
Inverse Problems

PAPER

Radiative transport model for coherent acousto-optic tomography
To cite this article: Francis J Chung et al 2020 Inverse Problems 36 064004

 

View the article online for updates and enhancements.

This content was downloaded from IP address 141.211.4.224 on 05/06/2020 at 21:43



Inverse Problems

Inverse Problems 36 (2020) 064004 (14pp) https://doi.org/10.1088/1361-6420/ab82ef

Radiative transport model for coherent

acousto-optic tomography

Francis J Chung1, Jeremy G Hoskins2

and John C Schotland3,4

1 Department of Mathematics, University of Kentucky, Lexington, KY,

United States of America
2 Department of Mathematics, Yale University, New Haven, CT,

United States of America
3 Department of Mathematics and Department of Physics, University of Michigan,

Ann Arbor, MI, United States of America

E-mail: fj.chung@uky.edu, jeremy.hoskins@yale.edu and schotland@umich.edu

Received 5 November 2019, revised 26 February 2020

Accepted for publication 24 March 2020

Published 25 May 2020

Abstract

We consider the problem of reconstructing the optical properties of a highly-

scattering medium from coherent acousto-optic measurements. A method to

solve the problem is proposed that is based on an inverse problem with internal

data for a system of radiative transport equations.

Keywords: optical tomography, radiative transport, hybrid imaging, acousto-

optic imaging
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1. Introduction

The acousto-optic effect refers to the modulation of the optical properties of a scattering

medium by an acoustic wave. Acousto-optic imaging exploits this effect to combine the spec-

troscopic sensitivity of opticalmethodswith the spatial resolution of ultrasound imaging. There

is also a mathematical advantage. The inverse problem of acousto-optic imaging is well-posed,

leading to better reconstructions than can be obtained with solely acoustic or optical imag-

ing. Several mathematical models for acousto-optic imaging have been studied [1–8, 11]. The

mathematical details of the acousto-optic inverse problem vary considerably, depending on the

response of the medium to the probing optical and acoustic �elds. In this paper we investigate

the regime of coherent scattering, where the interaction of the medium with acoustic waves

leads to a detectable frequency shift in the scattered light [13]. In this setting, we study the

corresponding inverse problem within the framework of radiative transport theory. A related
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question for diffuse light was examined in [10] and the inverse problem for incoherent light

was investigated in [7, 11].

Consider a bounded domain X ⊂ R3 with a smooth boundary. The speci�c intensity at the

source frequency u(x, θ) is the intensity of light at the point x ∈ X in the direction θ ∈ S2.

Following [13], we model light propagation by the radiative transport equation (RTE)

θ · ∇u(x, θ)+ σ(x)u(x, θ) =

∫

S2
k(x, θ, θ′)u(x, θ′)dθ′ on X × S2, (1)

together with the boundary condition

u|Γ− = f

on the incoming boundary Γ−, de�ned by

Γ± = {(x, θ) ∈ ∂X × S2 :±θ · ν(x) > 0}.

Here σ and k denote the attenuation and scattering coef�cients of the medium, respectively.

For convenience, we will sometimes write the RTE as

θ · ∇u = Au, (2)

where the operator A is de�ned by (1).

We now recall the theory of the coherent acousto-optic effect with multiply-scattered light

developed in [13]. Suppose that monochromatic light is incident on a scattering medium in

which a time-harmonic acoustic plane wave also propagates. The acoustic wave modulates the

dielectric permittivity of the medium, resulting in the formation of frequency-shifted optical

�elds at harmonics of the acoustic frequency. It can then be seen that the speci�c intensity of

the �eld and its harmonics obey radiative transport equations of the form

θ · ∇u00 = Au00,

θ · ∇u01 = Au01 +
1

2
ǫ cos(Q · x)u00, (3)

θ · ∇u11 = Au11 + ǫ cos(Q · x)u01,

with boundary conditions u00|Γ− = f and u01|Γ− = u11|Γ− = 0. Here u00 and u11 are the spe-

ci�c intensities of the incident and frequency-shifted light, respectively and Q is the wave

vector of the acoustic wave. The quantity u01 is a measure of the correlation of the incident

and frequency-shifted light. In addition, the parameter ǫ, which governs the strength of the

acousto-optic effect, is assumed to be known.

We consider the following inverse problem: given boundary measurements of u00, u01 and

u11 for various f and Q, reconstruct σ and k. Note that u01 is singly modulated by the acoustic

wave, while u11 is doublymodulated.As a consequence, boundarymeasurements of u01 (which

is �rst order in the small parameter ǫ) are used to reconstruct σ and k.

It will prove useful to impose the following a priori conditions on the coef�cients σ and k.

Regularity. The coef�cients

σ ∈ C(X) and k ∈ C(X × S2 × S2) are nonnegative. (4)

Absorption. Scattering does not generate light; in other words there exists c > 0 such that

inf
x∈X

(σ − ρ) > c, (5)
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where

ρ(x) =

∥

∥

∥

∥

∫

S2
k(x, θ, θ′)dθ′

∥

∥

∥

∥

L∞(S2)

. (6)

Reciprocity. Scattering is identical for incoming and outgoing light:

k(x, θ, θ′) = k(x,−θ′,−θ). (7)

Making use of the above conditions on σ and k, and imposing an L∞ boundary source f, the

system of equations (3) has unique L∞ solutions u00, u01, and u11 in X× S2 [11, 12] (see also

proposition 15 below). Therefore for each pair σ, k satisfying the above conditions, we will

de�ne the boundary value mapA01
σ,k :R

3 × L∞(Γ−)→ L∞(Γ+) by

A01
σ,k(Q, f ) = u01|Γ+

.

We are now ready to state the main result of this paper.

Theorem 1.1. Given σ and k satisfying (4), (5) and (7), the map (σ, k) 7→ A01
σ,k is injective.

Moreover, there exists f ∈ L∞(Γ−) such thatA
01
σ,k(Q, f ) suf�ces to recoverσ. Additionally, there

is a one-parameter subset of L∞(Γ−) such that if we restrict the domain of A
01
σ,k to this subset,

the map from (σ, k) to the restricted map A01
σ,k is still injective.

We emphasize that in the above result only one boundary source is needed to recover σ,
and only a one-parameter set of sources is required to reconstruct k. Three remarks should be

made here. First, the proof of theorem 1.1 is constructive—we will provide an explicit method

of reconstructing σ and k fromA01
σ,k. Second, this construction leads to stability estimates: see

proposition 2.1 and theorem 5.3. Finally, the fact that we can rely on a one-parameter set of

sources is an advantage of acousto-optic tomography over inverse transport [9].

The proof of theorem 1.1 can be summarized as follows. We use the measurements of u01,

together with an integration by parts, to obtain an internal functional (section 2). Then we

consider the forward problem for the RTE (section 3), and use the form of the solutions to

analyze the internal functional. An informal description of the method of proof for theorem 1.1

is given in section 4, and in section 5 we present the full proof, along with stability estimates.

2. Internal functional

We begin by deriving the internal functional. Suppose u01 is as above, and v(x, θ) solves the
adjoint equation

−θ · ∇v = Av, (8)

with the natural boundary condition v|Γ+
= g speci�ed by us. (Note that solutions to the adjoint

RTE (8) are precisely solutions to the regular RTE (2) under the change of variables θ 7→ −θ.)
Integrating by parts,

∫

X

θ · ∇u01vdx = −

∫

X

u01θ · ∇vdx+

∫

∂X

u01v θ · ndx,

so
∫

X

(Au01 + ǫ cos(Q · x)u00)vdx =

∫

X

u01Avdx+

∫

∂X

u01v θ · ndx.

3
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If we integrate in the θ variables also, then the reciprocity assumption (7) guarantees that A is

self adjoint, and so

∫

X

∫

S2
ǫ cos(Q · x)u00vdθdx =

∫

∂X

∫

S2
u01v θ · ndθdx.

Since u01|Γ− = 0, the right-hand side reduces to an integral over Γ+, so

∫

X

∫

S2
ǫ cos(Q · x)u00vdθdx =

∫

Γ+

u01g θ · n dθdx. (9)

Here the right side of the above can be measured, so the left-hand side is also known, which

means that we can recover the Fourier transform of the quantity

H(x) =

∫

S2
u00vdθ,

and we assume that in practice we can vary Q to recover H. The inverse problem is now to

reconstruct σ and k from knowledge of H. Since the functional we measure depends on the

boundary values we choose for u00 and v, we can write

H(x) = H f ,g(x) =

∫

S2
u00vdθ, (10)

where f and g are understood to be the boundary values of u00 and v respectively.

The recovery of H comes with the following stability estimate.

Proposition 2.1. If H1 and H2 are functionals obtained from the same initial data (f, g), but

separate sets of coef�cients σ1, k1 and σ2, k2, we have the stability estimate

‖H1 − H2‖L∞(X) . ‖g‖L∞(Γ+)‖A
01
σ1,k1

(Q, f )−A01
σ2,k2

(Q, f )‖L1(R3×Γ+). (11)

Proof. Note that the quantity on the left side of (9) is the Fourier transform of H, and the

u01|Γ+
that appears on the right side can be rewritten asA01

σ,k(Q, f ). Therefore (9) says that the

Fourier transform of H1 − H2 is given by

F (H1 − H2)(Q) =

∫

Γ+

(A01
σ1,k1

(Q, f )−A01
σ2,k2

(Q, f ))g θ · ndθdx,

and the stability estimate follows easily. �

3. Solutions of the RTE

To make further progress, we take advantage of the collision expansion for solutions of the

RTE. First we �x some terminology. For x ∈ Rn, let x̂ denote the unit vector in the direction of

x, and for x, y ∈ X, let

τ (x, y) =

∫ |x−y|

0

σ(x− s(x̂− y))ds.

Here τ (x, y) is the optical distance from x to y in the presence of the absorption coef�cient σ,
without scattering. Note that τ (x, y) = τ (y, x). De�ne γ± : X× S2 → Γ± by setting γ±(x, θ) to
be the (�rst) point in ∂X obtained by travelling from x in the±θ direction;we think of this as the

4
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projection of x onto ∂X in the direction±θ. Let J be the operator that solves the non-scattering
RTE

θ · ∇u = −σu,

u|Γ− = f ,

and write J explicitly in terms of τ and γ− as

J f (x, θ) = e−τ (x,γ−(x,θ)) f (γ−(x, θ), θ). (12)

Similarly, if we de�ne T−1 to be the operator which solves the non-scattering RTE

θ · ∇u+ σu = S,

u|Γ− = 0,

then explicitly

T−1S(x, θ) =

∫ |x−γ−(x,θ)|

0

e−τ (x,x−tθ)S(x− tθ, θ)dt. (13)

Finally, de�ne A2 to be the scattering operator

A2w =

∫

S2
k(x, θ, θ′)w(x, θ′)dθ′,

and

Kw = T−1A2w (14)

The main result of this section is the Neumann series solution of the RTE.

Proposition 3.1. Suppose σ and k satisfy the conditions in section 1. Then there exists

0 < C < 1 such that

‖K‖L∞(X×S2)→L∞(X×S2) < C,

and if u solves θ · ∇u = Au with the boundary condition u|Γ− = f , for some f ∈ L∞(Γ−), then

u takes the form

u = (1+ K + K2
+ · · · )J f . (15)

See [5, 9, 12] for proofs of this result. The expansion (15) is the collision expansion of u. It

is useful because K is a smoothing operator, so each subsequent term of the expansion is less

singular. The �rst term Jf corresponds to light propagation in the absence of scattering, and is

called the ballistic term. The subsequent terms KmJf correspond to light that has been scattered

m times, and thus KJf is referred to as the single-scattering term, K2Jf as the double-scattering

term, and so on.

Note that analogous results also hold for the adjoint equation (8), with appropriate corre-

sponding operators K∗, J∗, etc obtained via the change of variables θ 7→ −θ.
The following estimates, taken from [11], will also prove useful.

Lemma 3.2. For all x ∈ X,

‖A2(w)(x, ·)‖L∞(S2) < Ck‖w(x, ·)‖L1(S2). (16)
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Moreover

‖T−1
1 w‖L∞(X×S2) < ‖w‖L∞(X×S2). (17)

4. Point-plane inversion

The main dif�culty in recovering σ and k is the nonlinearity of the functional Hf,g. The basic

idea for countering this dif�culty is to use proposition 3.1 with carefully chosen boundary

sources f and g to ensure that only the leading order terms contribute meaningfully to Hf,g.

This idea is similar to that used in [11], but with the important difference that in our case,

the principal term in the expansion carries no information. This point is best understood by

examining what happens in the absence of scattering. In that case, the operatorK vanishes and

the solutions to the RTE are given solely by the ballistic term. However, now the quantity u00v
satis�es the equation

θ · ∇(u00v) = 0,

so the solution does not vary as we move into the domain from the boundary. It follows that the

leading order term in the collision expansion vanishes and wemust turn to the single-scattering

term. In this section we give an informal discussion of the above, �rst by considering each point

in the domain one by one, and then foliating the domainwith planes and considering each plane

one at a time. In the following section,we describe how this process can be extended to consider

the entire domain at once, and at the same time, make the discussion fully rigorous.

4.1. Point sources

We begin by considering one point at a time. We let x ∈ X and consider point sources on

the boundary in the direction θ0. To do this, de�ne for a pair (x0, θ0) ∈ ∂X× S2 the delta

distribution δx0,θ0 so that

∫

∂X×S2
δx0,θ0 f = f (x0, θ0)

for any f ∈ C∞(∂X× S2). Now consider a solution u to the RTE with boundary data given by

such a delta function. (Making this idea rigorous requires some rede�nition of the notion of a

solution to encompass distributions, which we do not address here. The discussion in the next

section will contain a rigorous analysis in terms of approximations to delta distributions.) By

proposition 3.1,

u = Jδx0,θ0 + KJδx0 ,θ0 + K2Jδx0,θ0 + · · · . (18)

Here Jδx0,θ0 is a distribution supported on the codimension four subset of the �ve dimensional

set X× S2 given by

{(x, θ0) : x = x0 + cθ0 for some c ∈ R}

The operatorK integrates in one spatial dimension and two angular dimensions, so thatKJδx1,θ1
is supported on a codimension one subset, and all subsequent terms are less singular. Now

let x ∈ X, and θ1, θ2 ∈ S2 such that θ1 6= θ2. We set x1 = γ−(x, θ1) and x2 = γ+(x, θ2) (see

6
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Figure 1. Hf,g(x) represents light from the point source (x1, θ1), which is scattered and
frequency shifted from x and observed at (x2, θ2).

�gure 1). We de�ne corresponding boundary sources f = δx1 ,θ1 and g = δx2,θ2 , and consider

the resulting functional

H f ,g(x) =

∫

S2
u00(x, θ)v(x, θ)dθ.

The integral identity (9) implies that the above corresponds to boundary measurements of

u01 at x2 in the direction of θ2, where the acoustic wave has been focused to concentrate its

support at x. Thus we expect that the leading term in the internal functional will represent

light traveling along a ray from x1 to x, scattering once at x in the direction θ2, and exit-

ing at x2. Indeed, this is what we obtain when we expand u00 and v in terms of the collision

expansion (18). Since θ1 6= θ2, the leading term JfJ∗g vanishes, and so the dominant terms of

Hf,g are

∫

S2
(J f K∗J∗g+ KJ f J∗g)dθ.

Each of these terms represents a distribution supported on a codimension one set multiplied by

one supported on a codimension four set. Expanding JfK∗J∗g at x using (12) and (14) gives

∫

S2
J f K∗J∗gdθ = k(x,−θ1,−θ2) exp(−τ (x, x1)− τ (x, x2))δx(x),

where δx(x) re�ects the size of the distribution at x. Similarly,

∫

S2
KJ f J∗gdθ = k(x, θ2, θ1) exp(−τ (x, x1)− τ (x, x2))δx(x).

By (7), these terms are identical, so to leading order and ignoring the δx(x) factor, we obtain

H f ,g(x) ≃ 2k(x, θ2, θ1) exp(−τ (x, x1)− τ (x, x2)). (19)

This formula for Hf,g is precisely what is expected from the above discussion and �gure 1.

Suppose τ (x, y) is known for all pairs (x, y), then k(x, θ2, θ1) can be obtained directly from

(19). If not, then we can set x1 = γ−(x, θ1) and x2 = γ+(x, θ1), and measure two functionals

7
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H1 = Hδx1,θ1
,δx1,θ1

(x) ≃ 2k(x, θ1,−θ1) exp(−2τ (x, x1))

H2 = Hδx2,−θ1
,δx2,−θ1

(x) ≃ 2k(x, θ1,−θ1) exp(−2τ (x, x2)),

and the additional quantity

H3 = exp(−τ (x1, x2)),

which can be obtained from the albedo map A00
σ,k for u00, applied to the point source δx1,θ1 . By

the additivity of τ , we have τ (x1, x2) = τ (x, x1)+ τ (x, x2) and thus we get

τ (x, x1) =
1

2
(log H1 − log H2 + log H3).

Repeating this procedure gives any desired value of τ (x, y). Now, differentiating τ gives σ(x),
so we can recover both σ and k from the functional H. On the other hand, using the methods

described above means that in order to obtain σ and k, we need to consider all possible point

sources, which means we need four dimensions of sources. We can improve this slightly by

making use of plane sources.

4.2. Plane sources

Let θ0 ∈ S2 and �x a plane P parallel to θ0 which intersects the set {x ∈ ∂X : (x, θ0) ∈ Γ−}.
Let δP,θ0 be a distribution supported on the set P

′ = {(x, θ) ∈ Γ− : x ∈ P, θ = θ0}, so that

∫

∂X×S2
δP,θ0 f =

∫

P′
f (x, θ0),

for all f ∈ C∞(∂X× S2). That is, δP,θ0 is a distribution supported on a codimension three subset

of the four dimensional set ∂X× S2. If we view δP,θ0 as a boundary source for the RTE and

consider the collision expansion

u = JδP,θ0 + KJδP,θ0 + K2JδP,θ0 + · · · , (20)

the leading term JδP,θ0 is a distribution supported on a codimension 3 subset of the �ve-

dimensional domain X× S2.

Since K integrates along one spatial dimension and two angular dimensions, KJδP,θ0 is

supported everywhere. However, it is not actually a function since

KJδP,θ0(x, θ) = T−1A2JδP,θ0(x, θ)

for x ∈ P and θ parallel to P. The spatial integral in T−1 is along a line fully contained in P, so

it does not reduce the singularity of the distribution A2JδP,θ0(x, θ). Therefore KJδP,θ0 (x, θ) can
be viewed as a function supported on X× S2 plus a distribution supported on the codimension

one set P× S2. Now choosing θ1 ∈ S2 and P parallel to θ1, pick (x2, θ2) ∈ Γ+ so that x2 lies in

P and θ2 is parallel to P, with θ1 6= θ2. We de�ne corresponding boundary sources f = δP,θ1
and g = δx2,θ2 , and consider the resulting functional Hf,g(x) at any point x on the line through

x2 in the direction −θ2. As in the point source case, the ballistic terms vanish. By the above

discussion, what remains is the term

KJδP,θ1(x, θ)J
∗δx2 ,θ2 ,

which represents a codimension four distributionmultiplied by a codimension one distribution.

8
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Expanding the above using (12) and (14) gives

H f ,g(x) ≃

∫ |x−γ−(x,θ2)|

0

e−τ (γ+(x,θ2),x−tθ2)−τ (x−tθ2,γ−(x−tθ2,θ1))k(x− tθ2, θ2, θ1)dtδx(x) (21)

Ignoring the δx(x) factor and taking the directional derivative in the direction θ2, we get

θ2 · ∇H f ,g(x) ≃ k(x, θ2, θ1) exp(−τ (x, x1)− τ (x, x2)).

which is just (19), and so the remainder of the reconstruction proceeds as in the point source

case. Note that for each plane source δP,θ1 , we can, by varying x2 and θ2, recover a two dimen-

sional collection of k(x, θ1, θ2). Therefore only two dimensions of sources are needed to recover

all of k and σ. In fact it’s possible to do better: we can restrict ourselves to a single dimension of

sources, if we use an angularly singular source such as δθ1 , and multiply by a rapidly oscillating

function. This brings us to the proof of theorem 1.1.

5. Reconstruction and stability

5.1. Proof of theorem 1.1

We begin by de�ning the following L∞ approximation to the delta function on S2:

δhθ1(θ) =

{

h−2 if |θ − θ1| < h,

0 otherwise.

Following the discussion at the end of section 4, we need a function that oscillates rapidly in

the spatial directions perpendicular to θ1. To do this, let θ1 ∈ S2 and θ3 be perpendicular to θ1.
Pick coordinates for x such that θ1 = x̂1 and θ3 = x̂3. Now consider the source

f
θ1
h (x, θ) = δhθ1(θ) exp(ix3/h). (22)

This complex source is not physical, but it can be recreated formally by measuring from its

real and imaginary parts. Using the collision expansion, we claim the following qualitative

properties for the solution of the RTE with boundary source f.

Lemma 5.1. Suppose f = f
θ1
h is as de�ned in (22), and u is the solution to the RTE (2) with

boundary condition u|Γ− = f . Then u = Jf+ KJf+ R, where

(a) The ballistic term Jf satis�es the estimates

‖J f ‖L∞(X×S2) = O(h−2) and for any �xed x, ‖J f (x, ·)‖L1(S2) = O(1);

(b) The single scattering term KJg satis�es the estimates

‖KJ f ‖L∞(X×S2) = O(1) and for any �xed x, ‖KJ f (x, ·)‖L1(S2) = o(1);

(c) and the remainder satis�es the estimate

‖R‖L∞(X×S2) = o(1).

Proof. The estimates for Jf follow directly from the de�nitions of J and f. The L∞ norm of

KJf follows from lemma 3.2 and the L1 estimate for Jf. Now

9
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J f (x, θ) = e−τ (x,γ−(x,θ))δhθ1(θ) exp(ix̂3 · γ−(x, θ)/h).

Therefore

A2J f (x, θ) =

∫

S2
k(x, θ, θ′)e−τ (x,γ−(x,θ′))δhθ1(θ

′) exp(ix̂3 · γ−(x, θ
′)/h)dθ′.

Since δhθ1 is supported only for θ in a small neighbourhood of θ1, the Lebesgue differentiation
theorem guarantees that for suf�ciently small h, we obtain

A2J f (x, θ) = e−τ (x,γ−(x,θ1))k(x, θ, θ1) exp(ix̂3 · γ−(x, θ1)/h)+ o(1).

Since θ1 is perpendicular to x̂3, we �nd that

A2J f (x, θ) = e−τ (x,γ−(x,θ1))k(x, θ, θ1) exp(ix3/h)+ o(1).

Now we can write KJf as

T−1A2J f (x, θ) =

∫ |x−γ−(x,θ)|

0

e−τ (x,x−tθ)A2J f (x− tθ, θ)dt.

If θ · x̂3 ≫ h, then A2Jf(x− tθ, θ) is highly oscillatory as a function of t, and so by the

Riemann–Lebesgue lemma,

|KJ f (x, θ)| = o(1).

Then it follows that

‖KJ f (x, ·)‖L1(S2) = o(1),

and the estimate for R follows from lemma 3.2. �

We now examine the functionalH
f
θ1
h

,g
θ2
h

de�ned by f
θ1
h and a boundary function g

θ2
h which

approximates a point source. To de�ne g
θ2
h , we begin by �rst de�ning the approximation to the

delta function on the boundary. For x0 ∈ ∂X, de�ne

δhx0 (x) =

{

h−2 if |x− x0| < h,

0 otherwise.

Choose θ2 ∈ S2 so θ2 is perpendicular to x̂3, and let

g
θ2
h (x, θ) = h2δhθ2(θ)δ

h
x0
(x). (23)

Lemma 5.2. Let g = g
θ2
h be de�ned by (23), and let v solve the adjoint RTE (8) with

boundary condition v|Γ+
= g|Γ+

. Then

v = J∗g+ K∗J∗g+ R∗,

where

(a) The ballistic term J∗g satis�es the estimates

‖J∗g‖L∞(X×S2) = O(h−2) and for any �xed x, ‖J∗g(x, ·)‖L1(S2) = O(1);

10
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(b) The single scattering term K∗J∗g satis�es the estimates

‖K∗J∗g‖L∞(X×S2) = O(1) and for any �xed x, ‖K∗J∗g(x, ·)‖L1(S2) = o(1);

(c) and the remainder satis�es the estimate

‖R∗‖L∞(X×S2) = o(1).

Proof. The estimates for J∗g and the L∞ estimate forK∗J∗g are obtained in the same manner

as in lemma 5.1. To get the L1 estimate for K∗J∗g, note that J∗g(x, θ) is only supported for x

withinO(h) distance of the line from x0 in direction θ2. ThereforeA
∗
2J

∗g(x, θ) is only supported
for x within O(h) distance of this line. Then for θ such that |θ − θ2| ≫ h,

K∗J∗g(x, θ) = T∗−1A∗
2J

∗g(x, θ) =

∫ |x−γ+(x,θ)|

0

e−τ (x,x+tθ)A∗
2J

∗ f (x+ tθ, θ)dt

and the integrand is supported only in an O(h) segment of the line. Therefore

K∗J∗g(x, θ) = O(h) (24)

for |θ − θ2| ≫ h, and the L1 estimate for K∗J∗g follows.

The estimate for R∗ now follows from lemma 3.2. �

Now let us consider the functional Hf,g obtained from the sources f and g described above.

Using lemmas 5.1 and 5.2 respectively, we can expand the functional as

H f ,g =

∫

S2
J f J∗gdθ +

∫

S2
KJ f J∗gdθ +

∫

S2
RJ∗gdθ +

∫

S2
J f K∗J∗gdθ +

∫

S2
KJ f K∗J∗gdθ

+

∫

S2
RK∗J∗gdθ +

∫

S2
J f R∗dθ +

∫

S2
KJ f R∗dθ +

∫

S2
RR∗dθ.

Assuming that |θ1 − θ2| ≫ h, the �rst term consists of two functions angularly supported on

disjoint subsets of S2, so it vanishes. Moreover, applying lemmas 5.1 and 5.2 shows that six of

the remaining terms are o(1) at best. What remains is

H f ,g =

∫

S2
KJ f J∗gdθ +

∫

S2
J f K∗J∗gdθ + o(1).

However the
∫

S2
J f K∗J∗gdθ term is not o(1). Assuming that |θ1 − θ2| ≫ h, we have from (24)

that K∗J∗g(x, θ) = O(h) for θ in the support of Jf. Therefore this term is O(h), and as a result

we are left with

H f ,g =

∫

S2
KJ f J∗gdθ + o(1).

Now

J∗g(x, θ) = e−τ (x,γ+(x,θ))h2δhθ2(θ)δ
h
x0
(γ+(x, θ)).

Therefore

H f ,g(x) = e−τ (x,γ+(x,θ2))h2δhx0 (γ+(x, θ2))KJ f (x, θ2)+ o(1).

For x such that γ+(x, θ2) is in the support of δ
h
x0
, we can write

11



Inverse Problems 36 (2020) 064004 F J Chung et al

H f ,g(x) = e−τ (x,γ+(x,θ2))KJ f (x, θ2)+ o(1). (25)

Meanwhile

J f (x, θ) = e−τ (x,γ−(x,θ))δhθ1(θ) exp(ix̂3 · γ−(x, θ)/h).

so integrating against the scattering kernel gives

A2J f (x, θ2) = e−τ (x,γ−(x,θ1)) exp(ix̂3 · γ−(x, θ1)/h)k(x, θ2, θ1)+ o(1).

Since θ1 is perpendicular to x̂3,

A2J f (x, θ2) = e−τ (x,γ−(x,θ1)) exp(ix3/h)k(x, θ2, θ1)+ o(1).

Now K = T−1A2, so

KJ f (x, θ2) =

∫ |x−γ−(x,θ2)|

0

e−τ (x,x−tθ2)A2J f (x− tθ2, θ2)dt + o(1).

Substituting this into (25) gives

H f ,g(x) = e−τ (x,γ+(x,θ2))

∫ |x−γ−(x,θ2)|

0

e−τ (x,x−tθ2)−τ (x−tθ2 ,γ−(x−tθ2 ,θ1))eîx3 ·(x−tθ2)/hk(x− tθ2, θ2, θ1)dt + o(1).

Since θ2 is also perpendicular to x̂3, we can rewrite exp(ix̂3 · (x− tθ2)/h) = exp(ix3/h). In fact,
since x is known, exp(ix3/h) is also known, and we may as well assume that this is 1. Then we

can write

H f ,g(x) = e−τ (x,γ+(x,θ2))

∫ |x−γ−(x,θ2)|

0

e−τ (x,x−tθ2)e−τ (x−tθ2,γ−(x−tθ2,θ1))k(x− tθ2, θ2, θ1)dt + o(1).

Combining the remaining exponentials, we obtain

H f ,g(x) =

∫ |x−γ−(x,θ2)|

0

e−τ (γ+(x,θ2),x−tθ2)−τ (x−tθ2 ,γ−(x−tθ2,θ1))k(x− tθ2, θ2, θ1)dt + o(1).

Up to the o(1) error, note that this is precisely equation (21), and has the same interpretation

in terms of �gure 2. As noted above, this result holds for x such that γ+(x, θ2) belongs to the

support of δhx0 . Note that if x satis�es this condition, then so does any translation of x in the θ2
direction. Thereforewe can use the above expression to writeHf,g(x− sθ2), for some parameter

s, as

∫ |x−γ−(x,θ2)|−s

0

e−τ (γ+(x,θ2),x−(t+s)θ2)−τ (x−(t+s)θ2 ,γ−(x−tθ2,θ1))k(x− (t + s)θ2, θ2, θ1)dt + o(1).

Changing variables, we get

∫ |x−γ−(x,θ2)|

s

e−τ (γ+(x,θ2),x−tθ2)−τ (x−tθ2,γ−(x−tθ2,θ1))k(x− tθ2, θ2, θ1)dt + o(1).

12
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Figure 2. Hf,g(x) represents the light from the plane source δP,θ1x1, scattered and
frequency-shifted along the line from γ−(x, θ2) to x and then observed at (x2, θ2).

If we take a difference quotient with respect to s, we �nd that

H f ,g(x)− H f ,g(x− sθ2)

s
=

1

s

∫ s

0

e−τ (γ+(x,θ2),x−tθ2)−τ (x−tθ2 ,γ−(x−tθ2 ,θ1))k(x− tθ2, θ2, θ1)dt +
oh(1)

s
.

Here we have rewritten the o(1) term as oh(1) to emphasize that this term goes to zero as h→ 0.

If we take 0 < h ≪ s≪ 1 small, we obtain

θ2 · ∇H f ,g(x) = e−τ (γ+(x,θ2),x)−τ (x,γ− (x,θ1))k(x, θ2, θ1)+ os(1), (26)

where the os(1) term goes to zero as s→ 0. This is the same quantity we recovered in (19)

in the point source case, and the rest of the argument proceeds exactly as in section 4.1. It is

useful to introduce the notation

F(x, θ1, θ2) = e−τ (γ+(x,θ2),x)−τ (x,γ− (x,θ1))k(x, θ2, θ1)

= θ2 · ∇H
f
θ1
h

,g
θ2
h

(x)+ o(1).

to express equation (26). Then explicitly, the discussion at the end of section 4.1 implies

that

τ (x, γ−(x, θ1)) =
1

2
(log F(x, θ1,−θ1)− log F(x,−θ1, θ1)+ log A00

σ,k( f )(γ+(x, θ1))),

(27)

and

k(x, θ2, θ1) = F(x, θ1, θ2)e
+τ (γ+(x,θ2),x)+τ (x,γ− (x,θ1)). (28)

Note that if θ1 is �xed, then for a single boundary source parametrized by a choice of x̂3, we

can, by changing v, obtain k(x, θ2, θ1) for all x and all θ2 perpendicular to x̂3. By rotating the

choice of x̂3, we can then obtain k(x, θ2, θ1) for all x and θ2. Then (7) guarantees that we can

recover all k(x, θ1, θ2). This �nishes the proof of theorem 1.1.

13
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5.2. Stability estimates

Equations (27) and (28), combined with (26), immediately give us the following stability

estimates.

Theorem 5.3. Suppose σ1, k1, and σ2, k2 are two sets of coef�cients giving rise to two

functionals H1 and H2. Then

‖σ1 − σ2‖C(X) 6
1

2
‖ log |∇H1| − log |∇H2|‖C1(X)

and

‖k1 − k2‖C(X×S2×S2) 6 sup
x,y∈X

exp(2τ (x, y))‖H1 − H2‖C1(X).
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