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Abstract— Atomic force microscopes (AFMs) are used not
only to image with nanometer-scale resolution, but also to
nanofabricate structures on a surface using methods such as
dip-pen nanolithography (DPN). DPN involves using the tip
of the AFM to deposit a small amount of material on the
surface. Typically, this process is done in open loop, leading
to large variations in the amount of material transferred. One
of the first steps to closing this loop is to be able to accurately
and rapidly measure the amount of deposition. This can be
done by measuring the change in the resonance frequency of
the cantilever before and after a write as that shift is directly
related to the change in mass on the cantilever. Currently, this
is done using a thermal-based system identification, a technique
which uses the natural Brownian excitation of the cantilever as a
white noise excitation combined with a fast Fourier transform to
extract a Bode plot. However, thermal-based techniques do not
have a good signal to noise ratio at typical cantilever resonance
frequencies and thus do not provide the needed resolution in
the DPN application. Here we develop a scheme that iteratively
uses a stepped-sine approach. At each step of the iteration, three
frequencies close to the approximate location of the resonance
are injected and used to fit a model of the magnitude of the
transfer function. The identified peak is used to select three
new frequencies in a smaller range in a binary search to
reduce the uncertainty of the measured resonance peak location.
The scheme is demonstrated through simulation and shown to
produce an accuracy of better than 0.5 Hz on a cantilever with
a 14 kHz resonance in a physically realistic noise scenario.

I. INTRODUCTION

The atomic force microscope (AFM) is a powerful imag-
ing tool for studying with nanometer precision a wide range
of surface properties, including topography, material moduli,
and surface potential [1]–[4]. It is also being increasingly
used to study dynamics at the nanometer scale [5]–[7]. In
general, the relative vertical position of a sharp probe and
the surface is regulated by using feedback to control either
the deflection of the cantilever (in contact mode) or the
amplitude of oscillation (in intermittent contact, also known
as tapping, mode) [8]–[11]. The desired information is then
extracted from the control signal.

In this paper, we consider the use of AFM in a non-
imaging domain, in particular in Dip-Pen Nanolithography
(DPN). DPN is a method for nanofabrication in which the
AFM probe is coated with small molecules, a liquid, or a gel
[12]–[14] and then used to deposit that material repeatedly
on a substrate of interest. This local transfer method of pat-

terning has attracted significant interest because of its ability
to write materials additively with sub-100 nm resolution
[15], [16]. DPN has been successfully used to pattern with
a variety of substrates and inks. It is currently the highest
resolution method for doing additive manufacturing using
soft materials and can be applied in application domains
ranging from nano-electronics to medical diagnostics [17].

It is of interest to pattern features accurately and precisely,
both in terms of their physical location and the amount
of material deposited. While the high spatial resolution is
naturally provided by the AFM, the ability to write features
of well-controlled sizes is an ongoing challenge. The amount
of material which is deposited on the surface is a function of
many physical effects that depend on, among other things,
the surface forces. As a result, the formation and rupture of
liquid bridges exhibits large variation depending on the size
(molecular weight) of the inks, the amount of ink on the
probe, and the environmental conditions, leading to vastly
different experimental results under the same write parame-
ters [17]. The overarching goal of this work, illustrated in
Fig. 1, is to enhance the repeatability and controllability
of DPN by using feedback control to adjust the patterning
process to ensure the patterns produced are consistent in size
as well as spatial location.

Fig. 1: Illustration of a controlled patterning process leading
to equally space, equally sized features written to the surface.

In this paper, we present a scheme that combines stepped-
sine measurements with a binary search. Stepped-sine is a
non-parametric demodulation that involves stimulating the
system with a signal and measuring the response [18]. The
response at each individual frequency can be measured both
quickly and precisely. Because of the nanometer-scale of the
setup, we assume that surface tension is dominant and thus
that no mass is lost during the sinusoidal excitation of the
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cantilever. For full system identification, the need to sweep
the driving sinusoid over a wide range of frequencies leads
to long measurement times. In our setting, though, we have
prior information on the approximate location of the peak and
no need to identify the dynamics over the entire frequency
spectrum. As a result, we can focus signals in a narrow band
as we hone in on the resonance.

The remainder of this paper is organized as follows. We
first introduce the techniques involved in a patterning process
in Sec. II, then briefly describe the use of a thermal mea-
surement for system identification of cantilever dynamics in
AFM, giving experimental results to demonstrate the typical
resolution achieved in Sec. III. In Sec. IV we describe the
use of stepped- (also known as swept-) sine before presenting
the overall algorithm in Sec. V. The scheme in physically
realistic simulations follows in Sec. VI, in which we compare
our method to a standard thermal-based measurement. We
end with a few concluding remarks in Sec. VII.

II. PATTERNING PROCESS

To write a feature in DPN, the probe is first coated by
dipping it in a reservoir of interest and then moved to a
desired location. A force-distance (F-D) curve is then per-
formed (Fig. 2). In order to develop a closed-loop controller,
it is necessary to have a measurement of the amount of
ink deposited. A natural way to do this is to measure the
change in the resonance frequency of the cantilever before
and after the write since that frequency is directly related to
the mass of the cantilever. Micro-cantilevers are capable of

Fig. 2: Illustration of a force-distance curve. The deflection of
the cantilever is represented as a function of the displacement
of the piezo-actuator in the z-axis. (The inset graph indicates
the deflection as a function of time.) As the tip approaches
the surface (arrows pointing left), deflection increases until a
set force is reached. After a dwell time, the actuator retracts
(arrows pointing right). Adhesion between the tip and the
sample leads to a different retraction path since a larger force
is needed to pull the tip off the surface.

highly sensitive detection of changes in mass adhering to the
cantilever through changes in cantilever resonant frequency
[19]. Mass detection is achieved by using the mass-spring
equation given by

fres =
1

2π

√
k

meff + δm
, (1)

where fres is the measured resonant frequency, k is the
spring constant, meff is the mass of the cantilever, and δm
is the mass of the liquid attached to the tip of the cantilever.
In practice, the magnitude of the frequency shift depends on
the mechanical properties of the cantilever and the amount
of ink deposited. For a typical contact mode cantilever with a
0.3 N/m spring constant and a 14 kHz resonance frequency,
the needed resolution to measure the frequency shift when
writing a 2 µm diameter feature on a hydrophobic surface is
on the order of 1 Hz.

During patterning in DPN, the resonance of the cantilever
shifts to a higher frequency after each write due to the
decrease of mass of ink on the probe. This is illustrated
in the experimental curves in Fig. 3. The figure shows the
Lorentzian curve fits to measured data at the beginning of the
process and after each of four successive writes. Details on
the identification process (known as a thermal) are given in
Sec. III. In this experiment, very large features were written,
leading to shifts of between 20-40 Hz. In practice, much
smaller features with frequency shifts on the order of 1 Hz
are desired.

Fig. 3: Experimental results of the resonant frequency shift
after successive writes in a DPN patterning process. As the
mass is deposited for each write, the peak frequency shifts
to the right since the mass remaining on the probe decreases.

III. THERMAL MEASUREMENT

The standard method used on many commercial AFMs to
identify the cantilever dynamics is generally referred to as
a thermal. A thermal uses the free random motion of the
cantilever as a white noise input and measures the resulting
motion of the cantilever. This measurement is analyzed using
a Fast Fourier Transform (FFT) to generate a Power Spectral
Density (PSD). Each peak in the PSD can be fit to a modified
Lorentzian, given by

L(x) = c+ a
β2

β2 + (x− x0)2
, (2)

where c is the PSD offset, a is the frequency offset, β is
half of the peak width, x0 is the peak frequency and x is
the measured frequency. The approach does not require any
external drive signal and is a relatively fast way to do system
identification as all frequencies are excited and measured at
the same time. Researchers have used this thermal method
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to detect mass on the cantilever but only with frequencies
on the order of 100 to 1,000 Hz [19].

A typical example of a thermal is shown in Fig 4 where
data was acquired using a commercial AFM (MFP-3D,
Asylum Research) outfitted with a typical contact mode
cantilever (PPP-CONT, Nanosensor). As shown in the figure,
this method identifies not only the first resonance but also
the higher order harmonics.

Fig. 4: Experimental PSD acquired using a thermal tune on
an Asylum Research MFP-3D. The first resonance is at 13.5
kHz. Higher order harmonics are also clearly evident.

As noted above, identification of the resonant frequency
is done by fitting the PSD with a Lortezian. A fit to the first
peak in the experimental thermal of Fig. 4 is shown in Fig.
5.

Fig. 5: A Lorentzian fit to the first peak of a thermal.

Due to the poor signal-to-noise ratio (SNR) of a thermal,
particularly at the high frequencies typical to cantilever
resonances, the achievable resolution is typically much worse
than the desired 1 Hz. To increase the SNR, data can be
averaged over many repeated measurements. In general, the
higher the resonance frequency to be identified, the more
iterations are needed. We explored the effect of averaging
curves to improve the SNR through experiment, using up to
300 averaged measurements (recall that a measurement here
is an entire thermal). Experiments were repeated ten times
to obtain the standard deviation of the resonance frequency.

The results, shown in Fig. 6, indicate that the uncertainty
quickly decreases as the number of measurements in the
average increases but then begins to level off, reaching
approximately 3-4 Hz after 300 measurements. In general,

this type of averaging can take a significant amount of time
(during which time evaporation of the ink may occur) and
still may not yield the desired resolution.

Fig. 6: Uncertainty of the average first peak frequency as de-
termined by a Lorentzian fit to a thermal tune on an Asylum
Research MFP-3D. Even averaging 200 measurements only
yields an accuracy of 3-4 Hz.

IV. STEPPED-SINE MEASUREMENT

The stepped-sine method to system identification drives
the system using a sinusoid at a single frequency, integrating
the response over an integer number of oscillations and
calculating the in-phase and quadrature signals to extract the
frequency response function (FRF) at the drive frequency. An
entire FRF is measured by stepping (or sweeping) the drive
frequency [20]. We give a brief description of the approach
here to establish the elements needed for our algorithm.
A complete description of the stepped-sine method can be
found in [18], [20], [21].

For a linear time-invariant system, the steady state output
to a driving sinusoid can be written as

s(t) = C sin(ω0t+ φ) + n(t), (3)

where ω0 is the drive frequency, C, φ and n(t) are the output
magnitude, phase, and measurement noise, respectively.

Our main interest here is to extract the magnitude of the
signal. To achieve this, the output is first mixed with the
in-phase and quadrature signals,

I(t) = s(t) sin(ω0t), (4a)

Q(t) = s(t) cos(ω0t). (4b)

To improve the SNR, the signals I(t) and Q(t) are
averaged over an integer number M of periods of the drive
signal to product the in-phase and quadrature sums,

Isum ≈
1

MT0

MT0∫
0

I(t)dt, (5a)

Qsum ≈
1

MT0

MT0∫
0

Q(t)dt. (5b)

Finally, the magnitude of the response at the drive fre-
quency is easily calculated from the sum signals using

C = 2
√
I2sum +Q2

sum. (6)
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V. OVERALL ALGORITHM

In the DPN application, it is natural to do an accurate
system identification before the writing process begins to
identify the location of the original resonance frequency.
Because the shift of the resonance after each write is small,
this prior knowledge indicates the approximate location of
the new peak and allows us to focus the measurements in
a narrow band of frequencies. The essential idea of our
algorithm, then, is to inject three different sinusoids spanning
that frequency band, use the stepped-sine algorithm to extract
the three magnitude values of the FRF, fit a model to
these data using a nonlinear least squares fit, and extract
the peak value. This estimate is then refined iteratively by
selecting three new frequencies in a band with a narrower
width centered on the new estimate, and terminating when
the change in the frequency estimate between successive
iterations is below a pre-defined threshold.

In AFM, the cantilever is typically driven using a piezo-
actuator, either the same one used to control the z–position
or one dedicated to the task. Under the assumption that each
of these is well described by a second-order system, the joint
transfer function is given by

G(s) =

(
a

s2 + bs+ c

)(
d

s2 + es+ f

)
, (7)

where a, b = 2ζ1ω1 and c = ω2
1 are given by the gain,

damping, and resonance frequency of the piezo, and d, e =
2ζ2ω2, and f = ω2

2 are given by the gain, damping and
resonance frequency of the (primary mode) of the cantilever.

Using (7) to calculate the magnitude of the transfer func-
tion at a specific frequency ω0 yields

Ĉ(ω0) = a2d2√
ω4
0+((−f−be−c)ω2

0+cf)2+((−e−b)ω3
0+(bf+ce)ω0)2

. (8)

The DPN process changes only the mass on the cantilever.
This primarily changes the resonance frequency of the can-
tilever but may also cause changes in its damping parameter.
Under the reasonable assumption that the piezo dynamics are
unmodified, the optimization problem to be solved is

min
ω2,ζ2

1

n

n∑
i=1

[
C(ωi0)− Ĉ(ωi0)

]2
, (9)

where C(ωi0) i = 1, ..., n are the measured magnitudes from
(6). This nonlinear least squares problem can be solved
numerically using an initial guess given by the previous
values (with the first guess given by the previously identified
modeled before the writing process was begun) and bounds
on the optimization parameters chosen by the maximum
amount of mass that can be deposited on the substrate during
a write.

VI. SIMULATIONS

In this section we present simulation results to demon-
strate our algorithm and to compare its performance to the
standard measurement using a thermal. A piezo-actuator for
the vertical displacement is in the range of 400 Hz and 3
kHz [22]. We use a true system with model given by (7).

The piezo parameters were selected to be ζ1 = 0.1, ω1 = 1
kHz, and a = ω2

1 while the cantilever parameters were
set to ζ2 = 0.01, ω2 = 14 kHz, and d = ω2

2 (motivated
by theexperimental results in Sec. III). (Note that since
thermal excitation only drives the cantilever dynamics, the
experimental thermal results in Fig. 4 only show cantilever
resonances.)

A. Thermal Measurement

To simulate a thermal, the cantilever system was driven
with a zero mean Gaussian white noise process with a
variance selected to approximately match the experimental
results in Fig. 5. Data was acquired at a 4 MHz sampling
rate for a total of approximately 33 milliseconds and then
processed using an FFT. This was repeated 300 times (for a
total of approximately 10 seconds of data) and the results
averaged to improve the SNR before fitting a Lorentzian
to the averaged results. This sequence was performed ten
times to produce statistics on the estimate of the resonance
frequency. The results of a typical run are shown in Fig. 7
with the simulated data in green and the Lorentzian fit in
red.

Fig. 7: A Lorentzian fit to the FFT of a simulated thermal
measurement with white noise input and a 2% measurement
noise in amplitude to the stepped sine algorithm. The fre-
quency and damping of the cantilever are assumed to be 14
kHz and 0.01.

As shown in Fig. 8, the estimates values had errors ranging
from -8 Hz to 6 Hz. Over the ten runs, the thermal method
yielded an estimate of 13.998 kHz ± 2.482 Hz.

B. Stepped-Sine Method

The input signal to the stepped-sine method was simulated
as a sinusoid with additive noise at a level of 2% of the signal
amplitude. A typical signal is shown in Fig. 9. The output
at each input frequency was sampled at 100 times of the
selected frequency for 30 cycles. The sampling rate was set
to get 100 samples per cycle.

A typical fitting result is shown in Fig. 10 with the fitted
curve shown in green and the measured amplitudes shown
in red. In the first iteration, measurements were made equi-
spaced in a 100 Hz band. After estimating the resonance
frequency, three new frequencies were selected, equi-spaced
in band centered on that estimate but with a width that was
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Fig. 8: Error in the thermal estimates in each simulation. The
error ranged from -8 Hz to 6 Hz with an overall estimate of
13.998 kHz ± 2.482 Hz.

Fig. 9: Simulated input signal at 13.9 kHz with 2% measure-
ment noise in amplitude added.

90% the width of the band at the previous step. This was
iterated, halving the frequency band, until the change in the
resonance frequency estimated from one iteration to the next
was less than 0.1 Hz.

To compare the algorithm with the thermal method, 10
simulations were performed. The resulting estimation errors,
shown in Fig. 11, ranged from -0.5 to 0.5 Hz. Over ten runs,
the stepped-sine algorithm yielded 14.00 kHz ± 0.178 Hz.

Clearly, the stepped-sine algorithm outperformed the ther-
mal technique in terms of resolution, easily meeting the
requirement of 1 Hz. In addition, the method is quick since
only a few cycles of a small number of high frequencies
are needed. With the traditional thermal technique, the entire
process can take nearly 20 seconds with 300 measurements.
The stepped-sine technique, implemented in MATLAB, ran
in approximately 0.7 seconds from beginning to end.

C. Effect of parameter choices

The performance of the stepped-sine algorithm depends on
several parameter choices, most notably the number of cycles
(M ) to use when averaging the in-phase and quadrature
sums, the number of frequency points to measure and use
in the fit, and the termination condition.

To study the effect of M , simulations were performed
varying the number of cycles from 1 to 140 with a fixed noise
level at 2% of the signal amplitude. The results are shown
in Fig. 12, indicating that, as expected, the performance

Fig. 10: Typical fitting result in the stepped-sine method.
The first peak is the resonance of the piezo-actuator; the
second peak is the cantilever. Red dots: measured magnitude
values using the stepped-sine technique. Green curve: fit of
the model to those measurements.

Fig. 11: Error in the stepped-sine based estimates in each
simulation using averaging over 30 oscillations and termi-
nating with a change in estimated frequency smaller than
0.1 Hz. The error ranged from -0.5 Hz to 0.5 Hz with an
overall estimate of 14.00 Hz ± 0.178 Hz.

improvement slows as the number of oscillations increases.
One should choose the smallest M that meets the resolution
needed to optimize the overall time.

When considering the number of points to measure, one
again would like to use as few as possible to keep the overall
computation time low. To study this effect, simulations were
performed with M=30 and a termination condition of 0.1
Hz but varying the number of points used. The resulting
standard deviations in the estimate (over 10 simulation runs)
are shown in Fig. 13. The simulations indicate that there is
significant improvement in going from two to three points
but that the resolution does not improve with higher numbers.
This makes sense given that there are only two fitting
parameters.

Finally, the choice of termination condition can affect the
performance. At each step, the three measurement points get
more closely spaced. Looking at Fig. 10, it is intuitively clear
that if they get too close, noise will dominate and the three
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Fig. 12: Uncertainty in resonance frequency estimate as a
function of M , the number of oscillations used to average the
quadrature and in-phase signals. Simulations were performed
with a noise level of 2%.

Fig. 13: Uncertainty in resonance frequency as a function
of the number of points used for each fit. While there is
improvement in going from two to three measurements,
increasing the number of points further does not yield gains
in accuracy.

measurements will not yield distinct information, leading to
a poor estimate. If they are too far apart, they will be far from
resonance and again the noise may dominate. In our iterative
scheme, this implies the method should be terminated once
a threshold, defined by the noise level (and, practically, the
experience of the user) is met.

VII. CONCLUSIONS

This paper presented a stepped-sine curve-fit optimization
method to measure quickly and accurately the shift of the
resonance frequency of a scanning probe in an AFM during
DPN. The combination of stepped-sine system identifica-
tion, curve-fitting and iterative search optimization yields
a scheme that takes advantage of the high signal-to-noise
ratio offered by stepped-sine while remaining fast due to the
small number of measurements needed. Simulation results
indicate that the technique outperforms the standard thermal
tune and yields a resolution better than needed for the DPN
application.
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