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Abstract. We equip Ellis and Brundan’s version of the odd categorified quantum group
for s/(2) with a differential giving it the structure of a graded dg-2-supercategory. The
presence of the super grading gives rise to two possible decategorifications of the associated
dg-2-category. One version gives rise to a categorification of quantum s/(2) at a fourth root
of unity, while the other version produces a subalgebra of quantum g/(1|1) defined over the
integers. Both of these algebras appear in connection with quantum algebraic approaches
to the Alexander polynomial.
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1. Introduction

1.1. Motivations from link homology theory. Khovanov homology, categori-
fying a certain normalization of the Jones polynomial [44, 45], is the simplest of
a family of link homology theories associated to quantum groups and their rep-
resentations. Surrounding Khovanov homology is an intricate system of related
combinatorial and geometric ideas. Everything from extended 2-dimensional
TQFTs [45, 57, 21], planar algebras [3, 4], category O [87, 86, 12, 6], coherent
sheaves on quiver varieties [13], matrix factorizations [52, 53], homological mir-
ror symmetry [84], arc algebras [45, 14, 87, 11], Springer varieties [46, 87, 88],
stable homotopy theory [61, 63, 62], and 5-dimensional gauge theories [31, 96, 97]
appear in descriptions of Khovanov homology, among many other constructions.

Given that Khovanov homology provides a nexus bridging the sophisticated
structures described above, it is surprising to discover that there exists a distinct
categorification of the Jones polynomial. Ozsvath, Rasmussen, Szab6 found an
odd analogue of Khovanov homology [71] that agrees with the original Khovanov
homology when coefficients are taken modulo 2. Both of these theories categorify
the Jones polynomial, and results of Shumakovitch [85] show that these categori-
fied link invariants are not equivalent.

The discovery of odd Khovanov homology was motivated by the existence of
a spectral sequence from ordinary Khovanov homology to the Heegaard Floer
homology of the double branch cover [72] with Z, coefficients. Odd Khovanov
homology was defined in an attempt to extend this spectral sequence to Z coeffi-
cients, rather than Z,. Indeed, in [71] they conjecture that for a link K in S3, there
is a spectral sequence whose EZ term is the reduced odd Khovanov homology
Khr(K) of K and whose E*° term is the Heegaard—Floer homology HF (—2(K))
of the branched double cover X (K) with the orientation reversed (with coefficients
in Z).

Khr(K) 2/
_HF(-2(K))
OKhr(K) n

A related version of this conjecture was proven in the context of instanton homol-
ogy in [82].

There are now a number of spectral sequences connecting variants of Kho-
vanov homology to variants of Floer homology [77, 89, 7, 55, 78, 33, 5, 1, 2].
For even Khovanov homology there are many interesting connections with knot
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Floer-homology EFY(K ). This is a bigraded homology for knots and links

HFK(K) = @) HFK (K. a)

m,a€l

where m is called the Maslov (or homological) grading and «a is the Alexander
grading. The graded Euler characteristic of HFK(K) is the Alexander polynomial

> (=)™ - rankz (HFK (K. @) = Ak (1).

m,a€l

Many of the spectral sequences listed above arise via a collapse of the bigraded
homology groups to a single §-grading. For Khovanov homology the §-grading is
givenby § = h—q /2, where g denotes the quantum grading and / the homological.
On HFK the 8-grading is § = a — m. Rasmussen conjectured a spectral sequence
between the singly §-graded Khovanov homology K#s(K) and the §-graded knot
Floer homology ITFT(;; (K) [77]. Under the collapse of grading the graded Euler
characteristic becomes an integer rather than a polynomial. It is interesting to note
that if we set ¢ = +/—1 in the Euler characteristic formula

> (=DigIrk(Kh )],y = Y (D /Prk(Khy ;)

i,J i,J

we recover the Euler characteristic of the §-graded Khovanov homology theory.

Similarly, in HFK where § = a — m, so that the parameters are related by
q* = t, we see that g = +/—1 corresponds to t = —1, so the Euler characteristic

specializes to

> (—1)"*4 - rankz (HFK; (K. @) = Ag (1)

i,a€l

The t = —1 evaluation of Alexander polynomial is equal to the knot determi-
nant det(K). This invariant has another categorification via the Heegaard—Floer
3-manifold homology of the branched double cover of K,

X(HF(Z(K))) = |H*(2(K), Z)| = det(K) = |Ag(=1)|

see [72, Section 3]. This variant of Heegaard—Floer homology is the target of the
conjectured spectral sequence from odd Khovanov homology discussed above.

1.2. Quantum algebra and a zoo of quantum invariants. These connection
between varients of Heegaard—Floer homology and even/odd Khovanov homol-
ogy are somewhat striking given that these invariants are defined in very different
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ways. However, quantum algebra sheds some light as to why such a connection is
less surprising. It is well known that the Jones polynomial can be interpreted as a
quantum invariant associated to the quantum group for sl, and its two dimensional
representation. Varying the semisimple Lie algebra g and the irreducible repre-
sentations coloring the strands of a link, one arrives at a whole family of quantum
invariants.

The Alexander—Conway function Vy (#1,...,#) for a k component link L is
a rational function in variables 71, ..., f;. Similarly, the Alexander polynomial
1 1
Ap(ty,....tx) is a Laurent polynomial in variables ¢, ...,¢. They are related
by
Vit ... tg) = A(tf, ... 17) itk > 1,
and
AL(t?)
Vi) = —=-

The Alexander—Conway polynomial can be formulated as a (non-semisimple)
quantum invariant in several ways. One formulation realizes V; using the quan-
tum group associated to the super Lie algebra gl(1|1) [80]. Murakami gave a con-
struction using quantum sl with the quantum parameter specialized to a fourth
root of unity [69, 70]. Kauffman and Saleur give a construction based on quantum
sl(1]1).

A comparison and review of the U /—(sl2) and Uy(gl(1|1)) Reshetikhin—
Turaev functors are studied in [94]. In this work, Viro shows that there is a ‘g-less
subalgebra’ U! of U, (gl(1|1)) that is responsible for producing the Reshetikhin—
Turaev functor that is closely related to the one coming from U ,—(sl>). Simi-
larly, an algebra that can be defined over Z also appears in the Kauffman—Saleur
U, (sl(1]1)) construction of the Alexander-Conway polynomial Vg via a special-
ization (A = 1 in their notation, see [38, Equation (2.1)]), which corresponds in
our notation to working with the subalgebra U(s[(l [1))1; of U(s[(l [1)), see Sec-
tion 8.5. The quantum parameter is not needed in the definition of this algebra, it
only arises in the coalgebra structure when one acts on tensor product representa-
tions.

Connections between the Alexander invariant and the Jones polynomial then
arise via an observation by Kauffman and Saleur that the R-matrix for braiding the
fundamental representations of sl and s{(1|1) agree when evaluated at g = /—1.
This implies an identification of quantum invariants

JkDg=y=t = V& () ,— y=1 = Ak (1) 1=—1. (1.1)
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Our aim in this article is to lay the groundwork for a higher representation theoretic
categorification of the knot determinant |Ax(—1)| by categorifying the quantum
algebras used to define it. Our approach provides a new perspective on connec-
tions between these different approaches via the theory of covering Kac—Moody
algebras.

1.3. The oddification program. The so called ‘oddification’ program [58] in
higher representation theory grew out of an attempt to provide a representation
theoretic explanation for a number of phenomena observed in connection with odd
Khovanov homology. The idea is that Khovanov homology shares many connec-
tions throughout mathematics and theoretical physics, suggesting that many of the
other fundamental structures connected with Khovanov homology may also have
odd analogs. The oddification program looks for odd analogs of structures that are
typically non-commutative, having the same graded ranks as traditional objects
and becoming isomorphic when coefficients are reduced modulo two. Often the
odd world provides the same combinatorial relationships in a non-commutative
setting.

The nilHecke algebra plays a central role in the theory of categorified quan-
tum groups, giving rise to an integral categorification of the negative half of
U, (sl2) [56, 49, 79]. An oddification of this algebra was defined in [26] which can
be viewed as an algebra of operators on a skew polynomial ring. The invariants
under this action define an odd version of the ring of symmetric functions [25, 26].
The odd nilHecke algebra also gives rise to “odd” noncommutative analogs of the
cohomology of Grassmannians and Springer varieties [58, 26]. It also fits into a
2-categorical structure [27, 10] giving an odd analog of the categorification of the
entire quantum group Uy (slz). In each of these cases, the structures possess com-
binatorics quite similar to those of their even counterparts. When coefficients are
reduced modulo two the theories become identical, but the odd analogues possess
an inherent non-commutativity making them distinct from the classical theory.

The odd nilHecke algebra appears to be connected to a number of important
objects in traditional representation theory. It was independently introduced by
Kang, Kashiwara, and Tsuchioka [37] starting from the different perspective of
trying to develop super analogues of KLR algebras. Their quiver Hecke superalge-
bras become isomorphic to affine Hecke—Clifford superalgebras or affine Sergeev
superalgebras after a suitable completion, and the sl, case of their construction
is isomorphic to the odd nilHecke algebra. Cyclotomic quotients of quiver Hecke
superalgebras supercategorify certain irreducible representations of Kac—Moody
algebras [35, 36]. A closely related spin Hecke algebra associated to the affine
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Hecke—Clifford superalgebra appeared in earlier work of Wang [95] and many of
the essential features of the odd nilHecke algebra including skew-polynomials ap-
pears much earlier in this and related works on spin symmetric groups [41, 42,43].

1.4. Covering Kac—Moody algebras. Clark, Hill, and Wang showed that the
odd nilHecke algebra and its generalizations fit into a framework they called
covering Kac—Moody algebras [34, 22, 19, 20]. Their idea was to decategorify
the supergrading on the odd nilHecke algebra by introducing a parameter = with
w2 = 1. The covering Kac-Moody algebra is then defined over Q(g)[r]/(7? —1)
for certain very specific families of Kac—Moody Lie algebras. The specialization
to 7 = 1 gives the quantum enveloping algebra of a Kac—Moody algebra and the
specialization to 7 = —1 gives a quantum enveloping algebra of a Kac—Moody
superalgebra. This idea led to a novel bar involution 7 = w¢~! allowing the first
construction of canonical bases for Lie superalgebras [20, 22]. In the simplest
case, the covering algebra U, , can be seen as a simultaneous generalization of
the modifed quantum group U(sly) and the modified quantum Lie superalgebra
U(osp(l |2)). This relationship is illustrated below.

Uq,”
N

U(sh) U(osp(12))

Covering Kac—-Moody algebras are not an sl,, phenomenon. In finite type, the
covering Kac—-Moody algebras U, - (g) can be defined connecting the superalge-
bra of the anisotropic Lie superalgebra g = osp(1|2n) with the quantum Kac—
Moody algebra g = so(2n + 1) obtained by forgetting the parity in the root da-
tum [19, 34]. In particular, the only finite type family of covering Kac—Moody
algebras U, »(g) have a # = 1 specialization equal to the quantum eveloping
algebra Uy (so(2n + 1)) and the m = —1 specialization the quantum superalge-
bra Uy (osp(1]2n). The connection to sl, only arises because of the Lie algebra
coincidence sl = s0(3).

The algebra/superalgebra pairs connected by covering theory are closely con-
nected by the theory of twistors developed by Clark, Fan ,Li, Wang [30, 18]. De-
note by t a square root of —1, and let fJ[t] denote the algebra Uq,n with scalars
extended by t. Then the twistor associated to a covering algebra Uq,,, (g) gives an
isomorphism

W Ult]|r=—1 — Ult]|r=1 (1.2)
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sending = + —m and thereby switching between a quantum group and its super
analog. This map sends ¢ — t~¢. Hence, U[t],—; and U[t];—_; can be regarded
as two different rational forms of a common algebra U[t]. These two rational forms
each admit their own distinct integral forms.

The twistor isomorphism (1.2) has implications for the corresponding quantum
link invariants. Blumen showed that osp(1|2n) and so(2n + 1) invariants colored
by the standard (2n + 1)-dimensional representations agree up to a substitution
of variable [8]. To a knot or link K, Clark greatly extended this observation
by defining covering colored knot invariants J Ié (g.t) associated to U, (g) and
a dominant integral weight A € XT. These knot invariants take values in a
larger field Q(g,t)® with > = . They have the property of simultaneously
generalizing the colored so(2n + 1) quantum invariant and the osp(1|2n) super
quantum invariant. If we define 50J,f(q) = Jé(q, 1) and o4y J,j(q) = JI’}(q, t)
then Clark shows [17, Theorem 4.24] that the twistor isomorphism (1.2) gives rise
to an identification of quantum knot invariants

osp L () = a(A, K) o J2 (71 q) (1.3)

for some scalar o(A, K) depending on the dominant weight A and the link K. In
the case when n = 1 this gives the surprising observation that the colored Jones
polynomial can be obtained from the super representation theory of osp(1|2) with
appropriate scalars.

Here we show that the covering algebra Uq,,, for n = 1 specializes at (¢, 7) =
(v/—1,1) to the small quantum group for sl, (at a fourth root of unity) and at
parameters (¢, 7) = (—1,—1) to a “g-less subalgebra” of modified sl(1]1), see
Sections 8.4 and 8.5. The quantum knot invariant twistor isomorphism (1.3) at
n = 1 specializes at ¢ = —1 to a connection between the osp(1]2) invariant at
parameter ¢ = —1 and the sl,-invariant at ¢ = t~!(—1) = t which is a fourth root
of unity. Hence, the connection between a g-less subalgebra of quantum s[(1]1)
and sl, at a fourth root of unity may be a special case of a twistor arising from the
covering Kac—Moody theory.

1.5. Categorification. The existence of a canonical basis for the covering alge-
bra ﬁq,n led Clark and Wang to conjecture the existence of a categorification of
this algebra [22]. The conjecture was proven in [27] who defined a Z x Z,-graded
categorification &I, , of Uq,,,. Later, Brundan and Ellis gave a simplified treat-
ment [10] using the theory of monoidal supercategories [9]. This work provided
a drastic simplification that makes the present work possible.

Thus far, the odd categorification 4, , of quantum sl, has yet to be applied to
give a higher representation theoretic interpretation of odd Khovanov homology.
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However, it is interesting to note the strong agreement between the existence of
covering Kac—Moody algebras for so(2n + 1) and the existence of an “odd link
homology” for the same algebras predicted by the string theoretic approach to link
homology constructed by Mikhaylov and Witten using D3-branes with boundary
on fivebrane [68].

Given the expected connections to odd link homology, the conjectural spectral
sequences connecting odd Khovanov homology and knot Floer homology moti-
vates the investigation of 2-categorical differentials on the odd categorified quan-
tum group. In particular, we categorify both specializations of the covering al-
gebra at (¢, 7) = (+/—1,1) and (=1, —1) corresponding sl, at a fourth root of
unity and a subalgebra of quantum sl((1]|1), see Corollary 9.10. This is not as
straightforward as one might hope. In both algebras there are relations of the form
E? = F? = 0 and such relations are known to be nontrivial to categorify.

If the identity morphism of a generator E in a category is represented dia-
grammatically by a vertical arrow, then two vertical strands represents the object
EE. Khovanov was the first to identify the representation theoretic importance of
dg-structures with a diagrammatic relation defining the differential of a crossing
to be two vertical strands. Such structures appeared in work of Lipshitz, Ozsvath,
Thurston [60] providing a combinatorial construction of Heegaard—Floer homol-
ogy. Khovanov showed that such a relation could be used to produce the nilpotent
relation E2 = 0 needed for a categorification of the positive part of gl(1]1) [47].
This led to a categorification of the positive part of gl(m|1)[54].

Since Khovanov’s initial observations, there have been various proposals to
categorifications connected with gl(1|1) appearing in the literature. In [28] the
tangle Floer dg algebra is identified with a tensor product of U, (gl(1]1)) repre-
sentations and dg-bimodules were defined giving the action of quantum group
generators E and F. Further, Ozvath and Szabo’s new bordered Heegaard—Floer
homology [74, 73] can be seen as a categorification of gl(1|1) representations via
the work of Manion [67]. Motivated by contact geometry, Tian defined a cate-
gofication of U,(s[(1]1)) using triangulated categories arising from the contact
category of the disc with points on the boundary [92, 90, 91]. An approach to
categorifying tensor powers of the vector representation of U, (gl(1]|1)) based on
super Schur-Weyl duality is given in [81], which is related to the bordered theory
in [66].

Here we extend Khovanov’s observation in order to categorify the specializa-
tions of the covering algebra at ¢ = —7. To do this we define new dg-structures
on the 2-category , .
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1.6. Differential graded structures on categorified quantum group. Deriva-
tions on the even categorification U(s(,) were studied by Elias and Qi [23]. They
were interested in categorifying the small quantum group for s, at a (prime) root
of unity. Their approach made use of the theory of Hopfological algebra initiated
by Khovanov [48] and developed by Qi [75]. The main idea in Hopfological alge-
bra is to equip a given categorification with the structure of a p-dg algebra. This
is like a dg-algebra, except that d? = 0 rather than d? = 0.

Within the framework of Hopfological algebra, there have been a number of
investigations into categorifications at a prime root of unity. A p-dg analog of
the nilHecke algebra was studied in [51]. In [23] Elias and Qi categorify the small
quantum group for sl at a (prime) root of unity by equipping the 2-category U with
a p-differential giving it the structure of a p-dg-2-category. Using thick calculus
from [50], in Elias and Qi categorify an idempotented form of quantum sl, and
some of its simple representations at a prime root of unity [24]. This involves
equipping the Karoubi envelope U of the 2-category U with a p-dg structure.
Related categorifications studied were studied in [76]. All of these approaches
require p to be a prime root of unity and the base field to have characteristic p.

Much less in known about honest dg-structures, or categorification at a root of
unity working over an arbitrary field (see [59] for the current state of the art).
In particular, it was shown in [23] that there are no nontrivial differentials in
characteristic zero on the original categorification U(sl,). The only clue we have
is the work of Ellis and Qi that equips the odd nilHecke algebra with an honest
dg-algebra structure [29] . Their work gives a categorification of the positive part
of U, (sl2) with ¢ specialized to a fourth root of unity. There are a couple of points
here worth highlighting. First, they work with the odd nilHecke algebra defined
over an arbitrary field or Z (no need to work in characteristic p). Second, the fourth
root of unity doesn’t come from considering a funny version of chain complexes
with d* = 0; they use ordinary dg-algebras. However, the differential they define
on the odd nilHecke algebra is not bidegree zero. Rather it has Z x Z, -degree
(2,1) leading to so called mixed complexes, or ‘half graded’ chain complexes of
vector spaces.

The effect of having mixed complexes is a collapse of the Z x Z,-bigrading,
analogous to the §-grading from link homology theory. At the level of the
Grothendieck ring of the derived category of dg-modules, this has the effect of
imposing the relation 1 + ¢27 = 0 in the ground ring Z[g,q~ ', 7]/(x? — 1).
When 7 = 1, this gives the Grothendieck ring the structure of Z[+/—1]-algebra.
So the fourth root of unity comes from the bidegree of the differential, not from
the theory of p-dg algebras. This is discussed in greater detail in Section 3.4.
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Ellis and Qi suggested that their work on the differential graded odd nilHecke
algebra should extend to the odd categorified quantum group $(sl,) to provide a
characteristic zero lift of the differentials defined on the original categorification
U(sl,) that were studied in finite characeteristic in [23]. Here we prove this
conjecture by defining a family of differentials on the odd 2-supercategory 4, see
Proposition 7.1.

1.7. Main Results. In Proposition 7.1 we classify 2-categorical differentials on
the odd 2-category i, . Our classification depends on the so-called nondegen-
eracy conjecture stating that certain spanning sets form a basis for the 2-homs
in 4, .. However, our results are independent of this conjecture as we define
explicit differentials giving the desired categorifications. Following similar argu-
ments from [23], we show that the odd 2-category 4l, » is dg-Morita equivalent to
a positivly graded dg-algebra enabling us to compute the Grothendieck ring of the
dg-2-supercategory (14, . d) using the theory of fantastic filtrations developed by
Elias and Qi [24]. As explained in Section 3.4, we have freedom in how we treat
the Z,-grading in the Grothendieck group. In particular, the Grothendieck group
is naturally a Z[q,q~ !, 7]/(n? — 1,1 + ¢?n) module with [MTI] = 7[M]. We
show in Corollary 9.10 that taking = = 1 specialization results in a categorifica-
tion of U(sl,) at a fourth root of unity. While taking the 7 = —1 specialization
eliminates ¢ entirely and we are left with a Z-module closely related to gl(1|1). In
particular, we have relations £2 = F2 = 0 and a super commutator relation for
E and F. In this way, U /= (sl) together with a g-less version of gl(1|1) appear
naturally via different decategorifications of the same 2-category i, .

The significants of a bidgree (2, 1), or §-grading preserving, differential con-
necting the odd 2-category 4, , with quantum algebras connected to the Alexan-
der polynomial is the further evidence it provides that odd categorified quantum
groups may supply a higher representation theoretic bridge between odd Kho-
vanov homology and HF (2(K)). An odd categorified quantum groups construc-
tion of odd Khovanov homology should have interesting interactions with the dif-
ferential defined here, inducing a spectral sequence associated to these new dif-
ferentials, and providing a higher representation theoretic categorification of the
knot determinant det(K) = |Ax(—1)|.

Acknowledgements. The authors are very grateful to You Qi for patiently ex-
plaining the details of his previous work and to Andy Manion for explaining
his perspective on quantum algebraic aspects of Heegaard—Floer homology. We
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2. Super dg theory

Here we consider Z x Z,-graded dg categories. This is a modest generalization
of the standard theory of dg-categories, since a Z-graded dg-category induces a
Z,-graded one by collapsing the grading modulo 2. However, we note that the Z,
grading on 2-morphisms in the 2-category 4l defined in Section 5 are not the mod
2 reductions of the quantum Z-grading. It is easy to see this from the bigrading on
caps and cups. We consider differentials with respect to the Z, (or super) grading.
If the differential also has a nontrivial Z-grading (as is the case with the differential
on 4l) this can produce interesting effects on the Grothendieck ring. In particular,
if the differential has bidegree (2, 1) we are led to the notion of ‘half graded’
complexes whose Grothendieck ring corresponds to the Gaussian integers, see
Section 3.4.

The natural context for discussing Z,-graded dg categories is the super cat-
egory formalism developed by Brundan and Ellis [9, 10] that we review in Sec-
tion 2.1.

2.1. 2-supercategories. Let k be a field with characteristic not equal to 2. A su-
perspace is a Z,-graded vector space V = V; @ V;. For a homogeneous element
v € V, write |v| for the parity of v.

Let SVect denote the category of superspaces and all linear maps. Note that
homs Homgyjee¢(V, W) has the structure of a superspace since and linear map
f:V — W between superspaces decomposes uniquely into an even and odd
map. The usual tensor product of k-vector spaces is again a superspace with
VoW =VeaW;edViW;and (VW) =170 W; & V; @ W.
Likewise, the tensor product f ® g of two linear maps between superspaces is
defined by

(f ® @ w) := (-1 fv) ® g(w). 2.1)

Note that this tensor product does not define a tensor product on SVect, as the
usual interchange law between tensor product and composition has a sign in the
presence of odd maps

(f@g)oh@k) = (DEM(fon @ (gok), 22
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This failure of the interchange law depending on parity is the primary structure
differentiating super monoidal categories from their non-super analogs.

If we set SVect to be the subcategory consisting of only even maps, then
the tensor product equips SVect with a monoidal structure. The map u ® v +—
(=D)™IPly @ 1 makes SVect into a symmetric monoidal category. We now define
supercategories, superfunctors, and supernatural transformations by enriching
categories over the symmetric monoidal category SVect. See [40] for a review
of the enriched category theory.

Definition 2.1. A supercategory A is a category enriched in SVect. A superfunc-
tor F: A — B between supercategories is an SVect-enriched functor.

Unpacking this definition, the hom spaces in a supercategory are superspaces
HOM_ (X, Y) = Hom% (X, Y) & Hom (X, Y)

and composition is given by an even linear map. Let SCat denote the category
of all (small) supercategories, with morphisms given by superfunctors. This cat-
egory admits a monoidal structure making it a symmetric monoidal category [10,
Definition 1.2].

Definition 2.2. A 2-supercategory is a category enriched in SCat. These means
that for each pair of objects we have a supercategory of morphisms, with compo-
sition given by a superfunctor.

For our purpose, it suffices to consider a 2-supercategory to be an extension
of the definition of a 2-category to a context where the interchange law relating
horizontal and vertical composition is replaced by the super interchange law

Yy X’ Yy X’ Yy X’
v 1% A v 1% A v 1% A
= e — (_1)|f||g|
®
Y X Y X Y X

Effectively this means that when exchanging heights of morphisms we must take
into account their parity.

2.2. DG-superalgebras. In this section we collect some facts about differential
graded algebras in the super setting. Following [29] we grade our dg algebras by
7./27. Traditional dg algebras inherit a Z, grading by collapsing the Z-grading
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mod 2. However, in our setting we will have both a Z-grading and Z,-grading that
is not the mod 2 reduction of the Z grading.

A dg-superalgebra (A, d4) is a superalgebra A = A5 @ A5 and an odd parity 1
k-linear map 0 = d4: A — A satisfying 3> = 0 and for any homogeneous a, b € A

d(ab) = d4(ab) = d4(a)b + (=1)1ad (b). (2.3)

A left dg-supermodule (M, dpr) is a supermodule M = My @& M; equipped with
an odd parity k-linear map dps: M — M such that for any homogeneous elements
ae€ A, me M we have

Iy (am) = dg(a)ym + (—1)1¥adp (m).

If A and B are dg-superalgebras, then a dg (A, B)-superbimodule is a superspace
equipped with a differential and commuting left dg A-supermodule and right dg
B-supermodule structure. Given a dg (A, B)-superbimodule M, define the parity
shift superbimodule ITM to have the same underlying vector space as M viewed
as a superspace with the oppposite Z,-grading

(M) = M3, (IIM); = M.

The superbimodule structure on ITM is defined by a-m-b := (—1)!%avb. With this
definition the identity function on the underlying vector space defines an odd dg-
superbimodule isomorphism {3s: TIM — M. For a morphism of superbimodules
f:M — N we define I1f:TIM — TIN by the map (—1)!/! f. Then there is
an isomorphism £y: [12M — M given by minus the identity. The category of
(A, B)-superbimodules equipped with the superfunctor IT and odd supernatural
isomorphism ¢: I1 — Id equips the category of dg (A4, B)-superbimodules with
the structure of a IT-supercategory in the sense of [9, Definition 1.7].

2.3. Graded dg-superalgebras. A graded superspace is super vector space V
equipped with an additional Z-grading

V=V:=P V59 Vi

neZ neZ

that is independent of the Z, parity grading. A graded dg-superalgebrais a graded
superalgebra with a Z x Z, degree (2, 1) k-linear differential 0 = 94:4 — 4
satisfying (2.3). Graded dg-superbimodules are defined analogously. Given a
graded dg (A, B)-superbimodule M, define the Z-grading shift dg-superbimodule
QM by shifting the Z-grading of the underlying vector space (QM),, = M,_; and
leaving the parity grading untouched. For graded dg-superalgebras A and B the
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category of graded dg (A4, B) superbimodules is a graded (Q, IT)-supercategory
in the sense of [9, Definition 6.4] with grading and parity shift functors Q and IT.

Given a (graded) superalgebra A, denote by C(A4) the homotopy category of
(graded) dg-supermodules given by quotienting maps of dg-supermodules by null-
homotopies. Likewise, we denote by D(A) the derived category of (graded)
dg-supermodules. Both C(A4) and D(A) are triangulated categories. In the super
setting that we are working in, the translation functor [1] acts by the parity shift:

(MODF == TIM = M1 9y o= Tapy ==~
2.4. DG-supercategories. For standard results on dg-categories see [39].

Definition 2.3. A supercategory A is called a dg-supercategory if the morphism
spaces between any two objects X, Y € A are equipped with a degree 1 differen-
tial 9 )

0: Homi(X, Y)— Homi“(X, Y),

which acts via the Leibnitz rule
dgo f)=0d(g)o f+ (—1¢lgod(f)

on composable pairs morphisms f and g.

Given a dg-superalgebra A, consider the dg-enhanced supermodule category
Ajy-dmod by defining the HOM-complex between two dg modules M and N to be

HOM, (M, N) = Hom%(M, N) & Hom} (M, N).
The differential d acts on a homogenous map f € HOMy (M, N) as
0(f)=dnof— (DY fodn.

If we take A = k with trivial differential differential then kj-dmod is just the
dg-category of chain complexes of super vector spaces.

The morphism space in the homotopy category C(A) is just the degree-zero
part of the resulting cohomology

Home4)(M, N) = H*(HOM4 (M, N)).

The morphism spaces Homq 4)(M, N) in the derived category are computed by
replacing M by a cofibrant replacement Pjs. Recall that a dg module P over A
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is called cofibrant if for any surjective quasi-isomorphism f: M — N and any
morphism g: P — N, there exists a morphism g: P — M making the diagram

M ——N

commute. Every dg-supermodule M admits a cofibrant replacement Py, unique
up to quasi isomorphism see [29, Proposition 2.3] and there are natural isomor-
phisms

HOIIID(A)(M, N) = HOIII@(A)(PM, N) = HO(HOMA(PM, N)) (24)

Definition 2.4. A left (respectively right) dg-supermodule M over a dg-supercat-
egory A is a superfunctor

M: A —> ky-dmod  (resp. M: A°? — ky-dmod), 2.5)

that commutes with the d-actions on A and kj-dmod. A dg-supermodule is called
representable if M = HOM 4 (X, —) for some object X of A.

2.5. DG 2-supercategories

Definition 2.5. A (strict) dg 2-supercategory (LI, d) consists of a 2-category 4l,
together with a differential on 2-morphisms satisfying the super Leibnitz rule for
both horizontal and vertical composition.

More explicitly, a dg-2-supercategory consists of the following data.
(1) A setofobjects/ = A, u,...,and foran A, u € I we have
pdhy := Homy (A, )
is a dg-supercategory. In particular, vertical composition of 2-morphisms

obeys the dg-supercategory Leibnitz rule for morphisms.

(2) For any pair of 1-morphisms , E;, ,, E} in the same Hom space, the space of
2-morphisms
HOM, «, (., wE3)

is a chain complex of superspaces.
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(3) The vertical composition of 2-morphisms satisfied the Leibnitz rule. That is,
for any pair of objects A, u, € I, then

HOM,, 41, (uEx. 1 F2) x HOM, g, (u Ex. 1 F3) — HOM, g5 (WEL. 1 F2).
(& f)—(gof)

satisfies

d(go f)=dg) o f+(-DElgod(s).

(4) The horizontal composition of 2-morphisms satisfied the Leibnitz rule. That
is, for any triple of objects A, i, v € I, then

HOM, s, (v Fye. v Fu) xHOM, s, (u Ex, w E5) — HOM, y, (o FE;., o F'E}).
(h, f) — (hf)

satisfies

Ahf) =) f + (=D ha(f).

2.6. Gradings. The notion of a dg 2-supercategory can be extended to the notion
of a graded dg 2-supercategory in a straightforward way. Denote by GSVect
the symmetric monoidal category of super vector spaces and degree preserving
linear maps. A graded supercategory is then a category enriched over GSVect.
A graded 2-supercategory is then a category enriched over the monoidal category
of all small graded supercategories. A graded super-dg-2-category is a graded
2-supercategory equipped with a differential 3 of degree 2 and parity 1 satisfying
the super Leibnitz rule as in Section 2.5.

2.7. (Q, I)-envelopes of dg-2-supercategories. A graded (Q, IT)-supercate-
gory is a graded supercategory A together with superfunctors 0, 071, TI: A — A,
an odd supernatural isomorphism ¢: I1 = [ that is homogeneous of degree 0,
and even supernatural isomorphisms 0: Q = I, 5: Q! = [ that are homoge-
neous of degrees 1 and -1, respectively. This data makes Q and Q! mutually
inverse graded superequivalences and I1 a self-inverse graded superequivalence.
A graded (Q, IT)-2-supercategory can be defined similarly, where each hom cat-
egory has the structure of a graded (Q, I1)-supercategory, see [9, Definition 6.5]
for a precise definition.

We have already seen an example of a graded (Q, IT)-supercategory coming
from the category of graded supermodules over a dg-superalgebra. Given a graded
supercategory it always possible to enhance it to a graded (Q, I1)-supercategory
by taking its (Q, IT)-envelope.
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Definition 2.6 ([10], Definition 1.6). Given a graded 2-supercategory i, its
(Q, II)-envelope &, - is the graded 2-supercategory with the same objects as 4,
I-morphisms defined from

Homy, . (A, u) := {Q™II*F |forall F € Homy(A, j1)
withm € Z anda € Z./2Z}

with composition law
(0"TI°G)(Q™MI*F) := Q"' 1**2(GF).
The 2-morphisms are defined by
Homy, . (Q™M*F, Q"TI’G) := {x° | for all x € Homy(F,G)}
viewed as a superspace with addition given by
Xl ymi = (e
and scalar multiplication given by
c(xfn’z = (cx)%;.
The degrees are given by
deg(x,’%’f;) = deg(x) +n —m, |x,’,’1’f;| =|x|+a+b.

The horizontal composition is given by

d b +b|y|+ac+b I4+n,b+d
Ve Xl 1= (S Gy et (2.6)

and the vertical composition by

Vo xitl = (yox)pe. 2.7)

Lemma 2.7. Let (1, 0) denote a graded dg-2-supercategory. Then the (Q, I1)-en-
velope U, » of Y admits a super dg structure defined by

d:Homy, . (Q™I*F, Q"TNI°G) — Homy, , (Q™I1*F, Q"T1°G),

X s (1P @)L

m,a
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Proof. We verify that this definition satisfies the super Leibnitz rule with respect
to the horizontal composition rule (2.6) in the (Q, I1)-envelope

1,b
8(ymc xk a)
l+n,b+d
= (—1)elelHbltactbey (g L x)limbid )
l+n,b+d
= (el ractbetbad gy ) inotd
l+n,b+d
= (= 1yclxlFblyI+actbetbtd 5y .x)ki’:n,;rc
" (_1)C|x|+b|y|+ac+bc+b+d(_1)|Y|(y . 3(x))§€':_”’b+f
m,a+c
l+n,b+d
= (=) hIFPMIFactbetd (y) . ey Anore
+ (—1)cl8(x)|+b|y|+ac+bc+b(—1)‘y‘+c+d(y D
m,a+c

= A X + (- DAl ynd . d(xi)

and the vertical composition rule (2.7)

Ay, o xP) = d((y 0 )0

— )0 0 X))}

= (=) o x)js + (—1>c+‘y‘ (y o 9}

= (=D°@)ES 0 x4+ (—=DPITe ,’;‘;, o (3(x))y!
=(—1>C(a<y>>:;“box“ + (=PI o (—1)P (X))

= D) o Xy + (=)l oa(%). O

Definition 2.8. The underlying 2-category i, , of the (Q, IT) envelope Iy  of a
2-supercategory il is obtained by restricting {(, , to degree zero 2-morphisms.

The 2-category i, . carries the structure of a (Q, IT)-2-category in the sense
of [9, Definition 6.14]. If (4L, ) is a graded dg 2-supercategory then the differential
d restricts to a degree zero map d on £, . giving it that structure of a dg 2-category
(7 9)

3. Hopfological algebra

One of the primary reasons that triangulated categories are prevalent in categori-
fication is the need to accommodate minus signs in the Grothendieck ring. For
positive algebraic structures, typically additive categories suffice with basis ele-
ments corresponding to indecomposable objects in the categorification. Quantum
groups with their canonical basis are an excellent example of this phenomenon.



DG structures on odd categorified quantum s/(2) 245

However, as we expand categorification to include non-positive structures like the
Jones polynomial, minus signs are lifted via the shift functor [1] for some trian-
gulated category, with the shift functor [1] inducing the map of multiplication by
—1 at the level of the Grothendieck group.

In his proposal for categorification at roots of unity, Khovanov showed that
the traditional world of dg-categories, together with their homotopy and derived
categories of modules, fits into a framework of Hopfological algebra. For our
purposes, Hopfological algebra will provide a valuable perspective on the pos-
sible decategorifications of graded dg-2-supercategories. We quickly review the
relevant details of Hopfological algebra needed for these purposes. For a more
detailed review see [48, 75].

3.1. Basic setup. Let H be a finite-dimensional Hopf algebra. Then H is also
a Frobenius algebra and every injective H-module is automatically projective.
Define the stable category H-mod as the quotient of the category H —mod by
the ideal of morphisms that factor through a projective (equivalently injective)
module. The category H-mod is triangulated, see for example [32].

The shift functor for the triangulated structure on H-mod is defined by the
cokernel of an inclusion of M as a submodule into an injective (projective)
module /. We can fix this inclusion by noting that for any H-module M, the
tensor product H ® M with a free module is a free module, and the tensor product
P ® M with a projective module is always projective [48, Proposition 2]. A left
integral A for a Hopf algebra H is an element A € H satisfying

hA = e(h)A.

Using the left integral, any H-module M admits a canonical embedding into an
injective module via M — H ® M sending m — A ® m. This allows us to define
a shift functor on the category of stable H-modules via

T: H-mod — H-mod,

3.1)
M +— (H/(HA)) ® M.

We now define the basic objects of interest in the theory of Hopfological
algebra that generalize dg-algebras and their modules. The reader may find Table 1
helpful for tracking the analogy. An H-module algebra B is an algebra equipped
with an action of H by algebra automorphisms. A left H-comodule algebra is an
associative k-algebra A equipped with a map

Ag:A— H®A

making A an H-comodule and such that A4 is a map of algebras.
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Table 1
DG-algebras Hopfological algebra
DG-algebra B H-module algebra
DG-module A := B#H-module
B—dgmod A—mod
Homotopy category of B—dgmod Apr-mod
Derived category of B-dg-modules D(B,H)

There is a natural construction to form a left H-comodule algebra from a
right H-module algebra by forming the smash product algebra A := H#B. As a
k-vector space A is just H ® B, with multiplication given by

(h@b)(t®c)=Y hla® (b-La)c,

where we use Sweedler notation for the coproduct A(¢) = 3 ) La) ® L) €
H ® H. The left H-comodule structure on A = H#B is given by Ag(h ® b) =
A(h) ® b. Let A—mod denote the category of left A-modules and define A z-mod
to be the quotient of A—mod by the ideal of morphisms that factor through
an A-module of the form H ® N. The category Ag-mod is triangulated [48,
Theorem 1] with shift functor inherited from H -mod defined by sending an object
M in Ag-mod to the module

T(M):=(H/(kA)) @ M. (3.2)

Since H is a subalgebra of A = H#B, we can restrict an A-module to an H -
module, which descends to an exact functor Az-mod to H-mod. In the context
of the H-comodule algebra A = H#B we write C(B, H) = Ag-mod. Define a
morphism f: M — N in Ag-mod to be a quasi-isomorphism if it restricts to an
isomorphism in H-mod. Denote by D(B, H) the localization of A with respect
to quasi-isomorphisms. It is shown in [48, Corollary 2] and [75, Corollary 7.15]
that D(B, H) is a triangulated category whose Grothendieck group is a module
over K(H-mod).

3.2. DG-algebras from the Hopfological perspective. The standard theory of
dg-algebras and their modules is equivalent to the Hopfological algebra of the
Z-graded Hopf superalgebra H = k[D]/D? in the category of super vector
spaces. Here deg(D) = 1 and
A =1®1, e(l)y=1, (3.3)
AD)=1®D+D®1I1, &D)=0. (3.4)

For the Hopf superalgebra k[D]/D? the left integral is spanned by A = D.
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For a graded k-superalgebra B to admit an H-module structure this is equiv-
alent to B having a degree 1 map 9: B — B satisfying

dab) = da)b + (~1)9ad®),  9(a) =0,

for all a, b € B. Hence, an H-module algebra is the same thing as a dg-algebra.
In a similar way, if we set A := B#H then an A module is the same thing as a
B-dg-module. Further, one can show that C(B, H) = Ag-mod is equivalent to
the homotopy category C(B) of B-dg modules and that D(B, H) is equivalent to
the derived category D(B) of B-dg-modules.

3.3. Decategorification from the Hopfological perspective. To have an inter-
esting notion of Grothendieck group for the triangulated categories Ax-mod it is
important that we restrict the classes of modules under consideration to avoid
pathologies that can arise. In the context of Hopfological algebra the correct
notion is that of compact hopfological modules from [75, Section 7.2]. Denote
by D¢(A, H) the strictly full subcategory of compact hopfological modules in
D(A, H).

Definition 3.1 ([75]). Let B be an H-module algebra over a finite dimensional
Hopf algebra H over abase field k. Define the Grothendieck group Ko (D¢ (B, H))
to be the abelian group generated by symbols of isomorphism classes of objects
in D¢(B, H), modulo the relation

[Y]=[X1+[Z],
whenever there is a distinguished triangle inside D¢ (B, H) of the form

X—Y—Z7Z—TX).

Both the Grothendieck rings of categories C(B, H) and D(B, H) are left mod-
ules over the Grothendieck ring Ko(H -mod) (see [48, Corollary 1 and 2]). Hence,
the ground ring for decategorification provided by the theory of Hopfological al-
gebra associated to the Hopf algebra H is determined by Ko (H -mod). Note this
group has a ring structure because H-mod has an exact tensor product. When
H is quasi-triangular then K(H -mod) is commutative, so that we do not need to
distinguish between left and right modules [75, Remark 7.17].

3.3.1. Ground ring for Grothendieck group from the Hopfological perspec-
tive. In the special case when A = Lk, the Grothendieck group for D(k, H)
is the same as H-mod since H acts trivially on k [75, Corollary 9.11]. Since
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Ko(Ag-mod) is a module over Ko(H-mod) = Ko(D(k, H)), the Grothendieck
ring of D(k, H) determines the ground ring for the Grothendieck group of
Ag-mod. In the language of dg-algebras, this just says that K, of the derived
category of chain complexes of vector spaces determines the ground ring for Ky
of the category of dg-modules.

Consider the category of complexes of k-vector spaces. Considering the ho-
mological degree modulo two gives rise to a Z, grading for the dg homotopy cat-
egory of (ungraded) chain complexes D (k) of vector spaces where the differential
has degree deg(d) = 1. Assuming kk = Z or a field, it follows that any complex
in D(k) is isomorphic to a direct sum of indecomposable chain complexes of the
following form:

e asingle copy of k in any bidegree;
e acopy of
S = (0 — k -5 KIT —> 0)

where we include the parity shift of IT on the right hand side to accommodate
the degree of the differential.
Then the Grothendieck group is generated as a Z[x]/(7? — 1)-module by the
symbol [k] with [kI1] = =[k]. If the differential d in the complex S is given
by multiplication by a unit in k, then S is contractible and therefore isomorphic
to 0 in Ko(D(k)). The contractibility of S imposes the additional relation

(1+ 7)[k] = 0. (3.5)

The classication of objects in D(k) implies that this is the only relation, and it
forces the symbol of S to be zero even when d is not multiplication by an invertible
element. Hence, 7 = —1 and

Ko(D(K)) = Z[x]/(1 + ) = Z. (3.6)

The homological shift k[1] is given by the cokernel of the inclusion into H ® k
with k = Ak = D ® k. The injective envelope H ® k is two dimensional as
a vector space spanned by the identity and D. We can represent H ® k by the
complex

KIT 2> k
where k includes into the right most term via the map D ® 1. Hence, the
cokernel of this inclusion gives that k[1] = kII. So we have recovered from

the hopfological perspective the fact that the shift [1] is just the parity shift IT and
at the level of the Grothendieck group we have

[((&[1]D] = [kI] = 7 [k] = —[K].
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We carefully reviewed the usual dg-case to set the stage for our treatment in the
‘mixed complex’ setting.

3.4. Gaussian integers. The following section is an extension of the discussion
in [29, Section 2.2.4] that was explained to us by You Qi. Consider the category of
Z x 7Z,-graded modules. We denote by (1) a shift of the quantum (or Z-grading),
and by IT the parity shift functor. Define a differential between such modules to be
a map of bidegree (2, 1) that squares to 0. The main difference between this case
and the previous is that our Hopf algebra input into Hopfological algebra is now
the Hopf superaglebra H = k[D]/D? where D has mixed degree (2, 1). A chain
complex is a k-module equipped with such a differential. Following [29] we call
such complexes half-graded complexes for reasons that will become clear. Denote
the corresponding homotopy category by C(k) and the derived category by D (k).

Any category of Z x Z, graded dg-modules with differentials of bidegree
(2,1) will have a Grothendieck ring that is a module over Ko(D(k)), so this
Grothendieck ring controls the ground ring that appears in categorification via
half-graded complexes. Assuming k = Z or a field, it follows that any complex
in D(k) is isomorphic to a direct sum of indecomposable chain complexes of the
following form:

e asingle copy of k in any bidegree;

e acopy of
S = (0 — TPk{a) -5 M+ Kk(a 4 2) —> 0)

with the first term in any bidegree (a, ) and the right most copy in bidegree
(a+2,b+1).
Then the Grothendieck group is generated as a Z[g,q ', w]/(7w? — 1)-module by
the symbol [Kk] with [k(1)] = ¢[k] and [kIT] = x[Kk]. If the differential d in the
complex S is given by multiplication by a unit in k, then S is contractible and
therefore isomorphic to 0 in K¢(D(k)). For simplicity take a = b = 0 in S, the
contractibility of S imposes the additional relation

(1 +¢*m)[k] = 0. (3.7)

The classication of objects in D(k) implies that this is the only relation, and it
forces the symbol of S to be zero even when d is not multiplication by an invertible
element. Hence,

Ko(D(k)) = Zlg.q~ ' 7]/ (x* = 1,1 + ¢*n). (3.8)
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The homological shift is now given by the inclusion of k into H ® k via D ® 1
k(—2)TT 2> Kk
so that k[1] := k(—2)II and at the level of the Grothendieck group we have
[k[1] = [k{(-2)11] = [Kl¢>7 = —[K]

since 1 + g?m = 0. Hence, the homological shift is multiplication by —1 on Kj.

If we specialize # = —1, then the equation imposed by the contractible
complex implies that g?> = 1, so the ground ring for reduces to Z. If we specialize
7 = 1 then we have the relation g?> = —1 and we get that ¢ must be a fourth root

of unity. Hence, we have the following result.

Proposition 3.2. Given a Z x Z, graded algebra equipped with a differential d
of bidegree (2,1). Then the Grothendieck group associated with the category of
7 x Z;-graded dg-modules is a module over the ring

Zlg.q " 7]/ (7n* — 1,1 4+ ¢*n).

At w = —1 this is just Z. and at & = 1 this is Z[v/—1].

4. Results on Grothendieck groups of dg-superalgebras

4.1. Grothendieck group of a dg-superalgebra . Despite our protracted dis-
cussion of Hopfological algebra, the decategorification of categories of dg-su-
permodules is not so unlike the decategorification of normal dg-modules. We
detoured through Hopfological algebra to highlight the fact that the Grothendieck
ring will have the structure of a module over the Gaussian integers Z[+/—1]. Just
as in the usual theory of dg-modules over a dg-algebra A, to have a sensible
notion of Grothendieck group of D(A), we pass to the compact or perfect de-
rived category D¢(A). The category D¢(A) is a subcategory of D(A) consisting
compact dg-modules, that is, those dg-supermodules M such that the functor
HOMq (4)(M, —) commutes with infinite direct sums. This is the same as consid-
ering D(A, H) in the Hopfological setup with H defined in Section 3.4.

For our purposes the connection between compact dg modules and finite-cell
modules will be of particular relevance. See for example [23, Example 2.4].
A finite-cell module over a dg-superalgebra A is a dg-supermodule with a finite
filtration whose subquotients are isomorphic as dg-supermodules to dg-summands
of A. Such finite-cell modules are always compact.
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The Grothendieck group Ko(A) of a (graded) dg-superalgebra A is the quotient
of the free abelian group on the isomorphism classes [M] of compact (graded) dg-
supermodules M by the relation [M] = [M;] + [M>] whenever

My — M — M, — Mi[1]

is an exact triangle of compact objects in D¢ (A4). This is the same as D (A, H) for
H defined in Section 3.4. The Grothendieck group Ko(A) of a graded dg-super-
category A can be defined similarly, by regarding A as a graded dg-superalgebra

A= @HOI’HA(X, )
x,y€0bA

with orthogonal idempotents 1, for each object x € A.

4.2. Positively graded dg-algebras. A Z-graded dg-superalgebra is called a
positive dg-superalgebra (see [83]) if it satisfies the following:

(1) the superalgebra A = €, A is non-negatively graded,
(2) the degree zero part A° is semisimple, and
(3) the differential acts trivially on A4°.

We say that A is a strongly positive dg-superalgebra is it is a positive dg-superal-
gebra with degree zero part A% =~ k.

The calculation of the Grothendieck ring of a positively graded dg-algebra is
greatly simplified.

Theorem 4.1. Let A be a positive dg-superalgebra, and A° be its homogeneous
degree zero part. Then
Ko(A) = Ko(A°).

Proof. This is a direct extension of the non-super result from [83] and [23,
Corollary 2.6]. O

4.3. Fantastic filtrations. In this section, we give a review of the fantastic
filtration and recall the related theorems from [23]. Fantastic filtration is an
essential tool in this work for determining the Grothendieck ring of the odd dg
2-category il defined in the next section. The key issue is that if A4 is a dg-
superalgebra the direct sum decomposition of A-modules does not necessarily
commute with the differential. However, if there exists a fantastic filtration F® on
an A-module Ae, where e is an idempotent, then the direct sum decomposition of
Ae as A-modules becomes a filtered direct sum decomposition of dg-modules.
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We collect several important results on fantastic filtrations from [23, Section 5]
that are easily adapted to the super dg-setting.

Lemma 4.2. Let R be a superring and the elements u;,v; € R with |u;| = |v;|,
where i € I is a finite set, satisfy the following conditions:

Uiviu; = Ui, VUiV = Vi, Vjuj =6 ; 4.1)
then e = ), u;v; is an idempotent and we have a direct sum decomposition
Re = @, Rv;u;.

Note that u;v; is an idempotent for each i < [, as w;vju;v; = u;v;,

and moreover {u;v;};es is a set of orthogonal idempotents, as for any i # j,
ujviujv; = ujvju;v; = 0. It follows that e is an idempotent and Re = €, Rv;u;.

For a dg-algebra A and any idempotent e € A, the A-module Ae is an A3-dmod
summand if for any a € A, we have d(ae) € Ae for any be € Ae. By the Leibniz
rule,

d(abe) = d(a)be + (—1)\ad(b)e + (=1)14+Plapd(e)
= d(ab)e + (=14 Plabi(e)
sothat d(abe) € Aeif d(e) = 0. The computation of the differential of an idempo-
tent e is important for determining if Ae is compact in the derived category D(A),

since d(e) = 0 implies that Ae is cofibrant and has a compact image in D(A).
The following is a straight-forward adaptation of Lemma 5.3 in [23].

Proposition 4.3. Let (A, 3) be a dg-superalgebra, i € I a finite index set, u;, v; € A
satisfying the hypothesis of Lemma 4.2. Suppose thate =) _; u;v;, and < is a total
order on I. An I -indexed A-supermodule filtration F*® of Ae is defined by

F=' = Z Rujvj
J=<i
and F? := 0, so that FS'/F<! =~ Avu; as A modules. Then the following
conditions are equivalent.

(1) F*isafiltration by dg-supermodules, so that Av;u; is a dg-supermodule and
the subquotient isomorphism is an isomorphism of dg-supermodules.

(2) The following equations are satisfied for alli € I,

via(u,-) =0, (4.2)
uia(vi) S F<i. 4.3)
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Definition 4.4. If the filtration F*® in Proposition 4.3 satisfies d(e) = 0 and
d(vju;) = Oforalli € I,thenitis called a fantastic filtration on the dg-module Ae.

The main advantage of the fantastic filtration is that it gives a filtered direct sum
decomposition of the images of idempotents as dg-modules. By a straightforward
extension of [23, Corollary 5.8] the following theorem holds.

Theorem 4.5. Let A be a dg-superalgebra, {u;, v;}ier a finite set of elements of
A satifying Proposition 4.3, then there is a fantastic filtration on the dg module
Ae if and only if there exists a total order on I such that

vid(uj) =0 forj >i.
Moreover, in Ko(A), we have the relation

[Ae] = Z[Aviu,-].

iel
4.4. Grothendieck ring of dg 2-supercategories . Recall from Section 2.7 that
if $ is a graded 2-supercategory then we denote by &, - is (Q, IT)-envelope and
by 4,  its underlying 2-category obtained by restricting to degree zero maps. The
Grothendieck group of il is defined as

Ko(W) := Ko(¢l, )

where i;lq,n denotes the Karoubi envelope of L[, . The (Q, IT)-2-category struc-
ture (see [9, Section 6] and Section 2.7) on U, ;. makes the Grothendieck group
Ko(W) aZ[q,q~ !, 7]/ (n?>—1)-module with [Q™ X] = ¢™[X] and [X 1] = n?[X]
for X € Homy, (4, ).

For our discussion in the dg-setting it is helpful to recall that the hom category
Homu ()k W) is equivalent to the abelian category of finitely generated graded
pI‘O]eC'[IVC left ;, A, -supermodules and morphisms that preserve degree and parity,
where ;A is the graded superalgebra defined as the direct sum

wAs = (@D Homy (1,615, 1,51))

X,y

over 1-morphisms x, y: A — u in 4. We now consider the dg-setting.

Definition 4.6. Given a graded dg 2-supercategory (4L, ) let
DE) := P D(uih) = P DAL, (4.4)

A,ueOb(Ll) A,eOb(Ll)
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where ;, A is the graded dg-superalgebra obtained by summing over all objects of
the dg-supercategory ,4l,. Define the split Grothendieck group Ko (L, d) of (L1, 9)
by

Ko(8,9) = Ko(Wl, . 3) := €D Ko(D (u812)) = €D Ko(D(uA2).  (4.5)
A,;ueOb(LL) A,;ueOb(LL)

Corollary 4.7. Let (A, 0) be a graded dg 2-supercategory where the differential d
has bidgree (2, 1). Then the Grothendieck group of Ko(\, 9) is a module over the
ring

R:=Zlg.q7 " 7)/(x* = 1,1+ ¢’n)

with [Q™X] = q™[X] and [XT1?] = n?[X] for X € Homg(A, u) for some objects
A, €Sl At = —1 this is just Z. and at w = 1 this is Z[~/—1].

Proof. This is an immediate corollary of Proposition 3.2 applied to graded dg-
superalgebras , A, for objects A, u € 4L O

5. The odd 2-category for s/(2)

5.1. The odd nilHecke ring. The odd nilHecke algebra ONH,, is the graded
unital associative superalgebra generated by elements x4, ..., x, of degree 2 and
parity 1 and elements 91, ...,0,_; of degree —2 and parity 1, subject to the
relations

02 =0, 0;0;+10; = 0;410;0i+1, 3.1
xi0i +0ixig1 =1, 0ixi +Xi410; = 1, (5.2)
xXixj +x;x; =0 (i #j), 0,0;+09;0;,=0 (i —j|>1), (53)
xi0; +0;x; =0 (i #j,j+1). (5.4)
For w € §, and a choice of a reduced expression w = s;, ---s;, in terms of

simple transpositions s; = (i i + 1), define
0w = 0;, -+ 0j,. (5.5)

Note that d,, only depends on the reduced expression up to an overall sign. For
wo the longest word in S, we fix a preferred choice of reduced expression.

g = 31(3201) ... (In—i ... 01).
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The element

en 1= (—1)3) g x7 1L X0 (5.6)

is an idempotent of ONH,,, see [29, Lemma 2.17] or [26].
The superalgebra of skew polnomials OPol, is defined by

OPol,, :=Z(x1,...,xn)/(xix; + x;x; = 0ifi # j). 6.7

The superalgebra ONH,, acts on OPol,, with x; acting by multiplication and 9;, the
i-th odd divided difference operator d;: OPol,, — OPol,, defined by

h < {1 ifj =i+l 55
i(xj) = :
/ 0 ifj #ii+1,

3 (fg) = 0;()g + (=D si ()3 (g). (5.9)

Under this action, OPol,, = ONH, e, is the unique (up to isomorphism and grading
shift) indecomposable projective ONH,,-supermodule. In [26] it was shown that
there is a superalgebra isomorphism

ONH, = ENDg,,, (OPol,), (5.10)

where OA,, is the superalgebra of odd symmetric polynomials.
For a superalgebra A we denote by A%°P the superalgebra with multiplication
defined by
xSOP S0P - — (_1)|x||y|(yx)80p'

There is a super algebra antiinvolution

@: ONH,, —> ONH,?
defined by sending
wx)=x", ) =-0;".

In ONH,® the relations are the same except for the relation

L xSPGIP _ gIOPLSR q _geOP S0P (S0P 0P _ 5.11)
5.2. The odd categorified quantum group. In [10] Ellis and Brundan give a
minimal presentation of the 2-category 4l that requires the invertibility of certain
maps. Here we give a more traditional presentation by including the additional
relations on 2-morphisms that are equivalent to the invertibility of these maps.
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Definition 5.1. The odd 2-supercategory 4 = $(sl,) is the 2-supercategory
consisting of

e objects A for A € Z,

o for a signed sequence ¢ = (¢1, €2, ...,&n), With &1, ..., &, € {+,—}, define
8§ = 881 882 o v Egm

where £ := € and £_ := F. A 1-morphisms from A to A’ is a formal finite
direct sum of strings

Ely =1 &g
for any signed sequence ¢ such that A’ = A + 2 2?1:1 gl

e 2-morphisms are generated by

A+2 + AiE1, — €1y >< A 1EEL, — EENy
degree (2, 1) degree (—2, 1)
1, — FEl 1, - EF1
A, g N g
degree (1 4+ A,0) degree (1 — A, A + 1))
L~ e 1,
degree (1 +A,14+ 1) degree (1 — A,0)

where we have indicated a Q-grading and parity as an ordered tuple (x, y).
Note that the Z, degree of the right pointing cap and cup are not the mod 2
reductions of the Z-degree.

The identity 2-morphism of the 1-morphism €1} is represented by an upward ori-
ented line (likewise, the identity 2-morphism of J1; is represented by a downward
oriented line).

Composites of the above diagrams are interpreted using the conventions for
supercategories from Section 2.1. The rightmost region in our diagrams is usually
colored by A. The fact that we are defining a 2-supercategory means that diagrams
with odd parity skew commute. The 2-morphisms satisfy the following relations
(see [10] for more details).
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(1) (Odd nilHecke)

The &’s carry an action of the odd nilHecke algebra with x; corresponding
to a dot and 0; corresponding to a crossing. Using the adjoint structure this
induces an action of the odd nilHecke algebra on the F’s via the antiinvolu-

tion w.

P A = NAJF ><M - NAJF %A (5.13)

(2) (Right adjunction axioms)

A A+2
A A=2 A |A+4+2
= = (5.14)
A=2 A
(3) (Parity left adjoint)
A=2 A
A A+2
(5.15)

(4) (Bubble relations)

Dotted bubbles of negative degree are zero, so that for all m > 0 one has

) A
O:o itm<A—1, O:o ifm<—-A—1. (516)

Dotted bubbles of degree 0 are equal to the identity 2-morphism:

A A

{) =14y, fori=1, {) =1y, fori<—1. (517)

A-1 —A-1
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We use the following notation for the dotted bubbles:

OOOO

*+m m+A— *+m
so that
A A
deg O = deg O =2m.
*+m *+m
The degree 2 bubbles are given a special notation as follows:
A A
A O = () azo
® =41 oy (5.18)
= , A <0
G =0
*+1 -

By the superinterchange law this bubble squares to zero

(®

We call a clockwise (resp. counterclockwise) bubble fake if m +n —1 < 0
and (resp. if m —n — 1 < 0). The fake bubbles are defined recursively by the
homogeneous terms of the equation

()

Y:o (5.19)

Z *+2r = 51,0. (520)
gz O
*+28
Cj O - O 521
#4201 *+2” 914—1 x+2n 62D

(5) (Centrality of odd bubbles)

By the super interchange law it follows that the odd bubble squares to zero.
Further, we have

A A A A
o o o o o
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(6) (Cyclicity propeties)
A A
5 = =2 — (5.23)
A

The cyclic relations for crossings are given by

Sideways crossings satisfy the following identities:

A
>< A (1)1 W - _ J\}ﬂ (5.26)
A

(7) (Odd sl(2) relations)

>

(5.24)

A A L A
= — + Z (—1)f2 O*+f2,
NEptss v
¥ (5.27)
A A A
-- 0" ¥ e O
Fl+ ot f3 *+/f y
=1 s

Remark 5.2. There are no 1-morphisms that change the weight A by an odd
number. This implies that the 2-category splits

o g[even gy ¢(0dd (5.28)

where 4" only has even weights and £°% only has odd weights.

Let £lg,» denote the (Q, IT)-envelope of the 2-category $l and U, , the under-
lying 2-category of the (Q, I1) envelope as defined in Definition 2.8.
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5.3. Additional properties of LI. For later convenience we record several rela-
tions that follows from those in the previous section, see [10] for more details. Let
|7 ]| denote the greatest integer less than 7.

(1) (Dot Slide Relations)
A A
nu — (_1)L%J Un n = (—I)L%J n  (5.29)
; ; £ [y
Un if n is even
A
o -
A
(-D* Un + 2u—1 if n is odd
) X*

(5.30)

A

ﬁ if n is even
(1L hn — A o
(=1)* ﬁ\ + 2 n_lﬂ if n is odd

(5.31)

(2) (Bubble Slide Relations)

A A
] G o= > @r+ Q_2r+2r

r>0

A A
Q ] = > @+ +2r &) (5.32)

r>0

(3) (Pitchfork Relations)

ST

(5.33)

(5.34)

%W:
o
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a2 a2 A A
P R - VAR
A A 2 2
N

(4) (Curl Relations)

For all n > 0 we have

A n—A r A
=—> (=Y P (5.37)
r=0 *+n—r—A>A
n+A+2 r
- X
A r=0 *+A+n—r A

Note that the exact form of the dotted curl relation depends on the placement
of the dots inside the curl. See for example, [10, (5.18)—(5.21)]. Using the
adjunctions the relations

%A _ XA: (_1)()L+r+1) rg (5.38)
r=0

*+(A—r)

—A
Q= g 59)
G

follow.

5.4. The nondegeneracy conjecture. A spanning set for the space Homy(x, y)
between arbitrary 1-morphisms x, y was defined in [27, Section 3.4] and simpli-
fied in [10, Section 8]. In both instances it was conjectured that this spanning set
is a basis. For our classification of differentials we need bases for certain hom
spaces that are a subset of the full nondegeneracy conjecture.
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Weak nondegeneracy conjecture The following Hom spaces are spanned over k
by the elements predicted by the non-degeneracy conjecture:

by
Hom?(1;, TT1;) = < R >

Homfl(El,x,El'Il,x):< ?2*, $®*, TE}>
Homﬁ(EElA,EEIA):<+ (IR SR - %’17%1
G e e}

*42
(5.40)

The results of [27, Theorem 7.1] and [10] coupled with the results from [35, 36]
imply that the 2-category l admits a 2-representation on categories of modules
over cyclotomic odd nilHecke algebras. It should be possible to show the spanning
sets above are a basis using this action. However, it is difficult to extract formulas
for the bubbles under this 2-representation so the weak form of the nondegeneracy
conjecture remains open. Note that from these assumptions and the adjunction
axioms it is possible to deduce bases for hom spaces involving caps and cups in
the corresponding degree.

6. Derivations on the odd 2-category

In this section we give a classification of derivations on the odd 2-category il
assuming the weak nondegeneracy conjecture from Section 5.4. Assuming these
spanning sets form a basis we are able to reduce degrees of freedom by comparing
coefficients of basis elements. We note that even without the weak nondegeneracy
conjecture, we arrive at well defined derivations that suit our purposes for our main
categorification result.

Here we look for derivations that are compatible with a natural dg-structure
on odd (skew) polynomials which was shown by Ellis and Qi to extend to the odd
nilHecke algebra. To that end, we restrict our attention to differentials of bidgree
(2, 1). Recall that a derivation on a 2-category is just a derivation on the space
of 2-morphisms which satisfies the Leibniz rule for both horizontal and vertical
composition of 2-morphisms.
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6.1. General form of derivations. The most general form of a bidgree (2, 1)
differential on the generating 2-morphisms of il is given by

A A A A
8( % ) = o ?2 + op) ? + o3 T O 6.1)
® *+2

8(/><\/1) = ,BI,AT TA + ﬁz,xf><\" + ,33,)1/><\’L + ﬁ4,/1/><\é§>

6.2)
X
= ays ﬂk + me A 6.3)

()

(\,) = als + 51@ (6:4)
o ( A) = cmu d,l@ 6.5)

() = qﬁu d,x@ 6.6)

(V)

= Gy Uﬁ dx_zg N 6.7)

for some coefficients in k. The image of all identity 2-morphisms are zero.
This definition is extended to arbitrary composites using the Leibniz rule. By
Remark 5.2 the derivations can be defined independently on £(*'*" and on £(°94,

In order for this assignment to define a derivation on 4l it must respect the defin-
ing relations of the 2-category 4l. For example, let us consider the right adjunction
axiom (5.14). The left-hand-side is vertical composite of two 2morphsism, call
them x and y.

= (6.8)
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Using the Leibniz rule for this vertical composition x o y of x and y gives that

d(x 0 y) = dx)y + (=HXa(),
and the parity of x is even, |x| = 0. Hence,

A+2
A+2 A A2

_ A
ad =(a)+ay) + (by + b)) ® (6.9)
A

The image of the right hand side of (5.14) under 9 is zero, hence, using the linear
independence of the 2-morphisms in (6.9) we obtain a relationship between the
coeflicients

(a +ay) =0, (by+by)=0.
Lemma 6.1. For the map 0:3 — AU defined by (6.1)—(6.7) to preserve the

odd nilHecke relations, the right adjunction axioms, and the parity left adjoint
relations, the coefficients must take the form

a( $ A) = oy, }21 + o f@k (6.10)

8</><\A) = IBI’AT T At (,31,/1—061,/1)/><\ A (6.11)
+ (al,l_lgl,k)/><\ A+ a2/><\é

X
= )y ﬂ*+ by ~ A 6.12)

=\ A - i\ (6.13)
= qﬁ% dl@ (6.14)

= (<)o, e ) — dHUA 6.15)
A X

where
2B1,0 = A1 p42 + a1 5.
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Proof. This is a direct computation using the Leibniz rule. The right adjunction
axiom implies

a) =a; and b_)L = —b,.
Similarly, the parity left adjoint equation implies

Ccp = (—l)’lc,x and ci;L = —d,.

The first nilHecke relation in (5.12) implies

(2)
= Bia /><\)‘ + Baa /ié\k + Bsa iz\k + Baax /igé
- P A /><\A— B2, /;gk - B3a /;ik — Baa /;2\(;

= (Boa—Bs) <2

which implies
B3 = —P2.x.

Making these substitutions the odd nilHecke relation (5.13) involves the terms
o(2<0) -
2 A
= 01,042 />< A+ 40 S%A A T340 %@ —Bia % T
A

— Baa %’l + B2.a % 2 — B3a %é
A
= (“1,A+2—,32,A)/;< A — (o242 +,33,A)><(§ + 053,/1+2/Fﬁ\ Q

*+2
2 A A
+ 30‘3,)H—2/>< - ﬂl,/\? T + /32,1 % A
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where the last equality follows from bubble slide relation (2). Similarly,

8( >< A) = (Pt o) NA + (Baa+o2) %é

~ s ?ﬁ\:g +(,31,/1—:32,k_“1:/\)T $ A+(,32,)L+061,A) $ T g

- ,32,/1$<T A~ (B3 +azy) ] T®A

Therefore, compatibility with relation (5.13) requires

o( 2+ p1) =0
so assuming the weak non-degeneracy conjecture we get the following set of

equations:

a2 =01 p =202 =0, azpy2—azy =0, B3 +ax; =0,

ar 42 — Q23 =0, a3z 42 =0, Bia—Baar—a1 ) =0.
(6.16)

From which we can deduce that «, ; does not depend on the weight A in {°¥*" or
A in UV so we set oy 1= ap ) = 002 342, and a3, = O for all A. If we combine
the first and the last equations we get

2B1,0 = a1 p42 +ap 5. (6.17)

Equation (6.17) is redundantly implied by preserving the second nilhecke relation
of (5.12). O

Lemma 6.2. Forn > 0, the map 0 in Lemma 6.1 satisfies

A2 | 2 Atz A Av2| A
9 ®n = o 18n.0dd n+1 4 (=1)" ha, n (6.18)
=2 A rA=2| A =2 A
0 on = (—2aA_a1,A)5n,0dd n+1 + (—1)”+1na2 "
X
(6.19)

Proof. The claim follows by induction on the number of dots using the Leibniz
rule. O
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6.2. Derivations and bubble relations. The remaining relations in {( involve
dotted bubbles. We first compute the image of the map defined in Lemma 6.1 on
the odd bubble defined in (6.20). By a direct computation we have
A
(@2 + Crez + A1 2—283.000) & ifA>0
A *+2
a( R ) - (6.20)
A
(as + ca + @1,281,0dd) Q2 ifA <0
*

Lemma 6.3. For the map 0 defined in Lemma 6.1 to preserve the odd cyclicity
relation (5.23)

A A
0 = 28(® ) -0
A

we must have
Cp = —ay — 83,0dd1,A- (6.21)
Proof. Applying d to (5.23) implies
A A A A

® :(2C)L+(—1)A+1051,A) 20 + ap ®

so comparing coefficients of the basis elements in the weak nondegeneracy con-
jecture implies

(—2a3—0a1,) 20 + a3

2¢; + (=DM ey 5 = —2a; —ay

and the result follows. O

The lemma implies that any derivation d must kill the odd bubble

a( ® A) — 0, (6.22)

so that the centrality of the odd bubble relation (5.22) holds trivially. Note that
the real odd bubble is equal to the fake odd bubble using the relations of odd
2-category 4l

2 A
g-c

for all A € Z. This is an immediate consequence of [10, equation (5.8)].
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Lemma 6.4. The derivation of an odd labeled (real) bubble is zero. That is, for
n=>0,

A A
a( ) =0, forA=>0, a((} ) =0 fori<O.
*+2n+1 *+2n+1
(6.23)

Proof. The proof of the statement follows easily using the relation (5.21), the
previous Lemma, and the Leibniz rule. O

Lemma 6.5. For the map 9 defined in Lemma 6.1 to preserve the degree zero
bubble relation (5.17) we have

—ay —by +cy— (=) dy — @y 185 even + A+ Dag =0 (6.24)

forall A € Z, so that any derivation of a dotted bubble must be given by

A A
a( O ):_gn,emnaz &) fora=o, (6.25)

*+n *+n+1

A A
3 ( @) ) = —Sn.eventiaz (3 for A <. (6.26)

*+n *+n+1

Proof. For n > 0 the image under 9 of the n-labelled dotted bubble is given by

d ( OA ) 6.27)

*+n
A A
= Speven(@ra+by_2—Cin+ (=1 *dy ot @1 4283 even— (1 +A—1)atz) +(+)1
*+n
for A > 0, and

9 ( (*j:: ) (6.28)

A
= 8n,even(_a/l — by +c)+ (_I)A-Hd)k - al,/la/l,even —(n— A— Daz) Q-H
*Fn

for A < 0. The identity by (5.17) then implies that the degree zero bubble vanishes
in the image of d

0:3(*&]1)

2
= (ap—2 + b2 — g + (=D dj_3 + @1 1-283 even — (A — D) @
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for A > 1, and
A

0-3(G, )
¥+0

A
= (—ay — by + ¢ — (~D*dy —a1385.00en + A+ Daz) @  forA <1,

so the result follows. O

Remark 6.6. The computations above are technically for real bubbles — those
with a positive number of dots. However, using odd infinite Grassmannian rela-
tion (5.20) and (5.21) to express fake bubbles in terms of the real bubbles, the
same formulas given in Lemmas 6.4 and 6.5 will apply to fake bubbles as well.

If we combine (6.21) with the equation (6.24) obtained from d of degree-0
bubble is zero, we can express d), as

dy = (—=D*'Q2ay 4+ a5 + by — (A + Day) forall A € Z. (6.29)

6.3. Derivations and curl relations. Before proving the odd sl(2)-relations it
is convenient to study the image of some of the curl relations under the map 0.
We continue using the definition Lemma 6.1 imposing the additional constraints
from (6.21) and (6.29).

Lemma 6.7. Fix either 4" or 84°%. For the map 3 defined in Lemma 6.1 to
preserve the curl relations

A _ A
*Q = m for A <0, 15 = U)L Jor A >0,

(6.30)

we must have
ap =1 =dia42 = Pira = Brave. foralld € Z. (6.31)

Proof. This is a straightforward computation after deriving the formulas for side-
ways crossings. For the A > 0 case we have

(.55)

=—a, u,x +Qaj_p4ar ) —by + by + (1 =Nz + (—1)*dy_,) g/x
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whereas

() = W
A A ®

equating coefficients of the corresponding terms implies
—by, = 2a3—5 + a1 — by + s + (1= Doz + (D) dy—»
or
(—D*dyy =2a; 5+ a5 +byi a4+ (1—Nay  forall A > 0.
Likewise, the A < 0 case implies
(—D*d; = A+ Daa — by —2a; —ay 44, forall A <0.

Hence, (6.31) must hold for all values of A. Then combining (6.31) with (6.29)
implies

Q1 =0, p—2 = 012

which together with (6.17) implies

Bia = Bia—2=0i. O

6.4. Derivations and odd s/(2) relations

Lemma 6.8. The map 0 defined in Lemma 6.1 with the constraints from (6.31)
satisfies the following identities:

: % =
9 ( iz ) = (—aj_p, —ay) — (ap— + Oll(gk,even) Q/A
Y
A 8* J
0 ( ;ﬁ ) = (Clk + Ollg/l,even) + (CZA + al) Q A

)
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Proof. The sideways crossings take the form
A
(<)
A
= (@ —ai) > * 4 (i—hia—a) ><§® + (o1 +az) % 2
A
(<)
A
= (—ay+ax—) (>< A — (by—br—a—a2) >< ®+ (=ar—2—0a18; even) % A

(6.32

~

and the result follows by direct computation. O

Lemma 6.9. The map 0 defined in Lemma 6.1 with the constraints from (6.31)
preserves the odd sl(2) relations (5.27) without any additional constraints.

Proof. We prove the first relation in (5.27). The second can be proven similarly.
First we compute

rU N r’ U 2
ol D oDE Otk [ =D (D" (@r—2 + 18igreven)  (drtk
r+n+k=i—1 nm r/+rn/;11c=k nr/\v
A
+ Z(—l)n/+l+k (ap—2 + algn’,even) G*+k
r+rrzl’/—£li=k n m
P
+ ) (=" 0aa (2a52 —ar)  ((petk
r+n+k’=A nm

After simplifying this reduces to
N L
— (@2 + @18peven) Y (=1 etk — (@r—a + 1) D (=D etk
n+k=2 rtk=A
" )

The claim follow using Lemma 6.8 and the curl relations (5.38) and (5.39). O
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6.5. Classification of derivations. We summarize our results up to this point in
the following:

Proposition 6.10. There is a bidegree (2, 1) derivation d of the odd 2-category
e or 444 defined on generating 2-morphisms:

a(?*):m?zﬂrag f@l (6.33)
1<) = w1 - a2><é) (6.34)

A
= ar2p™ + bio X , (6.35)
(Y

()

() = -a' S -5 \B), (636)
() =y T4 g (637
(")

5 — (e, ) — dHUA (6.38)
A A ®
with relations
€y = —a) — 83 0dd%%1, (6.39)
dy = (=D 1 Qay + a1 + by — (A + D). (6.40)

Furthermore, assuming the weak nondegeneracy conjecture from Section 5.4 this
is the most general bidegree (2, 1) derivation on L.

7. Differentials and fantastic filtrations
7.1. Classification of differentials
Proposition 7.1. Given parameters o1, a), b, c) and d) with A € Z, there is a

bidegree (2, 1) differential 3 (i.e. 3> = 0) on the odd 2-category 3¢"*" or A in $1°%
defined on generating 2-morphisms:

(1) =wmtt (M) = wl [
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9 ( /\VA ) = a1 (\VA + bis % A (7.2)

()= -\ - n\® ] (7.3)
o ( A)ZC,\ﬂk-i-d,\@ (7.4)
(")

9 L) = (- e UA - dx_zg A (7.5)
with relations
Cp = —ay — 83,0dd1, (7.6)
dy = (=1)*"Qay + a1 + by), (7.7)
ay(ay +ay) =0. (7.8)

Furthermore, assuming the weak nondegeneracy conjecture from Section 5.4, this
is the most general bidegree (2, 1) differential on L.

Proof. We compute 92 of each generating 2-morphism from the general derivation
in Proposition 6.10 and set the resulting equation equal to zero. This produces the
equations

224+ a1) =0, az(ap+ar) =0, (ap+ a183,0dd)(@r + 183 even) = 0,
oo =0, aa =0, az(ay + a168,0da) = 0.
(7.9)

Hence, for 3> = 0 we must have o, = 0 and a; (a; + ;) = 0. O

Note that Lemmas 6.4 and 6.5 imply that the differential kills all dotted bub-

bles:
(&)= @) =0

forallA € Z andn > 0.

7.2. Fantastic filtrations on EF and FE. In this section we show that the odd
sl(2)-isomorphisms (5.27) give rise to differentials on ( providing fantastic filtra-
tions for £F1, and FE1,. We refer the reader to Section 4.3 for the preliminaries
on the Fantastic filtration.
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For each A € Z define I = {0,1,...,|A|}. We define data {u;, v;};c; giving
rise to an idempotent factorization determined by the odd s/(2)-relation. We begin
with case A > 0 corresponding to the first relation in (5.27). Recall the family of
2-categorical differentials defined in Proposition 7.1.

Consider the set of 1-morphisms
Xy = {ET1,,TE1,. 1,5,

and its endomorphism dg-superalgebra R = Endy(X,). We provide a fantastic
filtration of the representable dg-supermodule associated to £F1;. Here our
investigation departs from [23] in that the most natural filtration

Uy o= Y (~DFFHTHD ’OA O<n<a=1), =<4

= —n—r—2

IS nﬂk O<n<i-1), vg:=—><:/1

on the morphism €31, leads to a trivial differential when we impose the fantastic
filtration condition

vi8(u,-) =0, fori <j. (7.11)

In Definition 7.2 we define an order < on / for which the maps in (7.10) give rise
to fantastic filtrations.

The conditions on {u;, v;} in (4.1) follow immediately from the axioms of i(
using (5.27), (5.37), and (5.20), see for example [10, Equations (5.13) and (5.14)].
We check v;d(uj) =0for0<i <j <A—-1

0= vi8(u,-)
. (r+i+2-2)++€ )
=Y (=prHIEr ((alar,odd + (=)t ea,) &
r=0 (Ops+G—jmr-1)

(rHi+1-2)+
r+1 l ) A
+ (=) dy— X

O(/X—j—r—l)—l—*
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i—j+1 r/+*Q
it idr’—1 71 s
= E (_1)l+]+r (a18r’—k+i,odd+(_1)r +lc/l—2) A
r’=max(0,i —A+2) O*-l—(i—j-l—l—r’)

i—j re )
+ ) (=D dy, ®
r'=0 O i—j—r 4%

where we set ¥’ = r — A + 2+ i inthe first sumand v’ = r — A + 1 + i in the
second. Note that only the even bubbles are nonzero in the second sum by (5.19),
so that by (5.20) this term simplifies

i—j+1 r+*O
> DT @b apiodd + (1) ea) A
r=max(0,i —A+2) *+(i—j+1-r)

8D d, @

i1 L. . r—+* O
— Z ((_1)l+'l+r+1a18i+r,odd + (_1)1a1_2) A
r=max(0,i —A+2) O*+(i_j+l_r)

+ 8, (1T Qar o +hio) @

A

(7.12)

where we used (7.6) and (7.7) to eliminate ¢;_, and d;_».

If we are interested in the case when i < j then this equation only provides
constraints wheni = j and when j =i + 1. Ati = j we get

—018i 00 + (=)' ar—2 + @18i even + (—1) a2 — (=1)' Qas—2 + @1 + br2) = 0
fori <A —2and

(@18ieven + (—1)'a32) + (=)' Qa2 + a1 + b3 2) =0
ifi = A — 1, which imply

by_, =0, (7.13)
ar—2 = _algk,even (7.14)
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Atj =i+ 1 <A —1wemusthave r = 0in (7.12) which requires
a18i0dd + (1) laz2 =0 (7.15)
or
181000 = —(=1)' a2 = (=1 @18} even. (7.16)

If A and i are both even, or if they are both odd, this implies that «; = 0 and the
differential collapses. Note that if i is odd this reduces to (7.14). To avoid the
collapse of the differential we modify the total order on /.

Definition 7.2. Define a total order < on the set I = I, = {0,1,...,|A|} by
modifying the standard order i < j by declaring that

i+1=<i if i, A are both even, or both odd. (7.17)

With the order (/, <), the condition (7.11) becomes
via(u,-) =0, fori <j. (7.18)

With this modified order we still must verify that v;+;9d(u;) = 0 when i and A
have the same parity. Expressed in our previous 7, j notation this condition says
v;id(uj) =0wheni = j+1<A—1and j, A both even, or both odd. From (7.12)
we see that this amounts to checking that

2 rtx O

D (D) ar8ip14r0aa + (1) az-) A (7.19)
r=max(0,j+1—A+2) C‘ *+(2—r)

which requires
(@1641,0dd + (—l)jak—z) =0 (7.20)

since the odd bubble squares to zero. Since we assume j and A have the same
parity this agrees with (7.14).

Next we consider the case i = j = A. Using the derivation of the sideways
crossing from (6.32) implies

A
vA0(uy) = (a5 — ar—2) gﬁl + (by — br—2) ;ﬁ
X
+ (ap—2 + alg/l,even) 81

~
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Together with (7.13) and (7.14) the termwise vanishing of the coefficients above
imply that

a, = aj— = —18} evens
by =by—5 =0.

Then we can further simplify the remaining coefficients from (7.6) and (7.7) to
e = (=D, dy = (7.21)

and all the coefficients have been reduced to a single parameter «;.

The only remaining cases are v;d(uy) for i < A. With the constraints derived
thus far it is not hard to show that d(u,) = 0, so that v;d(u,) = 0 is satisfied for
alli < A.

Definition 7.3. Define a bidegree (2, 1) differential d, on the space of 2-mor-
phisms of the odd 2-category £I°¥°" or A in 4°% given on generating 2-morphisms:

w(17) -t ()= ol 1

b ) = @B g b () = abhoen’ P
o A & o ¢ =« —aU;L

() =y e g () et e

The computations above have established the following.

Proposition 7.4. Consider either 44" or 1°% and suppose that 3y is as in Defini-
tion 7.3. Then the data {u., v.}cer, With the total order (1, <) from Definition 7.2,
vield a fantastic filtration on EF1) when A > 0 and on FE1; when A < 0.

8. Covering Kac—Moody algebras

In this section we review the rank one covering Kac—Moody algebra from [19], see
also [16]. In Subsections 8.4 and 8.5 we consider specializations at certain roots
of unity. For more on covering Kac—Moody algebras at a root of unity see [15].

8.1. Covering quantum group. Set Q(q)* = Q(¢)[r]/ (7% —1).

Definition 8.1. The covering quantum group U, , = U, »(sl2) associated to sl,
is the Q(¢)™ -algebra with generators E, F, K, K~1, J, and J~! and relations
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(1) KK'=1=K"1K, JJt=1=J"1J,

(2) KE = ¢?EK, KF = ¢ 2FK,
(3) JE = n?EK, JF =n2FK,
(4) EF — nFE = K=K

Tq—q

Define the (g, )-analogues of integers, factorials, and binomial coefficients
by

[n] = Ga) —q " ]! = ]i[[i], [Z} _lislr+i—da]
i=1

g —q7! [a]!
|:n] _ [n]!
al|  [a]'[n—a]

Note as in [19] that
forn > a > 0 and [—n] = —n"[n]. Let
A=Zlq.q7". Ax=Zlg.q " 7)/(x*>-1).

and
Q@)™ = Q@)[x]/(w* = 1).

The idempoteneted (or modified) form I'Jq,,, of the covering algebra Uy  is
obtained by replacing the unit of U, , with a collection of orthogonal idempotents
{1, : A € Z} indexed by the weight lattice of U, . In particular, there is no need
for generators K or J since

K*1; = ¢**1;, J*1, = n%1,, (8.1)
in Uq,n, see for example [22, Section 6.1] or [16, Definition 3.1].

Definition 8.2. The idempotented form Uq,,, of quantum covering sl, is the (non-
unital) Q(g)"-algebra generated by orthogonal idempotents {1,:1 € Z} and
elements

L Ely = Ely = 1hpE, LFlp =Flip, =1F, A€Z, (82)
subject to the covering sl, relation,
EF1, —nFE1, = [A]l;. (8.3)

The integral idempotented form is the A -subalgebra AUq,n C Uq,n generated by
the divided powers

Ea
E@1, = LF@ =2 (8.4)
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There are direct sum decompositions of algebras

[.JQJT = @ luﬂq,nlk A[.Jq,n = @ IM(AUq,n)lk
A, WEZ A, WEZ
with IM(AUq,n)IA the Z[g,q~", ]-subalgebra spanned by 1,E®F®1; and
1,FOE@D,; fora,b e Zy.

8.2 .Canonical basis. Clark and Wang show in [22, Theorem 6.2] that the alge-
bra U, has a A,-canonical basis B, ., extending Lusztig’s basis [65, Proposition
25.3.2] for sl,, given by

(i) E@F® 1, forabeZ ., neZ, A <b—a,

(i) n®?FOE@D1, forabeZi,AeZ, \>b—a,
where E@QF® 1, = 7z F® E@7], . Theimportance of this basis is that the
structure constants are in N[g, ¢~!, 7]/(%? — 1). In particular, for x, y € B, ,

Xy = E m3 ,z

x€By

with z € B, and m%Z , €Nlq.q7', 7]/(x* —1). Let 1 (By.x); denote the set of
elements in 3, , belonging to 1,,(U, )1,. Then the set 3, is a union

Eq,n’ = ]_[M(I.Bq,zr))b
A, WEZ

8.3. Quotients of the covering algebra. The following can be found in [22,
Section 7.3]. For our purposes we take this as the definition of the (super)algebras
U(slz) and U(osp(1]2).

Proposition 8.3. Specializing = = 1, the quotient ﬁq,n /{m — 1) is isomorphic to
the quantum group U(sh). Specializing 1 = —1, the quotient Uq,n J{mw + 1) is
isomorphic to U(osp(l |2) — the idempotent form of the quantum superalgebra for
osp(1|2). The canonical basis of Uq,n specializes at m = 1, respectively 1 = —1,
fo a canonical basis for U(ﬁ[g), resp.1 U(osp(l [2).

We now describe various further specializations of the g parameter. Define a
quotient of A, given by

R = Z[q,q_l,n]/(n2 —-1,1 +q27r).

Tt is important to note that the positivity of the canonical basis for the superalgebra
U(osp(1]2) is quite unexpected and would not be possible without the parameter 7.
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Here we have set ¢> = —m with 72 = 1. Hence, at 1 = —1 we have g> = 1 so
that R = Z. At = 1, ¢> = —1,so that R = Z[+/—1]. In R we have ng = —¢~!
so that the (g, 7) quantum integers become

—n

¢" —q™" _(=D"¢" —q

=g "8, oda. 8.5
7Tq _ q_l _2q_1 q n,odd ( )

[n]x =

Since AUq,,, s has an A -canonical basis (see [22, Section 7.1]) we change
base
Uy = AUq,n QA R. (8.6)

Equation (8.5) implies
E2=PE® =0, F?=[2JF® =0 (8.7)

in Ug. This implies £4 = F* = 0in R for a > 1. Further, from the presentation
of 4U, » given in [22, Proposition 6.1] we see that there are no other relations.
Hence, we have the following.

Proposition 8.4. The R-algebra Ux has a presentation given as the nonunital
associative R-algebra given by generators {E1,, F1,, 1,, A € Z} subject to
the relations

D aly =8
(i) El) =1,4,F, Fl;, =1,,F,
(ili) EF1), —nFE1l) = [A]xly,
(iv) E2=0, F?=0.
Further, Ug, has an R-basis given by the elements?
By :={EYF®1, |a,be{0,1}, A <b—a)}
U{r®FOE@D 1, |a,bef{0,1}, A >b—a),

over all ) € Z with it understood that E® F®)1,_, = gtb FO @7y,

The algebra Uy, splits as a direct sum
iJiR -1 (;gfen ® [.J(g)zdd

where U‘f‘ge“ , respectively U‘j’fd corresponds to the subalgebra containing only
even, respectively odd, weights A € Z.

2 Qur use of divided power notation is not needed in the case of the fourth root of unity. We
use this notation for ease in converting between the canonical basis at generic q.
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8.4. Small quantum sl;. In this section we connect the covering algebra at
parameters (¢, 7) = (v/—1, 1) with the small quantum group. The small quantum
group introduced by Lusztig is a finite dimensional Hopf algebra over the field of
cyclotomic integers [64]. Here we consider the small quantum group at a fourth
root of unity.

Let ~/—1 be a primitive fourth root of unity and consider the ring of cyclotomic
integers

ZIV-11=Zlq.q7 "1/ Va(q) = Zlg.q~ "1/ (1 + ¢, (8.8)

where V,, denote the nth cyclotomic polynomial. Denote by UZ[ /=) the idempo-
tented Z[+/—1]-algebra defined by change of basis

UZ[\/—_I] = U ®zig.q—1 ZIV-1].

Set [k] /= to be the quantum integer [k] evaluated at +/—1. The divided power
relation implies that in UZ[ /=) the elements

E*1) = [k y=E®1,, F¥1, = k] = F®1, (8.9)

are only nonzero when 0 < k < 2.
The following Proposition follows immediately from Proposition 8.3 and 8.4.

Proposition 8.5. The specialization Ug|z—1 = ﬁq,n | x=1.g=/=T I8 isomorphic to
the small quantum group u_;—(s\2).

8.5. g-less subalgebra. In this section we consider the specialization (¢, 7) =
(—1, —1), corresponding to setting the quantum parameter g = —1 in (J(osp(l [2)).
We show this specialization has a connection with the superalgebra gl(1|1) via its
s[(1]1) subalgebras.

The quantum group U, (sl(1|1) is the unital associative Q(g)-algebra with
generators E, F, H, H™! and relations

HH '=H'H =1,

E?=F?=0,

HE = EF, HF = FH, (8.10)
H—-H!
q9—q

This algebra also admits a modified form [92] given below.
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Definition 8.6. The modified form U(s[(l [1)) of quantum s[(1|1) the (non-unital)
Q(g)-algebra obtained from U, (sl(1|1) by replacing the unit by a collection of
orthogonal idempotents 1, for A € Z such that

Iy =83 s Hl, =1,H =4q"1,, 1,E=FEl,, 1,F=FIl,

so that
EF1, + FE1; = [A]1,,

where here [A] denotes the usual quantum integer.

Since the action of E and F does not change the weight space A, there is clearly
a decomposition of algebras

UGsi(1]1)) = @ U(sl(1]1)1;.

A€EZ

The algebra fJ(s[(1|1)) admits an integral form A(J(s[(lll)) defined over A =
Zig.q7"]. _ _

The relations in U(s[(1|1)) are very similar to the relations in Ux at parameters
(g, ) = (—1,—1). However, there isn’t a specialization of ¢ in the usual quantum
integers (x = 1) that agree with the (¢, 7) = (—1,—1) covering integers [n]x.
Instead, we see from (8.5) that at ¢ = —1, the integers [A]x are either O or 1.

Proposition 8.7. There are Z-algebra isomorphisms

U et = U (=1 n——1y = UGsI(1[1)) 1o,

ST

U],y = 0o ~ U(sl(1]1))1 G40
R |lr=—1 = q,n|(q=—1,n=—1) = U(sl(1]1)) 14

determined by sending E1,, F1) € U 10 the corresponding element in U(sl(1 [1)).

Proof. By (8.5) the quantum integer [A]x at ¢ = —1 is either O or 1. The result
follows immediately from Proposition 8.3 and 8.4. O

Remark 8.8. In Kauffman and Saleur’s work constructing the Alexander—Conway
polynomial from U, (s[(1]|1)) they restrict their attention to a specialization (A =1
in their notation, see [38, Equation (2.1)]), that corresponds in our notation to re-
stricting to ﬂ(ﬁ[(1|1))11. As noted above, the entire algebra iJ(s[(1|1))11 has a
presentation over Z, rather than QQ(¢). The quantum parameter enters the Alexan-
der story in the work of Kauffman and Saleur via the coproduct on U, (s[(1]1)).

Recall the modified form of quantum gl(1|1), defined for example in [93,
Definition 3.2].
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Definition 8.9. The idempotented form U(g[(l [1)) of quantum gl(1|1) is the (non-
unital) Q(q)-algebra generated by orthogonal idempotents

{11407 (A1, A2) € 27}
so that
Lowan @iy = 8a.00 80,2, 10 40)
and elements
L +1,0-1E1ay 00 = ELya) = 1oy +1.0,-D E.
-1+ Flag ) = Flog i) = a1+ F,

for (A1, A2) € Z2, subject to the relation,
EF1, 00 + FE1G, 00) = [A1 — A2]1(, 0)- (8.12)

Note that the action of E and F preserves the lines in Z? of slope (1; — A5).
In particular, if we restrict to weights (11, A,) such that Ay — A, = u, then
this subalgebra of U(g[(lll)) is 1s0rn0rphlc to U(s[(lll))l Hence, we have
shown that the covering algebra Uq,,r specializes at (¢, 7) = (+/—1,1) to the
small quantum group for sl, and to a “g-less subalgebra” of modified gl(1]|1) at
parameters (—1, —1).

9. Categorification results

9.1. Divided power modules . Recall the graded superalgebra ONH,, from Sec-
tion 5.1 and the graded superalgebra isomorphism

ONH, = ENDga,, (OPol,), 9.1)

where OPol,, is the unique (up to isomorphism and grading shift) graded indecom-
posable projective ONH,,-supermodule. Taking gradings and parity into account,
this isomorphism gives rise to a graded supermodule isomorphism

ONH,, = € (0Pol,)
[n]il,ﬂ

where the direct sum over [”];,n indicates the direct sum of copies of OPol,, with
appropriate parity and degree shifts, see for example [10, Lemma 11.1].
In [29] they equip the superalgebra OPol, with a dg-structure defined by

A(x;) = x7. (9.2)
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Denote the resulting (OPol,,, OA,)-dg-bimodule by Z,,
Z, = OPol,z

where Z,, is a rank-one free left module with cyclic vector z. Any dg-supermodule
structure on the rank-one free left OPol,-module is determined by the value of d
on the cyclic vector. These are parameterized by « € {0, 1} [29, Proposition
3.1]. In light of (9.1), a dg-module structure on this module induces a compatible
differentials on ONH,,.

Theorem 9.1. (1) There is an equivalence of dg-superalgebras ([29, Corel-
lary 3.9])

(ONH,, ) —> ENDg yop(Zy). (9.3)

(2) For any n > 0, Z, is a finite-cell right dg-supermodule over OA, ([29,
Proposition 3.16]).

(3)Ifn = 2, then ONH,, is an acyclic dg-superalgebra. Consequently, the
derived category D(ONH,) is equivalent to the zero category ([29, Proposi-
tion 3.16]).

(4) As a left ONH,, dg module, Z, is only cofibrant if n = 0, 1 and is acyclic
otherwise([29, Proposition 3.17]).

In light of the above theorem, we denote the dg-module Z,, by 85;’) as (9.3)
gives a dg-categorification of the divided power relation E" = [n],  E®™ in
the covering algebra U, . Likewise, one has the dg-module € which can be
realized as the dg ONH,,-module with a conjugate action

eW = (eP)e
where w is defined in Section 5.1.

9.2. The Grothendieck ring of $l(sl2). This section closely follows Section
5 of [23]. In what follows we consider the graded dg 2-supercategory il =
l(sl>) and use the notation of the dg-supercategory , 4, and its corresponding
graded dg-superalgebra ,, A, interchangeably. Denote the abelian category of dg-
supermodules over (4, d) by Lls-dmod. It decomposes into a direct sum of dg-
supercategories

8ly-dmod = EP(,.442)s-dmod. 9.4)

AL
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Horizontal composition induces induction functors

(,1311,12 X Azﬂgl)a—dmod, — (Mﬂgl)a-dmod, 9.5)
MK N +— Ind(M X N)

forany Aq, A2, A3, A4 € Z. At the level of derived categories, the induction functor
gives rise to an exact functor

Ind: DU @ 4L, 9) — D (U, 9) 9.6)
and R-linear maps
(Ind]: Ko(D ® U, 0)) — Ko(U, 9), 9.7

where the Grothendieck group of dg-2-supercateogory is defined in Section 4.4.
For fixed A € Z define

W= P uth. =Pt 9.8)

WEZ WEeZ

Definition 9.2. Fix n € N.
(1) The left dg-supermodule 1; £™ over (4, 9) is the module

1,e™ = Inddy, (L),

where the induction comes from the composition of inclusions of superalge-
bras
ONH, — END, g, ,, 128" — 2 Uxr_2y

for each A € Z given by mapping x; to an upward oriented dot on the i-th
copy of € and 9; to an upward oriented crossing of the ith and (i + 1)st term.

(2) The left dg-supermodule F ™)1, over (44, ) is the induced module
FM1, == Indgl, (™),

where the induction comes from the composition of inclusions of superalge-
bras
w 3
ONH, —> ONH,* — END, , , (1,F") —> 1_2n8ls,
where x;°” and ;" correspond to a downward oriented dot and crossing,

respectively.

The dg-supermodules 1™ and 1, are representable (41, 3)-modules in
the sense of Definition 2.4.
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Corollary 9.3. Fix A € Z andn € N.

(1) The representable module 1) E" (resp. F"1)) admits an n!-step filtration
whose subquotients are isomorphic to grading and parity shifts of the divided
power module 1, £™ (resp. F™1;).

(2) The divided power modules are acyclic whenever n > 2.

(3) The dg-supermodule 1, €™ (resp. F™1,) is cofibrant over the dg-supercat-
egory (34, 9) (resp. (U4,)) for n = 0, 1, and its image in the derived category
DAL, 9) (resp. D(U,, 3)) is compact.

Proof. This follows from the corresponding properties of 85:') and €™ from
Theorem 9.1. O

Definition 9.4. For any a,b > 0 and A € Z, define e@g®)1, to be the induced
dg-module

EWFON, = Indy? oy, (€@ RFOLY),
with induction defined along the inclusion
Uop @ Uy —> th, Silpap @ 1815 > 8320, 010210

The dg-supermodule F (®)g@1, is defined similarly. Following [23] we refer to
these modules as canonical modules over ;.

The fantastic filtrations on £F1,, and FE1,, established in Section 7.2 give rise
to a filtration on an arbitrary reprentable module of the form Q" TT*€.1; € i, by
dg modules of the form Q*IT?&9F?1; or Q*T1°FPE41, fora,b € Nand u € Z
and v € Z,. Define

X, = {€DFO1; |a,b {01}, A <b—a)
U{FD DL, |a,b e {01}, A > b —a).

Proposition 9.5. There is a derived equivalence of graded dg-supercategories
D(ehy) = D(ENDy, (X3)) 9.9)

Proof. The statements in Corollary 9.3 apply to the modules &@JF®1; and
F®) @1, ; in particular, X, consists of compact and cofibrant modules. Hence,
[23, Proposition 2.10] adapted to the super setting provides the equivalence. [
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The cofibrance of the modules in X, enables us to compute the derived endo-
morphism ring D(ENDy, (X)) in the usual manner avoiding cofibrant replace-
ment (see (2.4)). The following lemma then follows as a direct consequence of
[27, Proposition 8.2], which shows that the for any x, y in X

0 ifk <O
dim(Homﬁ(x, y) =31 ifx=yandk =0
0 ifx#yandk =0.

Lemma 9.6. The endomorphism algebra ENDyy, (X)) is a strongly positive dg-
superalgebra.

Corollary 9.7. For any weight A € Z, the Grothendieck group Ko(iUy,d) of
the graded dg-supercategory U, is isomorphic to the corresponding R-span of

canonical basis elements
Ko(thy) = R(Bx1,)

where

Byl :={EQYF®1, |a,be{0,1}, A\<b—a)
U{rFOE@DT, |a,b {01}, A >b—a).

The isomorphism sends the class [QOH()S(”)S"(I’)IA] or [QOHES"(I’)E(“)IA] from
X, to the corresponding element in By 1.

Proof. Proposition 9.5 and Lemma 9.6 imply that D(Ll;) is equivalent to a
positively graded dg-endomorphism algebra. The result then follows by Theo-
rem 4.1. O

As a consequence of strong positivity we also have the following result.

Corollary 9.8. For any weights A1, A2, A3, A4 € Z, the dg-supercategories 5 4, ,,
and 3,4, have the Kunneth property

KO((/14L[/13)) QR KO(lzu/l]) = KO(/14L[/13 ® lzﬂll)'

Proof. Using Lemma 9.6 and [23, Corollary 2.22] at p = 2 the result follows. [

It follows that Ko (4L, 9) is idempotented R-algebra, with multiplication given
by the induction functor:

[Ind]: Ko (L) ®x Ko() — Ko(L).



288 I. Egilmez and A. D. Lauda

Theorem 9.9. There is an isomorphism of R-algebras
Ur — Ko(4l, 9) (9.10)
that sends E1) +— [QOH(’EIA] and 1, F — [QOH(’IAS’]for any weights A € Z.

Proof. We first must show that the defining relations for Ux, hold in Ko (4L, 9). The
nontrivial relations from Proposition 8.4 to check are (iii) and (iv). The fantastic
filtrations on £€F1, and FE1, from Proposition 7.4 give rise to convolution dia-
grams establishing (iii) in D(LL, d) on the corresponding representable modules,
see [23, Remark 2.7, Theorem 6.11]. Relation (iv) follows from the acyclicity
results in Corollary 9.3. The resulting homomorphism of algebras is an isomor-
phism because it sends Bx1) to the symbols of modules in X; which form a basis
for Ko (L, 0) by Corollary 9.7. O

Corollary 9.10. The map sending E1, — [Q°T19€1;] and 1, F + [Q°T191, 5]
for any weights A € Z defines

(i) an isomorphism of Z[v/ —1]-algebras
Uz y=11(81(2)) — Ko(U, 0)|x=1 9.11)

at Tt = 1, and

(ii) an isomorphism of Z-algebras

Uglr=—1 —> Ko(8h, 8)|r=—1 9.12)
at 1 = —1, where Ugg|,,=_1 is a Z-subalgebra of U(s[(1|1)) by Proposi-
tion 8.7.
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