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We have systematically characterized the degradation of
imaging quality with depth in deep brain multi-photon
microscopy, utilizing our recently developed numerical
model that computes wave propagation in scattering media.
The signal-to-background ratio (SBR) and the resolution
determined by the width of the point spread function are
obtained as functions of depth. We compare the imaging
quality of two-photon (2PM), three-photon (3PM), and
non-degenerate two-photon microscopy (ND-2PM) for
mouse brain imaging. We show that the imaging depth
of 2PM and ND-2PM are fundamentally limited by the
SBR, while the SBR remains approximately invariant with
imaging depth for 3PM. Instead, the imaging depth of 3PM
is limited by the degradation of the resolution, if there is
sufficient laser power to maintain the signal level at large
depth. The roles of the concentration of dye molecules, the
numerical aperture of the input light, the anisotropy factor
g , noise level, input laser power, and the effect of temporal
broadening are also discussed. © 2020 Optical Society of
America

https://doi.org/10.1364/OL.392724

Multi-photon microscopy (MPM) has become an indispen-
sable tool for deep brain imaging with cellular or sub-cellular
resolution [1–4]. The imaging depth of two-photon (2PM)
and three-photon microscopy (3PM) for in vivo mouse brain
imaging can commonly reach ∼500 µm and ∼1300 µm,
respectively. Recently, a new type of MPM, non-degenerate
2PM (ND-2PM), has been developed, which excites fluo-
rophores with two spatially displaced laser beams of different
wavelengths [5–7]. ND-2PM has been demonstrated to poten-
tially provide an improved signal-to-background ratio (SBR)
compared to 2PM, while still maintaining a high excitation
efficiency compared to 3PM. Ultimately, the imaging quality
of all of these methods is subject to light scattering from the

biological tissue being studied. Quantitative evaluation of the
performance of these techniques for brain imaging will provide
useful guidance for future experimental designs, and may inspire
the development of refined methods that can further increase
the imaging depth limit of MPM.

The imaging quality of MPM can be well described by the
SBR and the resolution. Here we assume the effect of noise is
lower than that from the SBR. A seminal work that analytically
estimates the imaging depth limit for 2PM concluded that the
imaging depth is ultimately limited by the near-surface back-
ground fluorescence [8]. However, although it is the SBR that
sets the 2PM imaging depth limit, the loss of ballistic signal with
depth due to light scattering is much faster than the potential
increase of background fluorescence due to excitation. This sug-
gests the utility of methods for reducing the effect of scattering,
such as using longer excitation wavelengths [9], and wavefront
engineering techniques to compensate for the scattering effect
[10]. There are pioneering studies that compare the two-photon
and three-photon image quality [11,12]. But the fundamental
imaging depth limit has not been systematically quantified and
compared for the three types of systems.

We use our recently developed numerical model based on
the beam propagation method (BPM) [13,14] to compute
the point spread function (PSF) and SBR for 2PM, 3PM, and
ND-2PM as would be applicable for mouse brain imaging.
BPM is a wave-picture method that captures speckle features
arising from wave interference, which are not included in the
particle-picture-based methods such as Monte–Carlo simu-
lations, and the above-mentioned analytical analysis [8]. We
find that the degradation of the SBR fundamentally limits the
imaging depth for 2PM and ND-2PM, while for 3PM, the SBR
remains invariant with depth. If the laser power is sufficient, the
degradation of the resolution is the primary factor that limits
the imaging depth in 3PM. Other factors such as the numerical
aperture (NA), anisotropy factor g , noise level, and temporal
spreading due to scattering are also discussed. The illustration

0146-9592/20/102934-04 Journal © 2020 Optical Society of America

https://orcid.org/0000-0002-2102-0698
https://orcid.org/0000-0002-1316-4456
mailto:xcheng17@bu.edu
https://doi.org/10.1364/OL.392724
https://crossmark.crossref.org/dialog/?doi=10.1364/OL.392724&amp;domain=pdf&amp;date_stamp=2020-05-14


Letter Vol. 45, No. 10 / 15May 2020 /Optics Letters 2935

Fig. 1. Illustration of photon absorption and emission for (a) two-
photon microscopy (2PM), (b) three-photon microscopy (3PM),
and (c) non-degenerate two-photon microscopy (ND-2PM).
(d) Illustration of the calculation of the signal and background fluo-
rescence. The signal is the integrated fluorescence intensity within the
depth range containing the focal volume, as defined by the axial width
of the PSF. The background fluorescence is the integration within
the depths outside of the focal volume. (e) Example of the amplitude
distribution of the excitation wave in the x z cross section obtained
using our BPM model. Here NA= 0.6, n = 1.33, z f = 500 µm,
wavelength λ= 1200 nm, `s = 264 µm, and g = 0.9.

of the three types of MPM techniques and the numerical model
is shown in Fig. 1. The MATLAB code of the model is publicly
available at [15].

To quantify the imaging quality in MPM, both the resolution
and the SBR need to be considered. The lateral and axial resolu-
tions are defined as the lateral and axial full width half maximum
(FWHM) of the PSF, respectively. The conventional way to
calculate the SBR is to obtain the signal as the integration of the
fluorescence intensity within the focal volume, and the back-
ground as the integration over the out-of-focus volume [8,16].
One way to define the focal volume is to consider the space from
z f − zr to z f + zr , where z f is the focal depth, and zr is the
Rayleigh range defined in the free space. However, in practice,
the focal volume changes with the illumination geometry, imag-
ing depth, and tissue scattering properties, and can be different
for the three types of MPM systems. This definition thus would
present problems for the quantitative analysis. To overcome
this issue, we define the focal volume as spanning over the depth
range defined by the axial FWHM of the calculated PSF under
scattering, i.e., z f − FWHMaxial/2 to z f + FWHMaxial/2.
The PSF width is obtained from the simulated light distribution
under specific imaging conditions. Thus, the SBR is defined for
the resolution that varies with imaging conditions, as desired.

When no scattering is present, an input Gaussian
beam propagating along z maintains its analytical form

I0(x , y , z)=C
w2

0
w2 e−2(x2

+y 2)/w2
, where w0 = λ/(πNA) is

the beam waist at z f , w=w0

√
1+ (z− z f )

2/z2
R , C is a con-

stant, and zR = πw
2
0/λ is the Rayleigh range. When scattering

is present and only ballistic light is assumed to contribute,
the excitation light profile can be calculated analytically with
the Gaussian profile weighted by an exponential decay factor
Iballistic(x , y , z)= I0(x , y , z)e−z/`s , where `s is the scatter-
ing mean free path. Here we neglect the effect of absorption.
The fluorescence intensity as a function of depth for 2PM and

3PM can be obtained by I2p(z)=C1
∫∫

dxdy I 2(x , y , z) and
I3p(z)=C2

∫∫
dxdy I 3(x , y , z), respectively. The constants

are set to be C1 =C2 = 1 without loss of generality. The total
input power is set to be unity. We also assume that all the fluores-
cence can be collected. The fluorescence intensity profile I (z)
for 2PM and 3PM using the no-scattering and ballistic-only
models are compared in Fig. 2. The intensity level I (z) at the
focus versus that in the superficial layers determines whether
the background fluorescence overwhelms the signal. In 2PM,
when no scattering is present, I (z) increases monotonically as z
approaches z f [Fig. 2(a)]. Under this condition, the background
fluorescence comes mainly from the regions close to the focal
volume. When scattering is present and only ballistic light is
considered, the fluorescence background from the superficial
layers starts to dominate with increasing focal depth [Fig. 2(b)].
In 3PM, the fluorescence at z f is several orders of magnitude
higher than that in the superficial layers [Fig. 2(c) and 2(d)]. As a
result, the background fluorescence in both cases comes mainly
from the regions close to the focal volume. Here I (z) for ND-
2PM is not discussed since when multiple scattering is ignored
and the two excitation beams are spatially separated, there is no
fluorescence from the depths outside of the focal volume [7].

To include the effect of multiply scattered light, we use
our recently developed BPM model to calculate the ampli-
tude and phase distribution of light in scattering media [14].
In this model, the scattering medium is modeled as a series
of planar layers of random phase masks. At each phase mask
plane, the local wavefront E (x , y , z) is multiplied by the spa-
tially varying random phase term e iφ(x ,y ). The seed phase at
position (x , y ) is drawn from a Gaussian distribution of zero
mean and standard deviation σp . The seed phase profile is then
convolved with a Gaussian profile with a width σx . The scat-
tering mean free path is related to σp and the layer distance d
by σp(d)=

√
d/`s ; the scattering anisotropy factor g is deter-

mined by σx as described in [14]. The medium is assumed to
be uniform between neighboring layers, and the evolution of
the wavefront is calculated from the angular spectrum method

Fig. 2. (a)–(b) Examples of the analytical predictions of I (z) for
2PM when (a) no scattering is present, and when (b) only ballistic light
is considered. (c)–(d) Examples of I (z) for 3PM when (c) no scattering
is considered, and when (d) only ballistic light is considered. Here
NA= 0.6, `s = 264 µm, 400µm for 2PM and 3PM, respectively. The
focal depths are z f = 100, 300, 500, 800, 1000 µm.
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[17]. Compared to other BPM-based models, the scattering
mean free path `s , anisotropy factor g , layer distance of phase
masks d , and pixel size can be freely adjusted, which is crucial
for an accurate calculation of the PSF width and SBR. For
2PM and 3PM, the fluorescence light profiles are obtained as
|E (x , y , z)|4 and |E (x , y , z)|6, respectively. For ND-2PM,
the two beam profiles E1(x , y , z) and E2(x , y , z) are com-
puted separately, and the fluorescence light profile is obtained as
I (x , y , z)= |E1(x , y , z)|2 · |E2(x , y , z)|2.

To compare the performance of different MPM techniques
for mouse brain imaging, we use the same objective lens with
NA= 0.6. The wavelengths used are 1200 nm for 2PM,
1700 nm for 3PM, and 1040 nm and 1300 nm for the two
beams in ND-2PM. The values of the scattering mean free path
for the mouse brain tissue at different wavelengths are estimated
from [18], which are `s = 264, 400, 198, 310 µm for wave-
lengths λ= 1200, 1700, 1040, 1300 nm, respectively. For
BPM calculation, the averaged refractive index of the medium is
n = 1.33; the pixel size in the x y planes is λ/4. We used a layer
distance of d = 1 µm for layers within 30 µm of the focal plane
and d = 10 µm for other layers away from the focal plane. For
ND-2PM, we placed the two input Gaussian beams side by side,
each with NAbeam = 0.3. The two beams are tilted such that
they focus at the same point in the focal plane.

The imaging system configurations are illustrated in
Figs. 3(a)–3(c). Examples of I (z) calculated from our BPM
model considering the effects of multiple scattering for each
MPM technique are shown in Figs. 3(d)–3(f ). At shallow
depths, the fluorescence near the focus dominates, which resem-
bles the no-scattering case [Figs. 2(a) and 2(c)]. At larger depths,
a bump at depths between the focus and tissue surface starts to
build up. For 3PM, the fluorescence near the focal plane is at
least four orders of magnitude higher than that in the superficial
layers, even for z f = 2000 µm. Thus, the background fluores-
cence comes mainly from the region close to the focal volume,
even in the presence of scattering. With the fluorescence inten-
sity profiles obtained, we calculate the widths of the PSF, and
the signal and the background fluorescence. For the imaging
depths we have explored, all the lateral and axial PSF widths
stay roughly invariant, as shown in Figs. 3(g)–3(i). The signal
and background fluorescence as functions of depth is shown
in Figs. 3(j)–3(l). The ballistic backgrounds calculated from
the analytical solutions [in Fig. 2(b) and 2(d)] are also shown
for 2PM and 3PM for the ease of comparison. Note that the
background also decays with z f due to scattering, even though
the total volume of excitation increases with z f . For both 2PM
and ND-2PM, the decay of the background is slower compared
to the signal or the ballistic background due to multiple scatter-
ing. The depth at which the signal equals the background marks
the theoretical limit of the imaging depth, which is ∼500 µm
for 2PM and ∼600 µm for ND-2PM under our conditions.
The smaller NA of the beams in ND-2PM is the main reason
that its imaging depth improvement is not more substantial
compared to 2PM. For 3PM, we see that the signal and back-
ground both decay exponentially with roughly the same rate
as shown in Fig. 3(k), which indicates that the SBR does not
change with depth. Thus, unlike 2PM and ND-2PM, SBR is
not the primary factor that limits the imaging depth for 3PM.

An additional factor that can impact the SBR is the density
of the fluorophores in the scattering medium, which can be
affected by the labeling strategy [19]. We define the sparsity

Fig. 3. (a)–(c) Illustration of the imaging configurations for 2PM,
3PM, and ND-2PM, respectively. (d)–(f ) Fluorescence intensity
profile I (z) for the three types of MPM systems. (g)–(i) Lateral and
axial PSF widths as functions of focal depth z f for the three types of
MPM systems. (j)–(l) Signal, background, and background that comes
only from the ballistic light as functions of z f for the three types of
MPM systems. The maximum imaging depths we have simulated are
1000, 2000, and 1500 µm for 2PM, 3PM and ND-2PM, respectively,
which covers the maximal imaging depth demonstrated or expected for
these types of systems.

factor s as the ratio of fluorophore fraction in the overall volume
fglobal relative to that inside the focal volume f local. f local is nor-
mally higher than fglobal, resulting in s ≤ 1. The sparsity factor
is assumed to be one in Figs. 3(j)–3(l). For different sparsity
factors, the SBR scales as SBR(s = 1)/s . The imaging depth
limits zl obtained when SBR= 1 as functions of sparsity factor
are shown in Fig. 4 for 2PM and ND-2PM. When s decreases,
the imaging depth limit increases as expected. We obtained the
results for different g values, as shown in Fig. 4(a). For both
2PM and ND-2PM, we found that zl is smaller at larger g
values. The imaging quality also depends on NA. As shown
in Fig. 4(b), the imaging depth limit decreases with a smaller

Fig. 4. Imaging depth limit zl (SBR= 1) as a function of the spar-
sity factor s . (a) zl versus s in 2PM and ND-2PM for g = 0.9, 0.95,
0.99. (b) zl versus s in 2PM, NA= 0.6; 2PM, objective underfilled,
NA= 0.3; ND-2PM with objective NA= 0.6, NAbeam = 0.3. Other
parameters are the same as in Fig. 3.
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Fig. 5. Lateral and axial PSF widths for 3PM with z f = 400 µm
fixed and `s varied. Other details of the imaging system are the same as
in Fig. 3. Here g = 0.9.

NA= 0.3 compared to the larger NA= 0.6. As compared to the
case of 2PM with NA= 0.3, the imaging depth limit of ND-
2PM is significantly larger, particularly for high fluorophore
density. Thus the depth limit of ND-2PM may be improved by
exploring strategies to arrange the two beams without reducing
the effective NA available for each beam.

For 3PM, the imaging quality is determined primarily by the
resolution. We obtained the lateral and axial PSF widths with
z f /`s for 3PM, as shown in Fig. 5. Unlike SBR, which depends
on both z f and `s , the PSF is a function of only the relative value
z f /`s . To be computationally efficient, we fixed the imaging
depth at 400 µm and varied `s to obtain the PSF widths as
functions of z f /`s . The PSF starts to degrade dramatically after
∼5−6`s . Thus, the fundamental depth limit for 3PM imaging
in tissue with assumed optical parameters is about 2–2.4 mm,
and is primarily limited by the loss of resolution due to light
scattering instead of the SBR.

For the above calculations, we have assumed a sufficient laser
power such that the noise level is much lower than the signal and
background levels. We note that depending on the quantum
efficiency and local concentration of the fluorophores, collec-
tion efficiency of the microscope, and tissue heating limit for the
laser power, the signal-to-noise (SNR) ratio may be the limiting
factor. We do not explore this SNR limit because of its detailed
dependence on the specific experimental implementation.
The imaging quality can also be affected by the broadening
of the laser pulse width due to scattering. The effect of laser
pulse width can be characterized by the temporal enhancement

factor g 2 =
〈I m

i 〉

〈Ii 〉
m , where Ii is the time-varying pulse train, and

m = 2, 3 for 2PM and 3PM, respectively [20]. If the pulse is
approximated as square functions with width τp at intervals of
period τl , g 2 = (

τl
τp
)m−1
∝ τ 1−m

p . In general, the broadening of

τp does not play a significant role in 2PM [8,20]. For 3PM, the
impact is larger due to a narrower pulse that is generally used and
a larger m. Nowadays, femtosecond laser sources are used with
pulse widths of 20–360 fs. We have estimated the pulse broad-
ening using our BPM model with spectral domain simulations
as well as Monte–Carlo simulations. The broadening of τp for
3PM with input pulse widths 20–360 fs are all within 5% at
depths of 5`s , which results in a loss of signal of<10%. This is
much smaller than the loss arising from the exponential decay of
the signal shown in Fig. 3(k). Since the background fluorescence
arises mainly from regions close to the focal volume, the effect
of broadening on loss of the background fluorescence will be
comparable to the loss of signal fluorescence. Hence, we do not
expect the SBR to be affected by pulse broadening.

In summary, we have systematically analyzed the imaging
depth limit for 2PM, 3PM, and ND-2PM. When the laser

power is sufficient, the imaging depths for 2PM and ND-2PM
are fundamentally determined by the SBR. For ND-2PM,
arranging the beams side by side reduces the effective NA for
each beam, degrading PSF and limiting its performance. In
addition, the scattered light also results in some excitation out-
side of the focal volume. Collectively, these factors indicate the
need to explore other ways to arrange the beams to realize the
potential of ND-2PM to achieve deep penetration. Ignoring
potential SNR limitations, 3PM is not limited by SBR but
instead by its PSF resolution, which degrades rapidly after about
5−6`s . Generally, the SBR improves with increased sparsity of
the fluorophores, allowing greater depth penetration of 2PM
and ND-2PM. A larger scattering anisotropy (i.e., g value)
will decrease the SBR and PSF resolution [14], and thus the
imaging depth limit. The temporal spreading of the pulse due to
scattering can reduce the signal, but the effect is not significant
for the imaging depths considered here. These results demon-
strate the utility of our BPM for exploring novel strategies to
improve the depth limits of MPM.
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