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A Bayesian experimental autonomous researcher

for mechanical design

Aldair E. Gongora', Bowen Xu', Wyatt Perry’, Chika Okoye', Patrick Riley? Kristofer G. Reyes>*,

Elise F. Morgan'%**, Keith A. Brown>%*

While additive manufacturing (AM) has facilitated the production of complex structures, it has also highlighted
the immense challenge inherent in identifying the optimum AM structure for a given application. Numerical
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methods are important tools for optimization, but experiment remains the gold standard for studying nonlinear,
but critical, mechanical properties such as toughness. To address the vastness of AM design space and the need
for experiment, we develop a Bayesian experimental autonomous researcher (BEAR) that combines Bayesian
optimization and high-throughput automated experimentation. In addition to rapidly performing experiments,
the BEAR leverages iterative experimentation by selecting experiments based on all available results. Using the
BEAR, we explore the toughness of a parametric family of structures and observe an almost 60-fold reduction in
the number of experiments needed to identify high-performing structures relative to a grid-based search. These
results show the value of machine learning in experimental fields where data are sparse.

INTRODUCTION

The processes by which mechanical structures are designed have
evolved to include a variety of computational tools that have been
successful in producing structures with highly tuned properties (1-10).
However, realizing high-performance mechanical structures often
involves optimizing properties that cannot be reliably and rapidly
predicted using computation, namely, nonlinear mechanical properties
(11-16). Phenomena such as dynamic self-contacts during large de-
formation and the dominance of stochastic defects in determining
failure in real samples make computation difficult and necessitate
experiments. Additive manufacturing (AM) has compounded this
problem by both vastly increasing the available design space and
introducing a host of previously unknown defects for which researchers
and practitioners do not have the benefit of empirical engineering
guidelines built on decades of intense study (17-19). This raises the
question of how best to design and optimize structures for properties
that are difficult to simulate. One approach that has been successful
in chemistry, biology, and, more recently, materials science has been
autonomous research in which experiments are selected by machine
learning and carried out without human intervention (20-24).
Autonomous research systems have been beneficial in these fields
because many properties of interest must be experimentally deter-
mined, the vast size of the parameter space limits the effectiveness
of brute-force experimentation, and the necessary experiments are
compatible with automation. However, autonomous research systems
are highly specific to certain classes of experiments and have not been
realized in the mechanical domain. Moreover, most prior experimental
autonomous research systems have not used Bayesian optimization
(BO) to guide the selection of experiments, although simulations have
revealed that using BO would be more efficient (25-28).
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Here, we test the hypothesis that combining automated experi-
mentation and BO can accelerate the pace of structural design.
Conceptually, realizing a Bayesian experimental autonomous re-
searcher (BEAR) involves two steps: the development of an auto-
mated system that performs experiments without human intervention
and the incorporation of active learning to choose subsequent
experiments in a Bayesian framework. First, we report the design
and realization of a mechanical testing system that automatically
three-dimensionally (3D) prints and tests parts to determine their
mechanical properties such as toughness (Fig. 1A). The high-
throughput nature of this system, relative to manual testing, allows
for the comprehensive exploration of a large family of structures
(Fig. 1B) and the determination of uncertainty inherent to AM
using thousands of experiments, a previously impractical concept.
Using this experimental data, we run a series of simulations to find
that BO should use experiments more efficiently than grid-based
searching. Subsequently, we instruct the BEAR to perform experi-
mental campaigns and find that these campaigns resulted in higher-
performance structures than those identified through a grid-based
campaign that involved 18 times more experiments than were allotted
to the BEAR. Last, rather than evaluating a campaign by the required
number of experiments, we investigate how campaign duration can
be reduced by multiple printers acting in parallel in a multiagent
approach and find that the BEAR identifies high-performing struc-
tures within 24 hours. Collectively, this work shows the potential
for BEARSs to affect fields where computational tools are imperfect
and experiments are slow and complex.

RESULTS

Automating mechanical testing of additively
manufactured parts

Toughness is difficult to optimize because it requires maximizing a
combination of two properties that tend to be inversely correlated,
namely, strength and ductility (14, 15). Defined as the area under the
force (F)-displacement (D) curve, toughness represents how much
energy a component can absorb before failure, which makes it an im-
portant property to optimize in the context of design for safety and
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Fig. 1. BEAR for studying the mechanics of additively manufactured components. (A) Experimental system composed of (i) five dual extruder fused deposition
modeling (FDM) printers (M3, MakerGear), (ii) a six-axis robotic arm (UR5e, Universal Robotics), (iii) a scale (CP225D, Sartorius), and (iv) a universal testing machine
(5965, Instron Inc.). (Photo credit: Aldair E. Gongora and Bowen Xu, Boston University). (B) Model “crossed barrel” family of parametric structures with two circular plat-
forms that are held apart by a series of n hollow columns of outer radius r and thickness t and that are twisted with an angle 6. Force F and corresponding displacement
D from the testing of (C) a crossed barrel that did not yield before ~5 kN (designated too strong), (D) a crossed barrel that failed in a brittle manner (designated “brittle”),
and (E) a crossed barrel that exhibited appreciable strength after an initial yield point (designated “ductile”).

failure tolerance (29, 30). Further compounding the design challenge,
itis commonly important to maximize toughness while not exceeding
a specified force threshold to avoid damaging more sensitive elements
elsewhere in the system. For example, the crumple zone of a car is
designed to maximize toughness by absorbing the impact of a collision
while not transmitting harmful reactionary forces to the passengers.
Because of the importance of dynamic self-contacts, the stochastic
influence of defects, and other variations from processing, compu-
tational optimization of toughness is extremely difficult (13, 16). To
illustrate this, we designed a crossed barrel family of structures (Fig. 1B)
with two platforms that are held apart by # hollow columns of outer
radius r and thickness t and that are twisted with an angle 6. Structures
in this family include those with a wide array of F-D responses, in-
cluding structures that exceed a ~5-kN force threshold before yielding
(Fig. 1C) and weak structures that fail in a brittle manner (Fig. 1D).
The inclusion of a force threshold, as well as the subsequent definition
of structure as “too strong,” was incorporated to reflect the presence of
a force constraint in designing for toughness, such as in the design
of crumple zones. Considering that superlative toughness requires
both high ductility and high strength, the best crossed barrel in terms
of toughness is not simple to predict. Crossed barrels with high
toughness exhibit complex F-D responses (Fig. 1E) with a number
of reentrant contacts and local buckling events.

Acknowledging that toughness needs to be evaluated using ex-
periment, we sought to explore the degree to which the pace of me-
chanical testing could be accelerated. In particular, we designed and
constructed an automated testing system that combines AM, robotics,
and mechanical testing (movie S1). In particular, fused deposition
modeling (FDM) 3D printers are among the most commonly used
3D printers due to their low cost, versatility, and reliability. Further-
more, FDM-printed parts can be used without additional process-
ing, enabling rapid testing. Thus, five dual extruder FDM printers
(M3, MakerGear) were positioned in the working radius of a six-axis
robotic arm (UR5e, Universal Robotics). To perform testing and
characterization of parts, a scale (CP225D, Sartorius) and a universal
testing machine (5965, Instron Inc.) were also positioned in the
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working radius of the arm. All instruments were coordinated using
custom software (MATLAB) (fig. S1).

Before undertaking more complex design or optimization pro-
cesses, it is necessary to consider that quality control is a pervasive
challenge in AM. The extensive exploration of manufacturing un-
certainty can be onerous in some cases; however, the automated
testing system provided an avenue for rapidly quantifying the uncer-
tainty inherent to properties such as toughness. Thus, we initially
performed a series of experiments in which the same design was printed
and tested 240 times using all available printers (Fig. 2A) and the
mass of each part— measured in situ—had a standard deviation (SD)
equal to 4.6% of the mean. The toughness U was found to have an
SD equal to 12.8% of the mean (Fig. 2B). Because of the empirical
nature of these quantities, it would be difficult or impossible to pre-
dict the sensitivity with which toughness depends on mass. Having
this vast dataset, which is made possible by the high-throughput
nature of the system, allows us to approximate the variation in
toughness that is uncorrelated with mass, which we find to be 5.8%
of the mean. The individual printer mass and toughness variations
are reported in fig. S2. This study allowed for the exploration of the
correlation between these two properties (Fig. 2B), revealing a cor-
relation coefficient of 0.71 between U and m, indicating that measur-
able deviations in print outcome are at least partially responsible for
the observed variation in mechanical behavior. The fit in Fig. 2B is
insensitive to the removal of the seemingly spurious data.

High-throughput experimentation and sequential

design selection

Despite the large observed variability in performance, it is conceivable
that the high-throughput nature of this research platform could allow
for sufficient experiments to empirically identify an optimal design
within a family of structures. To test this, we performed a grid-based
experimental campaign in which 600 distinct designs were tested in
triplicate without human intervention (fig. S3). During this auto-
mated experimental campaign, a wide variation in U was observed,
ranging from 0.3 to 51.5 ] with a mean value of 15.3 J (Fig. 2C). To
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Fig. 2. Experimental exploration of the toughness of a family of parametric
structures. (A) Overlaid F versus D curves for 240 samples printed withx=(n, 6,r, t) =
(8,100 °,2 mm,1.05 mm). (B) Experimental toughness U versus component mass
m for the samples shown in (A). Red line denotes a linear fit with a correlation
coefficient of 0.71. (C) U versus m for 1800 samples taken in a grid across the entire
parameter space. Marker shape denotes the category of mechanical response.
(D) Predicted toughness Ugig based on a Gaussian process regression (GPR) trained
on the 1800 experimental data points evaluated at x versus average U(x). The red
line has zero intercept and a slope of one as a guide to the eye. (E) Surface plot
of Ugrig across the entire 4D parameter space with the discretization of the experi-
mental grid represented as white circles in the top right panel.

estimate the value and uncertainty of the experimental response U(x),
where x = (n, 0, r, t) was approximated using a Gaussian process
regression (GPR) model Uyiq with a squared exponential kernel
(Fig. 2D) (25). Ugiq revealed a complex response with several high-
performing regions (Fig. 2E) and a predicted optimum of 43.4 £ 6.0 ]
at (12,85° 2.45 mm, 0.7 mm).

While brute-force experimentation allowed us to predict an op-
timum design, the active learning community has shown through
simulations that sequentially selecting experiments using BO finds
optima using fewer samples. The BO framework is composed of two
components, a belief model that captures the relationship between
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parameters and response and a decision-making policy that guides
the selection of experiments (25). While U(x) is ultimately an exper-
imentally observed function, Uy q(x) represents an approximation
of U(x) that can be used to evaluate BO strategies in simulation.
Thus, we performed a series of simulations using the BO framework
with Ugra(x) treated as a surrogate for the ground truth U(x). To
approximate experimental variations, we added a zero-mean Gaussian
noise with SD ¢ to each simulated measurement.

We studied three principal decision-making policies: pure ex-
ploration (PE), maximum variance (MV) (Fig. 3A), and expected
improvement (EI) (Fig. 3B). These decision-making policies were
selected because of their popularity in the optimization community
and their distinctive explorative and exploitative qualities (25, 26).
PE is a purely explorative decision-making policy, where each sub-
sequent experiment was chosen randomly. While PE will eventually
explore the parameter space and is unlikely to get trapped by local
maxima, an appropriate experimental budget is often unknown or
too large. The MV decision-making policy also prioritizes exploration
but takes the surrogate model into account by choosing experiments
in regions with the largest uncertainty. An advantage of this ap-
proach is the exploration of undiscovered regions that might have
high-performing designs; however, the number of experiments neces-
sary to adequately explore parameter space is also often unknown
or too large. The EI decision-making policy is an improvement-
based policy in which subsequent experiments are selected on the
basis of the likelihood of surpassing previously observed responses.
In contrast with MV and PE, EI is more likely to get trapped by local
maxima. Purely exploitative policies were not considered because of
the use of an uninformative prior in the experimental campaigns.

The performance P of a given campaign after i experiments was given
by its predicted optimum x; and was defined as P(i) = Ugia(x;)/ max (Ugia)-
On the basis of this definition, P = 1 indicated that the campaign
had found the optimum design. In the low noise limit (6 = 0.1J), all
policies achieved median performance P > 85% in 100 experiments,
with EI achieving P > 98% (Fig. 3C). However, when the noise level
was increased (6 = 5 J), EI alone achieved P > 90% within 100 ex-
periments (Fig. 3D). The incomplete convergence in the low noise
and high noise limits is a result of the limited experimental budget
allotted to the simulated campaigns. As a comparison to BO, we also
simulated campaigns based on Latin hypercube sampling (LHS) with
the same experimental budget. For the high noise limit, LHS-based
campaigns achieved P = 75%, which is similar to PE but is inferior
to EI-based campaigns. Note that the EI approach used here differs
from standard approaches, which have been reported to result in EI
being too greedy (31), by selecting from a finite number of random
candidate experiments to be evaluated by EI This stochastic ap-
proach was seen to markedly improve the convergence of EI-based
campaigns (fig. S4).

Realizing and benchmarking autonomous

experimental optimization

While simulation predicts that BO will outperform grid-based ap-
proaches, such as LHS, these simulations were based on a number
of assumptions, namely, the model of ground truth, the noise profile,
and the sampling strategy. Thus, it is imperative to experimentally
explore the utility of the BO framework. We therefore integrated
the BO framework with the automated research system to produce
a BEAR that chose, performed, and learned from experiments. We
performed six experimental campaigns, three that were guided by
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Fig. 3. Simulated learning using BO. Distribution of experimental points when
guided using (A) MV and (B) El decision-making policies. The color gradient indicates
the start and end of the campaign. Axis limits are the same as in Fig. 2E. Performance
P versus experiment number i of simulated Bayesian campaigns with noise added
to each simulated measurement drawn from a zero-mean Gaussian with (C) SDc=0.1J
and (D) ¢ =5 J. El-and MV-guided campaigns are benchmarked against PE and the
average result of selecting 100 experiments using Latin hypercube sampling (LHS).
Shaded regions correspond to the middle two quartiles of 100 simulated campaigns.
The inset bar charts show the distribution in P at i = 100.

EI and three that were guided by MV. The results of the BEAR’s
experimental campaigns were compared with the predicted best-
performance structure according to Ugrids where P, on average, in-
creased with i (Fig. 4, A and B). However, it is worth emphasizing
that, first, unlike in the simulated campaigns where Ugq is treated
as ground truth, Ugiq here is a statistically regressed model and, second,
the only reliable method to assess the performance of an experimental
campaign is to experimentally test the predicted best-performance
structure. Here, we accomplished this by testing 10 copies of the
optimum structures predicted by each experimental campaign
(Fig. 4C). On the basis of the experimental tests, five of the six optimum
structures found by the experimental campaigns outperformed the
best structure predicted by Ugig, showing that, in five instances—
including all three based on the EI decision-making policy—100
well-chosen experiments were superior to 1800 experiments chosen
on a grid.

While the BEAR was successful in optimizing the crossed barrel,
the superiority of experimental performance (Fig. 4C) over simulated
performance (Fig. 4, A and B) was likely because the results of ex-
periment (U) differed markedly from the experimentally derived
surrogate model (Uygiq). Two possible reasons for this discrepancy
were insufficient data to build an accurate surrogate model and that
the experimental function was observed to be heteroscedastic, while
Upgriq Was fit using a homoscedastic model. While, in principle, one
could perform enough experiments to accurately model the noise
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profile and obtain a more faithful model of the truth more generally,
this would likely require a prohibitive number of experiments. Thus,
these results not only highlight the need for experiments in bench-
marking optimization strategies but also emphasize the importance
of experiment selection when the design space is high dimensional
and when building an accurate surrogate model is impossible or im-
practical. Moreover, these results position uncertainty quantification
as an equal partner to balance exploration and exploitation in an
optimization process.

While the BEAR was found to be efficient with respect to the
number of experiments, it is often more important to be efficient in
terms of time when optimizing a property. Thus, we explored how
multiple printers could be used in concert to optimize performance
in minimal time. We note that using all printers at all times necessitated
selecting samples in parallel. The decision-making policy associated
with choosing jobs in such a batch system is the topic of current
research, with recently developed batch-based EI policies showing
promise in simulation (32-35). The BEAR provides an experimental
platform to evaluate these policies. As an initial campaign to serve
as a benchmark, we performed a Bayesian experimental campaign
in which six agents selected experiments based on the data collected
from all agents. While, in theory, EI should balance exploration and
exploitation if uncertainties are properly quantified, the use of an
initially uninformative prior belief limits uncertainty quantification.
In practice, a standard approach is to select a number of randomly
chosen samples to explore the parameter space and train the Gaussian
process. Here, we spend the first 12 hours of the campaign selecting
experiments (32 samples) using MV. MV-guided simulated campaigns
show that convergence saturates at ~30 experiments (Fig. 3D), further
motivating this practice. After this initial 12-hour period, we switched
to an EI decision-making policy. The predicted best-performance
structures at T'= 12, 24, and 36 hours were each experimentally tested
to determine their performance. The BEAR matched the toughness
from the grid-based experimental campaign (1800 experiments) after
12 hours (32 experiments) and outperformed the grid-based exper-
imental campaign after 24 hours (64 experiments) (Fig. 4D).

Ultimately, the extensive experiments described herein allowed us
to identify the member of the crossed barrel family with the largest U,
namely, (12, 131°, 1.95 mm, 1.4 mm). Inspecting the F-D curve cor-
responding to one such sample, a number of interesting features were
evident (Fig. 4E). In particular, a series of six inflection points were
observed, which corresponded to different mechanical processes
including the initial yield point and a series of buckling and reentrant
contact modes. Notably, the precise parameter values that produce
the largest net positive effect of these sometimes competing and
sometimes synergistic processes on U would be difficult to predict
in the absence of experiment.

DISCUSSION

The observation that a BEAR can, in the case of optimizing toughness,
reduce the number of experiments needed by a factor of almost 60 has
potentially far-reaching implications spanning mechanics and the
field of autonomous experimentation more broadly. In mechanics,
the combination of a BEAR and simulation-based approaches such
as topological optimization could allow for the rapid optimization
and discovery of novel properties that are difficult or impossible to
find using other means. More generally, the use of AM in a BEAR
adds a critical degree of versatility that is analogous to the use of
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Fig. 4. Optimization of a family of mechanical structures using the BEAR.
Computed P from six experimental campaigns carried out by the BEAR using (A) MV
and (B) El. (C) Average U measured from 10 samples of the best predicted structure
from each of the six experimental campaigns and the best-performance structure
predicted by the grid search. (D) Experimental optimization of U versus time T with
ticks to the left of each bar denoting measurements taken before that time, ticks to the
right denoting the 10 samples taken at the end of the campaign to evaluate the best
predicted sample, and bars denoting the average measurement of the 10 samples.
In (C) and (D), error bars correspond to SD. (E) Photographs overlaid on the F versus
D curve corresponding to a structure printed with the best-performance design (12,131°,
1.95 mm, 1.4 mm). (Photo credit: Aldair E. Gongora, Boston University).

automated liquid handling in chemistry. Building an autonomous
research system is most justified in fields such as mechanics where
even a single AM instrument is versatile enough to allow a wide range
of experiments. In this way, a BEAR may have a transformative impact
on mechanics. Last, however, it is worth emphasizing that throughout
this work, >2500 experiments were spent, proving that only 32
experiments were required to reach an optimal structure. As an
emerging field, it is critical that autonomous experimentation pro-
vides these benchmarks to illustrate the possible improvement using
BEARs. Looking forward, this validation of the transformative
acceleration inherent to BEARSs, at least in this class of problems, will
allow future work to transition from benchmarking to discovery.
Through the combination of a high-throughput automated ex-
perimental system and BO to select experiments, we have developed
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a BEAR that reduced the experimental time and experiments needed
to optimize toughness, a mechanical property that is difficult or im-
possible to simulate. This work is based on (i) a system that com-
bines an array of 3D printers with robotics and testing equipment
such that samples can be tested without human intervention and
(ii) a BO framework that guides the action of the high-throughput
system. In addition to addressing how to effectively choose a decision-
making policy when the ground truth function is unknown, the high-
throughput nature of this process allowed us to quantify and explore
a large parameter space of AM parts. From a learning perspective,
realizing a BEAR required advancing several facets including the
development of modifications to standard EI algorithms and facile
processes for performing BO in batch. Considering the ubiquity of
properties that cannot be effectively simulated at present, we anticipate
that BEARs based on the principles describe herein could have a
transformative impact in mechanics and in fields ranging from
chemistry, materials, and biology.

MATERIALS AND METHODS
All structures were printed using a MakerGear M3 FDM printers
out of polylactic acid (PLA). The diameters of the printer nozzle and
the PLA filament were 0.35 and 1.75 mm, respectively. The struc-
tures were printed with a rectilinear infill pattern at 100% infill.
During printing, the printer bed was set to 85°C for the first layer
and 75°C for all subsequent layers. The PLA filament was extruded
at 215°C. After the print completed, the structures were retrieved
when the bed temperature was below 40°C. The structures were uni-
axially compressed at a speed of 3 mm/min with a maximum force
threshold of 4.8 kN. Toughness was computed as the area under the
force-displacement curve, where the force-displacement curve was
truncated if the force was below 50 N (1% of the maximum allow-
able force) after an initial 2 mm of displacement. The threshold was
used to avoid including the loads from the compression of fragments
of the fractured barrel.

Gaussian process priors in the BO framework were specified with
a zero-mean function and a squared exponential covariance kernel,

(xx) = alexp( —L 34 S ) \here x = (1, 0, 7, £). The kernel
,X )= pl —322i=1 > , where x = (n, 0, 1, t). The kerne

is parametrized by d + 1 parameters, a, B, ..., Bs, where d = 4 is the
dimensionality of the design parameter space. The parameters were
initialized as a = 50, B; = ( max (x;) — min (x;))/(10). In addition, the
Gaussian process formulation assumed independent, homoscedastic
noise, and the SD of the noise was initialized as 5 J. The parameters
of the kernel and the noise were optimized using maximum likelihood
estimation after every subsequent observation. The parameters in the
optimization were bounded to be greater than or less than their in-
dividual initial values by a factor of 10 or were individually reset to
their initial values. This was performed to avoid obtaining extremal
hyperparameters. The decision-making policy selected the next
experiment from a uniformly random finite number of candidate
designs (fig. S4).

For each autonomous experiment (fig. S1), the crossed barrel design
input x = (n, 6, r, t) was converted to a standard triangle language
(STL) file using OpenSCAD, an open-source software for parametric
computer-aided design. The generated STL file was then converted to
g-code using Slic3r, an open-source tool for converting a 3D model
into g-code. The g-code was then uploaded for 3D printing using
OctoPrint, a web-based software to interface with the 3D printer.
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After the structure was printed, the robotic arm retrieved the struc-
ture when the bed temperature was below 40°C. The structure was
then weighed on the scale and then tested on the universal test-
ing machine (5965, Instron Inc.). The weight reading, the force-
displacement curve, and the computed toughness were all saved to
a local database. Using the database, the BEAR built a belief model
using GPR and selected the design parameters of the next experi-
ment using a decision-making policy. This process was repeated for
a given experiment budget or experiment run time and was operated
without a human in the loop. A custom script written in MATLAB
was used to coordinate the operation of these components.

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/15/eaaz1708/DC1
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