; @/ (9.6)

and R-linear maps

ŒInd�W K0.D.U ˝ U; @// �! K0.U; @/; (9.7)

where the Grothendieck group of dg-2-supercateogory is defined in Section 4.4.

For fixed � 2 Z define

�U WD
M

�2Z

�U�; U� WD
M

�2Z

�U�: (9.8)

Definition 9.2. Fix n 2 N.

(1) The left dg-supermodule 1�E
.n/ over .U; @/ is the module

1�E
.n/ WD Ind�U

ONHn
.E

.n/
C /;

where the induction comes from the composition of inclusions of superalge-

bras

ONHn �! END
�U��2n

.1�E
n/ �! �U��2n

for each � 2 Z given by mapping xi to an upward oriented dot on the i-th

copy of E and @i to an upward oriented crossing of the i th and .i C 1/st term.

(2) The left dg-supermodule F.n/1� over .U; @/ is the induced module

F
.n/

1� WD Ind
U�

ONHn
.E.n/

� /;

where the induction comes from the composition of inclusions of superalge-

bras

ONHn
!�! ONH

sop
n �! END

��2nU�
.1�F

n/ �! ��2nU�;

where x
sop
i and @

sop
i correspond to a downward oriented dot and crossing,

respectively.

The dg-supermodules 1�E
.n/ and F.n/1� are representable .U; @/-modules in

the sense of Definition 2.4.
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Corollary 9.3. Fix � 2 Z and n 2 N.

(1) The representable module 1�E
n (resp. Fn1�) admits an nŠ-step filtration

whose subquotients are isomorphic to grading and parity shifts of the divided
power module 1�E

.n/ (resp. F.n/1�).

(2) The divided power modules are acyclic whenever n � 2.

(3) The dg-supermodule 1�E
.n/ (resp. F.n/1�) is cofibrant over the dg-supercat-

egory .�U; @/ (resp. .U�/) for n D 0; 1, and its image in the derived category
D.�U; @/ (resp. D.U�; @/) is compact.

Proof. This follows from the corresponding properties of E
.n/
C and E.n/

� from

Theorem 9.1. �

Definition 9.4. For any a; b � 0 and � 2 Z, define E.a/F.b/1� to be the induced

dg-module

E
.a/

F
.b/

1� WD Ind
U�

U��2b˝U�
.E.a/

1��2b � F
.b/

1�/;

with induction defined along the inclusion

U��2b ˝ U� �! U�; �11��2b ˝ 1��21� 7�! ı��2b;��1�21�:

The dg-supermodule F.b/E.a/1� is defined similarly. Following [23] we refer to

these modules as canonical modules over U�.

The fantastic filtrations on EF1� and FE1� established in Section 7.2 give rise

to a filtration on an arbitrary reprentable module of the form Qr…NsE"1� 2 U� by

dg modules of the form Qu… NvEaFb1� or Qu… NvFbEa1� for a; b 2 N and u 2 Z

and v 2 Z2. Define

X� WD ¹E.a/
F

.b/
1� j a; b 2 ¹0; 1º; � � b � aº

[ ¹F.b/
E

.a/
1� j a; b 2 ¹0; 1º; � � b � aº:

Proposition 9.5. There is a derived equivalence of graded dg-supercategories

D.U�/ Š D.ENDU�
.X�// (9.9)

Proof. The statements in Corollary 9.3 apply to the modules E.a/F.b/1� and

F.b/E.a/1�; in particular, X� consists of compact and cofibrant modules. Hence,

[23, Proposition 2.10] adapted to the super setting provides the equivalence. �
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The cofibrance of the modules in X� enables us to compute the derived endo-

morphism ring D.ENDU�
.X�// in the usual manner avoiding cofibrant replace-

ment (see (2.4)). The following lemma then follows as a direct consequence of

[27, Proposition 8.2], which shows that the for any x; y in X�

dim.Homk
U.x; y// D

8

ˆ

ˆ

<

ˆ

ˆ

:

0 if k < 0;

1 if x D y and k D 0

0 if x ¤ y and k D 0.

Lemma 9.6. The endomorphism algebra ENDU�
.X�/ is a strongly positive dg-

superalgebra.

Corollary 9.7. For any weight � 2 Z, the Grothendieck group K0.U�; @/ of
the graded dg-supercategory U� is isomorphic to the corresponding R-span of
canonical basis elements

K0.U�/ Š Rh PBR1�i

where

PBR1� WD ¹E.a/F .b/1� j a; b 2 ¹0; 1º; � � b � aº
[ ¹�abF .b/E.a/1� j a; b 2 ¹0; 1º; � � b � aº:

The isomorphism sends the class ŒQ0…
N0E.a/F.b/1�� or ŒQ0…abF.b/E.a/1�� from

X� to the corresponding element in PBR1�.

Proof. Proposition 9.5 and Lemma 9.6 imply that D.U�/ is equivalent to a

positively graded dg-endomorphism algebra. The result then follows by Theo-

rem 4.1. �

As a consequence of strong positivity we also have the following result.

Corollary 9.8. For any weights �1; �2; �3; �4 2 Z, the dg-supercategories �4
U�3

,
and �2

U�1
have the Kunneth property

K0..�4
U�3

// ˝R K0.�2
U�1

/ Š K0.�4
U�3

˝ �2
U�1

/:

Proof. Using Lemma 9.6 and [23, Corollary 2.22] at p D 2 the result follows. �

It follows that K0.U; @/ is idempotented R-algebra, with multiplication given

by the induction functor:

ŒInd�W K0.U/ ˝R K0.U/ �! K0.U/:
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Theorem 9.9. There is an isomorphism of R-algebras

PUR �! K0.U; @/ (9.10)

that sends E1� 7! ŒQ0…
N0E1�� and 1�F 7! ŒQ0…

N01�F� for any weights � 2 Z.

Proof. We first must show that the defining relations for PUR hold in K0.U; @/. The

nontrivial relations from Proposition 8.4 to check are (iii) and (iv). The fantastic

filtrations on EF1� and FE1� from Proposition 7.4 give rise to convolution dia-

grams establishing (iii) in D.U; @/ on the corresponding representable modules,

see [23, Remark 2.7, Theorem 6.11]. Relation (iv) follows from the acyclicity

results in Corollary 9.3. The resulting homomorphism of algebras is an isomor-

phism because it sends PBR1� to the symbols of modules in X� which form a basis

for K0.U; @/ by Corollary 9.7. �

Corollary 9.10. The map sending E1� 7! ŒQ0…
N0E1�� and 1�F 7! ŒQ0…

N01�F�

for any weights � 2 Z defines

(i) an isomorphism of ZŒ
p

�1�-algebras

Pu
ZŒ

p
�1�.sl.2// �! K0.U; @/j�D1 (9.11)

at � D 1, and

(ii) an isomorphism of Z-algebras

PURj�D�1 �! K0.U; @/j�D�1 (9.12)

at � D �1, where PURj�D�1 is a Z-subalgebra of PU.sl.1j1// by Proposi-
tion 8.7.
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