

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. COMPUT. c\bigcirc 2020 Society for Industrial and Applied Mathematics
Vol. 49, No. 3, pp. 497--539

DISTRIBUTED (\Delta + 1)-COLORING VIA ULTRAFAST GRAPH
SHATTERING\ast

YI-JUN CHANG\dagger , WENZHENG LI\ddagger , AND SETH PETTIE\S

Abstract. Vertex coloring is one of the classic symmetry breaking problems studied in distrib-
uted computing. In this paper, we present a new algorithm for (\Delta +1)-list coloring in the randomized
\sansL \sansO \sansC \sansA \sansL model running in O(\sansD \sanse \sanst d(poly logn)) = O(poly(log logn)) time, where \sansD \sanse \sanst d(n\prime) is the de-
terministic complexity of (deg+1)-list coloring on n\prime -vertex graphs. (In this problem, each v has a
palette of size deg(v)+1.) This improves upon a previous randomized algorithm of Harris, Schneider,
and Su [J. ACM, 65 (2018), 19] with complexity O(

\surd
log\Delta +log logn+\sansD \sanse \sanst d(poly logn)) = O(

\surd
logn).

Unless \Delta is small, it is also faster than the best known deterministic algorithm of Fraigniaud, Hein-
rich, and Kosowski [Proceedings of the 57th Annual IEEE Symposium on Foundations of Com-
puter Science (FOCS), 2016] and Barenboim, Elkin, and Goldenberg [Proceedings of the 38th An-
nual ACM Symposium on Principles of Distributed Computing (PODC), 2018], with complexity
O(

\surd
\Delta log\Delta log\ast \Delta + log\ast n). Our algorithm's running time is syntactically very similar to the

\Omega (\sansD \sanse \sanst (poly logn)) lower bound of Chang, Kopelowitz, and Pettie [SIAM J. Comput., 48 (2019),
pp. 122--143], where \sansD \sanse \sanst (n\prime) is the deterministic complexity of (\Delta + 1)-list coloring on n\prime -vertex
graphs. Although distributed coloring has been actively investigated for 30 years, the best determin-
istic algorithms for (deg+1)- and (\Delta +1)-list coloring (that depend on n\prime but not \Delta) use a black-box
application of network decompositions. The recent deterministic network decomposition algorithm
of Rozho\v n and Ghaffari [Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of
Computing (STOC), 2020] implies that \sansD \sanse \sanst d(n\prime) and \sansD \sanse \sanst (n\prime) are both poly(logn\prime). Whether they
are asymptotically equal is an open problem.

Key words. distributed algorithm, local model, graph coloring

AMS subject classifications. 05C85, 68W15

DOI. 10.1137/19M1249527

1. Introduction. Much of what we know about the \sansL \sansO \sansC \sansA \sansL model has emerged
from studying the complexity of four canonical symmetry breaking problems and their
variants: maximal independent set (MIS), (\Delta +1)-vertex coloring, maximal matching,
and (2\Delta - 1)-edge coloring. The palette sizes ``\Delta + 1"" and ``2\Delta - 1"" are minimal to
still admit a greedy sequential solution; here \Delta is the maximum degree of any vertex.

Early work [38, 42, 5, 44, 40, 1] showed that all the problems are reducible to
MIS, all four problems require \Omega (log\ast n) time, even with randomization, all can be
solved in O(poly(\Delta)+log\ast n) time (optimal for \Delta = O(1)), and all can be solved using
network decompositions [5, 43]. A recent breakthrough in network decompositions by
Rozho\v n and Ghaffari [48] shows that all four problems can be solved in poly(log n)
time deterministically. Until recently, it was actually consistent with known results
that these problems had exactly the same complexity.

Kuhn, Moscibroda, and Wattenhofer [36] proved that the ``independent set"" prob-

lems (MIS and maximal matching) require \Omega
\bigl(
min

\bigl\{
log\Delta

log log\Delta ,
\sqrt{}

logn
log logn

\bigr\} \bigr)
time, with

\ast Received by the editors March 12, 2019; accepted for publication (in revised form) March 2, 2020;
published electronically May 19, 2020. A preliminary version of this paper appeared in Proceedings
of the 50th Annual ACM Symposium on Theory of Computing (STOC), 2018, pp. 445--456.

https://doi.org/10.1137/19M1249527
Funding: This work was funded by NSF grants CCF-1514383, CCF-1637546, and CCF-1815316.

\dagger Institute for Theoretical Studies, ETH Z\"urich, Z\"urich, 8092, Switzerland (yi-jun.chang@eth-
its.ethz.ch).

\ddagger Computer Science Department, Stanford University, Stanford, CA 94305 (wzli@stanford.edu).
\S EECS, University of Michigan, Ann Arbor, MI 48109 (pettie@umich.edu).

497

D
ow

nl
oa

de
d

08
/2

4/
20

 to
 1

41
.2

11
.4

.2
24

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

https://doi.org/10.1137/19M1249527
mailto:yi-jun.chang@eth-its.ethz.ch
mailto:yi-jun.chang@eth-its.ethz.ch
mailto:wzli@stanford.edu
mailto:pettie@umich.edu

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

498 YI-JUN CHANG, WENZHENG LI, AND SETH PETTIE

or without randomization, via a reduction from O(1)-approximate minimum vertex
cover. This lower bound provably separated MIS/maximal matching from simpler
symmetry breaking problems like O(\Delta 2)-coloring, which can be solved in O(log\ast n)
time [38]. Very recently, Balliu et al. [6] proved that maximal matching and MIS
require \Omega

\bigl(
min

\bigl\{
\Delta , logn

log logn

\bigr\} \bigr)
time deterministically, which strictly improves on the

Kuhn--Moscibroda--Wattenhofer (KMW) bounds, and that randomized algorithms for
maximal matching and MIS require \Omega

\bigl(
min

\bigl\{
\Delta , log logn

log log logn

\bigr\} \bigr)
time, which is stronger

than KMW when \Delta < log n but weaker when \Delta \gg log n.
The KMW lower bounds [36] cannot be extended to the canonical coloring prob-

lems, or to variants of MIS like (2, t)-ruling sets, for t \geq 2 [14, 13, 28]. Elkin, Pettie,
and Su [25] proved that (2\Delta - 1)-list edge coloring can be solved by a randomized
algorithm in O(log log n + \sansD \sanse \sanst (poly log n)) = poly(log log n) time, which shows that

neither the \Omega
\bigl(

log\Delta
log log\Delta

\bigr)
nor the \Omega

\bigl(\sqrt{}
logn

log logn

\bigr)
KMW lower bound applies to this prob-

lem. Here \sansD \sanse \sanst (n\prime) represents the deterministic complexity of the problem in question
on n\prime -vertex graphs. Improving on [13, 49], Harris, Schneider, and Su [32] proved a
similar separation for (\Delta +1)-vertex coloring. Their randomized algorithm solves the
problem in

O(
\sqrt{}

log\Delta + log log n+ \sansD \sanse \sanst d(poly log n)) = O(
\sqrt{}
log n)

time, where \sansD \sanse \sanst d is the complexity of (deg+1)-list coloring.
The ``\sansD \sanse \sanst (poly log n)""-type terms in the running times of [25, 32] are a conse-

quence of the graph shattering technique applied to distributed symmetry breaking.
Barenboim et al. [13] showed that all the classic symmetry breaking problems could
be reduced in O(log\Delta) or O(log2 \Delta) time, w.h.p., to a situation where we have in-
dependent subproblems of size poly log(n), which can then be solved with the best
available deterministic algorithm.1 Later, Chang, Kopelowitz, and Pettie [20] gave a
simple proof illustrating why graph shattering is inherent to the \sansL \sansO \sansC \sansA \sansL model: the
randomized complexity of any locally checkable problem2 is at least its deterministic
complexity on

\surd
log n-size instances.

The Chang--Kopelowitz--Pettie (CKP) lower bound explains why the state-of-
the-art randomized symmetry breaking algorithms have such strange stated running
times: they all depend on a randomized graph shattering routine (Rand.) and a
deterministic (Det.) algorithm.

\bullet O(log\Delta + poly(log log n)) for MIS (Rand. due to [28] and Det. to [48]),
\bullet O(

\surd
log\Delta + poly(log log n)) for (\Delta + 1)-vertex coloring (Rand. due to [32]

and Det. to [48]),
\bullet O(log\Delta + (log logn)3) for maximal matching (Rand. due to [13] and Det.
to [26]),

\bullet O((log logn)3+o(1)) for (2\Delta - 1)-edge coloring (Rand. due to [25] and Det.
to [31]).

In each, the term that depends on n is the complexity of the best deterministic
algorithm, scaled down to poly log(n)-size instances. In general, improvements in the
deterministic complexities of these problems imply improvements to their randomized
complexities, but only if the running times are improved in terms of ``n"" rather than

1In the case of MIS, the subproblems actually have size poly(\Delta) logn, but satisfy the additional
property that they contain distance-5 dominating sets of size O(logn), which is often just as good
as having poly log(n) size. See [13, section 3] or [28, section 4] for more discussion of this.

2See [42, 22, 20] for the formal definition of the class of locally checkable labeling (LCL) problems.

D
ow

nl
oa

de
d

08
/2

4/
20

 to
 1

41
.2

11
.4

.2
24

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ULTRAFAST DISTRIBUTED (\Delta + 1)-COLORING 499

``\Delta ."" For example, a recent line of research has improved the complexity of (\Delta + 1)-
coloring in terms of \Delta , from O(\Delta + log\ast n) [12], to \~O(\Delta 3/4) + O(log\ast n) [8], to the
state-of-the-art bound of O(

\surd
\Delta log\Delta log\ast \Delta + log\ast n) due to Fraigniaud, Heinrich,

and Kosowski [27] and Barenboim, Elkin, and Goldenberg [11]. A recent algorithm of

Kuhn [35] solves (\Delta +1)-list coloring in 2O(
\surd
log\Delta) log n time; i.e., the dependence on \Delta

is better than [27, 11], but the dependence on n is worse. These improvements do not
have consequences for randomized coloring algorithms using graph shattering [13, 32]
since we can only assume \Delta = (log n)\Omega (1) in the shattered instances.3 See Table 1
for a summary of lower and upper bounds for distributed (\Delta + 1)-list coloring in the
\sansL \sansO \sansC \sansA \sansL model.

In this paper, we prove that (\Delta + 1)-list coloring can be solved, w.h.p., in just
O(\sansD \sanse \sanst d(poly log n)) time. Our algorithm's performance is best contrasted with the
\Omega (\sansD \sanse \sanst (poly log n)) randomized lower bound of [20], where \sansD \sanse \sanst is the deterministic
complexity of (\Delta + 1)-list coloring. Despite the syntactic similarity between the
(deg+1)- and (\Delta + 1)-list coloring problems, there is no hard evidence showing their
complexities are the same, asymptotically. On the other hand, in the regime we care
about (deterministic algorithms that depend on n but not \Delta), the state-of-the-art in
(deg+1)- and (\Delta + 1)-list coloring has not changed much in 30 years: the algorithms
begin by (1) computing a generic network decomposition [5, 39, 43, 48], and then (2)
applying it to simulate the sequential greedy coloring algorithm. So long as this is
the template for the best deterministic vertex coloring algorithms, it will be nearly
impossible to prove (\Delta + 1)-coloring is strictly easier than (deg+1)-coloring.

2. Technical overview. In the distributed \sansL \sansO \sansC \sansA \sansL model, the undirected input
graph G = (V,E) and communications network are identical. Each v \in V hosts
a processor that initially knows deg(v), a unique \Theta (log n)-bit identifier ID(v), and
global graph parameters n = | V | and \Delta = maxv\in V deg(v). Refer to [38, 47] for more
on the \sansL \sansO \sansC \sansA \sansL model and variants.

We write N(v) to denote the set of neighbors of the vertex v. For directed graphs,
Nout(v) is the set of out-neighbors of v. We write Nk(v) = \{ u \in V | dist(u, v) \leq k\} to
denote the set of vertices within distance k of v. Note that v \in Nk(v) for any k \geq 0.

In the (\Delta + 1)-list coloring problem, each vertex v also has a palette \Psi (v) of
allowable colors, with | \Psi (v)| \geq \Delta + 1. As vertices progressively commit to their final
color, we also use \Psi (v) to denote v's available palette, excluding colors taken by its
neighbors in N(v). Each processor is allowed unbounded computation and has access
to a private stream of unbiased random bits. Time is partitioned into synchronized
rounds of communication, in which each processor sends a message of unbounded size
to each neighbor. At the end of the algorithm, each v declares its output label, which
in our case is a color from \Psi (v) that is distinct from colors declared by all neighbors
in N(v).

In this paper, we prove that (\Delta + 1)-list coloring can be solved, w.h.p., in
O(\sansD \sanse \sanst d(poly log n)) time. Intellectually, our algorithm builds on a succession of break-
throughs by Schneider and Wattenhofer [49], Barenboim et al. [13], Elkin, Pettie, and
Su, [25], and Harris, Schneider, and Su [32], which we shall now review.

2.1. Fast coloring using excess colors. Schneider and Wattenhofer [49] gave
the first evidence that the canonical coloring problems may not be subject to the
KMW lower bounds. They showed that for any constants \epsilon > 0 and \gamma > 0, when

3Strictly speaking, the algorithm of Kuhn [35] may be more desirable than that of [48] in a

graph shattering--type coloring algorithm. For sufficiently small \Delta , 2O(
\surd
log\Delta) log logn is better

than poly(log logn).

D
ow

nl
oa

de
d

08
/2

4/
20

 to
 1

41
.2

11
.4

.2
24

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

500 YI-JUN CHANG, WENZHENG LI, AND SETH PETTIE

Table 1
Development of lower and upper bounds for distributed (\Delta + 1)-list coloring in the \sansL \sansO \sansC \sansA \sansL

model. The terms \sansD \sanse \sanst (n\prime) and \sansD \sanse \sanst d(n\prime) are the deterministic complexities of (\Delta + 1)-list coloring
and (deg+1)-list coloring on n\prime -vertex graphs. All algorithms listed, except for [32] and ours, also
solve the (deg+1)-list coloring problem.

Randomized Deterministic

O(\sansD \sanse \sanst d(poly logn)) new O(poly logn) [48]

O(
\surd
log\Delta + log logn+ \sansD \sanse \sanst d(poly logn)) [32] 2O(

\surd
log\Delta) \cdot logn [35]

O(log\Delta + \sansD \sanse \sanst d(poly logn)) [13] O(
\surd
\Delta log\Delta log\ast \Delta + log\ast n) [27, 11]

O(log\Delta +
\surd
logn) [49] O(

\surd
\Delta log5/2 \Delta + log\ast n) [27]

O(\Delta log logn) [37] O(\Delta 3/4 log\Delta + log\ast n) [8]

O(logn) [40, 1, 34] O(\Delta + log\ast n) [12]

Upper O(\Delta log\Delta + log\ast n) [37]

bounds O(\Delta logn) [5]

O(\Delta 2 + log\ast n) [29, 38]

O(\Delta O(\Delta) + log\ast n) [30]

2O(
\surd

logn) [44]

2O(
\surd

logn log logn) [5]

Lower \Omega (log\ast n) [42]
\Omega (log\ast n) [38]

bounds \Omega (\sansD \sanse \sanst (
\surd
logn)) [20]

\Delta \geq log1+\gamma n and the palette size is (1 + \epsilon)\Delta , vertex coloring can be solved w.h.p. in
just O(log\ast n) time [49, Corollary 14]. The emergence of this log-star behavior in [49]
is quite natural. Consider the case where the palette size of each vertex is at least k\Delta ,
where k \geq 2. Suppose each vertex v selects k/2 colors at random from its palette. A
vertex v can successfully color itself if one of its selected colors is not selected by any
neighbor in N(v). The total number of colors selected by vertices in N(v) is at most
k\Delta /2. Therefore, the probability that a color selected by v is also selected by someone
in N(v) is at most 1/2, so v successfully colors itself with probability at least 1 - 2 - k/2.
In expectation, the degree of any vertex in the uncolored part of the graph after this
coloring procedure is at most \Delta \prime = \Delta /2k/2. In contrast, the number of excess colors,
i.e., the size of the current available palette at v (i.e., the initial palette excluding the
colors already taken by the neighbors of v) minus the number of uncolored neighbors,
is nondecreasing over time. It is at least (k - 1)\Delta = (k - 1)2k/2\Delta \prime . Intuitively,
repeating the above procedure for O(log\ast n) rounds suffices to color all vertices.

Similar ideas have also been applied in other papers [49, 25, 20]. However, for
technical reasons, we cannot directly apply the results in these papers. The main
difficulty in our setting is that we need to deal with oriented graphs with widely
varying out-degrees, palette sizes, and excess colors; the guaranteed number of excess
colors at a vertex depends on its out-degree, not the global parameter \Delta .

Lemma 2.1 summarizes the properties of our ultrafast coloring algorithm when
each vertex has many excess colors; its proof appears in section 5. Recall that \Psi (v)
denotes the palette of v, so | \Psi (v)| - deg(v) is the number of excess colors at v. Also
recall that Nout(v) denotes the set of out-neighbors of v in a directed graph.

Lemma 2.1. Consider a directed acyclic graph, where vertex v is associated with
a parameter pv \leq | \Psi (v)| - deg(v). We write p \star = minv\in V pv. Suppose that there

D
ow

nl
oa

de
d

08
/2

4/
20

 to
 1

41
.2

11
.4

.2
24

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ULTRAFAST DISTRIBUTED (\Delta + 1)-COLORING 501

is a number C = \Omega (1) such that all vertices v satisfy
\sum

u\in Nout(v)
1/pu \leq 1/C.

Let d \star be the maximum out-degree of the graph. There is an algorithm that takes
O (1 + log\ast p \star - log\ast C) time and achieves the following. Each vertex v remains un-
colored with probability at most exp(- \Omega (

\surd
p \star))+ d \star exp(- \Omega (p \star)). This is true even if

the random bits generated outside a constant radius around v are determined adver-
sarially.

We briefly explain the intuition underlying Lemma 2.1. Consider the follow-
ing coloring procedure. Each vertex selects C/2 colors from its available colors
randomly. Vertex v successfully colors itself if at least one of its selected colors
is not in conflict with any color selected by vertices in Nout(v). For each color c
selected by v, the probability that c is also selected by some vertex in Nout(v) is
(C/2)

\sum
u\in Nout(v)

1/pu \leq 1/2. Therefore, the probability that v still remains uncol-

ored after this procedure is exp(- \Omega (C)), improving the gap between the number of
excess colors and the out-degree (i.e., the parameter C) exponentially. We are done
after repeating this procedure for O(1 + log\ast p \star - log\ast C) rounds. Lemma 2.2 is a
more user-friendly version of Lemma 2.1 for simpler situations.

Lemma 2.2. Suppose | \Psi (v)| \geq (1+\rho)\Delta for each vertex v, and let \rho = \Omega (1). There
is an algorithm that takes O (1 + log\ast \Delta - log\ast \rho) time and achieves the following.
Each vertex v remains uncolored with probability at most exp(- \Omega (

\surd
\rho \Delta)). This is true

even if the random bits generated outside a constant radius around v are determined
adversarially.

Proof. We apply Lemma 2.1. Orient the graph arbitrarily, and then set pv = \rho \Delta
for each v. Use the parameters C = \rho , p \star = \rho \Delta , and d \star = \Delta . The time complex-
ity is O (1 + log\ast p \star - log\ast C) = O (1 + log\ast \Delta - log\ast \rho \}). The failure probability is
exp(- \Omega (

\surd
p \star)) + d \star exp(- \Omega (p \star)) = exp(- \Omega (

\surd
\rho \Delta)).

2.2. Gaining excess colors. Schneider and Wattenhofer [49] illustrated that
vertex coloring can be performed very quickly, given enough excess colors. However,
in the (\Delta + 1)-list coloring problem there is just one excess color initially, so the
problem is how to create them. Elkin, Pettie, and Su [25] observed that if the graph
induced by N(v) is not too dense, then v can obtain a significant number of excess
colors after one iteration of the following simple random coloring routine. Each vertex
v, with probability 1/5, selects a color c from its palette \Psi (v) uniformly at random;
then vertex v successfully colors itself by c if c is not chosen by any vertex in N(v).
Intuitively, if N(v) is not too close to a clique, then a significant number of pairs
of vertices in the neighborhood N(v) get assigned the same color. Each such pair
effectively reduces v's palette size by 1 but its degree by 2, thereby increasing the
number of excess colors at v by 1.

There are many global measures of sparsity, such as arboricity and degeneracy.
We are aware of two locality sensitive ways to measure it: the (1 - \epsilon)-local sparsity
of [2, 25, 41, 50], and the \epsilon -friends from [32], defined formally as follows.

Definition 2.3 (see [25]). A vertex v is (1 - \epsilon)-locally sparse if the subgraph
induced by N(v) has at most (1 - \epsilon)

\bigl(
\Delta
2

\bigr)
edges; otherwise, v is (1 - \epsilon)-locally dense.

Definition 2.4 (see [32]). An edge e = \{ u, v\} is an \epsilon -friend edge if | N(u) \cap
N(v)| \geq (1 - \epsilon)\Delta . We call u an \epsilon -friend of v if \{ u, v\} is an \epsilon -friend edge. A vertex
v is \epsilon -dense if v has at least (1 - \epsilon)\Delta \epsilon -friends; otherwise, it is \epsilon -sparse.

Throughout this paper, we only use Definition 2.4. Lemma 2.5 shows that in O(1)
time we can make excess colors at all locally sparse vertices by coloring a subset of V .

D
ow

nl
oa

de
d

08
/2

4/
20

 to
 1

41
.2

11
.4

.2
24

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

502 YI-JUN CHANG, WENZHENG LI, AND SETH PETTIE

Lemma 2.5. Consider the (\Delta + 1)-list coloring problem. There is an O(1)-time
algorithm that colors a subset of V such that the following are true for each v \in V
with deg(v) \geq (5/6)\Delta :

(i) With probability 1 - exp(- \Omega (\Delta)), the number of uncolored neighbors of v is
at least \Delta /2.

(ii) With probability 1 - exp(- \Omega (\epsilon 2\Delta)), v has at least \Omega (\epsilon 2\Delta) excess colors, where
\epsilon is the highest value such that v is \epsilon -sparse.

The algorithm behind Lemma 2.5 is the random coloring routine described above.
If a vertex v is \epsilon -sparse, then there must be \Omega (\epsilon 2\Delta 2) pairs of vertices \{ u,w\} \subseteq N(v)
such that \{ u,w\} is not an edge. If | \Psi (u) \cap \Psi (w)| = \Omega (\Delta), then the probability that
both u and w are colored by the same color is \Omega (1/\Delta), and this increases the number
of excess colors at v by 1. Otherwise, we have | (\Psi (u) \cup \Psi (w)) \setminus \Psi (v)| = \Omega (\Delta), and
so with probability \Omega (1) one of u and w successfully colors itself with a color not in
\Psi (v), and this also increases the number of excess colors at v by 1. Therefore, the

expected number of excess colors created at v is at least \Omega
\bigl(
\epsilon 2\Delta 2

\Delta

\bigr)
= \Omega (\epsilon 2\Delta).

Similar but slightly weaker lemmas were proved in [25, 32]. The corresponding
lemma from [25] does not apply to list coloring, and the corresponding lemma from [32]
obtains a high probability bound only if \epsilon 4\Delta = \Omega (log n). Optimizing this requirement
is of importance since this is the threshold about how locally sparse a vertex needs
to be in order to obtain excess colors. Since this is not the main contribution of this
work, the proof of Lemma 2.5 appears in Appendix B.

The notion of local sparsity is especially useful for addressing the (2\Delta - 1)-edge
coloring problem [25], since it can be phrased as (\Delta \prime +1)-vertex coloring the line graph
(\Delta \prime = 2\Delta - 2), which is everywhere (12 + o(1))-locally sparse and is also everywhere
(12 - o(1))-sparse.

2.3. Coloring locally dense vertices. In the vertex coloring problem, we can-
not count on any kind of local sparsity, so the next challenge is to make local density
also work to our advantage. Harris, Schneider, and Su [32] developed a remarkable
new graph decomposition that can be computed in O(1) rounds of communication.
The decomposition takes a parameter \epsilon , and partitions the vertices into an \epsilon -sparse
set, and several vertex-disjoint \epsilon -dense components induced by the \epsilon -friend edges,
each with weak diameter at most 2.

Based on this decomposition, they designed a (\Delta +1)-list coloring algorithm that
takes time on the order of\sqrt{}

log\Delta + log logn+ \sansD \sanse \sanst d(poly log n) =
\sqrt{}
log\Delta + poly(log log n) =

\sqrt{}
log n.

We briefly overview each stage of their algorithm.
Coloring \epsilon -sparse vertices. Using the excess colors, Harris, Schneider, and Su [32]

showed that the \epsilon -sparse set can be colored in O(log \epsilon - 1+log log n+\sansD \sanse \sanst d(poly log n))
time using techniques of [25, 13]. More specifically, they applied the algorithm
of [25, Corollary 4.1] using the \epsilon \prime \Delta = \Omega (\epsilon 2\Delta) excess colors, i.e., \epsilon \prime = \Theta (\epsilon 2). This

takes O
\bigl(
log(\epsilon - 1)

\bigr)
+ T

\bigl(
n,O

\bigl(
log2 n

\epsilon \prime

\bigr) \bigr)
time, where T (n\prime ,\Delta \prime) = O(log\Delta \prime + log log n\prime +

\sansD \sanse \sanst d(poly log n
\prime)) is the time complexity of the (deg+1)-list coloring algorithm of [13,

Theorem 5.1] on n\prime -vertex graphs of maximum degree \Delta \prime .
Coloring \epsilon -dense vertices. For \epsilon -dense vertices, Harris, Schneider, and Su [32]

proved that by coordinating the coloring decisions within each dense component, it
takes only O(log1/\epsilon \Delta + log log n+\sansD \sanse \sanst d(poly log n)) time to color the dense sets; i.e.,
the bound improves as \epsilon \rightarrow 0. The time for the overall algorithm is minimized by
choosing \epsilon = exp(- \Theta (

\surd
log\Delta)).

D
ow

nl
oa

de
d

08
/2

4/
20

 to
 1

41
.2

11
.4

.2
24

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ULTRAFAST DISTRIBUTED (\Delta + 1)-COLORING 503

The algorithm for coloring \epsilon -dense vertices first applies O(log1/\epsilon \Delta) iterations of

dense coloring steps to reduce the maximum degree to \Delta \prime = O(log n) \cdot 2O(log1/\epsilon \Delta)

and then applies the (deg+1)-list coloring algorithm of [13, Theorem 5.1] to color the
remaining vertices in O(log\Delta \prime +log log n+\sansD \sanse \sanst d(poly log n)) = O(log1/\epsilon \Delta +log log n+
\sansD \sanse \sanst d(poly log n)) time.

In what follows, we informally sketch the idea behind the dense coloring steps.
To finish in O(log1/\epsilon \Delta) iterations, it suffices that the maximum degree is reduced

by a factor of \epsilon - \Omega (1) in each iteration. Consider an \epsilon -dense vertex v in a component
S induced by the \epsilon -friend edges. Harris, Schneider, and Su [32] proved that the
number of \epsilon -dense neighbors of v that are not in S is at most \epsilon \Delta . Intuitively, if we
let each dense component output a random coloring that has no conflict within the
component, then the probability that the color choice of a vertex v \in S is in conflict
with an external neighbor of v is O(\epsilon). Harris, Schneider, and Su [32] showed that
this intuition can be nearly realized, and they developed a coloring procedure that is
able to reduce the maximum degree by a factor of \Omega (

\surd
\epsilon - 1) in each iteration.

2.4. New results. In this paper, we give a fast randomized algorithm for (\Delta +1)-
list coloring. It is based on a hierarchical version of the Harris--Schneider--Su decom-
position with log log\Delta - O(1) levels determined by an increasing sequence of sparsity
thresholds (\epsilon 1, . . . , \epsilon \ell), with \epsilon i =

\surd
\epsilon i+1. Following [32], we begin with a single it-

eration of the initial coloring step (Lemma 2.5), in which a constant fraction of the
vertices are colored. The guarantee of this procedure is that any vertex v at the ith
layer (which is \epsilon i-dense but \epsilon i - 1-sparse) has \Omega (\epsilon 2i - 1\Delta) pairs of vertices in its neigh-
borhood N(v) assigned the same color, thereby creating that many excess colors in
the palette of v.

At this point, the most natural way to proceed is to apply a Harris--Schneider--Su
style dense coloring step to each layer, with the hope that each will take roughly
constant time. Recall that (i) any vertex v at the ith layer already has \Omega (\epsilon 2i - 1\Delta)
excess colors, and (ii) the dense coloring step reduces the maximum degree by a
factor of \epsilon - \Omega (1) in each iteration. Thus, in O

\bigl(
log1/\epsilon i

\Delta
\epsilon 2.5i - 1\Delta

\bigr)
= O(1) time we should

be able to create a situation where any uncolored vertices have O(\epsilon 2.5i - 1\Delta) uncolored
neighbors but \Omega (\epsilon 2i - 1\Delta) excess colors in their palette. With such a large gap, a
Schneider--Wattenhofer-style coloring algorithm (Lemma 2.2) should complete in very
few additional steps.

It turns out that in order to color \epsilon i-dense components efficiently, we need to
maintain relatively large lower bounds on the available palette and relatively small
upper bounds on the number of external neighbors (i.e., the neighbors outside the
\epsilon i-dense component). Thus, it is important that when we first consider a vertex, we
have not already colored too many of its neighbors. Roughly speaking, our algorithm
classifies the dense blocks at layer i into small, medium, and large based chiefly on
the block size and partitions the set of all blocks of all layers into O(1) groups. We
apply the dense coloring steps in parallel for all blocks in the same group. Whenever
we process a block B, we need to make sure that all its vertices have a large enough
palette. For large blocks, the palette size guarantee comes from the lower bound on
the block size. For small and medium blocks, the palette size guarantee comes from
the ordering of the blocks being processed; we will show that whenever a small or
medium block B is considered, each vertex v \in B has a sufficiently large number of
neighbors that have yet to be colored.

All of the coloring steps outlined above finish in O(log\ast \Delta) time. The bottleneck

D
ow

nl
oa

de
d

08
/2

4/
20

 to
 1

41
.2

11
.4

.2
24

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

504 YI-JUN CHANG, WENZHENG LI, AND SETH PETTIE

procedure is the algorithm of Lemma 2.2, and the rest takes only O(1) time. Each of
these coloring steps may not color all vertices it considers. The vertices left uncolored
are put in O(1) classes, each of which either induces a bounded degree graph or is
composed of O(poly log n)-size components, w.h.p. The former type can be colored
deterministically in O(log\ast n) time and the latter in \sansD \sanse \sanst d(poly log n) time. In view of
Linial's lower bound [38], we have \sansD \sanse \sanst d(poly log n) = \Omega (log\ast n) and the running time
of our (\Delta + 1)-list coloring algorithm is

O(log\ast \Delta) +O(log\ast n) +O(\sansD \sanse \sanst d(poly log n)) = O(\sansD \sanse \sanst d(poly log n)).

Recent developments. After the initial publication of this work [21], our algorithm
was adapted to solve (\Delta +1)-coloring in several other models of computation, namely
the congested clique, the massively parallel computation (MPC) model, and the cen-
tralized local computation model [4, 45, 46, 17]. Chang et al. [17], improving [45, 46],
showed that (\Delta + 1)-coloring can be solved in the congested clique in O(1) rounds,
w.h.p. In the MPC model, Assadi, Chen, and Khanna [4] solve (\Delta + 1)-coloring in
O(1) rounds using \~O(n) memory per machine, whereas Chang et al. [17] solve it in
O(log log log n) time with just O(n\epsilon) memory per machine. In the centralized local
computation model, Chang et al. [17] proved that (\Delta + 1)-coloring queries can be
answered with just polynomial probe complexity \Delta O(1) log n.

Organization. In section 3, we define a hierarchical decomposition based on [32].
Section 4 gives a high-level description of the algorithm, which uses a variety of
coloring routines whose guarantees are specified by the following lemmas.

\bullet Lemma 2.1 analyzes the procedure \sansC \sanso \sansl \sanso \sansr \sansB \sansi \sansd \sansd \sansi \sansn \sansg , which is a generalization of
the Schneider--Wattenhofer coloring routing; it is proved in section 5.

\bullet Lemma 2.5 shows that the procedure \sansO \sansn \sanse \sansS \sansh \sanso \sanst \sansC \sanso \sansl \sanso \sansr \sansi \sansn \sansg creates many excess
colors; it is proved in Appendix B.

\bullet Lemmas 4.2--4.5 analyze two versions of an algorithm \sansD \sanse \sansn \sanss \sanse \sansC \sanso \sansl \sanso \sansr \sansi \sansn \sansg \sansS \sanst \sanse \sansp ,
which is a generalization of the Harris--Schneider--Su routine [32] for coloring
locally dense vertices; they are proved in section 6.

Appendix A reviews all of the standard concentration inequalities that we use.

3. Hierarchical decomposition. In this section, we extend the work of Harris,
Schneider, and Su [32] to define a hierarchical decomposition of the vertices based on
local sparsity. Let G = (V,E) be the input graph, \Delta be the maximum degree, and
\epsilon \in (0, 1) be a parameter. An edge e = \{ u, v\} is an \epsilon -friend edge if | N(u) \cap N(v)| \geq
(1 - \epsilon)\Delta . We call u an \epsilon -friend of v if \{ u, v\} is an \epsilon -friend edge. A vertex v is called
\epsilon -dense if v has at least (1 - \epsilon)\Delta \epsilon -friends; otherwise, it is \epsilon -sparse. Observe that it
takes one round of communication to tell whether each edge is an \epsilon -friend and hence
one round for each vertex to decide whether it is \epsilon -sparse or \epsilon -dense.

We write V \sanss
\epsilon (and V \sansd

\epsilon) to be the set of \epsilon -sparse (and \epsilon -dense) vertices. Let v be
a vertex in a set S \subseteq V and V \prime \subseteq V . Define \=dS,V \prime (v) = | (N(v) \cap V \prime) \setminus S| to be
the external degree of v w.r.t. S and V \prime and aS(v) = | S \setminus (N(v) \cup \{ v\})| to be the
antidegree of v w.r.t. S. A connected component C of the subgraph formed by the
\epsilon -dense vertices and the \epsilon -friend edges is called an \epsilon -almost clique. This term makes
sense in the context of Lemma 3.1 from [32], which summarizes key properties of
almost cliques.

Lemma 3.1 (see [32]). Fix any \epsilon < 1/5. The following conditions are met for
each \epsilon -almost clique C and each vertex v \in C:

(i) \=dC,V \sansd
\epsilon
(v) \leq \epsilon \Delta (small external degree w.r.t. \epsilon -dense vertices).

(ii) aC(v) < 3\epsilon \Delta (small antidegree).

D
ow

nl
oa

de
d

08
/2

4/
20

 to
 1

41
.2

11
.4

.2
24

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ULTRAFAST DISTRIBUTED (\Delta + 1)-COLORING 505

Fig. 1. Almost cliques and blocks: the shaded region indicates a layer-i block B, and the hollow
regions are those \epsilon i - 1-almost cliques.

(iii) | C| \leq (1 + 3\epsilon)\Delta (small size, a consequence of (ii)).
(iv) distG(u, v) \leq 2 for each u, v \in C (small weak diameter).

Lemma 3.1(iv) implies that any sequential algorithm operating solely on C can
be simulated in O(1) rounds in the \sansL \sansO \sansC \sansA \sansL model. The node in C with minimum
ID can gather all the relevant information from C in two rounds of communication,
compute the output of the algorithm locally, and disseminate these results in another
two rounds of communication. For example, the \sansD \sanse \sansn \sanss \sanse \sansC \sanso \sansl \sanso \sansr \sansi \sansn \sansg \sansS \sanst \sanse \sansp algorithm (ver-
sions 1 and 2) presented in section 6 are nominally sequential algorithms but can be
implemented in O(1) distributed rounds.

3.1. A hierarchy of almost cliques. Throughout this section, we fix some
increasing sequence of sparsity parameters (\epsilon 1, . . . , \epsilon \ell) and a subset of vertices V \star \subseteq V ,
which, roughly speaking, are those left uncolored by the initial coloring procedure of
Lemma 2.5 and also satisfy the two conclusions of Lemma 2.5(i)--(ii). The sequence
(\epsilon 1, . . . , \epsilon \ell) always adheres to Definition 3.2.

Definition 3.2. A sequence (\epsilon 1, . . . , \epsilon \ell) is a valid sparsity sequence if the follow-
ing conditions are met:

\bullet \epsilon i =
\surd
\epsilon i - 1 = (\epsilon 1)

z, where z = 2 - (i - 1), and
\bullet \epsilon \ell \leq 1/K for some sufficiently large constant K.

Layers. Define V1 = V \star \cap V \sansd
\epsilon 1 and Vi = V \star \cap (V \sansd

\epsilon i \setminus V \sansd
\epsilon i - 1

) for i > 1. Define
V\sanss \sansp = V \star \cap V \sanss

\epsilon \ell
= V \star \setminus (V1 \cup \cdot \cdot \cdot \cup V\ell). It is clear that (V1, . . . , V\ell , V\sanss \sansp) is a partition of

V \star . We call Vi the layer-i vertices and call V\sanss \sansp the sparse vertices. In other words, Vi

is the subset of V \star that are \epsilon i-dense but \epsilon i - 1-sparse. Remember that the definition
of sparsity is w.r.t. the entire graph G = (V,E), not the subgraph induced by V \star .

Blocks. The layer-i vertices Vi are partitioned into blocks as follows. List the \epsilon i-
almost cliques arbitrarily as (C1, C2, . . .), and let Bj = Cj \cap Vi. Then (B1, B2, . . .) is a
partition of Vi. Each Bj \not = \emptyset is called a layer-i block. See Figure 1 for an illustration.

A layer-i block B is a descendant of a layer-i\prime block B\prime , where i < i\prime , if B and B\prime

are both subsets of the same \epsilon i\prime -almost clique. Therefore, the set of all blocks in all
layers naturally forms a rooted tree \scrT , where the root represents V\sanss \sansp , and every other
node represents a block in some layer. For example, in Figure 1, the blocks contained
in C1, . . . , Ck are at layers 1, . . . , i - 1 and are all descendants of B.

3.2. Block sizes and excess colors. We classify the blocks into three types:
small, medium, and large. A block B at layer i is called large-eligible if

| B| \geq \Delta

log(1/\epsilon i)
.

D
ow

nl
oa

de
d

08
/2

4/
20

 to
 1

41
.2

11
.4

.2
24

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

506 YI-JUN CHANG, WENZHENG LI, AND SETH PETTIE

Large blocks. The set of large blocks is a maximal set of unrelated4 blocks,
which prioritizes blocks by size, breaking ties by layer. More formally, a large-eligible
layer-i block B is large if and only if, for every large-eligible B\prime at layer j that is an
ancestor or descendant of B, either | B\prime | < | B| or | B\prime | = | B| and j < i.

Medium blocks. Every large-eligible block that is not large is a medium block.

Small blocks. All other blocks are small.
Define V \sansS

i , V
\sansM
i , and V \sansL

i to be, respectively, the sets of all vertices in layer-i small
blocks, layer-i medium blocks, and layer-i large blocks. For each X \in \{ \sansS ,\sansM , \sansL \} , we
write V X

2+ =
\bigcup \ell

i=2 V
X
i to be the set of all vertices of type X, excluding those in layer

1.
Overview of our algorithm. The decomposition and \scrT are trivially computed in

O(1) rounds of communication. The first step of our algorithm is to execute an O(1)-
round coloring procedure (\sansO \sansn \sanse \sansS \sansh \sanso \sanst \sansC \sanso \sansl \sanso \sansr \sansi \sansn \sansg) which colors a small constant fraction of
the vertices in G; the relevant guarantees of this algorithm were stated in Lemma 2.5.
Let V \star be the subset of uncolored vertices that, in addition, satisfy the conclusions
of Lemma 2.5(i)--(ii). Once V \star is known, it can be partitioned into the following sets:\bigl(

V \sansS
1 , . . . , V

\sansS
\ell , V

\sansM
1 , . . . , V \sansM

\ell , V \sansL
1 , . . . , V

\sansL
\ell , V\sanss \sansp

\bigr)
.

These are determined by the hierarchical decomposition w.r.t. a particular sparsity
sequence (\epsilon 1, . . . , \epsilon \ell).

5 We color the vertices of V \star \setminus V\sanss \sansp in six stages according to the
ordering \bigl(

V \sansS
2+, V

\sansS
1 , V

\sansM
2+, V

\sansM
1 , V \sansL

2+, V
\sansL
1

\bigr)
.

As we argue below, coloring vertices in the order small, medium, large ensures that
when a vertex is considered, it has sufficiently many remaining colors in its palette,
as formalized by Lemma 3.3 below. The reason for dealing with layer-1 vertices
separately stems from the fact that a vertex at layer i > 1 is known to be \epsilon i-dense but
\epsilon i - 1-sparse, but layer-1 vertices are not known to have any nontrivial sparsity. At the
end of this process, a small portion of vertices U \subseteq V \star \setminus V\sanss \sansp may remain uncolored.
However, they all have sufficiently large palettes such that U \cup V\sanss \sansp can be colored
efficiently in O(log\ast n) time.

Lemma 3.3. For each layer i \in [1, \ell], the following are true:
\bullet For each v \in V \sansS

i with | N(v) \cap V \star | \geq \Delta /3, we have

| N(v) \cap (V \sansM
2+ \cup V \sansM

1 \cup V \sansL
2+ \cup V \sansL

1 \cup V\sanss \sansp)| \geq
\Delta

4
.

\bullet For each v \in V \sansM
i , we have | N(v) \cap (V \sansL

2+ \cup V \sansL
1 \cup V\sanss \sansp)| \geq \Delta

2 log(1/\epsilon i)
.

In other words, regardless of how we proceed to partially color the vertices in
small blocks, each v \in V \sansS

i always has at least \Delta
4 available colors in its palette, due

to the number of its (still uncolored) neighbors in medium and large blocks, and V\sanss \sansp .
Similarly, regardless of how we partially color the vertices in small and medium blocks,
each v \in V \sansM

i always has at least \Delta
2 log(1/\epsilon i)

available colors in its palette.

4In other words, no two blocks are related by the ancestor relation.
5Note that the classification of vertices into small, medium, and large blocks can only be done

after \sansO \sansn \sanse \sansS \sansh \sanso \sanst \sansC \sanso \sansl \sanso \sansr \sansi \sansn \sansg is complete. Recall that if C is an \epsilon i-almost clique, B = C \cap Vi is the subset
of C that is both \epsilon i - 1-sparse and uncolored by \sansO \sansn \sanse \sansS \sansh \sanso \sanst \sansC \sanso \sansl \sanso \sansr \sansi \sansn \sansg . Thus, whether the layer-i block in
C is large-eligible depends on how many vertices are successfully colored.

D
ow

nl
oa

de
d

08
/2

4/
20

 to
 1

41
.2

11
.4

.2
24

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ULTRAFAST DISTRIBUTED (\Delta + 1)-COLORING 507

Before proving Lemma 3.3, we first establish a useful property that constrains
the structure of the block hierarchy \scrT . Intuitively, Lemma 3.4 shows that a node
(block) in \scrT can have exactly one child of essentially any size, but if it has two or
more children, then the union of all descendants must be very small.

Lemma 3.4. Let C be an \epsilon i-almost clique and C1, . . . , Cl be the \epsilon i - 1-almost cliques

contained in C. Either l = 1 or
\sum l

j=1 | Cj | \leq 2(3\epsilon i+ \epsilon i - 1)\Delta . In particular, if B is the
layer-i block contained in C, either B has one child in \scrT or the number of vertices in
all descendants of B is at most 2(3\epsilon i + \epsilon i - 1)\Delta < 7\epsilon i\Delta .

Proof. Suppose, for the purpose of obtaining a contradiction, that l \geq 2 and\sum l
j=1 | Cj | > 2(3\epsilon i + \epsilon i - 1)\Delta . Without loss of generality, suppose C1 is the smallest,

so
\sum l

j=2 | Cj | > (3\epsilon i + \epsilon i - 1)\Delta . Any v \in C1 is \epsilon i - 1-dense and therefore has at least
(1 - \epsilon i - 1)\Delta neighbors that are \epsilon i - 1-friends. By the antidegree property of Lemma 3.1,
v is adjacent to all but at most 3\epsilon i\Delta vertices in C. Thus, by the pigeonhole principle
v is joined by edges to more than \epsilon i - 1\Delta members of C2 \cup \cdot \cdot \cdot \cup Cl. By the pigeonhole
principle again, at least one of these edges is one of the \epsilon i - 1-friend edges incident to
v. This means that C1 cannot be a connected component in the graph formed by
\epsilon i - 1-dense vertices and \epsilon i - 1-friend edges.

Proof of Lemma 3.3. First consider the case of v \in V \sansM
i . Let B be the layer-

i medium block containing v. Every medium block is large-eligible but not large,
meaning it must have a large ancestor or descendant B\prime with at least as many vertices.
If B\prime is a layer-j block, then

| B\prime | = max \{ | B\prime | , | B| \} \geq \Delta

log(1/\epsilon k)
, where k = max\{ i, j\} .

Let C be the layer-k almost clique containing both B and B\prime . By Lemma 3.1, v has
at most 3\epsilon k\Delta nonneighbors in C, which, since B\prime \subseteq C, means that the number of
neighbors of v in B\prime is at least

| B\prime | - 3\epsilon k\Delta \geq \Delta

log(1/\epsilon k)
 - 3\epsilon k\Delta

\geq \Delta

2 log(1/\epsilon k)
\{ \epsilon k \leq \epsilon \ell sufficiently small\}

\geq \Delta

2 log(1/\epsilon i)
\{ log(1/\epsilon k) \leq log(1/\epsilon i)\} .

Therefore, | N(v) \cap (V \sansL
2+ \cup V \sansL

1 \cup V\sanss \sansp)| \geq \Delta
2 log(1/\epsilon i)

.

Now consider any vertex v \in V \sansS
i with | N(v) \cap V \star | \geq \Delta /3. Let B be the layer-i

small block containing v. We partition the setN(v)\cap V \star into three groups A1\cup A2\cup A3:

A1 = N(v) \cap
\bigl(
V \sansM
2+ \cup V \sansM

1 \cup V \sansL
2+ \cup V \sansL

1 \cup V\sanss \sansp

\bigr)
.

A2 = the neighbors in all ancestor and descendant small blocks of B, including B.

A3 = the remaining neighbors.

To prove the lemma, it suffices to show that | A1| \geq \Delta
4 . Since | A1 \cup A2 \cup A3| \geq \Delta

3 , we

need to prove | A2 \cup A3| \leq \Delta
12 . We first bound | A3| and then | A2| .

Note that v is \epsilon j-dense for j \in [i, \ell], so, according to Lemma 3.1, v must have at
least (1 - \epsilon j)\Delta \epsilon j-friends. Let u be any neighbor of v not in an ancestor/descendant

D
ow

nl
oa

de
d

08
/2

4/
20

 to
 1

41
.2

11
.4

.2
24

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

508 YI-JUN CHANG, WENZHENG LI, AND SETH PETTIE

of B, which means that either (i) u \in V\sanss \sansp or (ii) for some j \in [i, \ell], v and u are in
distinct \epsilon j-almost cliques. In case (i), u is counted in A1. In case (ii), it follows that
u cannot be an \epsilon j-friend of v. Since, by Lemma 3.1, v has at most \epsilon j\Delta \epsilon j-nonfriends,

| A3| \leq
\ell \sum

j=i

\epsilon j\Delta < 2\epsilon \ell \Delta .

We now turn to A2. Define i \star \in [1, i - 1] to be the largest index such that B has at
least two descendants at layer i \star , or let i \star = 0 if no such index exists. Let A2,low be the
set of vertices in A2 residing in blocks at layers 1, . . . , i \star , and let A2,high = A2 \setminus A2,low.
By the definition of small blocks,

| A2,high| <
\ell \sum

j=i \star +1

\Delta

log(1/\epsilon j)

<
2\Delta

log(1/\epsilon \ell)
\{ geometric sum\} .

If i \star = 0, then A2,low = \emptyset . Otherwise, by Lemma 3.4, the number of vertices in A2,low

is at most 7\epsilon i \star +1\Delta \leq 7\epsilon i\Delta \leq 7\epsilon \ell \Delta . Since \epsilon \ell is a sufficiently small constant,

| A2 \cup A3| < 2\epsilon \ell \Delta +
2\Delta

log(1/\epsilon \ell)
+ 7\epsilon \ell \Delta < \Delta /12,

which completes the proof.

Remark 1. In the preliminary version of this paper [21], the algorithm for coloring
locally dense vertices consisted of O(log\ast \Delta) stages. In this paper, we improve the
number of stages to O(1). This improvement does not affect the overall asymptotic
time in the \sansL \sansO \sansC \sansA \sansL model, but it simplifies the algorithm and is critical to adaptations
of our algorithm to models in which Linial's lower bound [38] does not apply, e.g., the
congested clique [4, 17].

Remark 2. The reader might wonder why the definition of medium blocks is
needed, as all layer-i medium blocks already have the block size lower bound \Delta

log(1/\epsilon i)
,

which guarantees a sufficiently large palette size lower bound for the vertices therein.
It might be possible to consider all the medium blocks as large blocks, but this will
destroy the property that for any two blocks B and B\prime in different layers, if B is a
descendant of B\prime , then B and B\prime cannot both be large; without this property, the
coloring algorithm for large blocks will likely be more complicated.

4. Main algorithm. Our algorithm follows the graph shattering framework for
distributed symmetry breaking problems [13]. In each step of the algorithm, we
specify an invariant that all vertices must satisfy in order to continue to participate.
Those bad vertices that violate the invariant are removed from consideration; they
form connected components of size O(poly log n) w.h.p., so we can color them later in
\sansD \sanse \sanst d(poly log n) time.6 More precisely, the emergence of the small components is due
to the following lemma [13, 26]. A proof of this lemma can be found in [18, Lemma
1.2].

6A (deg+1)-list coloring algorithm applied to n\prime = poly logn size graphs requires O(logn\prime)-
bit IDs. In O(\sansD \sanse \sanst d(poly logn)) time, we can generate short, not necessarily distinct, IDs that are
indistinguishable from distinct IDs; see [13, Remark 3.6] for the method.

D
ow

nl
oa

de
d

08
/2

4/
20

 to
 1

41
.2

11
.4

.2
24

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ULTRAFAST DISTRIBUTED (\Delta + 1)-COLORING 509

Lemma 4.1 (the shattering lemma). Consider a randomized procedure that gen-
erates a subset of vertices B \subseteq V . Suppose that for each v \in V , we have Pr[v \in B] \leq
\Delta - 3c, and this holds even if the random bits not in N c(v) are determined adversar-
ially. With probability at least 1 - n - \Omega (c\prime), each connected component in the graph
induced by B has size at most (c\prime /c)\Delta 2c log\Delta n.

Lemma 4.1 obviously applies to randomized procedures that take c rounds. It
also applies to \omega (1)-round procedures that are composed of a series of c-round exper-
iments, where vertices that fail to satisfy some invariant are included in B immediately
after the experiment. What is important is that the bound Pr[v \in B] \leq \Delta - 3c holds if
an adversary is allowed to completely control how the series of experiments proceeds
outside N c(v), so long as it cannot see the random bits generated inside N c(v).

Sparsity sequence. The sparsity sequence for our algorithm is defined by \epsilon 1 =
\Delta - 1/10, \epsilon i =

\surd
\epsilon i - 1 for i > 1, and \ell = log log\Delta - O(1) is the largest index such that

1
\epsilon \ell

\geq K for some sufficiently large constant K.

4.1. Initial coloring step. At any point in time, the number of excess colors
at v is the size of v's remaining palette minus the number of v's uncolored neighbors.
This quantity is obviously nondecreasing over time. In the first step of our coloring
algorithm, we execute the algorithm of Lemma 2.5, which in O(1) time colors a portion
of the vertices. This algorithm has the property that each remaining uncolored vertex
gains a certain number of excess colors, which depends on its local sparsity. In order
to proceed, a vertex must satisfy both conditions:

\bullet If v is \epsilon \ell -dense, the number of uncolored neighbors of v is at least \Delta /2.
\bullet If v is \epsilon i-sparse, v must have \Omega (\epsilon 2i\Delta) excess colors.

If either condition fails to hold, v is put in the set V\sansb \sansa \sansd . We invoke the conditions
of Lemma 2.5 only with \epsilon \geq \epsilon 1 = \Delta - 1/10. Thus, if \Delta = \Omega (log2 n), then w.h.p. (i.e.,
1 - 1/poly(n)), V\sansb \sansa \sansd = \emptyset . Otherwise, each component of V\sansb \sansa \sansd must, by Lemma 4.1,
have size O(poly(\Delta) \cdot log n) = O(poly log n), w.h.p. We do not invoke a deterministic
algorithm to color V\sansb \sansa \sansd just yet. In subsequent steps of the algorithm, we will continue
to add bad vertices to V\sansb \sansa \sansd . These vertices will be colored at the end of the algorithm.

4.2. Coloring vertices by layer. By definition, V \star is the set of all vertices that
remain uncolored after the initial coloring step and are not put in V\sansb \sansa \sansd . The partition
V \star = V \sansS

2+\cup V \sansS
1 \cup V \sansM

2+\cup V \sansM
1 \cup V \sansL

2+\cup V \sansL
1 \cup V\sanss \sansp is computed in O(1) time. In this section,

we show how we can color most of the vertices in V \sansS
2+ \cup V \sansS

1 \cup V \sansM
2+ \cup V \sansM

1 \cup V \sansL
2+ \cup V \sansL

1 ,
in that order, leaving a small portion of uncolored vertices.

Consider the moment we begin to color V \sansS
2+. We claim that each layer-i vertex

v \in V \sansS
2+ must have at least \Delta /6 > \Delta

2 log(1/\epsilon i)
excess colors w.r.t. V \sansS

2+. That is, its

palette size minus the number of its neighbors in V \sansS
2+ is large. There are two relevant

cases to consider:
\bullet If the condition | N(v) \cap V \star | \geq \Delta /3 in Lemma 3.3 is already met, then v has
at least \Delta /4 > \Delta /6 excess colors w.r.t. V \sansS

2+.
\bullet Suppose | N(v) \cap V \star | < \Delta /3. One criterion for adding v to V\sansb \sansa \sansd is that v is

\epsilon \ell -dense but has less than \Delta /2 uncolored neighbors after the initial coloring
step. We know v is \epsilon \ell -dense and not in V\sansb \sansa \sansd (because it is in V \sansS

2+), so it
must have had at least \Delta /2 uncolored neighbors after initial coloring. If
| N(v) \cap V \star | < \Delta /3, then at least (\Delta /2 - \Delta /3) = \Delta /6 of v's uncolored
neighbors must have joined V\sansb \sansa \sansd , which provide v with \Delta /6 excess colors
w.r.t. V \sansS

2+.
Similarly, for the sets V \sansS

1 , V
\sansM
2+, and V \sansM

1 , we have the same excess colors guarantee

D
ow

nl
oa

de
d

08
/2

4/
20

 to
 1

41
.2

11
.4

.2
24

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

510 YI-JUN CHANG, WENZHENG LI, AND SETH PETTIE

\Delta
2 log(1/\epsilon i)

for each layer-i vertex therein.

We apply the following lemmas to color the locally dense vertices V \star \setminus V\sanss \sansp ; refer
to section 6 for their proofs. For small and medium blocks, we use Lemma 4.2 to color
V \sansS
2+ and V \sansM

2+ and use Lemma 4.3 to color V \sansS
1 and V \sansM

1 .
The reason that the layer-1 blocks need to be treated differently is that layer-

1 vertices do not obtain excess colors from the initial coloring step (Lemma 2.5).
For comparison, for i > 1, each layer-i vertex v is \epsilon i - 1-sparse, and so v must have
\Omega (\epsilon 2i - 1\Delta) = \Omega (\epsilon 4i\Delta) excess colors. If we reduce the degree of v to \epsilon 5i\Delta , then we obtain
a sufficiently big gap between the excess colors and degree at v.

Lemma 4.2 (small and medium blocks; layers other than 1). Let S = V \sansS
2+ or

S = V \sansM
2+. Suppose that each layer-i vertex v \in S has at least \Delta

2 log(1/\epsilon i)
excess colors

w.r.t. S. There is an O(1)-time algorithm that colors a subset of S meeting the
following condition. For each vertex v \in V \star , and for each i \in [2, \ell], with probability
at least 1 - exp(- \Omega (poly(\Delta))), the number of uncolored layer-i neighbors of v in S is
at most \epsilon 5i\Delta . Vertices that violate this property join the set V\sansb \sansa \sansd .

Lemma 4.3 (small and medium blocks; layer 1). Let S = V \sansS
1 or S = V \sansM

1 .
Suppose that each vertex v \in S has at least \Delta

2 log(1/\epsilon 1)
excess colors w.r.t. S. There

is an O(1)-time algorithm that colors a subset of S meeting the following condition.
Each v \in S is colored with probability at least 1 - exp(- \Omega (poly(\Delta))); all uncolored
vertices in S join V\sansb \sansa \sansd .

The following lemmas consider large blocks. Lemma 4.4 colors V \sansL
2+ and has guar-

antees similar to Lemma 4.2, whereas Lemma 4.5 colors nearly all of V \sansL
1 and partitions

the remaining uncolored vertices among three sets, R,X, and V\sansb \sansa \sansd , with certain guar-
antees.

Lemma 4.4 (large blocks; layer other than 1). There is an O(1)-time algorithm
that colors a subset of V \sansL

2+ meeting the following condition. For each v \in V \star and each
layer number i \in [2, \ell], with probability at least 1 - exp(- \Omega (poly(\Delta))), the number
of uncolored layer-i neighbors of v in V \sansL

2+ is at most \epsilon 5i\Delta . Vertices that violate this
property join the set V\sansb \sansa \sansd .

Remember that our goal is to show that the bad vertices V\sansb \sansa \sansd induce connected
components of size O(poly log n). However, if in a randomized procedure each vertex is
added to V\sansb \sansa \sansd with probability 1/poly(\Delta), then the shattering lemma only guarantees
that the size of each connected component of V\sansb \sansa \sansd is O(poly(\Delta) log n), which is not
necessarily poly log n. This explains why Lemma 4.5 has two types of guarantees.

Lemma 4.5 (large blocks; layer 1). Let c be a sufficiently large constant. Then
there is a constant time (independent of c) algorithm that colors a subset of V \sansL

1 while
satisfying one of the following cases:

\bullet The uncolored vertices of V \sansL
1 are partitioned among R or V\sansb \sansa \sansd . The graph

induced by R has degree O(c2); each vertex joins V\sansb \sansa \sansd with probability \Delta - \Omega (c).
\bullet If \Delta > log\alpha c n, where \alpha > 0 is some universal constant, then the uncolored
vertices of V \sansL

1 are partitioned among R and X, where the graph induced by R

has degree O(c2) and the components induced by X have size logO(c) n, w.h.p.

In our (\Delta + 1)-list coloring algorithm, we apply Lemmas 4.2, 4.3, 4.4, and 4.5 to
color the vertices in V \star \setminus V\sanss \sansp , and they are processed in this order:

(V \sansS
2+, V

\sansS
1 , V

\sansM
2+, V

\sansM
1 , V \sansL

2+, V
\sansL
1).

D
ow

nl
oa

de
d

08
/2

4/
20

 to
 1

41
.2

11
.4

.2
24

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ULTRAFAST DISTRIBUTED (\Delta + 1)-COLORING 511

Coloring the leftover vertices X and R. Notice that the algorithm for Lemma 4.5
generates a leftover uncolored subset R which induces a constant-degree subgraph
and (in case \Delta > log\Theta (c) n) a leftover uncolored subset X where each connected
component has size at most O(poly log n). Remember that the vertices in R and X do
not join V\sansb \sansa \sansd . All vertices in X are colored deterministically in \sansD \sanse \sanst d(poly log n) time;
the vertices in R are colored deterministically in O(poly(\Delta \prime) + log\ast n) = O(log\ast n)
time [38, 27, 11], with \Delta \prime = O(c2) = O(1).

The remaining vertices. Any vertex in V \star that violates at least one condition
specified in the lemmas is added to the set V\sansb \sansa \sansd . All remaining uncolored vertices join
the set U . In other words, U is the set of all vertices in V \star \setminus (V\sanss \sansp \cup V\sansb \sansa \sansd \cup R\cup X) that
remain uncolored after step 3 of the algorithm described in Figure 2.

4.3. Coloring the remaining vertices. At this point, all uncolored vertices
are in U \cup V\sanss \sansp \cup V\sansb \sansa \sansd . We show that U \cup V\sanss \sansp can be colored efficiently in O(log\ast \Delta)
time using Lemma 2.1 and then consider V\sansb \sansa \sansd .

Coloring the vertices in U . Let G\prime be the directed acyclic graph induced by U ,
where all edges are oriented from the sparser to the denser endpoint. In particular,
an edge e = \{ u, u\prime \} is oriented as (u, u\prime) if u is at layer i, u\prime is at layer i\prime , and i > i\prime ,
or if i = i\prime and ID(u) > ID(u\prime). Recall that Nout(v) is the set of out-neighbors of v in
G\prime .

For each layer-i vertex v in G\prime and each layer j, the number of layer-j neighbors
of v in G\prime is at most O(\epsilon 5j\Delta), due to Lemmas 4.2 and 4.4. The out-degree of v is

therefore at most
\sum i

j=1 \epsilon
5
j\Delta = O(\epsilon 5i\Delta) = O(\epsilon

5/2
i - 1\Delta).

We write \Psi (v) to denote the set of available colors of v. The number of excess
colors at v is | \Psi (v)| - deg(v) = \Omega (\epsilon 2i - 1\Delta). Thus, there is an \Omega (1/

\surd
\epsilon i - 1)-factor gap

between the palette size of v and the out-degree of v.
Lemma 2.1 is applied to color nearly all vertices in U in O(log\ast \Delta) time, with

any remaining uncolored vertices added to V\sansb \sansa \sansd . We use the following parameters of
Lemma 2.1. In view of the above, there exists a constant \eta > 0 such that, for each
i \in [2, \ell] and each layer-i vertex v in G\prime , we set pv = \eta \epsilon 2i - 1\Delta \leq | \Psi (v)| - deg(v). There
is a constant C > 0 such that for each i \in [2, \ell] and each layer-i vertex v \in U , we have

\sum
u\in Nout(v)

1/pu \leq
i\sum

j=2

O

\Biggl(
\epsilon
5/2
j - 1\Delta

\epsilon 2j - 1\Delta

\Biggr)
=

i\sum
j=2

O(\epsilon
1/2
j - 1) < 1/C.

The remaining parameters to Lemma 2.1 are

p \star = \eta \epsilon 21\Delta = \Omega (\Delta 8/10), d \star = \Delta , C = \Omega (1).

Thus, by Lemma 2.1 the probability that a vertex still remains uncolored (and is
added to V\sansb \sansa \sansd) after the algorithm is

exp(- \Omega (
\surd
p \star)) + d \star exp(- \Omega (p \star)) = exp(- \Omega (\Delta 2/5)).

Coloring the vertices in V\sanss \sansp . The set V\sanss \sansp can be colored in a similar way using
Lemma 2.1. We let G\prime \prime be any acyclic orientation of the graph induced by V\sanss \sansp , e.g.,
orienting each edge \{ u, v\} towards the vertex v such that ID(u) > ID(v). The number
of available colors of each v \in V\sanss \sansp minus its out-degree is at least \Omega (\epsilon 2\ell \Delta), which is
at least \gamma \Delta , for some constant \gamma > 0, according to the way we select the sparsity
sequence. We define pv = \gamma \Delta < | \Psi (v)| - deg(v). We have

\sum
u\in Nout(v)

(1/pu) \leq
outdeg(v)/(\gamma \Delta) \leq 1/\gamma . Thus, we can apply Lemma 2.1 with C = \gamma . Notice that

D
ow

nl
oa

de
d

08
/2

4/
20

 to
 1

41
.2

11
.4

.2
24

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

512 YI-JUN CHANG, WENZHENG LI, AND SETH PETTIE

both p \star and d \star are \Theta (\Delta), and so the probability that a vertex still remains uncolored
after the algorithm (and is added to V\sansb \sansa \sansd) is exp(- \Omega (

\surd
\Delta)).

Coloring the vertices in V\sansb \sansa \sansd . At this point, all remaining uncolored vertices are
in V\sansb \sansa \sansd . If \Delta \gg poly log n,7 then V\sansb \sansa \sansd = \emptyset , w.h.p., in view of the failure probabilities
exp(- \Omega (poly(\Delta))) specified in the lemmas used in the previous coloring steps. Oth-
erwise, \Delta = poly log n, and by Lemma 4.1, each connected component of V\sansb \sansa \sansd has size
at most poly(\Delta) log n = poly log n. In any case, it takes \sansD \sanse \sanst d(poly log n) to color all
vertices in V\sansb \sansa \sansd deterministically.

In our application of Lemma 4.1, both c and c\prime are set to be constants. This is
possible because the calculation of the probability that a vertex v joins V\sansb \sansa \sansd during
our algorithm works even if the random bits outside of a constant radius of v are
determined adversarially. This is consistent with the fact that whether a vertex v
joins V\sansb \sansa \sansd depends on vertices outside of its constant radius. This argument is used
in many applications of the graph shattering technique [13].

See Figure 2 for a synopsis of every step of the (\Delta + 1)-list coloring algorithm.

4.4. Time complexity. The time for \sansO \sansn \sanse \sansS \sansh \sanso \sanst \sansC \sanso \sansl \sanso \sansr \sansi \sansn \sansg (Figure 2, step 2) is O(1).
The time for processing each of V \sansS

2+, V
\sansS
1 , V

\sansM
2+, V

\sansM
1 , V \sansL

2+, V
\sansL
1 (steps 3(a)--(f)) is O(1).

Observe that each of steps 2 and 3(a)--(f) may put vertices in V\sansb \sansa \sansd , that steps 3(a),
(c), (e) leave some vertices uncolored, and that step 3(f) also puts vertices in special
sets X and R. W.h.p., R induces components with constant degree, which can be
colored deterministically in O(log\ast n) time (step 4). The uncolored vertices (U) from
steps 3(a), (c), (e) have a large gap between their palette size and degree and can be
colored in O(log\ast \Delta) time using the \sansC \sanso \sansl \sanso \sansr \sansB \sansi \sansd \sansd \sansi \sansn \sansg algorithm (Lemma 2.1) in step 6.
The same type of palette size-degree gap exists for V\sanss \sansp as well, so \sansC \sanso \sansl \sanso \sansr \sansB \sansi \sansd \sansd \sansi \sansn \sansg colors
it in O(log\ast \Delta) time; for step 7, we are applying Lemma 2.1 again but with different
parameters.

Finally, steps 5 and 8 solve a (deg+1)-list coloring problem on a graph whose
components have size poly log n. Observe that V\sansb \sansa \sansd is guaranteed to induce compo-
nents with size poly(\Delta) log n, which happens to be poly log n since no vertices are
added to V\sansb \sansa \sansd , w.h.p., if \Delta \gg poly log n is sufficiently large. In contrast, in step 5,
X can be nonempty even when \Delta is large, but it still induces components with size
poly log n.

Since log\ast \Delta \leq log\ast n = O(\sansD \sanse \sanst d(poly log n)) [38], the bottleneck in the algorithm
is solving (deg+1)-list coloring in steps 5 and 8.

Theorem 4.6. In the \sansL \sansO \sansC \sansA \sansL model, the (\Delta + 1)-list coloring problem can be
solved, w.h.p., in O(\sansD \sanse \sanst d(poly log n)) time, where \sansD \sanse \sanst d(n

\prime) is the deterministic com-
plexity of (deg+1)-list coloring on n\prime -vertex graphs.

Next, we argue that if the palettes have poly log n extra colors initially, we can
list color the graph in O(log\ast \Delta) time.

Theorem 4.7. There is a universal constant \gamma > 0 such that the (\Delta +log\gamma n)-list
coloring problem can be solved in the \sansL \sansO \sansC \sansA \sansL model, w.h.p., in O(log\ast \Delta) time.

Proof. For all parts of our (\Delta + 1)-list coloring algorithm, except the first case
of Lemma 4.5, the probability that a vertex v joins V\sansb \sansa \sansd is exp(- \Omega (poly(\Delta))). Let \alpha
and c be the constants in Lemma 4.5 and k1 = \Theta (c) \geq \alpha c be such that if \Delta > logk1 n,
then the probability that a vertex v joins V\sansb \sansa \sansd in our (\Delta + 1)-list coloring algorithm
is exp(- \Omega (poly(\Delta))) = 1/poly(n). Note that when \Delta > logk1 n, no vertex is added

7Precisely, it means that \Delta = \Omega (logh n) for some universal constant h > 0.

D
ow

nl
oa

de
d

08
/2

4/
20

 to
 1

41
.2

11
.4

.2
24

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ULTRAFAST DISTRIBUTED (\Delta + 1)-COLORING 513

(\Delta + 1)-List Coloring Algorithm

1. Determine the \epsilon -almost cliques for \epsilon \in \{ \epsilon 1, . . . , \epsilon \ell \} (Lemma 3.1).

2. Perform the initial coloring step using algorithm \sansO \sansn \sanse \sansS \sansh \sanso \sanst \sansC \sanso \sansl \sanso \sansr \sansi \sansn \sansg (Lemma 2.5),
and partition the remaining uncolored vertices into V \star and V\sansb \sansa \sansd . Further
partition V \star into a sparse set V\sanss \sansp and a hierarchy \scrT of small, medium, and
large blocks. Partition V \star \setminus V\sanss \sansp into six sets: V \sansS

2+, V
\sansS
1 , V

\sansM
2+, V

\sansM
1 , V \sansL

2+, V
\sansL
1 .

3. Color most of V \sansS
2+, V

\sansS
1 , V

\sansM
2+, V

\sansM
1 , V \sansL

2+, V
\sansL
1 in six steps.

(a) Color a subset of V \sansS
2+ using algorithm \sansD \sanse \sansn \sanss \sanse \sansC \sanso \sansl \sanso \sansr \sansi \sansn \sansg \sansS \sanst \sanse \sansp (version 1). Any

vertices that violate the conclusion of Lemma 4.2 are added to V\sansb \sansa \sansd .

(b) Color V \sansS
1 using algorithm \sansD \sanse \sansn \sanss \sanse \sansC \sanso \sansl \sanso \sansr \sansi \sansn \sansg \sansS \sanst \sanse \sansp (version 1). Any remaining

uncolored vertices are added to V\sansb \sansa \sansd (Lemma 4.3).

(c) Color a subset of V \sansM
2+ using algorithm \sansD \sanse \sansn \sanss \sanse \sansC \sanso \sansl \sanso \sansr \sansi \sansn \sansg \sansS \sanst \sanse \sansp (version 1). Any

vertices that violate the conclusion of Lemma 4.2 are added to V\sansb \sansa \sansd .

(d) Color V \sansM
1 using algorithm \sansD \sanse \sansn \sanss \sanse \sansC \sanso \sansl \sanso \sansr \sansi \sansn \sansg \sansS \sanst \sanse \sansp (version 1). Any remaining

uncolored vertices are added to V\sansb \sansa \sansd (Lemma 4.3).

(e) Color a subset of V \sansL
2+ using algorithm \sansD \sanse \sansn \sanss \sanse \sansC \sanso \sansl \sanso \sansr \sansi \sansn \sansg \sansS \sanst \sanse \sansp (version 2). Any

vertices that violate the conclusion of Lemma 4.4 are added to V\sansb \sansa \sansd .

(f) Color V \sansL
1 using algorithm \sansD \sanse \sansn \sanss \sanse \sansC \sanso \sansl \sanso \sansr \sansi \sansn \sansg \sansS \sanst \sanse \sansp (version 2). Each remaining

uncolored vertex is added to one of X,R, or V\sansb \sansa \sansd . (See Lemma 4.5.)

4. W.h.p., R induces a graph with constant maximum degree. Color R in
O(log\ast n) time deterministically using a standard algorithm [38, 27, 11].

5. W.h.p., X induces a graph whose components have size poly log n. Color X in
O(\sansD \sanse \sanst d(poly log n)) time deterministically; see [48, 13].

6. Color those uncolored vertices U in
\bigl(
V \sansS
2+ \cup V \sansM

2+ \cup V \sansL
2+

\bigr)
\setminus V\sansb \sansa \sansd in O(log\ast \Delta) time

using algorithm \sansC \sanso \sansl \sanso \sansr \sansB \sansi \sansd \sansd \sansi \sansn \sansg (Lemma 2.1). Any vertices in U that remain
uncolored are added to V\sansb \sansa \sansd .

7. Color V\sanss \sansp in O(log\ast \Delta) time using algorithm \sansC \sanso \sansl \sanso \sansr \sansB \sansi \sansd \sansd \sansi \sansn \sansg (Lemma 2.1). Any
vertices that remain uncolored are added to V\sansb \sansa \sansd .

8. W.h.p., V\sansb \sansa \sansd induces components of size poly log n. Color V\sansb \sansa \sansd in
O(\sansD \sanse \sanst d(poly log n)) time deterministically; see [48, 13].

Fig. 2. Steps 1, 2, and 3(a)--(f) take constant time. Steps 4, 6, and 7 take O(log\ast n) =
O(\sansD \sanse \sanst d(poly logn)) time [38, 42]. The bottlenecks in the algorithm are steps 5 and 8, which take
O(\sansD \sanse \sanst d(poly logn)) time. The algorithm succeeds in the prescribed time, so long as the input to steps
4, 5, and 8 are as they should be, i.e., inducing subgraphs with constant degree, or poly logn-size
components, respectively. (These are instances of (deg+1)-list coloring.) When \Delta \gg poly logn is
sufficiently large, the set V\sansb \sansa \sansd is empty, w.h.p., but X may be nonempty and induce components with
size poly logn.

to V\sansb \sansa \sansd in Lemma 4.5.
Let R\prime = R \cup X be the leftover vertices in Lemma 4.5 for the case \Delta > logk1 n.

There exists a constant k2 > 0 such that the subgraph induced by R\prime has maximum
degree logk2 n. We set \gamma = max\{ k1, k2\} +1. Now we show how to solve the (\Delta +log\gamma n)-
list coloring problem in O(log\ast \Delta) time.

If \Delta \leq log\gamma - 1 n, then we apply the algorithm of Lemma 2.2 directly, with \rho =

D
ow

nl
oa

de
d

08
/2

4/
20

 to
 1

41
.2

11
.4

.2
24

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

514 YI-JUN CHANG, WENZHENG LI, AND SETH PETTIE

log\gamma n
\Delta - 1 = \Omega (log n). The algorithm takes O(1+log\ast \Delta - log\ast \rho) = O(1) time, and the

probability that a vertex v is not colored is exp(- \Omega (
\surd
\rho \Delta)) = exp(- \Omega (log\gamma /2 n)) \ll

1/poly(n).
If \Delta > log\gamma - 1 n, then we apply steps 1, 2, 3, 6, and 7 of our (\Delta + 1)-list coloring

algorithm. Due to the lower bound on \Delta , we have V\sansb \sansa \sansd = \emptyset , w.h.p., which obviates
the need to implement step 8.

This algorithm takes O(log\ast \Delta) time and produces an uncolored subgraph R\prime =
R \cup X that has maximum degree \Delta \prime \leq logk2 n. In lieu of steps 4 and 5, we apply the
algorithm of Lemma 2.2 to color R\prime in O(1 + log\ast \Delta \prime - log\ast \rho) = O(1) time, where

\rho = log\gamma n
\Delta \prime - 1 = \Omega (log n).

If every vertex is \epsilon -sparse, with \epsilon 2\Delta sufficiently large, then the algorithm of
Lemma 2.5 gives every vertex \Omega (\epsilon 2\Delta) excess colors, w.h.p. Combining this observa-
tion with Theorem 4.7, we have the following result, which shows that the (\Delta +1)-list
coloring problem can be solved very efficiently when all vertices are sufficiently locally
sparse.

Theorem 4.8. There is a universal constant \gamma > 0 such that the following holds.
Suppose G is a graph with maximum degree \Delta in which each vertex is \epsilon -sparse, where
\epsilon 2\Delta > log\gamma n. A (\Delta + 1)-list coloring of G can be computed in the \sansL \sansO \sansC \sansA \sansL model,
w.h.p., in O(log\ast n) time.

Note that the assumption \epsilon 2\Delta > log\gamma n in Theorem 4.8 implies that log\ast \Delta =
\Theta (log\ast n).

Remark 3. Theorem 4.8 insists on every vertex being \epsilon -sparse according to Defi-
nition 2.4. It is straightforward to show connections between this definition of spar-
sity and other standard measures from the literature. For example, such a graph is
(1 - \epsilon \prime)-locally sparse, where \epsilon \prime = \Omega (\epsilon 2), according to Definition 2.3. Similarly, any
(1 - \epsilon \prime)-locally sparse graph is \Omega (\epsilon \prime)-sparse. Graphs of degeneracy d \leq (1 - \epsilon \prime)\Delta or
arboricity \lambda \leq (1/2 - \epsilon \prime)\Delta are trivially (1 - \Omega (\epsilon \prime))-locally sparse.

Remark 4. We have made no effort to minimize the constant \gamma in Theorems 4.7
and 4.8, and it is impractically large. It would be useful to know whether these
theorems remain true when \gamma is small, say 1; i.e., is (\Delta + log n)-coloring solvable in
O(log\ast \Delta) time, w.h.p.?

Remark 5. Our algorithm requires that all vertices know the parameter \Delta . It is
an open question to achieve the same time complexity for (\Delta + 1)-coloring without
this assumption. The exact knowledge of n is not absolutely necessary. The algorithm
works as long as all vertices agree on an estimate n\prime = n\Omega (1).

5. Fast coloring using excess colors. In this section, we prove Lemma 2.1.
Consider a directed acyclic graph G = (V,E), where each vertex v has a palette
\Psi (v). Each vertex v is associated with a parameter pv \leq | \Psi (v)| - deg(v); i.e., pv
is a lower bound on the number of excess colors at v. All vertices agree on values
p \star \leq minv\in V pv, d

 \star \geq maxv\in V outdeg(v), and C = \Omega (1), such that the following is
satisfied for all v:

(5.1)
\sum

u\in Nout(v)

1/pu \leq 1/C.

Intuitively, the sum
\sum

u\in Nout(v)
1/pu measures the amount of ``contention"" at a vertex

v. In the \sansC \sanso \sansl \sanso \sansr \sansB \sansi \sansd \sansd \sansi \sansn \sansg algorithm, each vertex v selects each color c \in \Psi (v) with

D
ow

nl
oa

de
d

08
/2

4/
20

 to
 1

41
.2

11
.4

.2
24

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ULTRAFAST DISTRIBUTED (\Delta + 1)-COLORING 515

probability C
2| \Psi (v)| <

C
2pv

and permanently colors itself if it selects a color not selected

by any out-neighbor.

Procedure \sansC \sanso \sansl \sanso \sansr \sansB \sansi \sansd \sansd \sansi \sansn \sansg .
1. Each color c \in \Psi (v) is added to Sv independently with probability

C
2| \Psi (v)| .

2. If there exists a color c \star \in Sv\setminus
\bigl(
\cup u\in Nout(v)Su

\bigr)
, v permanently colors

itself c \star .

In Lemma 5.1, we present an analysis of \sansC \sanso \sansl \sanso \sansr \sansB \sansi \sansd \sansd \sansi \sansn \sansg . We show that after an iter-
ation of \sansC \sanso \sansl \sanso \sansr \sansB \sansi \sansd \sansd \sansi \sansn \sansg , the amount of ``contention"" at a vertex v decreases by (roughly)
an exp(C/6)-factor, with very large probability.

Lemma 5.1. Consider an execution of \sansC \sanso \sansl \sanso \sansr \sansB \sansi \sansd \sansd \sansi \sansn \sansg . Let v be any vertex. Let D
be the summation of 1/pu over all vertices u in Nout(v) that remain uncolored after
\sansC \sanso \sansl \sanso \sansr \sansB \sansi \sansd \sansd \sansi \sansn \sansg . Then the following holds:

Pr[v remains uncolored] \leq exp(- C/6) + exp(- \Omega (p \star)),

Pr[D \geq (1 + \lambda) exp(- C/6)/C] \leq exp
\bigl(
 - 2\lambda 2p \star exp(- C/3)/C

\bigr)
+ d \star exp(- \Omega (p \star)).

Proof. For each vertex v, we define the following two events:
Egood

v : v selects a color that is not selected by any vertex in Nout(v).
Ebad

v : the number of colors in \Psi (v) that are selected by some vertices in Nout(v) is
at least 2

3 \cdot | \Psi (v)| .
Notice that Egood

v is the event where v successfully colors itself. We first show that
Pr[Ebad

v] = exp(- \Omega (p \star)). Fix any color c \in \Psi (v). The probability that c is selected
by some vertex in Nout(v) is

1 -
\prod

u\in Nout(v)

\Bigl(
1 - C

2| \Psi (u)|

\Bigr)
\leq 1 -

\prod
u\in Nout(v)

\Bigl(
1 - C

2pu

\Bigr)
\leq

\sum
u\in Nout(v)

C
2pu

\leq 1
2 ,

where the last inequality follows from (5.1). Since these events are independent for

different colors, Pr[Ebad
v] \leq Pr[Binomial(n\prime , p\prime) \geq 2n\prime

3], with n\prime = | \Psi (v)| \geq pv and
p\prime = 1

2 . By a Chernoff bound, we have

Pr
\bigl[
Ebad

u

\bigr]
\leq exp(- \Omega (n\prime p\prime)) = exp(- \Omega (p \star)).

Conditioned on Ebad
v , v will color itself unless it fails to choose any of | \Psi (v)| /3 specific

colors from its palette. Thus,

(5.2) Pr
\Bigl[
Egood

v

\bigm| \bigm| \bigm| Ebad
v

\Bigr]
\leq
\Bigl(
1 - C

2| \Psi (v)|

\Bigr)
| \Psi (v)| /3 \leq exp

\bigl(- C
6

\bigr)
.

We are now in a position to prove the first inequality of the lemma. The proba-

bility that v remains uncolored is at most Pr
\bigl[
Egood

v

\bigm| \bigm| Ebad
v

\bigr]
+ Pr

\bigl[
Ebad

v

\bigr]
, which is at

most exp(- C/6) + exp(- \Omega (p \star)).

Next, we prove the second inequality on the upper tail of the random variable D.
Let Nout(v) = (u1, . . . , uk). Let E

bad
i and Egood

i be short for Ebad
ui

and Egood
ui

, and let
\scrE be the event

\bigcup
i E

bad
i . By a union bound,

Pr [\scrE] \leq outdeg(v) \cdot exp(- \Omega (p \star))

\leq d \star \cdot exp(- \Omega (p \star)).

D
ow

nl
oa

de
d

08
/2

4/
20

 to
 1

41
.2

11
.4

.2
24

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

516 YI-JUN CHANG, WENZHENG LI, AND SETH PETTIE

Let X =
\sum k

i=1 Xi, where Xi = 1/pui
if either Egood

i or Ebad
i occurs, and Xi = 0

otherwise. Observe that if we condition on \scrE , then X is exactly D, the random
variable we want to bound.

By linearity of expectation,

\mu = E[X | \scrE] =
\sum
i

E[Xi | \scrE]

\leq
\sum
i

1

pui

\cdot Pr
\Bigl[
Egood

i

\bigm| \bigm| \bigm| Ebad
i

\Bigr]
\leq
\sum
i

1

pui

\cdot exp(- C/6) (see (5.2))

\leq exp(- C/6)

C
(see (5.1)).

Each variable Xi is within the range [ai, bi], where ai = 0 and bi = 1/pui
. We

have
\sum k

i=1(bi - ai)
2 \leq

\sum
u\in Nout(v)

1/(pu \cdot p \star) \leq 1/(Cp \star). By Hoeffding's inequality,
we have

Pr

\biggl[
X \geq (1 + \lambda) \cdot exp(- C/6)

C

\bigm| \bigm| \bigm| \bigm| \scrE \biggr] \leq Pr[X \geq (1 + \lambda)\mu | \scrE]

\leq exp

\Biggl(
 - 2(\lambda \mu)2\sum k
i=1(bi - ai)2

\Biggr)

\leq exp

\Biggl(
 - 2

\biggl(
\lambda exp(- C/6)

C

\biggr) 2

Cp \star

\Biggr)

= exp

\biggl(
 - 2\lambda 2p \star exp(- C/3)

C

\biggr)
.

Thus,

Pr[D \geq (1 + \lambda) exp(- C/6)/C]

\leq Pr[X \geq (1 + \lambda) exp(- C/6)/C | \scrE] + Pr[\scrE]
\leq exp

\bigl(
 - 2\lambda 2p \star exp(- C/3)/C

\bigr)
+ d \star exp(- \Omega (p \star)).

Note that the variables \{ X1, . . . , Xk\} are not independent, but we are still able
to apply Hoeffding's inequality. The reason is as follows. Assume that Nout(v) =
(u1, . . . , uk) is sorted in reverse topological order, and so for each 1 \leq j \leq k, we

have Nout(uj) \cap \{ uj , . . . , uk\} = \emptyset . Thus, conditioning on (i) Ebad
i and (ii) any colors

selected by vertices in
\bigcup

1\leq j<i Nout(uj) \cup \{ uj\} , the probability that Egood
i occurs is

still at most exp(- C
6).

Restatement of Lemma 2.1. Consider a directed acyclic graph, where vertex v
is associated with a parameter pv \leq | \Psi (v)| - deg(v). We write p \star = minv\in V pv. Sup-
pose that there is a number C = \Omega (1) such that all vertices v satisfy

\sum
u\in Nout(v)

1/pu \leq
1/C. Let d \star be the maximum out-degree of the graph. There is an algorithm that takes
O (1 + log\ast p \star - log\ast C) time and achieves the following. Each vertex v remains un-
colored with probability at most exp(- \Omega (

\surd
p \star))+ d \star exp(- \Omega (p \star)). This is true even if

the random bits generated outside a constant radius around v are determined adver-
sarially.

D
ow

nl
oa

de
d

08
/2

4/
20

 to
 1

41
.2

11
.4

.2
24

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ULTRAFAST DISTRIBUTED (\Delta + 1)-COLORING 517

Proof. In what follows, we show how Lemma 5.1 can be used to derive Lemma 2.1.
Our plan is to apply \sansC \sanso \sansl \sanso \sansr \sansB \sansi \sansd \sansd \sansi \sansn \sansg for k \star = log\ast p \star - log\ast C +O(1) iterations. For the
kth iteration, we use the parameter Ck, which is defined as follows:

C1 = min\{
\surd
p \star , C\} ,

Ck = min

\biggl\{ \surd
p \star ,

Ck - 1

(1 + \lambda) exp(- Ck - 1/6)

\biggr\}
,

k \star = min
\bigl\{
k | Ck =

\surd
p \star
\bigr\}

(the last iteration).

Here \lambda > 0 must be selected to be sufficiently small so that

(1 + \lambda) exp(- Ck - 1/6) < 1.

This guarantees that the sequence (Ck) is strictly increasing. For example, if C \geq 6
initially, we can fix \lambda = 1 throughout.

We analyze each iteration of \sansC \sanso \sansl \sanso \sansr \sansB \sansi \sansd \sansd \sansi \sansn \sansg using the same (initial) vector of (pv)
values; i.e., we do not count on the number of excess colors at any vertex increasing
over time.

At the end of the kth iteration, k \in [1, k \star], we have the following invariant \scrH k

that we expect all vertices to satisfy:
\bullet If k \in [1, k \star), \scrH k stipulates that for each uncolored vertex v after the kth
iteration, the summation of 1/pu over all uncolored u \in Nout(v) is less than
1/Ck+1.

\bullet \scrH k \star stipulates that all vertices still participating are colored at the end of the
k \star th iteration.

The purpose of \scrH k, k \in [1, k \star), is to guarantee that Ck+1 is a valid parameter for the
(k+1)th iteration of \sansC \sanso \sansl \sanso \sansr \sansB \sansi \sansd \sansd \sansi \sansn \sansg . For each k \in [1, k \star], at the end of the kth iteration
we remove all vertices violating \scrH k from further participation in the procedure and
add them to the set V\sansb \sansa \sansd . Thus, by the definition of \scrH k \star , after the last iteration, all
vertices other than the ones in V\sansb \sansa \sansd have been colored.

To prove the lemma, it suffices to show that the probability of v joining V\sansb \sansa \sansd

is at most exp(- \Omega (
\surd
p \star)) + d \star exp(- \Omega (p \star)), and this is true even if the randomness

outside a constant radius around v is determined adversarially. By Lemma 5.1, the
probability that a vertex is removed at the end of the kth iteration, where k \in [1, k \star),
is at most

exp(\Omega (p \star /Ck+1)) + d \star exp(- \Omega (p \star))

\leq exp(- \Omega (
\surd
p \star)) + d \star exp(- \Omega (p \star)).

The probability that a vertex is removed at the end of the k \star th iteration is at
most exp(- Ck \star /6) + exp(- \Omega (p \star)) \leq exp(- \Omega (

\surd
p \star)). By a union bound over all

k \star = log\ast p \star - log\ast C + O(1) iterations, the probability that a vertex joins V\sansb \sansa \sansd is
exp(- \Omega (

\surd
p \star)) + d \star exp(- \Omega (p \star)).

6. Coloring locally dense vertices. Throughout this section, we consider the
following setting. We are given a graph G = (V,E), where some vertices are already
colored. We are also given a subset S of the uncolored vertices, which is partitioned
into g disjoint clusters S = S1\cup S2\cup \cdot \cdot \cdot \cup Sg, each with weak diameter 2. (In particular,
this implies that otherwise sequential algorithms can be executed on each cluster in
O(1) rounds in the \sansL \sansO \sansC \sansA \sansL model.) Our goal is to color a large fraction of the vertices
in S in only constant time.

D
ow

nl
oa

de
d

08
/2

4/
20

 to
 1

41
.2

11
.4

.2
24

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

518 YI-JUN CHANG, WENZHENG LI, AND SETH PETTIE

We assume that the edges within S are oriented from the sparser to the denser
endpoint, breaking ties by comparing IDs. In particular, an edge e = \{ u, u\prime \} is
oriented as (u, u\prime) if u is at layer i, u\prime is at layer i\prime , and i > i\prime , or if i = i\prime and
ID(u) > ID(u\prime). Notice that this orientation is acyclic. In this section, Nout(v) \subseteq S
denotes the set of out-neighbors of v in S, as we only focus on the vertices in S.

In section 6.1, we describe a procedure \sansD \sanse \sansn \sanss \sanse \sansC \sanso \sansl \sanso \sansr \sansi \sansn \sansg \sansS \sanst \sanse \sansp (version 1) that is effi-
cient when each vertex has many excess colors w.r.t. S. It is analyzed in Lemma 6.1,
which is then used to prove Lemmas 4.2 and 4.3. In section 6.2, we describe a pro-
cedure \sansD \sanse \sansn \sanss \sanse \sansC \sanso \sansl \sanso \sansr \sansi \sansn \sansg \sansS \sanst \sanse \sansp (version 2), which is a generalization of Harris, Schneider,
and Su's procedure [32]. It is analyzed in Lemma 6.2, which is then used to prove
Lemmas 4.4 and 4.5.

6.1. Version 1 of \sansD \sanse \sansn \sanss \sanse \sansC \sanso \sansl \sanso \sansr \sansi \sansn \sansg \sansS \sanst \sanse \sansp --Many excess colors are available. In
this section, we focus on the case where each vertex v \in S has many excess colors
w.r.t. S. We make the following assumptions about the vertex set S.

Excess colors. Each v \in S is associated with a parameter Zv, which indicates a
lower bound on the number of excess colors of v w.r.t. S. That is, the palette size of
v minus | N(v) \cap S| is at least Zv.

External degree. For each cluster Sj , each vertex v \in Sj is associated with a
parameter Dv such that | Nout(v) \cap (S \setminus Sj)| \leq Dv.

The ratio of these two quantities plays an important role in the analysis. Define
\delta v as

\delta v =
Dv

Zv
.

We briefly explain how we choose the clustering S = S1 \cup S2 \cup \cdot \cdot \cdot \cup Sg and set these
parameters in the settings of Lemmas 4.2 and 4.3. For Lemma 4.3, S is either V \sansS

1 or
V \sansM
1 , and each cluster of S is the intersection of S and an \epsilon 1-almost clique (a layer-1

block). For Lemma 4.2, S is either V \sansS
2+ or V \sansM

2+, and each cluster of S is the intersection
of S and an \epsilon \ell -almost clique. In all cases, clusters have weak diameter 2. All vertices
in the same layer adopt the same D- and Z-values. A layer-i vertex v takes

Zv =
\Delta

2 log(1/\epsilon i)
,

Dv = \epsilon i\Delta .

The choices of these parameters are valid in view of the excess colors implied by
Lemma 3.3 and the external degree upper bound of Lemma 3.1.

Procedure \sansD \sanse \sansn \sanss \sanse \sansC \sanso \sansl \sanso \sansr \sansi \sansn \sansg \sansS \sanst \sanse \sansp (version 1).
1. Let \pi : \{ 1, . . . , | Sj | \} \rightarrow Sj be the unique permutation that lists the

vertices of Sj in increasing order by layer number, breaking ties (within
the same layer) by ID. For q from 1 to | Sj | , the vertex \pi (q) selects a
color c(\pi (q)) uniformly at random from

\Psi (\pi (q)) \setminus \{ c(\pi (q\prime)) | q\prime < q and \{ \pi (q), \pi (q\prime)\} \in E(G)\} .

2. Each v \in Sj permanently colors itself c(v) if c(v) is not selected by any
vertices in Nout(v).

D
ow

nl
oa

de
d

08
/2

4/
20

 to
 1

41
.2

11
.4

.2
24

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ULTRAFAST DISTRIBUTED (\Delta + 1)-COLORING 519

Notice that \pi is a reverse topological ordering of Sj , i.e., if \pi (q
\prime) precedes \pi (q),

then \pi (q) /\in Nout(\pi (q
\prime)). Because each Sj has weak diameter 2, we can simulate

step 1 of \sansD \sanse \sansn \sanss \sanse \sansC \sanso \sansl \sanso \sansr \sansi \sansn \sansg \sansS \sanst \sanse \sansp in just O(1) rounds of communication. Intuitively, the
probability that a vertex v \in S remains uncolored after \sansD \sanse \sansn \sanss \sanse \sansC \sanso \sansl \sanso \sansr \sansi \sansn \sansg \sansS \sanst \sanse \sansp (version
1) is at most \delta v since it is guaranteed not to have any conflicts with neighbors in
the same cluster. The following lemma gives us the probabilistic guarantee of the
\sansD \sanse \sansn \sanss \sanse \sansC \sanso \sansl \sanso \sansr \sansi \sansn \sansg \sansS \sanst \sanse \sansp (version 1).

Lemma 6.1. Consider an execution of \sansD \sanse \sansn \sanss \sanse \sansC \sanso \sansl \sanso \sansr \sansi \sansn \sansg \sansS \sanst \sanse \sansp (version 1). Let T be
any subset of S, and let \delta = maxv\in T \delta v. For any t \geq 1, the number of uncolored
vertices in T is at least t with probability at most Pr[Binomial(| T | , \delta) \geq t].

Proof. Let T = \{ v1, . . . , v| T | \} be listed in increasing order by layer number, break-
ing ties by vertex ID. Remember that vertices in T can be spread across multiple
clusters in S. Imagine exposing the color choices of all vertices in S, one by one,
in this order: v1, . . . , v| T | . The vertex vk in cluster Sj will successfully color itself if
it chooses any color not already selected by a vertex in Nout(vk) \cap (S \setminus Sj). Since
| Nout(vk) \cap (S \setminus Sj)| \leq Dvk and vk has at least Zvk

colors to choose from at this
moment, the probability that it fails to be colored is at most Dvk/Zvk = \delta vk \leq \delta , in-
dependent of the choices made by higher priority vertices v1, . . . , vk - 1. Thus, for any
t, the number of uncolored vertices in T is stochastically dominated by the binomial
variable Binomial(| T | , \delta).

Restatement of Lemma 4.2. Let S = V \sansS
2+ or S = V \sansM

2+. Suppose that each

layer-i vertex v \in S has at least \Delta
2 log(1/\epsilon i)

excess colors w.r.t. S. There is an O(1)-time

algorithm that colors a subset of S meeting the following condition. For each vertex
v \in V \star , and for each i \in [2, \ell], with probability at least 1 - exp(- \Omega (poly(\Delta))), the
number of uncolored layer-i neighbors of v in S is at most \epsilon 5i\Delta . Vertices that violate
this property join the set V\sansb \sansa \sansd .

Proof. We execute \sansD \sanse \sansn \sanss \sanse \sansC \sanso \sansl \sanso \sansr \sansi \sansn \sansg \sansS \sanst \sanse \sansp (version 1) for six iterations, where each
participating vertex x \in S uses the same (initial) values of Zx and Dx, namely
Zx = \Delta

2 log(1/\epsilon i)
and Dx = \epsilon i\Delta if x is at layer i.

Consider any vertex v \in V \star and any layer number i \in [2, \ell]. Let T be the set
of layer-i neighbors of v in S. To prove Lemma 4.2, it suffices to show that after six
iterations of \sansD \sanse \sansn \sanss \sanse \sansC \sanso \sansl \sanso \sansr \sansi \sansn \sansg \sansS \sanst \sanse \sansp (version 1), with probability 1 - exp(- \Omega (poly(\Delta))),
the number of uncolored vertices in T is at most \epsilon 5i\Delta .

We define the following parameters:

\delta = max
u\in T

\{ \delta u\} = 2\epsilon i log(1/\epsilon i),

t1 = | T | ,
tk = max

\bigl\{
(2\delta)tk - 1, \epsilon

5
i\Delta
\bigr\}
.

Since (2\delta)6| T | \leq \epsilon 5i\Delta , we have t7 = \epsilon 5i\Delta . (Remember that T is the set of layer-i
neighbors of v in S, and so | T | \leq \Delta .)

Assume that at the beginning of the kth iteration, the number of uncolored ver-
tices in T is at most tk. Indeed, for k = 1, we initially have t1 = | T | . By Lemma 6.1,
after the kth iteration, the expected number of uncolored vertices in T is at most
\delta tk \leq tk+1/2. By a Chernoff bound, with probability at most exp(- \Omega (tk+1)) \leq
exp(- \Omega (\epsilon 5i\Delta)) = exp(- \Omega (poly(\Delta))), the number of uncolored vertices in T is more
than tk+1.

D
ow

nl
oa

de
d

08
/2

4/
20

 to
 1

41
.2

11
.4

.2
24

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

520 YI-JUN CHANG, WENZHENG LI, AND SETH PETTIE

Therefore, after six iterations of \sansD \sanse \sansn \sanss \sanse \sansC \sanso \sansl \sanso \sansr \sansi \sansn \sansg \sansS \sanst \sanse \sansp (version 1), with probability
1 - exp(- \Omega (poly(\Delta))), the number of uncolored vertices in T is at most t7 = \epsilon 5i\Delta , as
required.

Restatement of Lemma 4.3. Let S = V \sansS
1 or S = V \sansM

1 . Suppose that each
vertex v \in S has at least \Delta

2 log(1/\epsilon 1)
excess colors w.r.t. S. There is an O(1)-time

algorithm that colors a subset of S meeting the following condition. Each v \in S is
colored with probability at least 1 - exp(- \Omega (poly(\Delta))); all uncolored vertices in S join
V\sansb \sansa \sansd .

Proof. In the setting of Lemma 4.3, we only consider layer-1 vertices but have
the higher burden of coloring each vertex with high enough probability. Since \epsilon 1 =
\Delta - 1/10, we have Zv = \Delta

2 log(1/\epsilon 1)
, Dv = \epsilon 1\Delta , and \delta v = Dv/Zv = 2\epsilon 1 log(1/\epsilon 1) for all

vertices v \in S.
We begin with one iteration of \sansD \sanse \sansn \sanss \sanse \sansC \sanso \sansl \sanso \sansr \sansi \sansn \sansg \sansS \sanst \sanse \sansp (version 1). By Lemma 6.1 and

a Chernoff bound, for each v \in S, the number of uncolored vertices of N(v) \cap S is
at most 2\delta v\Delta = \Delta \prime < O(\Delta 9/10 log\Delta) with probability 1 - exp(- \Omega (poly(\Delta))). Any
uncolored vertex v \in S that violates this property, i.e., for which | N(v) \cap S| > \Delta \prime , is
added to V\sansb \sansa \sansd and removed from further consideration.

Consider the graph G\prime induced by the remaining uncolored vertices in S. The
maximum degree of G\prime is at most \Delta \prime . Each vertex v in G\prime satisfies | \Psi (v)| \geq Zv =

\Delta
2 log(1/\epsilon 1)

= (1 + \rho)\Delta \prime , where \rho is \Delta \Omega (1). We run the algorithm of Lemma 2.2 on G\prime

and then put all vertices that still remain uncolored in the set V\sansb \sansa \sansd . By Lemma 2.2,
the time for this procedure is O(log\ast \Delta - log\ast \rho) = O(1), and the probability that
a vertex v remains uncolored and is added to V\sansb \sansa \sansd is at most exp(- \Omega (

\surd
\rho \Delta)) =

exp(- \Omega (poly(\Delta))).

6.2. Version 2 of \sansD \sanse \sansn \sanss \sanse \sansC \sanso \sansl \sanso \sansr \sansi \sansn \sansg \sansS \sanst \sanse \sansp --No excess colors are available. In this
section, we focus on the case where there is no guarantee on the number of excess
colors. The palette size lower bound of each vertex v \in Sj comes from the assumption
that | Sj | is large, and v is adjacent to all but a very small portion of vertices in Sj .
For the case S = V \sansL

2+ (Lemma 4.4), each cluster Sj is a large block in some layer
i \in [2, \ell]. For the case S = V \sansL

1 (Lemma 4.5), each Sj is a layer-1 large block. For
each v \in S, we define N \star (v) to be the set of all vertices u \in N(v) \cap S such that the
layer number of u is smaller than or equal to the layer number of v. Observe that
Nout(v) \subseteq N \star (v) since Nout(v) excludes some vertices at v's layer, depending on the
ordering of IDs. For the case of S = V \sansL

1 , all clusters S1, . . . , Sg are layer-1 blocks, and
so N \star (v) = N(v) \cap S. We make the following assumptions.

Identifiers. List the clusters S1, . . . , Sg in nondecreasing order by layer number.
We assume each cluster and each vertex within a cluster have an ID that is consistent
with this order, in particular

ID(S1) < \cdot \cdot \cdot < ID(Sg),

max
v\in Sj

ID(v) < min
u\in Sj+1

ID(u) for all j \in [1, g).

Given arbitrary IDs, it is straightforward to compute new IDs satisfying these prop-
erties in O(1) time. (It is not required that each cluster Sj learns the index j.)

Degree upper bounds. Each cluster Sj is associated with a parameter Dj such
that all v \in Sj satisfy the following two conditions:

(i) | Sj \setminus (N(v) \cup \{ v\})| = | Sj \setminus (N \star (v) \cup \{ v\})| \leq Dj (antidegree upper bound).
(ii) | N \star (v) \setminus Sj | \leq Dj (external degree upper bound).

D
ow

nl
oa

de
d

08
/2

4/
20

 to
 1

41
.2

11
.4

.2
24

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ULTRAFAST DISTRIBUTED (\Delta + 1)-COLORING 521

Shrinking rate. Each cluster Sj is associated with a parameter \delta j such that

1/K \geq \delta j \geq
Dj log(| Sj | /Dj)

| Sj |

for some sufficiently large constant K.
The procedure \sansD \sanse \sansn \sanss \sanse \sansC \sanso \sansl \sanso \sansr \sansi \sansn \sansg \sansS \sanst \sanse \sansp (version 2) aims to successfully color a large

fraction of the vertices in each cluster Sj . In step 1, each cluster selects a (1 - \delta j)-
fraction of its vertices uniformly at random, permutes them randomly, and marches
through this permutation one vertex at a time. As in \sansD \sanse \sansn \sanss \sanse \sansC \sanso \sansl \sanso \sansr \sansi \sansn \sansg \sansS \sanst \sanse \sansp (version 1),
when a vertex v is processed it picks a random color c(v) from its available palette
that was not selected by previously processed vertices in Sj . Step 2 is the same: if
c(v) has not been selected by any vertices of Nout(v), it permanently commits to c(v).
There are only two reasons a vertex in Sj may be left uncolored by \sansD \sanse \sansn \sanss \sanse \sansC \sanso \sansl \sanso \sansr \sansi \sansn \sansg \sansS \sanst \sanse \sansp
(version 2): it is not among the (1 - \delta j)-fraction of vertices participating in step 1,
or it has a color conflict with an external neighbor in step 2. The first cause occurs
with probability \delta j and, intuitively, the second cause occurs with probability about \delta j
because vertices typically have many options for colors when they are processed but
few external neighbors that can generate conflicts. Lemma 6.2 captures this formally;
it is the culmination and corollary of Lemmas 6.3--6.5, which are proved later in this
section. Lemma 6.2 is used to prove Lemmas 4.4 and 4.5.

Procedure \sansD \sanse \sansn \sanss \sanse \sansC \sanso \sansl \sanso \sansr \sansi \sansn \sansg \sansS \sanst \sanse \sansp (version 2).
1. Each cluster Sj selects (1 - \delta j)| Sj | vertices uniformly at random and

generates a permutation \pi of those vertices uniformly at random. The
vertex \pi (q) selects a color c(\pi (q)) uniformly at random from

\Psi (\pi (q)) - \{ c(\pi (q\prime)) | q\prime < q and \{ \pi (q), \pi (q\prime)\} \in E(G)\} .

2. Each v \in Sj that has selected a color c(v) permanently colors itself c(v)
if c(v) is not selected by any vertices u \in Nout(v).

Lemma 6.2. Consider an execution of \sansD \sanse \sansn \sanss \sanse \sansC \sanso \sansl \sanso \sansr \sansi \sansn \sansg \sansS \sanst \sanse \sansp (version 2). Let T be
any subset of S, and let \delta = maxj:Sj\cap T \not =\emptyset \delta j. For any number t, the probability that

the number of uncolored vertices in T is at least t is at most
\bigl(| T |

t

\bigr)
\cdot (O(\delta))

t
.

Our assumption about the identifiers of clusters and vertices guarantees that for
each v \in Sj , we have Nout(v) \subseteq

\bigcup j
i=1 Si. Therefore, in the proof of Lemma 6.2, we

expose the random bits of the clusters in the order (S1, . . . , Sg). Once the random bits
of S1, . . . , Sj are revealed, we can determine whether any particular v \in Sj successfully
colors itself.

Our proofs of Lemmas 4.4 and 4.5 are based on a constant number of iterations of
\sansD \sanse \sansn \sanss \sanse \sansC \sanso \sansl \sanso \sansr \sansi \sansn \sansg \sansS \sanst \sanse \sansp (version 2). In each iteration, the parameters Dj and \delta j might be
different. In subsequent discussion, the term antidegree of v \in Sj refers to the number
of uncolored vertices in Sj \setminus (N(v)\cup \{ v\}), and the term external degree of v \in Sj refers
to the number of uncolored vertices in N \star (v)\setminus Sj . Suppose Sj is a layer-i large block.
The parameters for Sj in each iteration are as follows. Let \beta > 0 be a sufficiently
large constant to be determined.

Degree upper bounds. By Lemma 3.1, D
(1)
j = 3\epsilon i\Delta upper bounds the initial

antidegree and external degree. For k > 1, the parameter D
(k)
j is chosen such that

D
ow

nl
oa

de
d

08
/2

4/
20

 to
 1

41
.2

11
.4

.2
24

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

522 YI-JUN CHANG, WENZHENG LI, AND SETH PETTIE

D
(k)
j \geq \beta \delta

(k - 1)
j \cdot D(k - 1)

j . We write \scrD (k)
j to denote the invariant that at the beginning

of the kth iteration, D
(k)
j is an upper bound on the antidegree and external degree of

all uncolored vertices in Sj \setminus V\sansb \sansa \sansd .

Cluster size upper bounds. By Lemma 3.1, U
(1)
j = (1 + 3\epsilon i)\Delta is an upper

bound on the initial cluster size. For k > 1, the parameter U
(k)
j is chosen such that

U
(k)
j \leq \beta \delta

(k - 1)
j \cdot U (k - 1)

j . We write \scrU (k)
j to denote the invariant that at the beginning

of the kth iteration, the number of uncolored vertices in Sj \setminus V\sansb \sansa \sansd is at most U
(k)
j .

Cluster size lower bounds. L
(1)
j = \Delta

log(1/\epsilon i)
. For k > 1, the parameter L

(k)
j is

chosen such that L
(k)
j \geq \delta

(k - 1)
j \cdot L(k - 1)

j . We write \scrL (k)
j to denote the invariant that at

the beginning of the kth iteration, the number of uncolored vertices in Sj \setminus V\sansb \sansa \sansd is at

least L
(k)
j . By the definition of large blocks, \scrL (1)

j holds initially.

Shrinking rates. For each k, the shrinking rate \delta
(k)
j of cluster Sj for the kth

iteration is chosen such that

1/K \geq \delta
(k)
j \geq

D
(k)
j log (L

(k)
j /D

(k)
j)

L
(k)
j

.

Additionally, we require that \delta
(k)
1 \leq \cdot \cdot \cdot \leq \delta

(k)
g , with \delta

(k)
j = \delta

(k)
j+1 if Sj and Sj+1 are in

the same layer.

Although the initial values of D
(1)
j , U

(1)
j , L

(1)
j are determined, there is considerable

freedom in choosing the remaining values to satisfy the four rules above. We refer to

the following equations involving D
(k)
j , U

(k)
j , L

(k)
j , and \delta

(k)
j as the default settings of

these parameters. Unless stated otherwise, the proofs of Lemmas 4.4 and 4.5 use the
default settings:

D
(k)
j = \beta \delta

(k - 1)
j \cdot D(k - 1)

j , U
(k)
j = \beta \delta

(k - 1)
j \cdot U (k - 1)

j ,

L
(k)
j = \delta

(k - 1)
j \cdot L(k - 1)

j , \delta
(k)
j =

D
(k)
j log

\bigl(
L
(k)
j /D

(k)
j

\bigr)
L
(k)
j

.

Validity of parameters. Before the first iteration, the invariants \scrD (1)
j , \scrU (1)

j , and

\scrL (1)
j are met initially for each cluster Sj . Suppose Sj is a layer-i large block. Lemma 3.1

shows that the initial value of D
(1)
j is a valid upper bound on the external degree (at

most \epsilon i\Delta) and antidegree (at most 3\epsilon i\Delta). We also have

U
(1)
j = (1 + 3\epsilon i)\Delta \geq | Sj | \geq

\Delta

log(1/\epsilon i)
= L

(1)
j ,

where the lower bound is from the definition of large and the upper bound is from
Lemma 3.1.

For k > 1, the invariants \scrD (k)
j and \scrU (k)

j might not hold naturally. Before the kth
iteration begins, we forcibly restore them by removing from consideration all vertices
in the clusters that violate either invariant, putting these vertices in V\sansb \sansa \sansd . Notice that

\sansD \sanse \sansn \sanss \sanse \sansC \sanso \sansl \sanso \sansr \sansi \sansn \sansg \sansS \sanst \sanse \sansp (version 2) always satisfies invariant \scrL (k)
j .

D
ow

nl
oa

de
d

08
/2

4/
20

 to
 1

41
.2

11
.4

.2
24

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ULTRAFAST DISTRIBUTED (\Delta + 1)-COLORING 523

Maintenance of invariants. We calculate the probability for the invariants \scrD (k+1)
j

and \scrU (k+1)
j to naturally hold at a cluster Sj . In what follows, we analyze the kth

iteration of the algorithm and assume that \scrD (k)
j and \scrU (k)

j hold initially. Let T \subseteq S be
a set of vertices that are uncolored at the beginning of the kth iteration, and suppose

\delta
(k)
j = maxj\prime :Sj\prime \cap T \not =\emptyset \delta

(k)
j\prime . By Lemma 6.2, after the kth iteration, the probability that

the number of uncolored vertices in T is at least t is at most
\bigl(| T |

t

\bigr)
\cdot
\bigl(
O(\delta

(k)
j)
\bigr) t
. Using

this result, we derive the following bounds:

Pr
\Bigl[
\scrU (k+1)
j

\Bigr]
\geq 1 - exp

\Bigl(
 - \Omega (U

(k+1)
j)

\Bigr)
,

Pr
\Bigl[
\scrD (k+1)

j

\Bigr]
\geq 1 - O

\Bigl(
U

(k)
j

\Bigr)
exp

\Bigl(
 - \Omega (D

(k+1)
j)

\Bigr)
.

We first consider Pr
\bigl[
\scrU (k+1)
j

\bigr]
. Let T be the set of uncolored vertices in Sj \setminus V\sansb \sansa \sansd at

the beginning of the kth iteration, and let t be

t = U
(k+1)
j = \beta \delta

(k)
j \cdot U (k)

j \geq \beta \delta
(k)
j | T | .

This implies that \delta
(k)
j | T | /t \leq 1/\beta . If we select \beta to be a large enough constant, then

1 - Pr
\Bigl[
\scrU (k+1)
j

\Bigr]
\leq
\biggl(
| T |
t

\biggr)
\cdot
\Bigl(
O(\delta

(k)
j)
\Bigr) t

\leq
\Bigl(
O
\Bigl(
\delta
(k)
j

\Bigr)
\cdot e| T | /t

\Bigr) t
\leq (O(1/\beta))

t
= exp

\Bigl(
 - \Omega
\Bigl(
U

(k+1)
j

\Bigr) \Bigr)
.

Next, consider Pr
\bigl[
\scrD (k+1)

j

\bigr]
. For each vertex v \in Sj \setminus V\sansb \sansa \sansd that is uncolored at the

beginning of the kth iteration, define \scrE a
v (resp., \scrE e

v) as the event that the antidegree

(resp., external degree) of v at the end of the kth iteration is higher than D
(k+1)
j . If

we can show that both Pr[\scrE a
v] and Pr[\scrE e

v] are at most exp
\bigl(
 - \Omega

\bigl(
D

(k+1)
j

\bigr) \bigr)
, then we

conclude that Pr[\scrD (k+1)
j] \geq 1 - O

\bigl(
U

(k)
j

\bigr)
exp

\bigl(
 - \Omega (D

(k+1)
j)

\bigr)
by a union bound over

at most U
(k)
j vertices v \in Sj \setminus V\sansb \sansa \sansd that are uncolored at the beginning of the kth

iteration.
We show that Pr[\scrE e

v] \leq exp
\bigl(
 - \Omega

\bigl(
D

(k+1)
j

\bigr) \bigr)
. We choose T as the set of uncolored

vertices in N \star (v)\setminus (Sj \cup V\sansb \sansa \sansd) at the beginning of the kth iteration and set t = D
(k+1)
j .

Since the layer number of each vertex in N \star (v) \setminus (Sj \cup V\sansb \sansa \sansd) is smaller than or equal
to the layer number of Sj , our requirement about the shrinking rates implies that

\delta
(k)
j \geq maxj\prime :Sj\prime \cap T \not =\emptyset \delta

(k)
j\prime .

We have t = D
(k+1)
j = \beta \delta

(k)
j \cdot D(k)

j \geq \beta \delta
(k)
j | T | , and this implies \delta

(k)
j | T | /t \leq 1/\beta .

If we select \beta to be a large enough constant, then

Pr[\scrE e
v] \leq

\biggl(
| T |
t

\biggr)
\cdot
\Bigl(
O
\Bigl(
\delta
(k)
j

\Bigr) \Bigr) t
\leq
\Bigl(
O
\Bigl(
\delta
(k)
j

\Bigr)
\cdot e| T | /t

\Bigr) t
\leq (O(1/\beta))

t
= exp

\Bigl(
 - \Omega
\Bigl(
D

(k+1)
j

\Bigr) \Bigr)
.

The bound Pr[\scrE a
v] \leq exp

\bigl(
 - \Omega

\bigl(
D

(k+1)
j

\bigr) \bigr)
is proved in the same way. Based on the

probability calculations above, we are now prepared to prove Lemmas 4.4 and 4.5.

D
ow

nl
oa

de
d

08
/2

4/
20

 to
 1

41
.2

11
.4

.2
24

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

524 YI-JUN CHANG, WENZHENG LI, AND SETH PETTIE

Restatement of Lemma 4.4. There is an O(1)-time algorithm that colors a
subset of V \sansL

2+ meeting the following condition. For each v \in V \star and each layer number
i \in [2, \ell], with probability at least 1 - exp(- \Omega (poly(\Delta))), the number of uncolored
layer-i neighbors of v in V \sansL

2+ is at most \epsilon 5i\Delta . Vertices that violate this property join
the set V\sansb \sansa \sansd .

Proof. We perform six iterations of \sansD \sanse \sansn \sanss \sanse \sansC \sanso \sansl \sanso \sansr \sansi \sansn \sansg \sansS \sanst \sanse \sansp (version 2) using the de-
fault settings of all parameters. Recall that the shrinking rate for the kth iteration

is \delta
(k)
j =

D
(k)
j log

\Bigl(
L

(k)
j /D

(k)
j

\Bigr)
L

(k)
j

for each cluster Sj . If Sj is a layer-i block, we have

\delta
(k)
j = O

\bigl(
\epsilon i log

2(1/\epsilon i)
\bigr)
for each k \in [1, 6] since D

(\cdot)
j and L

(\cdot)
j decay at the same rate,

asymptotically.
Consider any vertex v \in V \star and a layer number i \in [2, \ell]. Let T be the set of

layer-i neighbors of v in S. To prove Lemma 4.4, it suffices to show that after six
iterations of \sansD \sanse \sansn \sanss \sanse \sansC \sanso \sansl \sanso \sansr \sansi \sansn \sansg \sansS \sanst \sanse \sansp (version 2), with probability 1 - exp(- \Omega (poly(\Delta))),
the number of uncolored vertices in T is at most \epsilon 5i\Delta .

Define (tk) as in the proof of Lemma 4.2:

t1 = | T | ,

tk = max
\Bigl\{
\beta \delta

(k - 1)
j tk - 1, \epsilon

5
i\Delta
\Bigr\}
.

Here \delta
(k)
j is the common shrinking rate of any layer-i cluster Sj . We have t7 = \epsilon 5i\Delta

since \epsilon i \leq \epsilon \ell is sufficiently small.
Assume that at the beginning of the kth iteration, the number of uncolored ver-

tices in T \setminus V\sansb \sansa \sansd is at most tk, and the invariants \scrD (k)
j , \scrL (k)

j , and \scrU (k)
j are met for

each cluster Sj such that Sj \cap T \not = \emptyset . By Lemma 6.2, after the kth iteration, the
probability that the number of uncolored vertices in T \setminus V\sansb \sansa \sansd is higher than tk+1 is\biggl(

tk
tk+1

\biggr)
\cdot
\Bigl(
O
\Bigl(
\delta
(k)
j

\Bigr) \Bigr) tk+1

\leq
\Bigl(
O
\Bigl(
\delta
(k)
j

\Bigr)
\cdot etk/tk+1

\Bigr) tk+1

\leq (O(1/\beta))
tk+1 = exp(- \Omega (tk+1)).

Notice that exp(- \Omega (tk+1)) \leq exp(- \Omega (\epsilon 5i\Delta)) = exp(- \Omega (poly(\Delta))). For the main-

tenance of the invariants, \scrL (k+1)
j holds with probability 1; the probability that the

invariants \scrD (k+1)
j and \scrU (k+1)

j are met for all clusters Sj such that Sj \cap T \not = \emptyset is at
least 1 - O(| T |) exp(- \Omega (poly(\Delta))) = 1 - exp(- \Omega (poly(\Delta))). By a union bound over
all six iterations, with probability 1 - exp(- \Omega (poly(\Delta))), the number of uncolored
layer-i neighbors of v in S \setminus V\sansb \sansa \sansd is at most t7 = \epsilon 5i\Delta .

Restatement of Lemma 4.5. Let c be any sufficiently large constant. Then
there is a constant time (independent of c) algorithm that colors a subset of V \sansL

1 while
satisfying one of the following cases:

\bullet The uncolored vertices of V \sansL
1 are partitioned among R or V\sansb \sansa \sansd . The graph

induced by R has degree O(c2); each vertex joins V\sansb \sansa \sansd with probability \Delta - \Omega (c).
\bullet If \Delta > log\alpha c n, where \alpha > 0 is some universal constant, then the uncolored
vertices of V \sansL

1 are partitioned among R and X, where the graph induced by R

has degree O(c2) and the components induced by X have size logO(c) n, w.h.p.

Proof. In the setting of Lemma 4.5, we deal with only layer-1 large blocks, and

so D
(k)
1 = \cdot \cdot \cdot = D

(k)
g , U

(k)
1 = \cdot \cdot \cdot = U

(k)
g , L

(k)
1 = \cdot \cdot \cdot = L

(k)
g , \delta

(k)
1 = \cdot \cdot \cdot = \delta

(k)
g for

D
ow

nl
oa

de
d

08
/2

4/
20

 to
 1

41
.2

11
.4

.2
24

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ULTRAFAST DISTRIBUTED (\Delta + 1)-COLORING 525

each iteration k. For this reason, we drop the subscripts. Our algorithm consists of
three phases as follows. Recall that c is a large enough constant related to the failure
probability specified in the statement of Lemma 4.5.

The low degree case. The following algorithm and analysis apply to all values
of \Delta . The conclusion is that we can color most of V \sansL

1 such that the probability
that any vertex joins V\sansb \sansa \sansd is \Delta - \Omega (c) and all remaining uncolored vertices (i.e., R)
induce a graph with maximum degree O(c2). Since the guarantee on V\sansb \sansa \sansd is that it
induces components with size poly(\Delta) log n, this analysis is only appropriate when \Delta
is, itself, poly log n. We deal with larger \Delta in the high degree case and prove that the
uncolored vertices can be partitioned into R and X with the same guarantee on R,
and the stronger guarantee that X induces poly log n-size components, regardless of
\Delta .

Phase 1. The first phase consists of nine iterations of \sansD \sanse \sansn \sanss \sanse \sansC \sanso \sansl \sanso \sansr \sansi \sansn \sansg \sansS \sanst \sanse \sansp (version
2), using the default settings of all parameters. Due to the fact that \epsilon 1 = \Delta - 1/10, we
have \delta (k) = O(\Delta - 1/10 log2 \Delta) for each k \in [1, 9]. Therefore, at the end of the ninth
iteration, we have the parameters

D(10) = \Theta (log18 \Delta),

L(10) = \Theta (\Delta 1/10 log17 \Delta),

U (10) = \Theta (\Delta 1/10 log18 \Delta).

In view of the previous calculations, the probability that all invariants hold for a
specific cluster Sj and all k \in [1, 10] is at least 1 - exp(- \Omega (log18 \Delta)). If a cluster Sj

does not satisfy an invariant for some k, then all vertices in Sj halt and join V\sansb \sansa \sansd .
They do not participate in the kth iteration or subsequent steps.

Phase 2. For the 10th iteration, we switch to a nondefault shrinking rate

\delta (10) = \Delta - 1/20.

However, we still define

U (11) = \beta \delta (10) \cdot U (10) = \Theta (\Delta 1/20 log18 \Delta),

L(11) = \delta (10) \cdot L(10) = \Theta (\Delta 1/20 log17 \Delta)

according to their default setting. Since \beta \delta (10) \cdot D(10) = o(1), we should not adopt
the default definition of D(11). Instead, we fix it to be the sufficiently large constant
c:

D(11) = c.

Using the previous probability calculations, for each cluster Sj the invariant \scrU (11)

holds with probability at least 1 - exp(- \Omega (\Delta 1/20poly log\Delta)), and the invariant \scrL (11)

holds with certainty. We will show that for a given cluster Sj , the probability that
D(11) is a valid degree bound (i.e., \scrD (11) holds) is at least 1 - \Delta - \Omega (c). If a cluster Sj

does not meet at least one of \scrU (11), \scrL (11), or \scrD (11), then all vertices in Sj halt and
join V\sansb \sansa \sansd .

Phase 3. For the 11th iteration, we use the default shrinking rate

\delta (11) =
D(11) log(L(11)/D(11))

L(11)
= \Theta

\biggl(
1

\Delta 1/20 log16 \Delta

\biggr)
.

D
ow

nl
oa

de
d

08
/2

4/
20

 to
 1

41
.2

11
.4

.2
24

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

526 YI-JUN CHANG, WENZHENG LI, AND SETH PETTIE

We will show that after the 11th iteration, for each cluster Sj , with probability at
least 1 - \Delta - \Omega (c), there are at most c2 uncolored vertices v \in Sj such that there is
at least one uncolored vertex in Nout(v) \setminus Sj . If Sj does not satisfy this property, we
put all remaining uncolored vertices in Sj to V\sansb \sansa \sansd . For each cluster Sj satisfying this
property, in O(1) additional rounds we color all vertices in Sj but c2 of them since at
most c2 have potential conflicts outside of Sj . At this point, the remaining uncolored
vertices R induce a subgraph of maximum degree at most c2+D(10) = c2+c = O(c2).

The choice of parameters are summarized as follows. Note that we use the default

shrinking rate \delta (i) = D(i) log(L(i)/D(i))
L(i) for all i except i = 10.

D(i) L(i) U (i) \delta (i)

i \in [9] \Theta
\Bigl(
\Delta

10 - i
10 log2i - 2 \Delta

\Bigr)
\Theta
\Bigl(
\Delta

11 - i
10 log2i - 3 \Delta

\Bigr)
\Theta
\Bigl(
\Delta

11 - i
10 log2i - 2 \Delta

\Bigr)
\Theta
\Bigl(
\Delta - 1

10 log2 \Delta
\Bigr)

i = 10 \Theta
\bigl(
log18 \Delta

\bigr)
\Theta
\Bigl(
\Delta

1
10 log17 \Delta

\Bigr)
\Theta
\Bigl(
\Delta

1
10 log18 \Delta

\Bigr)
\Delta - 1

20

i = 11 c \Theta
\Bigl(
\Delta

1
20 log17 \Delta

\Bigr)
\Theta
\Bigl(
\Delta

1
20 log18 \Delta

\Bigr)
\Theta
\Bigl(
\Delta - 1

20 log - 16 \Delta
\Bigr)

Analysis of Phase 2. Recall that \delta (10) = \Delta - 1/20 and D(10) = \Theta (log18 \Delta). By
Lemma 6.2, the probability that the external degree or antidegree of v \in Sj is at most
c is

1 -
\biggl(
D(10)

c

\biggr) \Bigl(
O
\Bigl(
\delta (10)

\Bigr) \Bigr) c
\geq 1 -

\biggl(
O
\bigl(
log18 \Delta

\bigr)
c

\biggr) \Bigl(
O
\Bigl(
\Delta - 1/20

\Bigr) \Bigr) c
\geq 1 - \Delta - \Omega (c).

By a union bound over at most U (10) = \Theta (\Delta 1/10 log18 \Delta) vertices v \in Sj that are
uncolored at the beginning of the 10th iteration, the parameter setting D(11) = c is
a valid upper bound of external degree and antidegree for Sj after the 10th iteration
with probability at least 1 - \Delta - \Omega (c).

Analysis of Phase 3. Consider a vertex v \in Sj that is uncolored at the beginning
of the 11th iteration. Define the event \scrE v as follows. The event \scrE v occurs if, after
the 11th iteration, v is still uncolored and there is at least one uncolored vertex in
Nout(v) \setminus (Sj \cup V\sansb \sansa \sansd). Our goal is to show that the number of vertices v \in Sj such
that \scrE v occurs is at most c2 with probability at least 1 - \Delta - \Omega (c).

Consider any size-c2 subset Y of Sj . As a consequence of Lemma 6.2, we argue
that the probability that \scrE v occurs for all v \in Y is at most

\Bigl(
D(11)

\Bigr) c2
\cdot
\Bigl(
O
\Bigl(
\delta (11)

\Bigr) \Bigr) c2(1+1/D(11))
.

The reason is as follows. Pick some v \in Y . If \scrE v occurs, then there must exist a
neighbor v\prime \in Nout(v)\setminus (Sj\cup V\sansb \sansa \sansd) that is uncolored. The number of uncolored vertices
in Nout(v)\setminus (Sj \cup V\sansb \sansa \sansd) at the beginning of the 11th iteration is at most D(11), so there

are at most (D(11))c
2

ways of mapping each v \in Y to a vertex v\prime \in Nout(v)\setminus (Sj\cup V\sansb \sansa \sansd)
of v. Let T =

\bigcup
v\in Y \{ v, v\prime \} . A vertex outside of Sj can be adjacent to at most D(11)

vertices in Sj , and so | T | \geq c2(1+1/D(11)). The probability that all vertices in T are

uncolored is
\bigl(
O(\delta (11))

\bigr) c2(1+1/D(11))
by Lemma 6.2. By a union bound over at most\bigl(

D(11)
\bigr) c2

choices of T , we obtain the desired probabilistic bound.
Recall that the cluster size upper and lower bounds at the beginning of the 11th

D
ow

nl
oa

de
d

08
/2

4/
20

 to
 1

41
.2

11
.4

.2
24

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ULTRAFAST DISTRIBUTED (\Delta + 1)-COLORING 527

iteration are

U (11) = \Theta (\Delta 1/20 log18 \Delta) = L(11) \cdot \Theta (log\Delta),

L(11) = \Theta (\Delta 1/20 log17 \Delta).

By a union bound over at most
\bigl(
U (11)

\bigr) c2
choices of a size-c2 subset of Sj , the proba-

bility f that there exist c2 vertices v \in Sj such that \scrE v occurs is

f =
\Bigl(
U (11)

\Bigr) c2
\cdot
\Bigl(
D(11)

\Bigr) c2
\cdot
\Bigl(
O
\Bigl(
\delta (11)

\Bigr) \Bigr) c2(1+1/D(11))
.

Recall that D(11) = c is sufficiently large. We have\Bigl(
U (11)

\Bigr) c2
=
\Bigl(
O
\Bigl(
L(11) log\Delta

\Bigr) \Bigr) c2
,(6.1) \Bigl(

D(11)
\Bigr) c2

= O(1),(6.2) \Bigl(
O
\Bigl(
\delta (11)

\Bigr) \Bigr) c2(1+1/D(11))
=
\Bigl(
O
\Bigl(

log(L(11))
L(11)

\Bigr) \Bigr) c2+c

,(6.3)

where L(11) = \Theta (\Delta 1/20 log8 \Delta). Taking the product of (6.1), (6.2), and (6.3), we have

f = O(log\Delta)O(c2) \cdot O
\Bigl(
\Delta - 1/20

\Bigr) c
= \Delta - \Omega (c),

as required.

Remark 6. The analysis of Phase 2 would proceed in the same way if we had
chosen \delta (10) according to its default setting of \Theta (\Delta - 1/10 log2 \Delta). We choose a larger
value of \delta (10) in order to keep L(11) artificially large (\Delta \Omega (1)) and thereby allow Phase
3 to fail with smaller probability \Delta - \Omega (c).

The high degree case. The low degree case handles all \Delta that are poly log n.
We now assume \Delta is sufficiently large, i.e., \Delta > log\alpha c n, where \alpha is some large
universal constant, and we want to design an algorithm such that no vertex joins
V\sansb \sansa \sansd , and all uncolored vertices are partitioned into R and X, with R having the
same O(c2)-degree guarantee as before, and the components induced by X have size

logO(c) n = poly log n, regardless of \Delta . Intuitively, the proof follows along the same
lines as the low degree case, but in Phase 1 we first reduce the maximum degree to
\Delta \prime = logO(c) n and then put any bad vertices that fail to satisfy an invariant into X
(rather than V\sansb \sansa \sansd). According to the shattering lemma (Lemma 4.1), the components

induced by X have size poly(\Delta \prime) log n = logO(c) n. The high degree case consists of
13 iterations of \sansD \sanse \sansn \sanss \sanse \sansC \sanso \sansl \sanso \sansr \sansi \sansn \sansg \sansS \sanst \sanse \sansp (version 2) with the following parameter settings.

D(i) L(i) U (i) \delta (i)

i \in [9] \Theta
\Bigl(
\Delta

10 - i
10 log2i - 2 \Delta

\Bigr)
\Theta
\Bigl(
\Delta

11 - i
10 log2i - 3 \Delta

\Bigr)
\Theta
\Bigl(
\Delta

11 - i
10 log2i - 2 \Delta

\Bigr)
\Theta
\Bigl(
\Delta - 1

10 log2 \Delta
\Bigr)

i = 10 \Theta
\bigl(
max\{ log18 \Delta , log n\}

\bigr)
\Theta
\Bigl(
\Delta

1
10 log17 \Delta

\Bigr)
\Theta
\Bigl(
\Delta

1
10 log18 \Delta

\Bigr)
\Delta - 1

20 log - 18 \Delta

i = 11 \Theta (log n) \Theta
\Bigl(
\Delta

1
20 / log\Delta

\Bigr)
\Theta
\Bigl(
\Delta

1
20

\Bigr)
\Delta - 1

20 log5c n

i = 12 \Theta (log n) \Theta

\biggl(
log5c n

log\Delta

\biggr)
\Theta
\bigl(
log5c n

\bigr)
log - 3c n

i = 13 c \Theta

\biggl(
log2c n

log\Delta

\biggr)
\Theta
\bigl(
log2c n

\bigr)
\Theta

\biggl(
log\Delta log log n

log2c n

\biggr) D
ow

nl
oa

de
d

08
/2

4/
20

 to
 1

41
.2

11
.4

.2
24

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

528 YI-JUN CHANG, WENZHENG LI, AND SETH PETTIE

We use the default shrinking rate \delta (i) = D(i) log(L(i)/D(i))
L(i) for all i except i \in

\{ 10, 11, 12\} . Phase 1 consists of all iterations i \in [11]; Phase 2 consists of iteration
i = 12; Phase 3 consists of iteration i = 13. The algorithm and the analysis are similar
to the small degree case, so in subsequent discussion we only point out the differences.
In order to have all \delta (i) \ll 1, we need to have \Delta 1/20 \gg log5c n. We proceed under the
assumption that \Delta > log\alpha c n (\alpha is some large universal constant), so this condition
is met.

Phase 1. In view of previous calculations, all invariants hold for a cluster Sj

(\scrU (i), \scrL (i), and \scrD (i) for i \in [1, 12]) with probability at least 1 - exp(- \Omega (log n)) =
1 - 1/poly(n), since all parameters D(i), L(i), and U (i) are chosen to be \Omega (log n).
Therefore, no cluster Sj is put in V\sansb \sansa \sansd due to an invariant violation, w.h.p.

Phase 2. Consider iteration i = 12. It is straightforward that the invariants
\scrU (13) and \scrL (13) hold, w.h.p., since L(13) = \Omega (log n) and U (13) = \Omega (log n). Now we
consider the invariant \scrD (13). By Lemma 6.2, the probability that the external degree
or antidegree of v \in Sj is at most c is

1 -
\biggl(
D(12)

c

\biggr) \Bigl(
O
\Bigl(
\delta (12)

\Bigr) \Bigr) c
\geq 1 -

\biggl(
O(log n)

c

\biggr) \bigl(
O
\bigl(
log - 3c n

\bigr) \bigr) c \geq 1 - (log n)
 - \Omega (c2)

.

This failure probability is not small enough to guarantee that \scrD (13) holds everywhere,
w.h.p. In the high degree case, if a vertex v belongs to a cluster Sj such that \scrD (13) does
not hold, we add the remaining uncolored vertices in Sj (at most U (12) = O(log5c n)
of them) to X.

Phase 3. Similarly, we will show that after the 13th iteration, for each cluster

Sj , with probability at least 1 - (log n)
 - \Omega (c2)

, there are at most c2 uncolored vertices
v \in Sj such that there is at least one uncolored vertex in Nout(v) \setminus (Sj \cup X). If Sj

does not satisfy this property, we put all remaining uncolored vertices in Sj to X.
For each cluster Sj satisfying this property, in one additional round we can color all
vertices in Sj but c2 of them. At this point, the remaining uncolored vertices induce
a subgraph R of maximum degree at most c2 +D(13) = c2 + c = O(c2). Following the
analysis in the small degree case, the probability that a vertex v is added to X in the
13th iteration is

f =
\Bigl(
U (13)

\Bigr) c2
\cdot
\Bigl(
D(13)

\Bigr) c2
\cdot
\Bigl(
O
\Bigl(
\delta (13)

\Bigr) \Bigr) c2(1+1/D(13))

= O
\bigl(
log2c n

\bigr) c2 \cdot O(1) \cdot O
\biggl(
log\Delta log log n

log2c n

\biggr) c2+c

= O
\Bigl(
(log n) - 2c2 \cdot (log\Delta log log n)c

2+c
\Bigr)

= (log n)
 - \Omega (c2)

.

Size of components in X. To bound the size of each connected component of X,
we use the shattering lemma (Lemma 4.1). Define G\prime = (V \prime , E\prime) as follows. The
vertex set V \prime consists of all vertices in S that remain uncolored at the beginning of
iteration 12. Two vertices u and v are linked by an edge in E\prime if (i) u and v belong
to the same cluster, or (ii) u and v are adjacent in the original graph G. It is clear
that the maximum degree \Delta \prime of G\prime is U (12) + D(12) = O(log5c n). In view of the

above analysis, the probability of v \in X is 1 - (log n)
 - \Omega (c2)

= 1 - (\Delta \prime)
 - \Omega (c)

, and this
is true even if the random bits outside of a constant-radius neighborhood of v in G\prime

D
ow

nl
oa

de
d

08
/2

4/
20

 to
 1

41
.2

11
.4

.2
24

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ULTRAFAST DISTRIBUTED (\Delta + 1)-COLORING 529

are determined adversarially. Applying Lemma 4.1 to the graph G\prime , the size of each
connected component of X is O(poly(\Delta \prime) log n) = logO(c) n, w.h.p., both in G\prime and
in the original graph G, since G\prime is the result of adding some additional edges to the
subgraph of G induced by V \prime .

The reader may recall that the proofs of Lemmas 4.4 and 4.5 were based on the
veracity of Lemma 6.2. The remainder of this section is devoted to proving Lemma 6.2,
which bounds the probability that a certain number of vertices remain uncolored by
\sansD \sanse \sansn \sanss \sanse \sansC \sanso \sansl \sanso \sansr \sansi \sansn \sansg \sansS \sanst \sanse \sansp (version 2). By inspection of the \sansD \sanse \sansn \sanss \sanse \sansC \sanso \sansl \sanso \sansr \sansi \sansn \sansg \sansS \sanst \sanse \sansp (version 2)
pseudocode, a vertex in Sj can remain uncolored for two different reasons:

\bullet it never selects a color because it is not among the (1 - \delta j)| Sj | participating
vertices in step 1, or

\bullet it selects a color in step 1 but is later decolored in step 2 because of a conflict
with some vertex in Sj\prime with j\prime < j.

Lemmas 6.3--6.5 analyze different properties of \sansD \sanse \sansn \sanss \sanse \sansC \sanso \sansl \sanso \sansr \sansi \sansn \sansg \sansS \sanst \sanse \sansp (version 2),
which are then applied to prove Lemma 6.2. Throughout, we make use of the property
that every \delta j < 1/K for some sufficiently large K.

Lemma 6.3. Let T = \{ v1, . . . , vk\} be any subset of Sj and c1, . . . , ck be any se-
quence of colors. The probability that vi selects ci in \sansD \sanse \sansn \sanss \sanse \sansC \sanso \sansl \sanso \sansr \sansi \sansn \sansg \sansS \sanst \sanse \sansp (version 2),

for all i \in [1, k], is
\bigl(
O
\bigl(log(| Sj | /Dj)

| Sj |
\bigr) \bigr) | T |

.

Proof. Let p \star be the probability that, for all i \in [1, k], vi selects ci. Let M =
(1 - \delta j)| Sj | be the number of participating vertices in step 1. Notice that if vi is not
among the participating vertices, then vi will not select any color and thus cannot
select ci. Since we are upper bounding p \star , it is harmless to condition on the event
that vi is a participating vertex. We write pi to denote the rank of vi \in T in the
random permutation of Sj .

Suppose that the ranks p1, . . . , pk were fixed. Recall that each vertex vi \in Sj is
adjacent to all but at most Dj vertices in Sj . Thus, at the time vi is considered it
must have at least

M - pi + \delta j | Sj | - Dj

\geq M - pi +Dj log(| Sj | /Dj) - Dj (constraint on \delta j)

= (M - pi) +Dj(log(| Sj | /Dj) - 1)

available colors to choose from, at most one of which is ci. Thus,

p \star \leq E
p1,...,pk

\Biggl[
k\prod

i=1

1

(M - pi) +Dj(log(| Sj | /Dj) - 1)

\Biggr]
.

We divide the analysis into two cases: (i) k \geq M/2 and (ii) k < M/2. For the case
k \geq M/2, regardless of the choices of p1, . . . , pk, we always have

k\prod
i=1

1

(M - pi) +Dj(log(| Sj | /Dj) - 1)
\leq 1

k!
= (O(1/k))

k \leq (O(1/| Sj |))| T |
.

We now turn to the case k < M/2. We imagine choosing the rank vector
(p1, . . . , pk) one element at a time. Regardless of the values of (p1, . . . , pi - 1), we

D
ow

nl
oa

de
d

08
/2

4/
20

 to
 1

41
.2

11
.4

.2
24

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

530 YI-JUN CHANG, WENZHENG LI, AND SETH PETTIE

always have

E

\biggl[
1

((M - pi) +Dj(log(| Sj | /Dj) - 1)

\bigm| \bigm| \bigm| \bigm| p1, . . . , pi - 1

\biggr]
\leq 1

M - (i - 1)

M - i\sum
x=0

1

x+Dj(log(| Sj | /Dj) - 1)

since there are M - (i - 1) choices for pi and the worst case is when \{ p1, . . . , pi - 1\} =
\{ 1, . . . , i - 1\} . Observe that the terms in the sum are strictly decreasing, which means
the average is maximized when i = k < M/2 is maximized. Continuing,

\leq 1

M/2

M/2\sum
x=0

1

x+Dj(log(| Sj | /Dj) - 1).

The sum is the difference between two harmonic sums, and hence

= O

\biggl(
1

M
\cdot
\bigl(
logM - log(Dj(log(| Sj | /Dj) - 1))

\bigr) \biggr)
= O

\biggl(
log(| Sj | /Dj)

| Sj |

\biggr)
since M = \Theta (| Sj |).

Therefore, regardless of k, p \star \leq
\bigl(
O
\bigl(log(| Sj | /Dj)

| Sj |
\bigr) \bigr) | T |

, as claimed.

Lemma 6.4. Let T be any subset of Sj. The probability that all vertices in T are

decolored in \sansD \sanse \sansn \sanss \sanse \sansC \sanso \sansl \sanso \sansr \sansi \sansn \sansg \sansS \sanst \sanse \sansp (version 2) is
\bigl(
O
\bigl(Dj log(| Sj | /Dj)

| Sj |
\bigr) \bigr) | T |

, even allowing the

colors selected in S1, . . . , Sj - 1 to be determined adversarially.

Proof. There are in total at most D
| T |
j different color assignments to T that

can result in decoloring all vertices in T since each vertex v \in T \subseteq Sj satisfies

| Nout(v) \setminus Sj | \leq | N \star (v) \setminus Sj | \leq Dj . By Lemma 6.3 (and a union bound over D
| T |
j

color assignments to T), the probability that all vertices in T are decolored is

D
| T |
j \cdot

\biggl(
O

\biggl(
log(| Sj | /Dj)

| Sj |

\biggr) \biggr) | T |

=

\biggl(
O

\biggl(
Dj log(| Sj | /Dj)

| Sj |

\biggr) \biggr) | T |

.

Recall that for each v \in T \subseteq Sj , we have Nout(v) \setminus Sj \subseteq
\bigcup j - 1

k=1 Sk, and so whether v
is decolored is independent of the random bits in Sj+1, . . . , Sg. The above analysis
(which is based on Lemma 6.3) holds, even allowing the colors selected in S1, . . . , Sj - 1

to be determined adversarially.

Lemma 6.5. Let T be any subset of Sj. The probability that no vertex in T selects

a color in step 1 of \sansD \sanse \sansn \sanss \sanse \sansC \sanso \sansl \sanso \sansr \sansi \sansn \sansg \sansS \sanst \sanse \sansp (version 2) is (O(\delta j))
| T |

. The probability only
depends on the random bits within Sj.

Proof. The lemma follows from the fact that in \sansD \sanse \sansn \sanss \sanse \sansC \sanso \sansl \sanso \sansr \sansi \sansn \sansg \sansS \sanst \sanse \sansp (version 2) a
vertex v \in Sj does not participate in step 1 with probability \delta j , and the events for
two vertices u, v \in Sj to not participate in step 1 are negatively correlated.

D
ow

nl
oa

de
d

08
/2

4/
20

 to
 1

41
.2

11
.4

.2
24

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ULTRAFAST DISTRIBUTED (\Delta + 1)-COLORING 531

Restatement of Lemma 6.2. Consider an execution of \sansD \sanse \sansn \sanss \sanse \sansC \sanso \sansl \sanso \sansr \sansi \sansn \sansg \sansS \sanst \sanse \sansp
(version 2). Let T be any subset of S, and let \delta = maxj:Sj\cap T \not =\emptyset \delta j. For any number
t, the probability that the number of uncolored vertices in T is at least t is at most\bigl(| T |

t

\bigr)
\cdot (O(\delta))

t
.

Proof. Recall that we assume the clusters S = \{ S1, . . . , Sg\} are ordered in such

a way that for any u \in Sj , we have Nout(u) \subseteq N \star (u) \subseteq
\bigcup j

k=1 Sk. In the proof, we
expose the random bits of the clusters in the order (S1, . . . , Sg).

Consider any subset T \subseteq S. Let U = U1 \cup U2 be a size-t subset U \subseteq T . We
calculate the probability that all vertices in U1 do not participate in step 1, and
all vertices in U2 are decolored in step 2. Notice that there are at most 2t ways of
partitioning U into U1 \cup U2.

We write U
(j)
1 = U1 \cap Sj . Whether a vertex v \in U

(j)
1 fails to select a color only

depends on the random bits in Sj . Thus, by Lemma 6.5, the probability that all

vertices in U1 fail to select a color is at most
\prod k

j=1 (O(\delta j))

\bigm| \bigm| \bigm| U(j)
1

\bigm| \bigm| \bigm| \leq (O(\delta))
| U1| . Recall

\delta = maxj:Sj\cap T \not =\emptyset \delta j .

We write U
(j)
2 = U2\cap Sj . Whether a vertex v \in U

(j)
2 is decolored only depends on

the random bits in S1, . . . , Sj . However, regardless of the random bits in S1, . . . , Sj - 1,

the probability that all vertices in U
(j)
2 are decolored is (O(\delta j))

\bigm| \bigm| \bigm| U(j)
2

\bigm| \bigm| \bigm|
by Lemma 6.4.

Recall \delta \geq \delta j \geq Dj log(| Sj | /Dj)
| Sj | . Thus, the probability that all vertices in U2 are

decolored is at most
\prod k

j=1 (O(\delta j))

\bigm| \bigm| \bigm| U(j)
2

\bigm| \bigm| \bigm| \leq (O(\delta))
| U2| .

Therefore, by a union bound over at most
\bigl(| T |

t

\bigr)
choices of U and at most 2t ways

of partitioning U into U1 \cup U2, the probability that the number of uncolored vertices
in T is at least t is at most 2t \cdot

\bigl(| T |
t

\bigr)
\cdot (O(\delta))

t
=
\bigl(| T |

t

\bigr)
\cdot (O(\delta))

t
. This concludes the

analysis of \sansD \sanse \sansn \sanss \sanse \sansC \sanso \sansl \sanso \sansr \sansi \sansn \sansg \sansS \sanst \sanse \sansp (version 2).

7. Conclusion. We have presented a randomized (\Delta + 1)-list coloring algo-
rithm that requires O(\sansD \sanse \sanst d(poly log n)) rounds of communication, which is syntacti-
cally close to the \Omega (\sansD \sanse \sanst (poly log n)) lower bound implied by Chang, Kopelowitz, and
Pettie [20]. Recall that \sansD \sanse \sanst and \sansD \sanse \sanst d are the deterministic complexities of (\Delta + 1)-
list coloring and (deg+1)-list coloring. A natural question is whether (\Delta + 1)-list
coloring is strictly easier than (deg+1)-list coloring. Answering this question in
the negative would imply the randomized optimality of our algorithm. Historically,
all advancements in deterministic (\Delta + 1)-list coloring also applied to (deg+1)-list
coloring [5, 48, 9, 10, 12, 8, 27, 11, 35]. Furthermore, when we restrict our attention
to algorithms that depend on n (but independent of \Delta), only one coloring tech-
nique has been developed in the last 30 years for (\Delta + 1)-/(deg+1)-list coloring,
namely to use network decompositions [5, 39, 43, 48]. So long as network decompo-
sitions are the state-of-the-art, it will be difficult to find asymptotically better upper
bounds on \sansD \sanse \sanst than \sansD \sanse \sanst d. On the lower bound side, progress on round elimination
techniques [15, 16, 20, 19, 6] has yielded deterministic \Omega (log n) lower bounds on non-
greedy coloring problems such as \Delta -vertex coloring or (2\Delta - 2)-edge coloring, even
on trees [16, 20, 19]. The best round elimination lower bounds for greedy coloring
problems (e.g., (\Delta + 1)-coloring) are still \Omega (log\ast n) [38, 42, 15, 7], and they may in
fact be tight.

It is an open problem to generalize our algorithm to solve the (deg+1)-list col-
oring problem, and here it may be useful to think about a problem of intermediate
difficulty, at least conceptually. Define (deg+1)-coloring to be the coloring problem

D
ow

nl
oa

de
d

08
/2

4/
20

 to
 1

41
.2

11
.4

.2
24

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

532 YI-JUN CHANG, WENZHENG LI, AND SETH PETTIE

Fig. 3. An example illustrating the difficulty of (deg+1)-list coloring.

when v's palette is \{ 1, . . . ,deg(v) + 1\} (rather than an arbitrary set of deg(v) + 1
colors).8 Whether the problem is (deg+1)-coloring or (deg+1)-list coloring, the dif-
ficulty is generalizing the notion of ``\epsilon -friend edge"" and ``\epsilon -sparse vertex"" to graphs
with irregular degrees. See Figure 3 for an extreme example illustrating the dif-
ficulty of (deg+1)-list coloring. Suppose N(v) is partitioned into sets S1, S2 with
| S1| = | S2| = | N(v)| /2 = s. The graphs induced by S1 \cup \{ v\} and S2 \cup \{ v\} are (s+1)-
cliques, and there are no edges joining S1 and S2. The palettes of vertices in S1 and
S2 are, respectively, [1, s+ 1] and [s+ 1, 2s+ 1].

Notice that v is \epsilon -sparse according to our definition (for any \epsilon < 1/2) and yet
regardless of how we design the initial coloring step, we cannot hope to create more
than one excess color at v since the two palettes [1, s+ 1] \cap [s+ 1, 2s+ 1] = \{ s+ 1\}
only intersect at one color. Thus, it must be wrong to classify v as ``\epsilon -sparse"" since it
does not satisfy key properties of \epsilon -sparse vertices. On the other hand, if v is to be
classified as ``\epsilon -dense,"" then it is not clear whether we can recover any of the useful
properties of \epsilon -dense vertices from Lemma 3.1, e.g., that they form almost cliques with
O(1) weak diameter and have external degrees bounded by O(\epsilon \Delta). This particular
issue does not arise in instances of the (deg+1)-coloring problem, which suggests
that attacking this problem may be a useful conceptual stepping stone on the way to
solving (deg+1)-list coloring.

Appendix A. Concentration bounds. We make use of some standard tail
bounds [23]. Let X be binomially distributed with parameters (n, p); i.e., it is the
sum of n independent 0-1 variables with mean p. We have the following bound on the
lower tail of X:

Pr[X \leq t] \leq exp

\biggl(
 - (\mu - t)2

2\mu

\biggr)
,

where t < \mu = np.

Multiplicative Chernoff bounds give the following tail bounds of X with mean

8We are aware of one application [3] in distributed computing where the palettes are fixed in this
way.

D
ow

nl
oa

de
d

08
/2

4/
20

 to
 1

41
.2

11
.4

.2
24

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ULTRAFAST DISTRIBUTED (\Delta + 1)-COLORING 533

\mu = np:

Pr[X \geq (1 + \delta)\mu] \leq exp

\biggl(
 - \delta 2\mu

3

\biggr)
if \delta \in [0, 1],

Pr[X \geq (1 + \delta)\mu] \leq exp

\biggl(
 - \delta \mu

3

\biggr)
if \delta > 1,

Pr[X \leq (1 - \delta)\mu] \leq exp

\biggl(
 - \delta 2\mu

2

\biggr)
if \delta \in [0, 1].

Note that Chernoff bounds hold even when X is the summation of n negatively cor-
related 0-1 random variables [24, 23] with mean p, i.e., total independence is not
required. The bounds for Pr[X \geq (1 + \delta)\mu] also hold when \mu > np is an overestimate
of E[X]. Similarly, the bound for Pr[X \leq (1 + \delta)\mu] also holds when \mu < np is an
underestimate of E[X].

Consider the scenario where X =
\sum n

i=1 Xi and each Xi is an independent random
variable bounded by the interval [ai, bi]. Let \mu = E[X]. Hoeffding's inequality [33]
states that

Pr[X \geq (1 + \delta)\mu] \leq exp

\biggl(
 - 2(\delta \mu)2\sum n

i=1(bi - ai)2

\biggr)
.

Appendix B. Proof of Lemma 2.5. We first recall Lemma 2.5.

Restatement of Lemma 2.5. Consider the (\Delta + 1)-list coloring problem.
There is an O(1)-time algorithm that colors a subset of V such that the following are
true for each v \in V with deg(v) \geq (5/6)\Delta :

(i) With probability 1 - exp(- \Omega (\Delta)), the number of uncolored neighbors of v is
at least \Delta /2.

(ii) With probability 1 - exp(- \Omega (\epsilon 2\Delta)), v has at least \Omega (\epsilon 2\Delta) excess colors, where
\epsilon is the highest value such that v is \epsilon -sparse.

Fix a constant parameter p \in (0, 1/4). The procedure \sansO \sansn \sanse \sansS \sansh \sanso \sanst \sansC \sanso \sansl \sanso \sansr \sansi \sansn \sansg is a simple
O(1)-round coloring procedure that breaks ties by ID. We orient each edge \{ u, v\}
towards the endpoint with lower ID, that is, Nout(v) = \{ u \in N(v) | ID(u) < ID(v)\} .
We assume that each vertex v is associated with a palette \Psi (v) of size \Delta +1, and this
is used implicitly in the proofs of the lemmas in this section.

Procedure \sansO \sansn \sanse \sansS \sansh \sanso \sanst \sansC \sanso \sansl \sanso \sansr \sansi \sansn \sansg .
1. Each uncolored vertex v decides to participate independently with prob-

ability p.
2. Each participating vertex v selects a color c(v) from its palette \Psi (v)

uniformly at random.
3. A participating vertex v successfully colors itself if c(v) is not chosen by

any vertex in Nout(v).

After \sansO \sansn \sanse \sansS \sansh \sanso \sanst \sansC \sanso \sansl \sanso \sansr \sansi \sansn \sansg , each vertex v removes all colors from \Psi (v) that are taken
by some neighbor u \in N(v). The number of excess colors at v is the size of v's
remaining palette minus the number of uncolored neighbors of v. We prove one part
of Lemma 2.5 by showing that after a call to \sansO \sansn \sanse \sansS \sansh \sanso \sanst \sansC \sanso \sansl \sanso \sansr \sansi \sansn \sansg , the number of excess
colors at any \epsilon -sparse v is \Omega (\epsilon 2\Delta), with probability 1 - exp(- \Omega (\epsilon 2\Delta)). The rest of
this section constitutes a proof of Lemma 2.5.

Consider an execution of \sansO \sansn \sanse \sansS \sansh \sanso \sanst \sansC \sanso \sansl \sanso \sansr \sansi \sansn \sansg with any constant p \in (0, 1/4). Let v
be an \epsilon -sparse vertex. Define the following two numbers:

D
ow

nl
oa

de
d

08
/2

4/
20

 to
 1

41
.2

11
.4

.2
24

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

534 YI-JUN CHANG, WENZHENG LI, AND SETH PETTIE

f1(v): the number of vertices u \in N(v) that successfully color themselves by some
c /\in \Psi (v).

f2(v): the number of colors c \in \Psi (v) such that at least two vertices in N(v) success-
fully color themselves c.

It is clear that f1(v)+f2(v) is a lower bound on the number of excess colors at v after
\sansO \sansn \sanse \sansS \sansh \sanso \sanst \sansC \sanso \sansl \sanso \sansr \sansi \sansn \sansg . Our first goal is to show that f1(v)+f2(v) = \Omega (\epsilon 2\Delta) with probability
at least 1 - exp(- \Omega (\epsilon 2\Delta)). We divide the analysis into two cases (Lemmas B.3 and
B.4), depending on whether f1(v) or f2(v) is likely to be the dominant term. For any
v, the preconditions of either Lemma B.3 or Lemma B.4 are satisfied. Our second goal
is to show that for each vertex v of degree at least (5/6)\Delta , with high probability, at
least (1 - 1.5p)| N(v)| > (1 - (1.5)/4) \cdot (5/6)\Delta > \Delta /2 neighbors of v remain uncolored
after \sansO \sansn \sanse \sansS \sansh \sanso \sanst \sansC \sanso \sansl \sanso \sansr \sansi \sansn \sansg . This is done in Lemma B.5.

Lemmas B.1 and B.2 establish some generally useful facts about \sansO \sansn \sanse \sansS \sansh \sanso \sanst \sansC \sanso \sansl \sanso \sansr \sansi \sansn \sansg ,
which are used in the proofs of Lemmas B.3 and B.4.

Lemma B.1. Let Q be any set of colors, and let S be any set of vertices with size
at most 2\Delta . The number of colors in Q that are selected in step 2 of \sansO \sansn \sanse \sansS \sansh \sanso \sanst \sansC \sanso \sansl \sanso \sansr \sansi \sansn \sansg
by some vertices in S is less than | Q| /2 with probability at least 1 - exp(- \Omega (| Q|)).

Proof. Let Ec denote the event that color c is selected by at least one vertex in S.

Then Pr[Ec] \leq p| S|
\Delta +1 < 2p < 1/2 since p < 1/4 and | S| \leq 2\Delta . Moreover, the collection

of events \{ Ec\} are negatively correlated [24].
Let X denote the number of colors in Q that are selected by some vertices in

S. By linearity of expectation, E[X] < 2p \cdot | Q| . We apply a Chernoff bound with

\delta = (1/2) - 2p
2p and \mu = 2p \cdot | Q| . Recall that 0 < p < 1/4, and so \delta > 0. For any constant

\delta > 0, we have

Pr[X \geq (1 + \delta)\mu = | Q| /2] = exp(- \Omega (| Q|)).

Lemma B.2. Fix a sufficiently small \epsilon > 0. Consider a set of vertices S =
\{ u1, . . . , uk\} with cardinality \epsilon \Delta /2. Let Q be a set of colors such that each ui \in S
satisfies | \Psi (ui) \cap Q| \geq (1 - \epsilon /2)(\Delta + 1). Moreover, each ui \in S is associated with a
vertex set Ri such that (i) S \cap Ri = \emptyset , and (ii) | Ri| \leq 2\Delta . Then, with probability at
least 1 - exp(- \Omega (\epsilon 2\Delta)), there are at least p\epsilon (\Delta + 1)/8 vertices ui \in S such that the
color c selected by ui satisfies (i) c \in Q, and (ii) c is not selected by any vertex in
Ri \cup S \setminus \{ ui\} .

Proof. Define Qi = \Psi (ui) \cap Q. We call a vertex ui happy if ui selects some color
c \in Q and c is not selected by any vertex in Ri\cup S \setminus \{ ui\} . Define the following events:

Egood
i : ui selects a color c \in Qi such that c is not selected by any vertices in Ri.

Ebad
i : the number of colors in Qi that are selected by some vertices in Ri is at least

| Qi| /2.
Erepeat

i : the color selected by ui is also selected by some vertices in \{ u1, . . . , ui - 1\} .
Let Xi be the indicator random variable that either Egood

i or Ebad
i occurs, and

let X =
\sum k

i=1 Xi. Let Yi be the indicator random variable that Erepeat
i occurs, and

let Y =
\sum k

i=1 Yi. Assuming that Ebad
i does not occur for each i \in [1, k], it follows

that X - 2Y is a lower bound on the number of happy vertices. Notice that by
Lemma B.1, Pr[Ebad

i] = exp(- \Omega (| Qi|)) = exp(- \Omega (\Delta)). Thus, assuming that no Ebad
i

occurs merely distorts our probability estimates by a negligible exp(- \Omega (\Delta)). We
prove concentration bounds on X and Y , which together imply the lemma.

D
ow

nl
oa

de
d

08
/2

4/
20

 to
 1

41
.2

11
.4

.2
24

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ULTRAFAST DISTRIBUTED (\Delta + 1)-COLORING 535

We show that X \geq p\epsilon \Delta /7 with probability 1 - exp(- \Omega (\epsilon \Delta)). It is clear that

Pr[Xi = 1] \geq Pr
\Bigl[
Egood

i | Ebad
i

\Bigr]
\geq p \cdot | Qi| /2

\Delta + 1
\geq p(1 - \epsilon /2)

2
>

p

3
.

Moreover, since Pr[Xi = 1 | Ebad
i] = 1, the above inequality also holds when condi-

tioned on any colors selected by vertices in Ri. Thus, Pr[X \leq t] is upper bounded
by Pr[Binomial(n\prime , p\prime) \leq t], with n\prime = | S| = \epsilon \Delta /2 and p\prime = p

3 . We set t = p\epsilon \Delta /7.
Notice that n\prime p\prime = p\epsilon \Delta /6 > t. Thus, according to a Chernoff bound on the binomial

distribution, Pr[X \leq t] \leq exp(- (n\prime p\prime - t)2

2n\prime p\prime) = exp(- \Omega (\epsilon \Delta)).

We show that Y \leq p\epsilon 2\Delta /2 with probability 1 - exp(- \Omega (\epsilon 2\Delta)). It is clear that

Pr[Yi = 1] \leq p(i - 1)
\Delta +1 \leq p\epsilon

2 , even if we condition on arbitrary colors selected by vertices

in \{ u1, . . . , ui - 1\} . We have \mu = E[Y] \leq p\epsilon
2 \cdot | S| = p\epsilon 2\Delta

4 . Thus, by a Chernoff bound
(with \delta = 1), Pr[Y \geq p\epsilon 2\Delta /2] \leq Pr[Y \geq (1 + \delta)\mu] \leq exp(- \delta 2\mu /3) = exp(- \Omega (\epsilon 2\Delta)).

To summarize, with probability at least 1 - exp(- \Omega (\epsilon 2\Delta)), we have X - 2Y \geq
p\epsilon \Delta /7 - 2p\epsilon 2\Delta /2 > p\epsilon (\Delta + 1)/8.

Lemma B.3 considers the case when a large fraction of v's neighbors are likely
to color themselves with colors outside the palette of v and therefore be counted by
f1(v). This lemma holds regardless of whether v is \epsilon -sparse or not.

Lemma B.3. Suppose that there is a subset S \subseteq N(v) such that | S| = \epsilon \Delta /5, and

for each u \in S, | \Psi (u) \setminus \Psi (v)| \geq \epsilon (\Delta + 1)/5. Then f1(v) \geq p\epsilon 2\Delta
100 with probability at

least 1 - exp(- \Omega (\epsilon 2\Delta)).

Proof. Let S = (u1, . . . , uk) be sorted in increasing order by ID. Define Ri =
Nout(ui) and Qi = \Psi (ui) \setminus \Psi (v). Notice that | Qi| \geq \epsilon \Delta /5. Define the following
events:
Egood

i : ui selects a color c \in Qi, and c is not selected by any vertex in Ri.
Ebad

i : the number of colors in Qi that are selected by vertices in Ri is more than
| Qi| /2.

Let Xi be the indicator random variable that either Egood
i or Ebad

i occurs, and

let X =
\sum k

i=1 Xi. Given that the events Ebad
i for all i \in [1, k] do not occur, we

have X \leq f1(v)
9 since if Egood

i occurs, then ui successfully colors itself by some color
c /\in \Psi (v). By Lemma B.1, Pr[Ebad

i] = exp(- \Omega (| Qi|)) = exp(- \Omega (\epsilon \Delta)). Thus, up to
this negligible error, we can assume that Ebad

i does not occur for each i \in [1, k].
We show that X \geq \epsilon 2\Delta /100 with probability 1 - exp(- \Omega (\epsilon 2\Delta)). It is clear that

Pr[Xi = 1] \geq Pr[Egood
i | Ebad

i] \geq p| Qi| /2
\Delta +1 \geq p\epsilon

10 , and this inequality holds even when
conditioning on any colors selected by vertices in Ri and

\bigcup
1\leq j<i Rj \cup \{ uj\} . Since

S = (u1, . . . , uk) is sorted in increasing order by ID, ui /\in Rj = Nout(uj) for any
j \in [1, i). Thus, Pr[X \leq t] is bounded from above by Pr[Binomial(n\prime , p\prime) \leq t], with

n\prime = | S| = \epsilon \Delta /5 and p\prime = p\epsilon
10 . We set t = n\prime p\prime

2 = p\epsilon 2\Delta
100 . Thus, according to a lower

tail of the binomial distribution, Pr[X \leq t] \leq exp
\bigl(- (n\prime p\prime - t)2

2n\prime p\prime

\bigr)
= exp(- \Omega (\epsilon 2\Delta)).

Lemma B.4 considers the case that many pairs of neighbors of v are likely to color
themselves the same color and contribute to f2(v). Notice that any \epsilon -sparse vertex
that does not satisfy the preconditions of Lemma B.3 does satisfy the preconditions
of Lemma B.4.

9In general, X does not necessarily equal f1(v), since in the calculation of X we only consider
the vertices in S, which is a subset of N(v).

D
ow

nl
oa

de
d

08
/2

4/
20

 to
 1

41
.2

11
.4

.2
24

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

536 YI-JUN CHANG, WENZHENG LI, AND SETH PETTIE

Lemma B.4. Let v be an \epsilon -sparse vertex. Suppose that there is a subset S \subseteq N(v)
such that | S| \geq (1 - \epsilon /5)\Delta , and for each u \in S, | \Psi (u) \cap \Psi (v)| \geq (1 - \epsilon /5)(\Delta + 1).
Then f2(v) \geq p3\epsilon 2\Delta /2000 with probability at least 1 - exp(- \Omega (\epsilon 2\Delta)).

Proof. Let S\prime = \{ u1, . . . , uk\} be any subset of S such that (i) | S\prime | = p\epsilon \Delta
100 , and (ii)

for each ui \in S\prime , there exists a set Si \subseteq S \setminus (S\prime \cup N(ui)) of size \epsilon \Delta
2 . The existence

of S\prime , S1, . . . , Sk is guaranteed by the \epsilon -sparseness of v. In particular, S must contain
at least \epsilon \Delta - \epsilon \Delta /5 > p\epsilon \Delta /100 = | S\prime | non-\epsilon -friends of v, and for each such nonfriend
ui \in S\prime , we have | S\setminus (S\prime \cup N(ui))| \geq | S| - | S\prime | - | N(ui)| \geq \Delta ((1 - \epsilon /5) - p\epsilon /100 - (1 - \epsilon)) >
\epsilon \Delta /2.

Order the set S\prime = \{ u1, . . . , uk\} in increasing order by vertex ID. Define Qi =

\Psi (ui) \cap \Psi (v). Define Qgood
i as the subset of colors c \in Qi such that c is selected by

some vertex w \in Si, but c is not selected by any vertex in (Nout(w) \cup Nout(ui)) \setminus S\prime .
Define the following events:
Egood

i : ui selects a color c \in Qgood
i .

Ebad
i : the number of colors in Qgood

i is less than p\epsilon (\Delta + 1)/8.
Erepeat

i : the color selected by ui is also selected by some vertices in \{ u1, . . . , ui - 1\} .
Let Xi be the indicator random variable that either Egood

i or Ebad
i occurs, and

let X =
\sum k

i=1 Xi. Let Yi be the indicator random variable that Erepeat
i occurs,

and let Y =
\sum k

i=1 Yi. Suppose that Egood
i occurs. Then there must exist a vertex

w \in Si such that both ui and w successfully color themselves c. Notice that w and
ui are not adjacent. Thus, X - Y \leq f2(v), given that Ebad

i does not occur, for each
i \in [1, k]. Notice that Pr[Ebad

i] = exp(- \Omega (\epsilon 2\Delta)) (by Lemma B.2 and the definition

of Qgood
i), and up to this negligible error we can assume that Ebad

i does not occur. In
what follows, we prove concentration bounds on X and Y , which together imply the
lemma.

We show that X \geq p3\epsilon 2\Delta
1000 with probability 1 - exp(- \Omega (\epsilon 2\Delta)). It is clear that

Pr[Xi = 1] \geq p \cdot p\epsilon (\Delta +1)/8
\Delta +1 = p2\epsilon

8 .10 Thus, Pr[X \leq t] is bounded from above by

Pr[Binomial(n\prime , p\prime) \leq t], with n\prime = | S\prime | = p\epsilon \Delta
100 and p\prime = p2\epsilon

8 . We set t = p3\epsilon 2\Delta
1000 < n\prime p\prime .

According to a tail bound of binomial distribution, Pr[X \leq t] \leq exp(- (n\prime p\prime - t)2

2n\prime p\prime) =

exp(- \Omega (\epsilon 2\Delta)).

We show that Y \leq p3\epsilon 2\Delta
2000 with probability 1 - exp(- \Omega (\epsilon 2\Delta)). It is clear that

Pr[Yi = 1] \leq p \cdot (i - 1)
\Delta +1 \leq p2\epsilon

100 holds, regardless of the colors selected by vertices in

\{ u1, . . . , ui - 1\} . We have \mu = E[Y] \leq p2\epsilon
100 \cdot | S\prime | = p3\epsilon 2\Delta

10,000 . Thus, by a Chernoff bound

(with \delta = 4), Pr[Y \geq p3\epsilon 2\Delta
2000] \leq Pr[Y \geq (1 + \delta)\mu] \leq exp(- \delta \mu /3) = exp(- \Omega (\epsilon 2\Delta)).

To summarize, with probability at least 1 - exp(- \Omega (\epsilon 2\Delta)), we have X - Y \geq
p3\epsilon 2\Delta /1000 - p3\epsilon 2\Delta /2000 = p3\epsilon 2\Delta /2000.

Lemma B.5. The number of vertices in N(v), the neighborhood of v, that remain
uncolored after \sansO \sansn \sanse \sansS \sansh \sanso \sanst \sansC \sanso \sansl \sanso \sansr \sansi \sansn \sansg is at least (1 - 1.5p)| N(v)| with probability at least
1 - exp(- \Omega (| N(v)|)).

Proof. Let X be the number of vertices in N(v) participating in \sansO \sansn \sanse \sansS \sansh \sanso \sanst \sansC \sanso \sansl \sanso \sansr \sansi \sansn \sansg .
It suffices to show that X \leq 1.5p| N(v)| with probability 1 - exp(- \Omega (| N(v)|)). Since

10In the calculation of X, we first reveal all colors selected by vertices in V \setminus S\prime , and then we
reveal the colors selected by u1, . . . , uk in this order. The value of Xi is determined when the color
selected by ui is revealed. Regardless of the colors selected by vertices in V \setminus S\prime and \{ u1, . . . , ui - 1\} ,
we have Pr[Xi = 1] \geq p2\epsilon

8
.

D
ow

nl
oa

de
d

08
/2

4/
20

 to
 1

41
.2

11
.4

.2
24

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ULTRAFAST DISTRIBUTED (\Delta + 1)-COLORING 537

a vertex participates with probability p,

Pr[X \geq (1 + 1/2)p| N(v)|] \leq exp

\biggl(
 - (1/2)2p| N(v)|

3

\biggr)
= exp(- \Omega (| N(v)|))

by a Chernoff bound with \delta = 1/2.

Acknowledgment. We thank the two reviewers for improving the quality of the
paper.

REFERENCES

[1] N. Alon, L. Babai, and A. Itai, A fast and simple randomized parallel algorithm for the
maximal independent set problem, J. Algorithms, 7 (1986), pp. 567--583.

[2] N. Alon, M. Krivelevich, and B. Sudakov, Coloring graphs with sparse neighborhoods, J.
Combin. Theory Ser. B, 77 (1999), pp. 73--82.

[3] A. Amir, O. Kapah, T. Kopelowitz, M. Naor, and E. Porat, The family holiday gathering
problem or fair and periodic scheduling of independent sets, in Proceedings of the 28th
ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), 2016, pp. 367--
375.

[4] S. Assadi, Y. Chen, and S. Khanna, Sublinear algorithms for (\Delta + 1) vertex coloring, in
Proceedings of the 2019 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
SIAM, Philadelphia, 2019, pp. 767--786, https://doi.org/10.1137/1.9781611975482.48.

[5] B. Awerbuch, A. V. Goldberg, M. Luby, and S. A. Plotkin, Network decomposition and
locality in distributed computation, in Proceedings of the 30th Annual IEEE Symposium
on Foundations of Computer Science (FOCS), 1989, pp. 364--369.

[6] A. Balliu, S. Brandt, J. Hirvonen, D. Olivetti, M. Rabie, and J. Suomela, Lower bounds
for maximal matchings and maximal independent sets, in Proceedings of the 60th Annual
IEEE Symposium on Foundations of Computer Science (FOCS), 2019, pp. 481--497.

[7] A. Balliu, J. Hirvonen, D. Olivetti, and J. Suomela, Hardness of minimal symmetry break-
ing in distributed computing, in Proceedings of the 2019 ACM Symposium on Principles
of Distributed Computing (PODC), 2019, pp. 369--378.

[8] L. Barenboim, Deterministic (\Delta +1)-coloring in sublinear (in \Delta) time in static, dynamic and
faulty networks, in Proceedings of the 2015 ACM Symposium on Principles of Distributed
Computing (PODC), 2015, pp. 345--354.

[9] L. Barenboim and M. Elkin, Deterministic distributed vertex coloring in polylogarithmic
time, J. ACM, 58 (2011), 5.

[10] L. Barenboim and M. Elkin, Distributed Graph Coloring: Fundamentals and Recent Devel-
opments, Synth. Lect. Distrib. Comput. Theory 11, Morgan \& Claypool, Williston, VT,
2013.

[11] L. Barenboim, M. Elkin, and U. Goldenberg, Locally-iterative distributed (\Delta + 1)-
coloring below Szegedy-Vishwanathan barrier, and applications to self-stabilization and
to restricted-bandwidth models, in Proceedings of the 2018 ACM Symposium on Principles
of Distributed Computing (PODC), 2018, pp. 437--446.

[12] L. Barenboim, M. Elkin, and F. Kuhn, Distributed (\Delta + 1)-coloring in linear (in \Delta) time,
SIAM J. Comput., 43 (2014), pp. 72--95, https://doi.org/10.1137/12088848X.

[13] L. Barenboim, M. Elkin, S. Pettie, and J. Schneider, The locality of distributed symmetry
breaking, J. ACM, 63 (2016), 20.

[14] T. Bisht, K. Kothapalli, and S. V. Pemmaraju, Brief announcement: Super-fast t-ruling
sets, in Proceedings of the 2014 ACM Symposium on Principles of Distributed Computing
(PODC), 2014, pp. 379--381.

[15] S. Brandt, An automatic speedup theorem for distributed problems, in Proceedings of the 2019
ACM Symposium on Principles of Distributed Computing (PODC), 2019, pp. 379--388.

[16] S. Brandt, O. Fischer, J. Hirvonen, B. Keller, T. Lempi\"ainen, J. Rybicki, J. Suomela,
and J. Uitto, A lower bound for the distributed Lov\'asz local lemma, in Proceedings of the
48th ACM Symposium on the Theory of Computing (STOC), 2016, pp. 479--488.

[17] Y. Chang, M. Fischer, M. Ghaffari, J. Uitto, and Y. Zheng, The complexity of (\Delta + 1)-
coloring in congested clique, massively parallel computation, and centralized local computa-
tion, in Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing
(PODC), 2019, pp. 471--480.

[18] Y.-J. Chang, Locality of Distributed Graph Problems, Ph.D. thesis, University of Michigan,
Ann Arbor, MI, 2019.

D
ow

nl
oa

de
d

08
/2

4/
20

 to
 1

41
.2

11
.4

.2
24

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

https://doi.org/10.1137/1.9781611975482.48
https://doi.org/10.1137/12088848X

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

538 YI-JUN CHANG, WENZHENG LI, AND SETH PETTIE

[19] Y.-J. Chang, Q. He, W. Li, S. Pettie, and J. Uitto, Distributed edge coloring and a special
case of the constructive Lov\'asz local lemma, ACM Trans. Algorithms, 16 (2019), 8.

[20] Y.-J. Chang, T. Kopelowitz, and S. Pettie, An exponential separation between randomized
and deterministic complexity in the \sansL \sansO \sansC \sansA \sansL model, SIAM J. Comput., 48 (2019), pp. 122--
143, https://doi.org/10.1137/17M1117537.

[21] Y.-J. Chang, W. Li, and S. Pettie, An optimal distributed (\Delta + 1)-coloring algorithm?,
in Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing
(STOC), 2018, pp. 445--456.

[22] Y.-J. Chang and S. Pettie, A time hierarchy theorem for the \sansL \sansO \sansC \sansA \sansL model, SIAM J. Com-
put., 48 (2019), pp. 33--69, https://doi.org/10.1137/17M1157957.

[23] D. P. Dubhashi and A. Panconesi, Concentration of Measure for the Analysis of Randomized
Algorithms, Cambridge University Press, Cambridge, UK, 2009.

[24] D. P. Dubhashi and D. Ranjan, Balls and bins: A study in negative dependence, J. Random
Structures Algorithms, 13 (1998), pp. 99--124.

[25] M. Elkin, S. Pettie, and H.-H. Su, (2\Delta - 1)-edge coloring is much easier than maximal
matching in the distributed setting, in Proceedings of the 2015 Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA), 2015, pp. 355--370, https://doi.org/10.1137/1.
9781611973730.26.

[26] M. Fischer and M. Ghaffari, Sublogarithmic distributed algorithms for Lov\'asz local lemma
with implications on complexity hierarchies, in Proceedings of the 31st International Sym-
posium on Distributed Computing (DISC), 2017, 18.

[27] P. Fraigniaud, M. Heinrich, and A. Kosowski, Local conflict coloring, in Proceedings of
the 57th Annual IEEE Symposium on Foundations of Computer Science (FOCS), 2016,
pp. 625--634.

[28] M. Ghaffari, An improved distributed algorithm for maximal independent set, in Proceed-
ings of the 2016 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2016,
pp. 270--277, https://doi.org/10.1137/1.9781611974331.ch20.

[29] A. Goldberg, S. Plotkin, and G. Shannon, Parallel symmetry-breaking in sparse graphs,
in Proceedings of the 19th Annual ACM Symposium on Theory of Computing (STOC),
1987, pp. 315--324.

[30] A. V. Goldberg and S. A. Plotkin, Parallel (\Delta + 1)-coloring of constant-degree graphs,
Inform. Process. Lett., 25 (1987), pp. 241--245.

[31] D. G. Harris, Distributed approximation algorithms for maximum matching in graphs and
hypergraphs, in Proceedings of the 60th Annual IEEE Symposium on Foundations of Com-
puter Science (FOCS), 2019, pp. 700--724.

[32] D. G. Harris, J. Schneider, and H. Su, Distributed (\Delta +1)-coloring in sublogarithmic rounds,
J. ACM, 65 (2018), 19.

[33] W. Hoeffding, Probability inequalities for sums of bounded random variables, J. Amer. Statist.
Assoc., 58 (1963), pp. 13--30.

[34] \"O. Johansson, Simple distributed \Delta + 1-coloring of graphs, Inform. Process. Lett., 70 (1999),
pp. 229--232.

[35] F. Kuhn, Faster deterministic distributed coloring through recursive list coloring, in Proceed-
ings of the 2020 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2020,
pp. 1244--1259, https://doi.org/10.1137/1.9781611975994.76.

[36] F. Kuhn, T. Moscibroda, and R. Wattenhofer, Local computation: Lower and upper
bounds, J. ACM, 63 (2016), 17.

[37] F. Kuhn and R. Wattenhofer, On the complexity of distributed graph coloring, in Proceedings
of the 25th Annual ACM Symposium on Principles of Distributed Computing (PODC),
2006, pp. 7--15.

[38] N. Linial, Locality in distributed graph algorithms, SIAM J. Comput., 21 (1992), pp. 193--201,
https://doi.org/10.1137/0221015.

[39] N. Linial and M. E. Saks, Low diameter graph decompositions, Combinatorica, 13 (1993),
pp. 441--454.

[40] M. Luby, A simple parallel algorithm for the maximal independent set problem, SIAM J. Com-
put., 15 (1986), pp. 1036--1053, https://doi.org/10.1137/0215074.

[41] M. Molloy and B. A. Reed, A bound on the strong chromatic index of a graph, J. Combin.
Theory Ser. B, 69 (1997), pp. 103--109.

[42] M. Naor, A lower bound on probabilistic algorithms for distributive ring coloring, SIAM J. Dis-
crete Math., 4 (1991), pp. 409--412, https://doi.org/10.1137/0404036.

[43] A. Panconesi and A. Srinivasan, The local nature of \Delta -coloring and its algorithmic applica-
tions, Combinatorica, 15 (1995), pp. 255--280.

[44] A. Panconesi and A. Srinivasan, On the complexity of distributed network decomposition,

D
ow

nl
oa

de
d

08
/2

4/
20

 to
 1

41
.2

11
.4

.2
24

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

https://doi.org/10.1137/17M1117537
https://doi.org/10.1137/17M1157957
https://doi.org/10.1137/1.9781611973730.26
https://doi.org/10.1137/1.9781611973730.26
https://doi.org/10.1137/1.9781611974331.ch20
https://doi.org/10.1137/1.9781611975994.76
https://doi.org/10.1137/0221015
https://doi.org/10.1137/0215074
https://doi.org/10.1137/0404036

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ULTRAFAST DISTRIBUTED (\Delta + 1)-COLORING 539

J. Algorithms, 20 (1996), pp. 356--374.
[45] M. Parter, (\Delta + 1) coloring in the congested clique model, in Proceedings of the 45th Inter-

national Colloquium on Automata, Languages, and Programming (ICALP), 2018, 160.
[46] M. Parter and H.-H. Su, (\Delta +1) coloring in O(log\ast \Delta) congested-clique rounds, in Proceedings

of the 32nd International Symposium on Distributed Computing (DISC), 2018, 39.
[47] D. Peleg, Distributed Computing: A Locality-Sensitive Approach, SIAM, Philadelphia, 2000,

https://doi.org/10.1137/1.9780898719772.
[48] V. Rozho\v n and M. Ghaffari, Polylogarithmic-time deterministic network decomposition and

distributed derandomization, in Proceedings of the 52nd Annual ACM SIGACT Symposium
on Theory of Computing (STOC), to appear.

[49] J. Schneider and R. Wattenhofer, A new technique for distributed symmetry breaking, in
Proceedings of the 29th Annual ACM Symposium on Principles of Distributed Computing
(PODC), 2010, pp. 257--266.

[50] V. H. Vu, A general upper bound on the list chromatic number of locally sparse graphs, Combin.
Probab.\& Computing, 11 (2002), pp. 103--111.

D
ow

nl
oa

de
d

08
/2

4/
20

 to
 1

41
.2

11
.4

.2
24

. R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

https://doi.org/10.1137/1.9780898719772

	Introduction
	Technical overview
	Fast coloring using excess colors
	Gaining excess colors
	Coloring locally dense vertices
	New results

	Hierarchical decomposition
	A hierarchy of almost cliques
	Block sizes and excess colors

	Main algorithm
	Initial coloring step
	Coloring vertices by layer
	Coloring the remaining vertices
	Time complexity

	Fast coloring using excess colors
	Coloring locally dense vertices
	Version 1 of DenseColoringStep–Many excess colors are available
	Version 2 of DenseColoringStep–No excess colors are available

	Conclusion
	Appendix A. Concentration bounds
	Appendix B. Proof of Lemma 2.5
	Acknowledgment
	References

