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Abstract

We consider the problem of reconstructing the optical properties of a highly-
scattering medium from coherent acousto-optic measurements. A method to
solve the problem is proposed that is based on an inverse problem with internal
data for a system of radiative transport equations.
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1. Introduction

The acousto-optic effect refers to the modulation of the optical properties of a scattering
medium by an acoustic wave. Acousto-optic imaging exploits this effect to combine the spec-
troscopic sensitivity of optical methods with the spatial resolution of ultrasound imaging. There
is also a mathematical advantage. The inverse problem of acousto-optic imaging is well-posed,
leading to better reconstructions than can be obtained with solely acoustic or optical imag-
ing. Several mathematical models for acousto-optic imaging have been studied [1-8, 11]. The
mathematical details of the acousto-optic inverse problem vary considerably, depending on the
response of the medium to the probing optical and acoustic fields. In this paper we investigate
the regime of coherent scattering, where the interaction of the medium with acoustic waves
leads to a detectable frequency shift in the scattered light [13]. In this setting, we study the
corresponding inverse problem within the framework of radiative transport theory. A related
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question for diffuse light was examined in [10] and the inverse problem for incoherent light
was investigated in [7, 11].

Consider a bounded domain X C R?® with a smooth boundary. The specific intensity at the
source frequency u(x, 6) is the intensity of light at the point x € X in the direction 6 € S°.
Following [13], we model light propagation by the radiative transport equation (RTE)

0 - Vu(x, 0) + o(x)u(x, ) = / k(x, 6,6 u(x,0)dd’ on X x S, (D)
S2

together with the boundary condition
ulp. = f
on the incoming boundary I'_, defined by
Iy = {(x,0) € 0X x §%: £6 - v(x) > 0}.

Here o and k denote the attenuation and scattering coefficients of the medium, respectively.
For convenience, we will sometimes write the RTE as

0-Vu = Au, 2)

where the operator A is defined by (1).

We now recall the theory of the coherent acousto-optic effect with multiply-scattered light
developed in [13]. Suppose that monochromatic light is incident on a scattering medium in
which a time-harmonic acoustic plane wave also propagates. The acoustic wave modulates the
dielectric permittivity of the medium, resulting in the formation of frequency-shifted optical
fields at harmonics of the acoustic frequency. It can then be seen that the specific intensity of
the field and its harmonics obey radiative transport equations of the form

0 - Vugy = Augo,
1
0 - Vug = Augy + € cos(Q - X)uoo, (3)

0 - Vull :Au11 + € COS(Q 'X)le()l,

with boundary conditions ug|r_ = f and uoi|r_ = uyi|r_ = 0. Here ug and u;; are the spe-
cific intensities of the incident and frequency-shifted light, respectively and Q is the wave
vector of the acoustic wave. The quantity uy; is a measure of the correlation of the incident
and frequency-shifted light. In addition, the parameter €, which governs the strength of the
acousto-optic effect, is assumed to be known.

We consider the following inverse problem: given boundary measurements of u, ug; and
uy; for various fand Q, reconstruct o and k. Note that up; is singly modulated by the acoustic
wave, while u;; is doubly modulated. As a consequence, boundary measurements of 1, (which
is first order in the small parameter €) are used to reconstruct ¢ and k.

It will prove useful to impose the following a priori conditions on the coefficients o and k.
Regularity. The coefficients

ceCX) and ke CX xS*>x58% are nonnegative. 4)
Absorption. Scattering does not generate light; in other words there exists ¢ > 0 such that

inf(oc — p) > c, (5)
xeX
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where
o) = ’ [ .00 ®)
5?2 L9(82)
Reciprocity. Scattering is identical for incoming and outgoing light:
k(x,0,0") = k(x, —0', —0). (7)

Making use of the above conditions on ¢ and k, and imposing an L™ boundary source f, the
system of equations (3) has unique L™ solutions ug, g1, and u;; in X X S% [11, 12] (see also
proposition 15 below). Therefore for each pair o, k satisfying the above conditions, we will
define the boundary value map A2, : R? x L('_) — L>*(I'y) by

01
Ao (O, f) = uorr .
We are now ready to state the main result of this paper.

Theorem 1.1. Given o and k satisfying (4), (5) and (7), the map (o,k) — Ag?k is injective.
Moreover, there exists f € L (I'_) such that Agfk(Q, f) suffices to recover o. Additionally, there
is a one-parameter subset of L>°(I'_) such that if we restrict the domain of A(O,Tk to this subset,

the map from (o, k) to the restricted map A%, is still injective.

We emphasize that in the above result only one boundary source is needed to recover o,
and only a one-parameter set of sources is required to reconstruct k. Three remarks should be
made here. First, the proof of theorem 1.1 is constructive—we will provide an explicit method
of reconstructing ¢ and k from Ag}k. Second, this construction leads to stability estimates: see
proposition 2.1 and theorem 5.3. Finally, the fact that we can rely on a one-parameter set of
sources is an advantage of acousto-optic tomography over inverse transport [9].

The proof of theorem 1.1 can be summarized as follows. We use the measurements of uy;,
together with an integration by parts, to obtain an internal functional (section 2). Then we
consider the forward problem for the RTE (section 3), and use the form of the solutions to
analyze the internal functional. An informal description of the method of proof for theorem 1.1
is given in section 4, and in section 5 we present the full proof, along with stability estimates.

2. Internal functional

We begin by deriving the internal functional. Suppose u,; is as above, and v(x, f) solves the
adjoint equation

—0 - Vv = Av, (8)

with the natural boundary condition v|r, = g specified by us. (Note that solutions to the adjoint
RTE (8) are precisely solutions to the regular RTE (2) under the change of variables 6 — —6.)
Integrating by parts,

/6‘ - Vugvdx = —/um@ - Vudx + / uo1v 0 - ndx,
X X X

SO

/(Au01 + € cos(Q - X)ugy)vdx = /umAvdx + / uog1v 0 - ndx.
X X X

3
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If we integrate in the 6 variables also, then the reciprocity assumption (7) guarantees that A is
self adjoint, and so

//ecos(Q-x)uoovdex:/ /u01v9~nd9dx.
XJS§? 0XJ 2

Since ug;|r_ = 0, the right-hand side reduces to an integral over I, so

// € cos(Q - x)ugovdddx = / up1g 0 - ndédx. )
XJs? ry

Here the right side of the above can be measured, so the left-hand side is also known, which
means that we can recover the Fourier transform of the quantity

H(x):/uoovdé‘,
S2

and we assume that in practice we can vary Q to recover H. The inverse problem is now to
reconstruct o and k from knowledge of H. Since the functional we measure depends on the
boundary values we choose for ugy and v, we can write

H(x) = Hy4(x) = / upovdo, (10)
SZ

where f and g are understood to be the boundary values of uyy and v respectively.
The recovery of H comes with the following stability estimate.

Proposition 2.1. IfH| and H; are functionals obtained from the same initial data (f, g), but
separate sets of coefficients o1,k and o,, k,, we have the stability estimate

[y — Hal|e S gl )| AD 4, (@ £) = A 1, Qs Dllpi@ssr, - (11D

Proof. Note that the quantity on the left side of (9) is the Fourier transform of H, and the
uoi|r,, that appears on the right side can be rewritten as Ag}k(Q, ). Therefore (9) says that the
Fourier transform of H; — H, is given by

FHy — H)(Q) = /F (A (0. f) — A%, (0. F)gf - ndbd,
+

and the stability estimate follows easily. 0

3. Solutions of the RTE

To make further progress, we take advantage of the collision expansion for solutions of the
RTE. First we fix some terminology. For x € R”, let X denote the unit vector in the direction of
x, and for x,y € X, let

[x=y]
T(x,y) = /O o(x — s(x — y))ds.

Here 7(x,y) is the optical distance from x to y in the presence of the absorption coefficient o,
without scattering. Note that 7(x,y) = 7(y, x). Define y4 : X X R by setting v+ (x, 6) to
be the (first) point in 9X obtained by travelling from x in the +6 direction; we think of this as the

4
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projection of x onto 90X in the direction £6. Let J be the operator that solves the non-scattering
RTE

0-Vu=—ou,
ulp. = f,
and write J explicitly in terms of 7 and y_ as
Jf@.0) = e 7D f(y_(x,0).0). (12)
Similarly, if we define T~! to be the operator which solves the non-scattering RTE
0-Vu+ou=S3_,
ulp_ =0,

then explicitly
[r—7-(x.0)]
T7'S(x,0) = / e T g(x — 16, H)d. (13)
0
Finally, define A, to be the scattering operator
Arw = / k(x, 0, 0Nw(x, 0)ded',
S2

and
Kw = T71A2w (14)

The main result of this section is the Neumann series solution of the RTE.

Proposition 3.1. Suppose o and k satisfy the conditions in section 1. Then there exists
0 < C < 1 such that

1K (| oo 52y 10052y < C

and if u solves 0 - Vu = Au with the boundary condition u|r_ = f, for some f € L>*(I'_), then
u takes the form

u=1+K+K+--)Jf. (15)

See [5, 9, 12] for proofs of this result. The expansion (15) is the collision expansion of u. It
is useful because K is a smoothing operator, so each subsequent term of the expansion is less
singular. The first term Jf corresponds to light propagation in the absence of scattering, and is
called the ballistic term. The subsequent terms K" Jf correspond to light that has been scattered
m times, and thus KJfis referred to as the single-scattering term, KJf as the double-scattering
term, and so on.

Note that analogous results also hold for the adjoint equation (8), with appropriate corre-
sponding operators K*, J*, etc obtained via the change of variables 6 — —6.

The following estimates, taken from [11], will also prove useful.

Lemma 3.2. Forallx € X,

[ A2(w)x, ) o2y < Crllw@, )| i) (16)

5
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Moreover

HTfleLOC(XxSZ) < lwl] proxs2)- (17)

4. Point-plane inversion

The main difficulty in recovering o and k is the nonlinearity of the functional Hy,. The basic
idea for countering this difficulty is to use proposition 3.1 with carefully chosen boundary
sources f and g to ensure that only the leading order terms contribute meaningfully to Hy,.
This idea is similar to that used in [11], but with the important difference that in our case,
the principal term in the expansion carries no information. This point is best understood by
examining what happens in the absence of scattering. In that case, the operator K vanishes and
the solutions to the RTE are given solely by the ballistic term. However, now the quantity ugyv
satisfies the equation

9 . V(Mo(ﬂ)) = 0,

so the solution does not vary as we move into the domain from the boundary. It follows that the
leading order term in the collision expansion vanishes and we must turn to the single-scattering
term. In this section we give an informal discussion of the above, first by considering each point
in the domain one by one, and then foliating the domain with planes and considering each plane
one at a time. In the following section, we describe how this process can be extended to consider
the entire domain at once, and at the same time, make the discussion fully rigorous.

4.1. Point sources

We begin by considering one point at a time. We let x € X and consider point sources on
the boundary in the direction 6. To do this, define for a pair (xg,0p) € OX x $? the delta
distribution dy, 4, so that

/(lax Széxo,ggf = f(-x07 90)

for any f € C*(9X x §?). Now consider a solution u to the RTE with boundary data given by
such a delta function. (Making this idea rigorous requires some redefinition of the notion of a
solution to encompass distributions, which we do not address here. The discussion in the next
section will contain a rigorous analysis in terms of approximations to delta distributions.) By
proposition 3.1,

u=Jb 0 + KJSxy 0, + K*JSxppp + - - (18)

Here J4,, 4, is a distribution supported on the codimension four subset of the five dimensional
set X x S given by

{(x,6p) :x =x0 + chy for some ¢ € R}

The operator K integrates in one spatial dimension and two angular dimensions, so that KJdy, 4,
is supported on a codimension one subset, and all subsequent terms are less singular. Now
let x € X, and 6,6, € §* such that 6, # 6,. We set x; = v_(x,6,) and x, = v4(x,07) (see

6
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(;l’l " 91)

Figure 1. H,(x) represents light from the point source (x1, ¢;), which is scattered and
frequency shifted from x and observed at (x,, 6,).

figure 1). We define corresponding boundary sources f = dy, 4, and g = 9, ¢,, and consider
the resulting functional

Hf,g(x):/Moo(x,é')v(x,é‘)dé‘.
S2

The integral identity (9) implies that the above corresponds to boundary measurements of
uy; at x, in the direction of #,, where the acoustic wave has been focused to concentrate its
support at x. Thus we expect that the leading term in the internal functional will represent
light traveling along a ray from x; to x, scattering once at x in the direction 6,, and exit-
ing at x,. Indeed, this is what we obtain when we expand ugy and v in terms of the collision
expansion (18). Since 0, # 0,, the leading term JfJ*g vanishes, and so the dominant terms of
Hyg are

/ (USKT g+ KIfTg)dd.
N

Each of these terms represents a distribution supported on a codimension one set multiplied by
one supported on a codimension four set. Expanding JfK*J*g at x using (12) and (14) gives

/ ‘,fK*J*gde = k(-x7 _919 _92) exp(_T(-x9 -xl) - T(-x7 xz))éx(x)v
S2
where d,(x) reflects the size of the distribution at x. Similarly,
/ K‘If‘]*gde = k(-x7 929 91) exp(_T(-x7 -xl) - T(-x9 xz))éx(x)'
S2

By (7), these terms are identical, so to leading order and ignoring the J,(x) factor, we obtain
Hy o(x) =~ 2k(x, 02, 01) exp(—7(x, x1) — 7(x, x2)). 19)

This formula for Hy, is precisely what is expected from the above discussion and figure 1.
Suppose 7(x, y) is known for all pairs (x, y), then k(x, 6>, 8;) can be obtained directly from
(19). If not, then we can set x; = v_(x, #;) and x, = y4(x, ), and measure two functionals
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H, = H;

,\'1,61 véxlﬂl

H, = H;

', —01 »6x2,—€1

(%) >~ 2k(x, 01, —0;) exp(—27(x, x1))
() = 2k(x, 01, —0) exp(—27(x, x2)),
and the additional quantity

Hjz = exp(—7(x1,x2)),

which can be obtained from the albedo map Ag‘fk for ugo, applied to the point source dy, 9,. By
the additivity of 7, we have 7(x},x) = 7(x, x1) + 7(x, x2) and thus we get

1
T(x,x1) = E(log H, —log H, + log H3).

Repeating this procedure gives any desired value of 7(x, y). Now, differentiating 7 gives o(x),
so we can recover both o and k from the functional H. On the other hand, using the methods
described above means that in order to obtain ¢ and k, we need to consider all possible point
sources, which means we need four dimensions of sources. We can improve this slightly by
making use of plane sources.

4.2. Plane sources

Let 0, € S* and fix a plane P parallel to 6, which intersects the set {x € 9X: (x,0p) € T_}.
Let 0p g, be a distribution supported on the set P’ = {(x,0) € I'_:x € P,0 = 6}, so that

/ Spof = / Fx,60),
X xS? P

forallf € C*(9X x S?). That s, dp.g, is a distribution supported on a codimension three subset
of the four dimensional set 9X x §2. If we view dpg, as a boundary source for the RTE and
consider the collision expansion

u=J0pg, + KIopg, + K*Jbpgy + -+, (20)

the leading term Jdpy, is a distribution supported on a codimension 3 subset of the five-
dimensional domain X x S%.

Since K integrates along one spatial dimension and two angular dimensions, KJopg, is
supported everywhere. However, it is not actually a function since

KJSpgy(x,0) = T~ ' AsJ6p g, (x, 0)

for x € P and @ parallel to P. The spatial integral in 7! is along a line fully contained in P, so
it does not reduce the singularity of the distribution A,J0pg,(x, ). Therefore KJopg,(x, 0) can
be viewed as a function supported on X x S plus a distribution supported on the codimension
one set P x S2. Now choosing 6, € $%and P parallel to 61, pick (x;, #>) € I' so that x; lies in
P and 0, is parallel to P, with §; # 6,. We define corresponding boundary sources f = dpg,
and g = 0y, ,, and consider the resulting functional Hy,(x) at any point x on the line through
X, in the direction —#,. As in the point source case, the ballistic terms vanish. By the above
discussion, what remains is the term

KJ(SP,@] (-x, 9)‘,*6)(2,(92 s

which represents a codimension four distribution multiplied by a codimension one distribution.
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Expanding the above using (12) and (14) gives
=7 (x.02)]
Hyg(x) ~ / 677(7+(x,92)Vrftez)77(x7z92,7,(x7z92,91))k(x — 105, 05, 0,)d15,(x) 1)
0

Ignoring the J,(x) factor and taking the directional derivative in the direction ,, we get
0> - VH o(x) = k(x, 02, 01) exp(—7(x, x1) — 7(x, x2)).

which is just (19), and so the remainder of the reconstruction proceeds as in the point source
case. Note that for each plane source dp g, , we can, by varying x, and ¢, recover a two dimen-
sional collection of k(x, 8, 6,). Therefore only two dimensions of sources are needed to recover
all of k and o. In factit’s possible to do better: we can restrict ourselves to a single dimension of
sources, if we use an angularly singular source such as dg, , and multiply by a rapidly oscillating
function. This brings us to the proof of theorem 1.1.

5. Reconstruction and stability

5.1. Proof of theorem 1.1
We begin by defining the following L approximation to the delta function on S*:

5 (6) = W% if]0 — 6, < h,
! 0 otherwise.

Following the discussion at the end of section 4, we need a function that oscillates rapidly in
the spatial directions perpendicular to 6;. To do this, let §; € $* and 63 be perpendicular to ;.
Pick coordinates for x such that #; = x; and 63 = x3. Now consider the source

176, 0) = 5}, (0) explixs /h). (22)

This complex source is not physical, but it can be recreated formally by measuring from its
real and imaginary parts. Using the collision expansion, we claim the following qualitative
properties for the solution of the RTE with boundary source f.

Lemma5.1. Suppose f = fh01 is as defined in (22), and u is the solution to the RTE (2) with
boundary condition u|lr_ = f. Thenu = Jf + KJf + R, where

(a) The ballistic term Jf satisfies the estimates

H‘IfHL‘x(XxSQ) = O(hfz) and for any fixed x,  ||Jf(x, ')HLl(SZ) = O(1);
(b) The single scattering term KJg satisfies the estimates

|KIf || pooxxs2y = O(1)  and for any fixed x,  ||KJ f(x, )| 1152y = o(1);
(¢) and the remainder satisfies the estimate

HR||L°°(X><S2) = o(1).

Proof. The estimates for Jf follow directly from the definitions of J and f. The L* norm of
KJf follows from lemma 3.2 and the L' estimate for Jf. Now
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Jf(x,0) = e 75 (0) exp(its - v-(x, 0)/h).

Therefore

A f(x,0) = / k(x, 0, 0)e =S INGh (0) explis - - (x, 0)/h)de.
S2

Since 621 is supported only for 6 in a small neighbourhood of 6}, the Lebesgue differentiation
theorem guarantees that for sufficiently small /2, we obtain

ApJf(x,0) = & T Ck(x, 0, 61) exp(its - - (x, 61)/h) + o(D).
Since 6, is perpendicular to X3, we find that

A f(x,0) = e T -0 k(x 6, 0)) exp(ixs /h) + o(1).

Now we can write KJf as
Pe—v—(x.0)|
]H&U@®:/ e T A T F(x — 16, 0)dr.
0

If 0-% > h, then AyJfix — 10, 60) is highly oscillatory as a function of #, and so by the
Riemann-Lebesgue lemma,
KT f(x,0)] = o(1).
Then it follows that
KT f (x, ')HLl(SZ) = o(1),
and the estimate for R follows from lemma 3.2. 0
We now examine the functional H s defined by f:l and a boundary function gzz which
Jh *oh

approximates a point source. To define gzz, we begin by first defining the approximation to the
delta function on the boundary. For xy € 0X, define

h? if|x — xo| < h,
6)}:0 (x) = |x o |
0 otherwise.

Choose 0, € §? 50 6, is perpendicular to X3, and let
87 (x,0) = B8} (0)5" (x). (23)

Lemma 5.2. Ler g= gzz be defined by (23), and let v solve the adjoint RTE (8) with
boundary condition v|r, = g|r, . Then

v=J"'¢g+KJ'g+R",
where
(a) The ballistic term J* g satisfies the estimates

1778l oo xs?) = O(h™®) and for any fixed x, |J"g(x, M2y = O(1);

10
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(b) The single scattering term K*J*g satisfies the estimates
|K* T gl poxxs2) = O(1)  and for any fixed x,  ||K*J"g(x, )|/ 1152y = o(1);
(c) and the remainder satisfies the estimate

HR*||L°°(X><S2) = o(1).

Proof. The estimates for J*g and the L™ estimate for K*J* g are obtained in the same manner
as in lemma 5.1. To get the L' estimate for K*J*g, note that J*g(x, §) is only supported for x
within O(h) distance of the line from xj in direction 6. Therefore A5J*g(x, 6) is only supported
for x within O(h) distance of this line. Then for 6 such that |6 — 6,| > h,

[x—=y(x.0)]
K*J*g(x,0) = T* A3 g(x,0) = / e DAL T f(x + 10, O)dr
0

and the integrand is supported only in an O(h) segment of the line. Therefore
K*J*g(x,0) = O(h) (24)

for |0 — 02| > h, and the L' estimate for K*J*g follows.
The estimate for R* now follows from lemma 3.2. ]

Now let us consider the functional Hy, obtained from the sources f and g described above.
Using lemmas 5.1 and 5.2 respectively, we can expand the functional as

Hy, =/ Jf]*gd@—i—/KJfJ*gd9+/RJ*gd9+/JfK*J*gd@—i—/KJfK*J*gd@
' 52 52 52 52 2

+/RK*J*gd9+ /JfR*d9+/KJfR*d9+/RR*d9.
52 52 §2 s2

Assuming that |§; — 65| > h, the first term consists of two functions angularly supported on
disjoint subsets of S, so it vanishes. Moreover, applying lemmas 5.1 and 5.2 shows that six of
the remaining terms are o(1) at best. What remains is

Hyg = / KJfJ"gdd + / JFK*J*gdf + o(1).
s2 2

However the fSZJfK*J*gdH term is not o(1). Assuming that |#; — 6,| > h, we have from (24)
that K*J*g(x, #) = O(h) for € in the support of Jf. Therefore this term is O(h), and as a result
we are left with

Hypo = /SZKJfJ*gdG + o(1).
Now

I g(x, 0) = e T EDR G (0)57 (11 (x, 0)).
Therefore

Hyo(x) = e "RG0 (v, (x, 02))KT £ (x,6) + o(1).
For x such that v (x, #,) is in the support of 6)}[’0, we can write

1
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Hyo(x) = e "+ SR £(x, 05) + o(1). (25)
Meanwhile

Tf(x,0) = e 7@ S50 (6) explits - v (x, 0)/h).
so integrating against the scattering kernel gives

AJ f(x,60y) = e 70O exp(iny - y_(x, 01)/h)k(x, 62, 61) + o(1).
Since 6, is perpendicular to X3,

AdJ f(x,02) = e T C0) exp(iny /)k(x, 02, 01) + o(1).

Now K = T"'A,, so
[x—y—(x,02)|
KJf(x,0,) = / e T AL T £ (x — 165, 05)dt + o(1).

0

Substituting this into (25) gives
[x=-(x.02)| .
Hy g(x) = e 700+ 0:02) / e TR 0) Tl (et 00) -0 b 10, 0, 03dr + o(1).
0

Since 6, is also perpendicular to X3, we can rewrite exp(ixs - (x — 16»)/h) = exp(ixs/h). In fact,
since x is known, exp(ixs /h) is also known, and we may as well assume that this is 1. Then we
can write

[x=y—(x.02)]
Hy (x) = e*T(xﬂ'Jr(xﬂz))/ e*T(xJ*ﬁz)e*T(x*l‘)zﬁ—(x*lezﬁl))k(x — 10,05, 0,)dt + o(1).
. 0
Combining the remaining exponentials, we obtain
[x—7—(x.02)]
Hpo(x) = / eff(“u(x,9z)x7t9z)ff(xft92,"/—(xfl92,91))k(x — 10,05, 0,)dt + o(1).
. 0

Up to the o(1) error, note that this is precisely equation (21), and has the same interpretation
in terms of figure 2. As noted above, this result holds for x such that v (x, 6,) belongs to the
support of 6)120. Note that if x satisfies this condition, then so does any translation of x in the 6,
direction. Therefore we can use the above expression to write Hyg(x — s6,), for some parameter
s, as

ey (o) s
/ eff(“u(x,92),xf(t+S)9z)fT(xf(t+s)9zy"/—(X*l92,91))k(x — (t + $)05, 05, 0,)dt + o(1).
0
Changing variables, we get

[x—7—(x,02)]
/ efr(~/+(x,92),x7192)7T(x7102,~/_(x7192,91))k(x — 105, 0,,0)dt + o(1).
s
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Figure 2. Hy,(x) represents the light from the plane source 613,91)61, scattered and
frequency-shifted along the line from v_(x, #,) to x and then observed at (xz, 6,).

If we take a difference quotient with respect to s, we find that

Hf»g(x) B vag(x — s6h) _ l/s e—'r('\,ur(x,()z),xftez)fT(xft(Jz,'y,(xft(ﬂz,(ﬂl))k(x — 165, 0,, Gl)dt + on(1) .
s s Jo s

Here we have rewritten the o(1) term as o;,(1) to emphasize that this term goes to zero as 7 — 0.
If we take 0 < h < s < 1 small, we obtain

6 - VH; (x) = ¢ O+ W0 T00- 00k, 6, 0)) + 0,(1), (26)

where the o,4(1) term goes to zero as s — 0. This is the same quantity we recovered in (19)
in the point source case, and the rest of the argument proceeds exactly as in section 4.1. It is
useful to introduce the notation

F(x,601,0,) = e 70+ R0 000k, 9, 6))
=0,-VH o, 0,(x)+o(1).
Sy o8y

to express equation (26). Then explicitly, the discussion at the end of section 4.1 implies
that

1
7(x, - (6, 01)) = - (log Fx, 61, —01) — log F(x, =01, 61) + log A (f)(y+ (x. 01)).
27)

and
k(x,0,,0,) = F(x, 0, 92)e+7("/+(x»92),X)+7'(x,”/—(X»91))' (28)

Note that if 0, is fixed, then for a single boundary source parametrized by a choice of X3, we
can, by changing v, obtain k(x, 6, 6;) for all x and all 6, perpendicular to X3. By rotating the
choice of X3, we can then obtain k(x, 6,, 6;) for all x and #,. Then (7) guarantees that we can
recover all k(x, 01, 6). This finishes the proof of theorem 1.1.

13
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5.2. Stability estimates

Equations (27) and (28), combined with (26), immediately give us the following stability
estimates.

Theorem 5.3. Suppose o1,k, and o5, ky are two sets of coefficients giving rise to two
functionals H, and H,. Then

1
lor — oallce) < EH log [VH;| — log [VH: || c1x,

and

k1 — kall coresaxs?) < SUI)’( exp(27(x, )||Hy — Hal|¢1(x)-
X,yE
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