The Energy Complexity of BFS in Radio Networks

Yi-Jun Chang
ETH Zirich
yi-jun.chang@eth-its.ethz.ch

Thomas P. Hayes”
University of New Mexico
hayest@gmail.com

ABSTRACT

We consider a model of energy complexity in Radio Networks in
which transmitting or listening on the channel costs one unit of
energy and computation is free. This simplified model captures key
aspects of battery-powered sensors: that battery-life is most influ-
enced by transceiver usage, and that at low transmission powers,
the actual cost of transmitting and listening are very similar.

The energy complexity of tasks in single-hop (clique) networks
are well understood [6, 9, 20, 32]. Recent work of Chang et al. [8]
considered energy complexity in multi-hop networks and showed
that Broadcast admits an energy-efficient protocol, by which we
mean each of the n nodes in the network spends O(polylog(n))
energy. This work left open the strange possibility that all natu-
ral problems in multi-hop networks might admit such an energy-
efficient solution.

In this paper we prove that the landscape of energy complexity
is rich enough to support a multitude of problem complexities.
Whereas Broadcast can be solved by an energy-efficient protocol,
exact computation of Diameter cannot, requiring Q(n) energy. Our
main result is that BreadthFirstSearch has sub-polynomial energy
complexity at most 20(Vlognloglogn) _ ,o(1). whether it admits an
efficient O(polylog(n))-energy protocol is an open problem.

Our main algorithm involves recursively solving a generalized
BFS problem on a “cluster graph” introduced by Miller, Peng, and
Xu [31]. In this application, we make crucial use of a close rela-
tionship between distances in this cluster graph, and distances
in the original network. This relationship is new and may be of
independent interest.

We also consider the problem of approximating the network
Diameter. From our main result, it is immediate that Diameter can
be 2-approximated using n°V) energy per node. We observe that,
for all € > 0, approximating Diameter to within a (2 — ¢€) factor
requires Q(n) energy per node. However, this lower bound is only
due to graphs of very small diameter; for large-diameter graphs,

*Supported by NSF CAREER award CCF-1150281.
1LSupported by NSF grants CCF-1514383, CCF-1637546, and CCF-1815316.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

PODC °20, August 3—7, 2020, Virtual Event, Italy

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7582-5/20/08....$15.00
https://doi.org/10.1145/3382734.3405713

273

Varsha Dani
University of New Mexico
varshadani@gmail.com

Seth Pettie™
University of Michigan

seth@pettie.net

we prove that the diameter can be nearly 3/2-approximated using
O(n'/2+°(1)) energy per node.

CCS CONCEPTS

« Theory of computation — Distributed algorithms.

KEYWORDS

distributed computing, graph algorithms, energy-aware computing,
radio networks, sensor networks

ACM Reference Format:

Yi-Jun Chang, Varsha Dani, Thomas P. Hayes, and Seth Pettie. 2020. The En-
ergy Complexity of BFS in Radio Networks. In ACM Symposium on Principles
of Distributed Computing (PODC ’20), August 3-7, 2020, Virtual Event, Italy.
ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/3382734.3405713

1 INTRODUCTION

Consider a network of n tiny sensors scattered throughout a Na-
tional Park. We’d like the sensors to organize themselves, so that in
the event of a forest fire, say, information about it can be efficiently
broadcast to the entire network.

In this extremely low power setting, sensors would need to spend
most of their time with their transceiver units shut off to conserve
power. In a steady state, we might expect that we have a good
labelling of the nodes, and each node with label i wakes up at times
of the form jP + i, where j runs through every positive integer, and
P, the polling period, is also a positive integer. Each node wakes
up just long enough to receive a message and forward it on any
neighbors with label i + 1. In this way, at the expense of adding P to
the latency, the nodes are able to reduce their power consumption
by a factor of P, compared to the always-on scenario.

Once P has been optimized, which should be a function of the
available power, the next issue is how to find a good labelling effi-
ciently. In this paper we focus mainly on the problem of computing
BFS labelings: a given source s has label zero, and all other devices
label themselves by the distance (in hops) to s. Such a labeling gives
a 2-approximation to the diameter, and via up-casts and down-casts,
allows for time- and energy-efficient dissemination of a message
from any origin. Thus, the problem of finding a BFS labelling is a
very natural question in this context.

1.1 The Model

We work within the classic Radio Network model [10], but in con-
trast to most prior work in this model, we treat energy (defined
below) as the primary measure of complexity and time to be impor-
tant, but secondary.

https://doi.org/10.1145/3382734.3405713
https://doi.org/10.1145/3382734.3405713

PODC 20, August 3-7, 2020, Virtual Event, Italy

There are |V| devices associated with the nodes of an unknown
undirected graph G = (V, E). Time is partitioned into discrete steps.
All devices agree on time zero,! and agree on some upper bound
n > |V|. In each timestep, each device performs some computa-
tion and chooses to either idle, listen to the channel, or transmit
a message. If a device v chooses to listen, and exactly one device
u € N(v) transmits a message my,, then v receives my,. In all other
cases, v receives no feedback from the environment.? Devices can
locally generate unbiased random bits; there is no shared random-
ness. Let RN[b] denote this Radio Network model, where b is the
maximum number of bits per message. All of our algorithms work
in RN[O(log n)] and all our lower bounds apply even to RN[co].

Cost Measures. An algorithm runs in time t if all devices halt
and return their output by timestep t. Typically the algorithm is
randomized, with some probability of failure, but ¢ is a function
of n or other given parameters, not a random variable. The energy
cost of v € V is the number of timesteps for which v is listening or
transmitting. (This is motivated by the fact that the sleep mode of
tiny devices is so efficient that it is reasonable to approximate its
energy-cost by zero, and that transceiver usage is often the most
expensive part of a computation. Moreover, at low transmission
powers, transmitting and listening are comparable; see, e.g., [34,
Fig. 2] and [5, Table 1].) The energy cost of the algorithm is the
maximum energy cost of any device.

Energy Complexity. Most prior work on energy complexity has
focused on single-hop (clique) networks, typically under the as-
sumption that |V|= n is unknown, and that some type of collision-
detection is available.> Because of the high degree of symme-
try, there are only so many interesting problems in single-hop
networks. Nakano and Olariu [32] proved that the Initialization
problem (assign devices distinct IDs in {1,...,|V|= n}) can be
solved with O(log log n) energy. Bender et al. [6] showed that with
collision-detection, all n devices holding messages can transmit
all of them using O(log(log” n)) energy. Chang et al. [9] proved
that ©(log(log™ n)) is optimal, and more generally, settled the
complexity of LeaderElection and ApproximateCounting (estimat-
ing “n”) in all the collision-detection models, with and without
randomization. It was proved that collision-detection gives two
exponential advantages in energy complexity. With randomiza-
tion, LeaderElection/ApproximateCounting takes ©(log™ n) energy
(without CD) or ©(log(log™ n)) energy (with CD), and deterministi-
cally, they take @(log N) energy (without CD [20]) and O(log log N)
energy (with CD), where devices initially have IDs in [N]. See
also [18-22]. Three-way tradeoffs between time, energy, and error
probability were studied by Chang et al. [9] and Kardas et al. [24].

!Synchronizing devices in an energy-efficient manner is an interesting open problem.
In some situations it makes sense to assume the devices begin in a synchronized state,
e.g., if the sensors are simultaneously turned on and dropped from an airplane on the
aforementioned National Park.

?Here N(v) = {u | {u, v} € E(G)} is the neighborhood of v. A more powerful
model allows for collision detection, i.e., differentiation between zero and two or more
transmitters in N(v). Since collision detection only gives a polylog(n) advantage in
any complexity measure (Local-Broadcast in Section 2 allows each vertex to differ-
entiate between zero and two or more transmitters in polylog(n) rounds w.h.p.) and
we are insensitive to such factors, we assume the weakest model, without collision
detection.

3Sender-side CD enables devices to detect if another device is transmitting; receiver-
side CD lets receivers detect if at least two devices are transmitting.

274

Yi-Jun Chang, Varsha Dani, Thomas P. Hayes, and Seth Pettie

Very recently Chang et al. [8] extended the single-hop notion of
energy complexity to multi-hop networks (G is not a clique), and
proved nearly sharp upper and lower bounds on Broadcast, both
in RN[O(log n)] and the same model when listeners have collision
detection. Without CD the energy complexity of Broadcast is be-
tween Q(log2 n) and O(log3 n); with CD it is between Q(log n) and
o (lognloglogn)

logloglogn

Other Energy Models. Other notions of energy complexity have
been studied in radio networks. For example, when distances be-
tween devices are very large, transmitting is significantly more
expensive than listening, and it makes sense to design algorithms
that minimize the worst-case number of transmissions per device.
Gasnieniec et al. [13], Klonowski and Pajak [26], and Berenbrink
et al. [7] studied broadcast and gossiping problems under this cost
model. Klonowski and Sulkowska [27] defined a distributed model
in which devices are scattered randomly at points in [n1/4]¢ and
can choose their transmission power dynamically. Several works
have looked at energy complexity against an adversarial jammer,
where the energy cost is sometimes a function of the adversary’s
energy budget. See, e.g., [15, 23, 25, 29].

Time Complexity. Most prior work in the RN model has studied
the time complexity of basic primitives such as LeaderElection,
Broadcast, BFS, etc. We review a few results most relevant to
our work. Bar-Yehuda et al’s [3] decay algorithm solves BFS in
O(Dlog? n) time and Broadcast in O(Dlogn + log? n) time. Here
D is the diameter of the network. Since Q(D) is an obvious lower
bound, the question is which log-factors are necessary. Alon et
al. [2] proved that the additive log® n term is necessary in a strong
sense: even with full knowledge of the graph topology, Broadcast
needs Q(log2 n) time even when D = O(1). Kushilevitz and Man-
sour [28] proved that if devices are forbidden from transmitting
before hearing the message, then Q(D log(n/D)) time in necessary.
Czumaj and Davies [12] (improving [16]) gave a Broadcast algo-
rithm running in O(D logp, n + polylog(n)) time, which is optimal
when D > n€. These Broadcast algorithms do not solve BFS. Im-
proving the classic O(D log? n) decay algorithm for BFS, Ghaffari
and Haeupler [14] solve BFS in O(D log(n) log log(n) + polylog(n))
time.

New Results. It is useful to coarsely classify energy-efficiency
bounds as either feasible or infeasible. We consider polylog(n) en-
ergy to be feasible and polynomial energy n? to be infeasible.* It
is not immediately obvious that there are any natural, infeasible
problems, especially if we are considering the full power of RN[co],
where message congestion is not an issue. In this paper we demon-
strate that the energy landscape is rich, and that even coarsely
classifying the energy complexity of simple problems is technically
challenging and demands the development of new algorithm design
techniques. Our results are as follows

e We develop a recursive BreadthFirstSearch algorithm
in RN[O(logn)] with “intermediate” energy-complexity
20(Vlognloglogn) _ ,o(1) The algorithm involves simulating
itself on a clustered version of the input graph. Due to the

“4These definitions seem to be robust to certain modeling assumptions, e.g., whether
collision detection is available.

The Energy Complexity of BFS in Radio Networks

nature of the RN model, this simulation is not free, but in-
curs a polylogarithmic increase in energy, which restricts the
profitable depth of recursion to be at most +/log n/loglog n.

e We give examples of some “hard” problems in energy-
complexity, even when the model is RN[oo]. The problem
of deciding whether diam(G) is 1 or at least 2 takes Q(n)
energy; in this case the hard graph G is dense. We adapt the
construction of [1] (designed for the CONGEST model) to
show that even on sparse graphs, with arboricity O(log n),
deciding whether diam(G) is 2 or at least 3 takes Q(n) energy.

o To complement the hardness results, we show that Diameter
can be nearly 3/2-approximated® in RN[O(logn)] with
O(n1/#+°()y energy, by adapting [17, 35] and using our new
BreadthFirstSearch routine.

The existence of a subpolynomial-energy BreadthFirstSearch
algorithm is somewhat surprising for information-theoretic rea-
sons. Observe that the number of edges in E(G) that are collectively
discovered by all devices is at most the number of messages suc-
cessfully received, which itself is at most the aggregate energy cost.

0(1), we can never hope to

Thus, if the per-device energy cost is n
know about more than n!*°() edges in E(G) — a negligible fraction
of the input on dense graphs! On the other hand, it is possible
to efficiently verify the non-existence of many non-edges. Given a
candidate BFS-labeling, for example, it is straightforward to verify

its correctness with polylog(n) energy.

Organization. In Section 2 we review the Miller-Peng-Xu [31]
clustering algorithm and prove that it preserves distances better
than previously known. In Section 3 we define some communica-
tions primitives and prove that they can be executed on the cluster
graph (as if it were an RN[O(log n)] network) at the cost of a polylog-
arithmic factor increase in energy usage. In Section 4 we design and

analyze a recursive BFS algorithm, which uses 20(Vlognloglogn)
energy. In Section 5 we consider the energy cost of approximately
computing the network’s Diameter.

2 CLUSTER PARTITIONING

Miller, Peng, and Xu [31] introduced a remarkably simple algo-
rithm for partitioning a given graph into vertex-disjoint clusters
with certain desirable properties. In this section we prove that the
MPX clustering approximately preserves relative distances from
the original graph significantly better than previously known.

Given a graph G = (V, E), and a parameter f, each vertex v € V
independently samples a random variable §;, ~ Exponential(f)
from the exponential distribution with mean 1/f. Assign each v
to the “cluster” centered at u € V that minimizes distg(v, u) — &y,.
Equivalently, we may think of a cluster forming at each vertex u at
time —Jy, and spreading through the graph at a uniform rate of one
edge per time unit. Each vertex v is absorbed into the first cluster
to reach it, if this happens prior to time -, when it would start
growing its own cluster. Refer to Figure 1. Throughout the paper,
we only choose 8 such that 1/ is an integer.

Miller et al. [31] were primarily interested in this construction
because the algorithm parallelizes well, the clusters have diame-
ter O(log(n)/f) w.h.p., and a O(f)-fraction of the edges are “cut,”

SLe., it returns a value in the range [I_%diam(G)J s diam(G)].

275

PODC 20, August 3-7, 2020, Virtual Event, Italy

having their endpoints in distinct clusters. Haeupler and Wajc [16]
observed that this algorithm can be efficiently implemented in the
Radio Network model [10, 11], with only minor modifications.

2.1 The Cluster Graph as a Distance Proxy

Define Cl(u) to be the cluster containing u. The cluster graph,
cluster(G, p) = G* = (V*, E*) is defined by

V* = {Clw) | u € V(G)}
and E* = {(Cl(u), Cl(v)) | (u,v) € E(G), Cl(u) # Cl(v)}.

To prove that distances in G* are a good proxy for distances
in G, we make use of the following lemma, which is a slight vari-
ant of lemmas by Miller, Peng, Vladu, and Xu [30, Lemma 2.2]
and Haeupler and Wajc [16, Corollary 3.8]. We include a proof for
completeness.

Define Ballg(v,) = {u € V | distg(u,v) < £} to be the ball of
radius ¢ around v.

LEMMA 2.1. Let G* = cluster(G,) be the cluster graph for G. For
every positive integer j and € > 0, the probability that the number of
G*-clusters intersecting Ballg(v, €) is more than j is at most

(1 - exp(=2¢p)) .

Proor. Condition on the time ¢ that the (j + 1)st signal would
reach vertex v, as well as on the identities vy, . . ., v; of the vertices
whose signals reach v before time ¢. Due to the memoryless prop-
erty of the exponential distribution, each of these arrival times are
independently distributed as min{t, dist(v;, v)} — X < t — X, where
X ~ Exponential(f).

Now, if maxi<;<jX; > 2¢, then Ballg(v,) cannot intersect
any clusters except those centered at v1, ..., v}, because they do
not reach Ballg(v, £) until times > t — £, whereas the first signal
reached v before time ¢t — 2¢, and has therefore already flooded all
of Ballg(v, £) before time t — €. Thus,

P (Ballg(v,) intersects more than j clusters)

<P (Vi€ [Lj].X; <20)
= (1 - exp(-2(p)Y.

O

A natural way to show that G* approximately preserves distances
in G is to consider the fraction of edges in a shortest path that are
“cut” by the partition, which corresponds to applying Lemma 2.1
with £ = 1/2 and j = 1.° This was the approach taken in [8],
but it only guarantees that the fraction of edges cut concentrates
around its expectation (O(p)) for paths of length Q(poly(8~1)). In
Lemmas 2.2 and 2.3 we use Lemma 2.1 in a different way to bound
the ratio of distances in G to those in G*, which works even for
relatively short distances. Lemma 2.2 applies to all distances (and
suffices for our BFS application in Section 4) whereas Lemma 2.3
applies to distances Q(f~! log? n).

®One imagines a vertex v in the middle of an edge e; e is cut iff Ballg(ve, 1/2)
intersects two clusters, which must cover distinct endpoints of e.

PODC 20, August 3-7, 2020, Virtual Event, Italy

Yi-Jun Chang, Varsha Dani, Thomas P. Hayes, and Seth Pettie

Figure 1: Constructing a cluster graph. At left, the original graph; with the (rounded) start time, —J,, marked on each vertex.
The cluster centers have been darkened, and the dotted lines indicate edges that cross a cluster boundary. At right, the corre-
sponding cluster graph. Note that the distances in the cluster graph are broadly proportional to the original distances, but can

vary significantly.

LEMMA 2.2. Let G* = cluster(G, f) be a clustering of G. There
exists a constant C such that for every pair u,v € V(G),

distg(u,v) - ﬂJ

P (distg+(Cl(u), Cl(v)) € [8 log(n)

[dist(w,2) B Clog(n)]) 21t

More generally, let P = (u, . . ., v) be any length-d path connecting u
andv. With probability 1— # there exists a path P* in G* connecting
Cl(u) and Cl(v) with length at most d - Cf log(n), where each cluster
in P* intersects P.

Proor. First observe that the probability of any J,-value being
outside [0, 4log(n)/f) is < n~* and hence all clusters have radius
less than 4log(n)/f with probability < n~3. This gives the lower
bound on distg+(u, v).

For the upper bound, define ¢ to be the integer 1/f. Fix any
length-d path P from u to v (e.g., a shortest path, with d =

#‘il-‘ paths of length 2.

Applying Lemma 2.1 to the center vertex u” of one of these subpaths,
we conclude that the number of clusters that intersect Ballg (v, ¢),
(which includes the entire subpath) is more than j with probability

distg(u, v)), and cover its vertices with [

(1 - exp(-2B0)Y = (1 - exp(-2)), (1)
Choosing j to be the appropriate multiple of log(n), we can make
this probability < n™*. Taking a union bound over the ~ fd/2 < n
subpaths, the probability that any subpath intersects more than
Clog(n) clusters is < n~3. This concludes the proof. O

Lemma 2.2 suffices to achieve our main result, BFS labeling in

20(Vlognloglogn) energy but the exponent can be improved by
a constant factor by using Lemma 2.3 whenever applicable. We
include the proof of Lemma 2.3 since it may be of independent
interest.

276

LEMMA 2.3. Let G* = cluster(G, f) be a clustering of G. There
exists a constant C such that for every pair u,v € V(G)

distg(u,v) -

P {diste(Clw). Clw) € | —7 00

, distg(u,v) - Cﬂ])

>1-2.
> 3

Proor. We condition on the event that all cluster radii are at
most 4log(n)/f, which fails to hold with probability <« n~3. As
before, the lower bound on distg+(u, v) follows from this event.
Furthermore, this implies that sufficiently distant segments on the
shortest u-v path are essentially independent.

As before, cover the vertices of the shortest u-v path with length-
20 subpaths, £ = 1/, and color the subpaths with 4 log(n) + 1 colors
such that any two subpaths of the same color are at distance at
least 8log(n)/f. Each color-class contains Q(logn) subpaths. By
Lemma 2.1 and (1), the number of clusters intersecting subpaths
of a particular color class is stochastically dominated by the sum
of Q(log n) geometrically distributed random variables with con-
stant expectation m = exp(2). By a Chernoff bound, the
probability that this sum deviates from its expectation by more
than a constant factor is 1/poly(n). Hence, for sufficiently large C
(controlling the number of summands and the tolerable deviation)
the probability that any color-class hits too many distinct clusters
is < n73. o

REMARK 2.1. Lemma 2.3 cannot be improved by more than con-
stant factors. It is easy to construct families of graphs for which both
the upper and lower bounds are tight, with high probability, depending
on which vertex pairs are chosen.

2.2 Distributed Implementation

The definition of cluster(G,) immediately lends itself to a dis-
tributed implementation in radio networks, as was noted in [16].
For completeness we show how it can be reduced to calls to
Local-Broadcast.

Local-Broadcast: We are given two disjoint vertex sets S and
R, where each vertex u € S holds a message my. An

The Energy Complexity of BFS in Radio Networks

Local-Broadcast algorithm guarantees that for every v € R
with N(v) NS # 0, with probability 1 — f, v receives some
message my, from at least one vertex u € N(v) N S. We only
apply this routine with f = 1/poly(n).

LEMMA 2.4. Local-Broadcast can be implemented in
O(log Alog f1) time and energy, where A < n — 1 is an up-
per bound on the maximum degree. Senders use O(log f~!) energy;
receivers that hear a message use O(log A) energy in expectation;
receivers that hear no message use O(log Alog f~1) energy.

Proor. This lemma follows from a small modification to the
Decay algorithm [4], which is known to be optimal in terms of time;
see Newport [33]. For the sake of completeness, we provide a proof
here. Each sender u € S repeats the following O(log f™!) times.
Randomly pick an X;, € [1,log A] such that P (X, = t) > 27! and
transmit m,, at time step X;,. The energy of any sender is clearly
O(log f1) with probability 1. For a receiver v € R, if the number
of senders in N(v) is in the range [2/71, 2], v will receive some
message with constant probability in the tth timestep of every
iteration. Receivers with no adjacent sender will never detect this,
and spend ©(log Alog 1) energy.]

We show that cluster(G, f) can be computed, w.h.p., using
4log(n)/p Local-Broadcasts in the communication network G =
(V,E). Every vertex u will learn its cluster-identifier ID(Cl(u))) and
get a label L(v) such that L(v) = 0 iff v is a cluster center and
L(v) = i iff there is a u € N(v) with L(u) = i — 1 such that
Cl(u) = Cl(v). If L(v) = i, we say that v is at layer i.

The graph cluster(G, f) is constructed as follows. Every vertex
v picks a value d;,, ~ Exponential(f) and sets its start time to be
% — 8y]. With probability at least 1 — 1/n3, all
start times are positive. For i = 1 to 4log(n)/f, do the following.
At the beginning of the ith iteration, if v is not yet in any cluster
and start,, = i, then v becomes a cluster center and sets L(v) = 0.
During the ith iteration, we execute Local-Broadcast with S being
the set of all clustered vertices and R the set of all as-yet unclustered
vertices. The message of u € S contains ID(Cl(u)) and L(u). Any
vertex v € R receiving a message from u € S joins u’s cluster and
sets L(v) = L(u) + 1. Lemma 2.5 follows immediately from the
above construction.

start, « [

LEmMMA 2.5. The cluster graph cluster(G,) can be constructed
using 4log(n)/B Local-Broadcasts with probability 1 — 1/n>. This
takes O(log>(n)/B) time and O(log®(n)/) energy per vertex.

3 COMMUNICATION PRIMITIVES FOR THE
CLUSTER GRAPH

Our BFS algorithm forms a cluster graph G* and computes BFS
recursively on numerous subgraphs of G*. In order for this type
of recursion to work, we need to argue that algorithms on the
(abstract) G* can be simulated, with some time and energy cost,
on the underlying G. We focus on algorithms that are composed
exclusively of calls to Local-Broadcast (as our BFS algorithm is),
but the method can be used to simulate arbitrary radio network
algorithms.

277

PODC 20, August 3-7, 2020, Virtual Event, Italy

We use the primitives Down-cast and Up-cast to allow cluster
centers to disseminate information to their constituents and gather
information from some constituent.

Down-cast: There is a set U of vertices such that each u € U
is a cluster center, and the goal is to let each u € U broadcast
a message my, to all members of Cl(u).

Up-cast: There is a set U of vertices such that each u € U
wants to deliver a message my, to the center of Cl(u). Any
cluster center v with at least one u € U N Cl(v) must receive
any message from one such vertex.

LEMMA 3.1. Up-cast and Down-cast can be implemented with
3
O (k’g—n) calls to Local-Broadcast on G, in which each vertex
Blog(1/p)
participates in O(log n) Local-Broadcasts. Le., the total time and en-

5
ergy per vertex are O (%) and O(log® n), respectively.

Proor. Consider the following two quantities:

C= O(log(l/ﬁ) n). By Lemma 2.1, C is an upper bound on
the number of clusters intersecting N(v) U {v}, with high
probability. Intuitively, C represents the contention at v.

D = 4log(n)/p is the maximum radius of any cluster, i.e.,
the maximum £-value is at most D.

If there were only one cluster, then doing an Up-cast
or Down-cast would be easily reducible to O(log(n)/p)
Local-Broadcasts. In order to minimize interference between
neighboring clusters, we modify, slightly, the clustering algorithm
so that all constituents of a cluster have shared randomness.
When a new cluster center v is formed, it generates a subset
Sci(v) € [€], ¢ = ©(C logn), by including each index independently
with probability 1/C. It disseminates Scj(,) to all members of
Cl(v) along with ID(Cl(v)). It is straightforward to show that with
probability 1 — 1/poly(n), for every v,

There exists j € [€] : j € Scy() and for all u € N(v),j € Sciw)
@)
Down-cast is implemented in D stages, each stage consisting of
¢ steps. In step j of stage i, we execute Local-Broadcast with S
consisting of every v with a message to send such that L(v) =i—1
and j € Scj(y), and with R consisting of every u with L(u) = i
and j € Scy)- By (2), during stage i, every layer-i vertex in every
participating cluster receives the cluster center’s message with high
probability. An Up-cast is performed in an analagous fashion.
Each Up-cast/Down-cast performs {D = ©O(CDlogn) =

log® n . _
O(—ﬂlog(l/ﬂ)) executions of Local-Broadcast on G, for a total

log’ n . . .

of O(m) time. Each vertex v participates in O(|Sci()l)
Local-Broadcasts, which is O(log n) w.h.p., for a total of O(log® n)
energy. O

LEMMA 3.2. A call to Local-Broadcast on the cluster graph
G* =
Local-Broadcast on G; each vertex in V(G) participates in O(log n)
Local-Broadcasts.

3
cluster(G, p) can be simulated with O (%) calls to

Proor. Let S and R be the sets of sending and receiving clus-
ters in G*. All members of C know that C is in S or R. The
Local-Broadcast algorithm has three steps.

PODC 20, August 3-7, 2020, Virtual Event, Italy

(1) Begin by doing a Down-cast in each C € S. Each member
of C learns the message mc.

(2) Perform one Local-Broadcast on G, with sender set Uccs C
and receiver set Ucreg C’. At this point, w.h.p., every R-
cluster adjacent to an S-cluster has at least one constituent
that has received a message.

(3) Finally, do one Up-cast on every cluster C € R to let the
cluster center of C learn one message from a constituent of
C, if any.

The algorithm clearly satisfies the requirement of Local-Broadcast
on cluster(G,). The number of calls to Local-Broadcast on G

3
is O(CDlogn) = O (%) and each vertex participates in
O(log n) of them. O

4 BFS WITH SUB-POLYNOMIAL ENERGY

4.1 Technical Overview

Suppose every vertex in the graph could cheaply compute its dis-
tance from the source up to an additive +p error. Given this knowl-
edge, we could trivially solve exact BFS in O(D) time and O(p)
energy per vertex, simply by letting vertices sleep through steps
that they need not participate in. In particular, we would advance
the BFS wavefront one layer at a time using calls to Local-Broadcast,
except that each vertex u would sleep through the first aEtiG (s,u)—p
calls to Local-Broadcast, where (ﬂsT(/; is the approximate distance.
It would be guaranteed to fix distg(s, u) (and halt) in the next 2p
calls to Local-Broadcast.

Lemmas 2.2 and 2.3 suggest a method of obtaining approximate
distances. If we computed the cluster graph G* = cluster(G,) and
then computed exact distances on G*, Lemmas 2.2 and 2.3 allow us
to approximate all distances from the source, up to an additive error
of O(f~1) (for small distances) and multiplicative error of w? (for
larger distances), where w = O(log n) is a sufficiently large multiple
of log n. Note that, from the perspective of energy efficiency, the
main advantage to computing distances in G* rather than G is that
G* has a smaller diameter wf - diam(G).

Our algorithm computes distances up to D by advancing the BFS
wavefront in [D] stages, extending the radius ! per stage. The
ith wavefront W; is defined to be the vertex set

W; = {u € V(G) | distg(S,u) = if '},

where S is the set of sources. (Recall that 1 is an integer.) To
implement the ith stage correctly it suffices to activate a vertex set
X; that includes all the affected vertices, in particular:

Xi 2 {u e V(G) | distg(S,u) € [if~ L, (i+ 1)1} (whp)

In order for each vertex u to decide whether it should join X; or
sleep through the ith stage, u maintains lower and upper bounds on
its distance to the ith wavefront, or more accurately, the distance
from its cluster Cl(u) to W; in G.

INVARIANT 4.1. Before the ith stage begins, each vertex u knows
Li(Cl(w)) and U;(Cl(u)) such that

distg(W;, Cl(w)) = distg(S, Cl(w) — if ! € [Li(Cl(w), Us(Cl(w)].

Clearly, if some cluster C satisfies Invariant 4.1 at stage i — 1 with
the interval [L;—1(C), Uj—1(C)], it also satisfies Invariant 4.1 at stage

278

Yi-Jun Chang, Varsha Dani, Thomas P. Hayes, and Seth Pettie

iwith L;(C) = Li—1(C)— B~ and U;(C) = U;—1(C)— ! since the (i—
1)th stage advances the wavefront by exactly 7. In the algorithm
these are called Automatic Updates; they can be done locally, without
expending any energy. In order to keep the interval [L;(C), U;(C)]
relatively narrow (and hence useful for keeping vertices in C asleep),
we occasionally refresh it with a Special Update. Let W, C V(G™) be
the clusters in G* that intersect the wavefront W;. We call BFS on a
subgraph G} of G* from the source-set W', up to a radius of Z[i].
The only clusters that participate in this recursive call are those that
are likely to be relevant, i.e., those C for which L;(C) < Z[i] - 7.
(The Z[i] sequence will be defined shortly.) After this recursive
call completes we update [L;(C), U;(C)] for all participating C by
applying Lemmas 2.2 and 2.3 to the (exact) distance diStG;f(I’Vi*, C)
obtained in the cluster graph.

Specification. Our Recursive-BFS procedure (see Figure 2) takes
four parameters: G, the graph, S ¢ V(G), the set of sources, A C
V(G), the set of active vertices (which is a superset of S), and D, the
depth of the search. When we make a call to Recursive-BFS, every
vertex can locally calculate D and whether itisin S or A.” G* denotes
the cluster graph returned by cluster(G, f), where f is a parameter
fixed throughout the computation. We compute G* once, just before
the first recursive call to Recursive-BFS(G, -, -, -); subsequent calls
to Recursive-BFS on G with different (S, A, D) parameters can use
the same G*. It is important to remember that G can be either the
actual radio network (RN) or a virtual RN on which we can simulate
RN algorithms, with a certain overhead in terms of time and energy.
At the termination of Recursive-BFS(G, S, A, D), every vertex u € A
returns dist4(S, u) if it is at most D, and co otherwise. Vertices in
V(G)\A expend no energy.

Correctness. If one believes that the algorithm (Figure 2) faithfully
implements the high level description given so far, its correctness is
immediate. Every time we set [L;(C), U;(C)] the interval is correct
with probability 1 — 1/poly(n), either because [L;—1(C), U;i-1(C)] is
correct (an Automatic Update), or because they are set according
to Lemmas 2.2 and 2.3, which hold with probability 1 — 1/poly(n)
(Special Update). If L;(C) is correct for all C, then X; will include
all vertices necessary to compute the (i + 1)th wavefront, and the
ith stage will succeed, up to the 1/poly(n) error probability inher-
ent in calls to Local-Broadcast. The main question is whether the
procedure is efficient.

Efficiency. We will argue that for a very specific Z[-] sequence,
which guides the Special Update steps, the following claims hold:

CramM 1. Each vertex is included in the set X; for O(1) values of i.

Cram 2. For each vertex u, Cl(u) is included in G} for O(1) values
of i.

Our algorithms (cluster and Recursive-BFS) are based solely on
calls to Local-Broadcast. Define En(D) to be the number of calls to

Local-Broadcast that one vertex participates in when computing
BFS to distance D. If Claims 1 and 2 hold, then

A A 20 p-1
En(D) < O(1) - En(O(BD)) + O(F™") (3)
"The purpose of the A parameter is to refrain from computing useless information. E.g.,
when we compute the distance from the clusters W;" intersecting the ith wavefront,
we are only interested in distances to clusters intersecting as-yet unvisited vertices
(those intersecting A), not settled vertices “behind” the wavefront.

The Energy Complexity of BFS in Radio Networks

PODC 20, August 3-7, 2020, Virtual Event, Italy

Recursive-BFS(G, S, A, D)

Lo(C) dist 4 (S*,C) - -
Pw
2. A= A\{u | Lo(Cl(w)) = oo}.
3. For i from 0 to [fD] -1

4. Define X; = {u € A| Li(Cl(u)) < f71}.

o

6. A — A\{u | distg(S,u) < (i + 1)~ 1}.

7. Define G}, to be the subgraph of G* induced by

distG;l(WT“ C) = x, set

i+1°

1. Call Recursive-BFS(G*, S*, A*, D*) where D* = wfD. For each cluster C in A*,

. Advance BFS wavefront from W; to W, using ! calls to Local-Broadcast. Only vertices in X; participate in this step.

Y={CeA"|Li(C) < (Zli+1]+1)- p7'}.
Vertices in Y-clusters participate in a Special Update. Call Recursive-BFS(G*, W}, |, Y, Z[i + 1]). For each cluster C with

Lis1(C) « min{Z[i +1]- 71 + 1, x - f71/w},
Ui1(0) = min{U(C) - 71, max{x, 1} - f~'w}.
8. Active vertices that did not participate in the Special Update perform an Automatic Update. For each C € A*\Y,
Lisa(€) L) — f
Uis1(C) < Ui(C) - 7!

[Initialize Distance Estimates]

Up(C) « max {wﬂ_l,w2 . LO(C)} .
(Deactivate vertices at distance greater than D, w.h.p.)
[Iteratively Advance BFS Wavefront f~! Steps]

(Deactivate settled vertices.)
[Estimate Distances to (i + 1)th Wavefront W]

Figure 2

The O(~1) term accounts for the cost of computing G* (Lemma 2.5)
and the O(1) times a vertex is included in X; (Claim 1), each of
which involves f~! Local-Broadcasts on G. Every recursive call
to Recursive-BFS(G*, -, -, D) has D’ = O(D) and by Claim 2 each
vertex participates in O(1) such recursive calls. Moreover, accord-
ing to Lemma 3.2, the energy overhead for simulating one call to
Local-Broadcast on G* is O(1) calls to Local-Broadcast on G. This
justifies the first term of (3). The time and energy of our algorithm is
analyzed in Theorem 4.6. As a foreshadowing of the analysis, if Dy
is the distance threshold of the top-level call to Recursive-BFS, we

will set set f = 2~ VlogDologlogn 414 apply (3) to recursion depth

y/log Dy /loglog n.

The Z-Sequence. The least obvious part of the Recursive-BFS
algorithm is the Z-sequence, which guides how Special Updates are
performed. Recall that w = ©(log n) is a sufficiently large multiple
of logn; if we are computing BFS to distance D in G, then we
need never compute BFS beyond distance D* > wfD in G*. The
Z-sequence is defined as follows.

Y[i] = maéc{Zj such that 2/|i} (i=1)
Jjz
Le,Y =(1,2,1,4,1,2,1,8,1,2,1,4,1,2,1, 16,
1,2,1,4,1,2,1,8,1,2,1,4,1,2,1,32,...)
Z[0] = D*
Z[i] = min{D*, a - Y[i]}, wherea =4 (i=1)

D* = mi{)l{azj such that a2/ > wpD}
iz

279

In other words, Z is derived by multiplying Y by a = 4, truncating
large elements at D*, and beginning the sequence at 0, with Z[0] =
D*. (Here Z[0] corresponds to the distance threshold D* used in
Step 1 of Recursive-BFS to estimate distances to the Oth wavefront
Wo =8S.)

Figure 3 gives an example, from the perspective of a single cluster,
of how the distance estimate evolve over time.

Organization of Section 4. In Section 4.2 we prove a num-
ber of lemmas that relate to the correctness and efficiency of
Recursive-BFS, including proofs of Claims 1 and 2. In Section 4.3 we
analyze the overall time and energy-efficiency of the BFS algorithm.

4.2 Auxiliary Lemmas
Lemma 4.1 justifies how distance estimates are updated in Steps 1,
7, and 8 of Recursive-BFS in order to preserve Invariant 4.1, with
high probability.

LEmMA 4.1. Let W; be the ith wavefront; letY include all clusters
C such that distg(W;,C) € [if~L, (i + Z)f7]; and let G; be the
subgraph of G* induced by Y. If Cl(u) € Y and distg(S,u) > i1,
then w.h.p.,

distg(Wj, u) € [min {Z—/ +1, distg-(W;', Cl(w)) - L} ,
B i wp

max {l, diStGlf(Wi*’ Cl(u))} . %]

ProoF. If d = distg(W;,u) = Z’f~! + 1 then the lower bound is
already correct, so suppose that d < Z’f~!. Let P be any length-d

PODC 20, August 3-7, 2020, Virtual Event, Italy

Yi-Jun Chang, Varsha Dani, Thomas P. Hayes, and Seth Pettie

Figure 3: Part of the time evolution of the distance of a fixed cluster, C, from the frontier in the cluster graph G*. The x-axis is time spent
moving the wavefront across the underlying graph G. Every vertical tick mark is a time at which this is suspended, so that, recursively, BFS
can be done on the cluster graph G, starting from the current wavefront. The height of each such tick mark indicates the depth to which this
search is to be done. The y-axis is the distance of C to the wave front, in G*. The top curve shows the irregular, but monotonic, decrease of this
distance over time. The bottom curve, in blue, shows the high-probability lower bound on this distance, from the perspective of the cluster in
question. Note that every time the top curve intersects a tick mark, the cluster must participate in the BFS on the cluster graph, or this BFS
will fail. Every time the bottom curve intersects a tick mark, the cluster will wake up in order to participate in the BFS, because it thinks it
may be needed. Note that, by design, the lower curve often passes just above the tick marks without actually intersecting them. The reader
should bear in mind that these two curves chart the actual/likely distance of C to the wavefront in G; the algorithm maintains the related
interval [L;(C), U;(C)], which bounds distances from C to the wavefront in G.

path from u to W; in G. Lemma 2.2 implies that w.h.p., there is a path
P* in G} from W} to Cl(u) with length at most O(fd logn) < wjd,
and so diStG:f (W}, Cl(u)) < wpd, as required.

This upper bound follows from the cluster diameter upper bound
K = 8log(n)/p < w/(2p) — 1. Thus, if distG;(Wi*,Cl(u)) = d’ then
distg(Wy,u) < (d’ +1) - (K + 1) < max{d’ + 1} - wp~L. O

Lemma 4.1 shows that Step 1 of Recursive-BFS initializes
Lo(+), Up(*) to satisfy Invariant 4.1, wh.p. Here Y = A* is the set
of all active clusters; if dista(S,u) € [0, D] (the relevant range),
then Lemma 4.1 guarantees that dist 4(S, u) € [Lo(Cl(w)), Up(Cl(w))]
after Step 1. The estimates set in Step 8 of Recursive-BFS are triv-
ially correct; Lemma 4.1 also guarantees that the lower and upper
bounds fixed in Step 7 are correct.

We use several properties of the Z sequence, listed in Lemma 4.2.

LEMMA 4.2. Fix an index i.

(1) For any number b > a, define j > i to be the smallest index
such that Z[j] = b. Then

j—i<bla.

Suppose the number b additionally satisfies that b < Z[i]
andb € {a,2a,4a,8a,...D"}. Then we have Z[i] = b and
j=i=Z[jl/a.

(2) Define j > i to be the smallest index such that Z[j] > Z[i] or
Z[j] = D*. Then we have j — i = Z[i]/a; moreover, all indices
ke{i+1,...,j— 1} satisfy that Z[k] < Z[i]/2.

ProOF. Parts 1 and 2 follow from the fact that in the Y-sequence,
the values at least 2¢ appear periodically with period 2¢. Thus, the
values at least 2¢ in the Z-sequence also appear periodically with
period 2¢. O

We are now prepared to prove Claim 1.

Proor oF Craim 1. It follows from Invariant 4.1 that Xj, as de-
fined in Step 4 of Recursive-BFS, includes all active vertices within

280

distance B! of the ith wavefront W;. It remains to show no u is
included in X; for more than poly(log n) indices i.

Suppose that u € X; for i > 0. It follows that L;(Cl(x)) < f~! and
that in the previous stage, L;—1(Cl(u)) < 287L. Since Z[i] > « = 4,
it must have been that Cl(u) was included in Y and participated
in the Special Update (Step 7 of Recursive-BFS) before stage i. If
diStG;f(VVi*, Cl(u)) = x and after the Special Update, L;(Cl(x)) < 71,
it must be that x < w, and hence U;(Cl(x)) < w?f~!. Thus, u may
participate in at most w? more stages (joining X;, Xj+1, - - -, Xj44,2)
before its distance is settled and it is deactivated, in Step 6 of
Recursive-BFS. O

Before proving Claim 2 we begin with three auxiliary lemmas,
Lemmas 4.3, 4.4, and 4.5. We defer the proofs of these three lemmas
to the full version of the paper.

LEMMA 4.3. Recall a = 4. Suppose cluster C is included in G} and
G;f, but not in G;, for anyi’ € {i +1,...,j— 1}. Then we have

Li(C) <17 el L L
8a B B«
LEMMA 4.4. Suppose C appears in G and G;f but not in G;, for any
i" € {i+1,...,j—1}. Suppose that when L;(C) is set during a Special
Update (Step 7 of Recursive-BFS), we have L;(C) = (Z[i]/p) + 1. It
must be that Z[j] > Z[i] or Z[j] = D*.

In the Recursive-BFS algorithm, the upper bound estimates U;(C)
are all monotonically decreasing with i, due to the way Special and
Automatic Updates are performed in Steps 7 and 8. On the other
hand, the lower bound estimates L;(C) are only monotonically
decreasing during Automatic Updates and may oscillate many times
over the execution of the algorithm. (See Figure 3 for a depiction
of how this happens.) Since U.(-)-values offer a more stable way to
measure progress, we need to connect them with the L.(-)-values,
which directly influence the composition of X; and G}.

The Energy Complexity of BFS in Radio Networks

LeEmMA 4.5. If[L;(C),U;(C)] is set during a Special Update step,
then
Ui(C) < max{2w? - L;(C), 2w? - g1}

We are now in a position to prove Claim 2, that each vertex
participates in G} for at most O(1) indices i.

Proor oF Craim 2. Suppose that C participates in a Special Up-
date that sets [L;(C), U;(C)] with U;(C) > 2w? - =1 and that the
next interval to be set by a Special Update is [L;(C), U;j(C)]. Then

.o BLi(©) B-Ui©)
—i) > > . 4
=9 8a 16aw? @)
The first inequality of (4) follows from Lemma 4.3 and the second
inequality from Lemma 4.5. Since U,(C) is decremented by at least
B! in each stage, (4) implies that
16aw?) '

In other words, C participates in at most log;,g/w2)D =

Ui(0) < Ui(O) = (i —i)- B~ < Ui(0) (1 -

O(w? log D) = O(log® n) Special Updates until some stage i in which
Ui(C) < 2w? - B71, after which C participates in at most O(w?) Spe-
cial Updates all constituents of C settle their distance from the
source and are deactivated. O

4.3 Time and Energy Complexity of BFS

The remainder of this section constitutes a proof of Theorem 4.6.

THEOREM 4.6. Let G = (V,E) be a radio network, s € V be a
distinguished source vertex, and D = maxy, distg(s, u). A Breadth

First Search labeling can be computed in O(D) - 20(Vlog Dloglogn)
time and O(1) - 20(V10g D10glog n) oporey \yith high probability.

The main problem is to compute BFS up to some threshold dis-
tance Dg. Once we have a solution to this problem, we can obtain
bounds in terms of the (unknown) D parameter by testing every
Dy = 2K that is a power of 2, stopping at the first value that labels all
of V(G). We use a call to Local-Broadcast as a unit of measurement
of both time and energy, i.e., calling Local-Broadcast takes one unit
of time, and every participating vertex expends one unit of energy.
(By Lemma 2.4 actual time and energy are at most a O(log2 n) factor
larger.)

The algorithm we apply is a slightly modified Recursive-BFS,
where all cluster graphs in all recursive invocations are constructed
with f = 2~ VlegDologlogn e only apply Recursive-BFS to recur-
sion depth L = 4/log Dy/loglog n, at which point we revert to the
trivial BFS algorithm that settles all distances up to D’ using D’
time and energy, by calling Local-Broadcast D’ times.

Define En,(D’) to be the number of calls to Local-Broadcast that
a vertex participates in when computing BFS to distance D’, and
when the recursion depth is r € [0, L]. Thus, we have

O(1) - En.1(O(BD")) + O(B™Y) ifr < L

En-(D') = { D’ ifr=1L

By Lemma 2.5 the cost to create the cluster graph G* is O(f~1). By
Claim 1 each vertex appears in X; for O(1) stages i, and for each, par-
ticipates in ! calls to Local-Broadcast. These costs are covered by
the O(8~") term. All calls to Recursive-BFS on G* involve comput-
ing BFS to some distance at most D* = wgD’ = O(8D’). By Claim 2,

281

PODC 20, August 3-7, 2020, Virtual Event, Italy

every vertex participates in O(1) such recursive calls. Moreover, by
Lemma 3.2, every cluster C (vertex in G*) that participates in a call
to Local-Broadcast on G* can be simulated such that constituent
vertices of C participate in O(1) calls to Local-Broadcast on G. The
costs of recursive calls are represented by the 0(1) - Enr+1((5(ﬁD'))
term.

When the recursion depth r reaches L, the maximum value of
D’ is therefore at most

D, = Do - (O(B)" = (O = 20(Vles Do loglogm),

since pL = Do’l. Thus, the energy cost of the top-level recursive
call is at most
6 561y = 6(1) - 20VEDTogToET
Eng(Do) = (O(V)" - (DL + O(F™1) = O(1) - 200VIoe Lo oglogm),
We can set up a similar recursive expression for the time of this

algorithm.

) [BD'1-1
D) < o) +0B™) . > Timer(Z[i) ifr<L
- i=0

DI

Time,
ifr=1L

The r = L case is the time of the trivial algorithm, so we focus on
justifying the expression for r < L. The time to advance the BFS
wavefront over all [fD’] stages of Step 5 is O(D’). We treat Step 1 as
the Special Update for i = 0 with Z[0] = D*. In general, the Special
Update for stage i takes Time,.1(Z[i]) time with respect to G*, and
each unit of time (i.e., a call to Local-Broadcast) is simulated in G
in time linear in the maximum cluster diameter, namely O(5~"). By
Lemma 4.2, each value b € B = {a,2a,4a,...,D*} appears less
than (8D’ /b) times in Z[0], ..., Z[[BD’] — 1], hence we can rewrite
the sum as Y, g (8D’ /D) - Time,.1(b). Assuming inductively that
Timey.1(b) is b - (O(1))-""*D, which holds when r + 1 = L, we have

Time,(D’) < O(D’) + é(ﬁ_l) . Z(ﬁD’/b) -Timey+1(b)
beB
=0(D")+ O(1) - > (D'/b) - b (O(1)L~r+1)
beB

- D’ O

Hence Timeg(Dg) = Do - (O(1))E = O(Dy) - 20(Vlog Do loglogn)

5 HARDNESS OF DIAMETER
APPROXIMATION

In this section, we show that certain approximations of diameter
cannot be computed in o(n) energy, even allowing messages of
unlimited size. Our lower bounds also hold in the setting where the
network supports collision detection, i.e., in each time slot ¢, each
listener v is able to distinguish between the following two cases:
(i) at least two vertices in N(v) transmit at time ¢ (noise), or (ii) no
vertex in N(v) transmits at time ¢ (silence). All proofs in this section
are omitted due to the page constraint.

THEOREM 5.1. The energy complexity of computing a (2 — €)-
approximation of diameter is Q(n), even on the class of unit-disc
graphs.

Theorem 5.1 is proved by showing that it takes Q(n) energy to
distinguish between (i) an n-vertex complete graph K, (which has

PODC 20, August 3-7, 2020, Virtual Event, Italy

diameter 1), or (ii) an n-vertex complete graph minus one edge
K, — e (which has diameter 2).

THEOREM 5.2. The energy complexity of computing an (3/2 — €)-
approximation of diameter is Q(n/log? n), even on graphs of O(log n)-
arboricity or O(log n) treewidth.

The proof of Theorem 5.2 follows the framework of [1], which
shows that computing diameter takes Q(n/log? n) time in the

CONGEST model, or more generally Q(_Blggn)

message-passing model with B-bit message size constraint. Note
that a time lower bound in CONGEST does not, in general, imply
any lower bound in RN[co], which has no message size constraint.
The main challenge for proving Theorem 5.2 is that we allow mes-
sages of unbounded length.

time in the

5.1 Upper Bounds

The approximation ratios in Theorems 5.1 and 5.2 cannot be im-
proved. Observe that BFS already gives a 2-approximation of diam-
eter, as D’ = max, ey (g){distg(s,)} € [diam(G)/2, diam(G)], and
we know that a BFS can be computed in no® energy.

THEOREM 5.3. There is an algorithm that computes a 2-
approximation of diameter in n1*°M) time and n°) energy.

If we allow an energy budget of n3 00 then it is possible to
achieve a nearly 3/2-approximation by applying the algorithm
of [17, 35], which computes a D’ such that | 2diam(G)/3] < D’ <
diam(G). More precisely, if we write diam(G) = 3h + z, where h is a
non-negative integer, and z € {0, 1,2}, then D’ € [2h + z, diam(G)]
for the case z = 0, 1, and D’ € [2h + 1, diam(G)] for the case z = 2.
Note that this does not contradict the Q(n) energy lower bound
for distinguishing between diam(G) = 1 and diam(G) = 2 in Theo-
rem 5.1, nor does it contradict Theorem 5.2.

THEOREM 5.4. There is an algorithm that computes an approxima-
tion D’ such that | 2diam(G)/3] < D’ < diam(G) in n3/2*°() time
and n/2+°() energy,

REFERENCES

[1] A. Abboud, K. Censor-Hillel, and S. Khoury. 2016. Near-Linear Lower Bounds
for Distributed Distance Computations, Even in Sparse Networks. In Distributed
Computing (DISC), Cyril Gavoille and David Ilcinkas (Eds.). Springer Berlin
Heidelberg, 29-42.

N. Alon, A. Bar-Noy, N. Linial, and D. Peleg. 1991. A lower bound for radio
broadcast. J. Comput. System Sci. 43, 2 (1991), 290-298.

R. Bar-Yehuda, O. Goldreich, and A. Itai. 1991. Efficient emulation of single-hop
radio network with collision detection on multi-hop radio network with no
collision detection. Distributed Computing 5, 2 (1991), 67-71.

R. Bar-Yehuda, O. Goldreich, and A. Itai. 1992. On the time-complexity of broad-
cast in multi-hop radio networks: An exponential gap between determinism and
randomization. J. Comput. System Sci. 45, 1 (1992), 104-126.

M. Barnes, C. Conway, J. Mathews, and D. K. Arvind. 2010. ENS: An Energy Har-
vesting Wireless Sensor Network Platform. In Proceedings of the 5th International
Conference on Systems and Networks Communications (ICSNC). 83-87.

M. Bender, T. Kopelowitz, S. Pettie, and M. Young. 2018. Contention resolution
with constant throughput and log-logstar channel accesses. SIAM J. Comput. 47
(2018), 1735-1754. Issue 5.

P. Berenbrink, C. Cooper, and Z. Hu. 2009. Energy efficient randomised com-
munication in unknown AdHoc networks. Theoretical Computer Science 410, 27
(2009), 2549 - 2561.

Y.-J. Chang, V. Dani, T. P. Hayes, Q. He, W. Li, and S. Pettie. 2018. The Energy
Complexity of Broadcast. In Proceedings of the 2018 ACM Symposium on Principles

of Distributed Computing (PODC). 95-104.
.-J. Chang, T. Kopelowitz, S. Pettie, R. Wang, and W. Zhan. 2017. Exponential

separations in the energy complexity of leader election. In Proceedings of the 49th
Annual ACM SIGACT Symposium on Theory of Computing (STOC). 771-783.

282

[10

[11

(12]

(17

[18

=
)

[20

[21

[22

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

(32]

(33]

(34]

[35

Yi-Jun Chang, Varsha Dani, Thomas P. Hayes, and Seth Pettie

I. Chlamtac and S. Kutten. 1985. On broadcasting in radio networks-problem
analysis and protocol design. IEEE Transactions on Communications 33, 12 (1985),
1240-1246.

I. Chlamtac and S. Kutten. 1987. Tree-Based Broadcasting in Multihop Radio
Networks. IEEE Trans. Computers 36, 10 (1987), 1209-1223.

A. Czumaj and P. Davies. 2017. Exploiting Spontaneous Transmissions for
Broadcasting and Leader Election in Radio Networks. In Proceedings of the 2017
ACM Symposium on Principles of Distributed Computing (PODC). 3-12.

L. Gasieniec, E. Kantor, D. R. Kowalski, D. Peleg, and C. Su. 2007. Energy and
Time Efficient Broadcasting in Known Topology Radio Networks. In Proceedings
21st International Symposium on Distributed Computing (DISC). 253-267.

M. Ghaffari and B. Haeupler. 2016. Near-Optimal BFS-Tree Construction in Radio
Networks. IEEE Communications Letters 20, 6 (2016), 1172-1174.

S. Gilbert, V. King, S. Pettie, E. Porat, J. Saia, and M. Young. 2014. (Near) optimal
resource-competitive broadcast with jamming. In Proceedings of the 26th ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA). 257-266.

B. Haeupler and D. Wajc. 2016. A faster distributed radio broadcast primitive. In
Proceedings 35th ACM Symposium on Principles of Distributed Computing (PODC).
ACM, 361-370.

S. Holzer, D. Peleg, L. Roditty, and R. Wattenhofer. 2014. Brief announcement: Dis-
tributed 3/2-approximation of the diameter. In Proc. 28th International Symposium
on Distributed Computing (DISC 2014). Springer, 562-564.

T. Jurdzinski, M. Kutylowski, and J. Zatopianski. 2002. Efficient algorithms
for leader election in radio networks. In Proceedings of the 21st Annual ACM
Symposium on Principles of Distributed Computing (PODC). 51-57.

T. Jurdzinski, M. Kutylowski, and J. Zatopianski. 2002. Energy-Efficient Size
Approximation of Radio Networks with No Collision Detection. In Proceedings
of the 8th Annual International Conference on Computing and Combinatorics
(COCOON). 279-289.

T. Jurdzinski, M. Kutylowski, and J. Zatopianski. 2002. Weak Communication in
Radio Networks. In Proceedings of the 8th International European Conference on
Parallel Computing (Euro-Par). 965-972.

T. Jurdzinski, M. Kutylowski, and J. Zatopianski. 2003. Weak communication in
single-hop radio networks: adjusting algorithms to industrial standards. Concur-
rency and Computation: Practice and Experience 15, 11-12 (2003), 1117-1131.

T. Jurdzinski and G. Stachowiak. 2002. Probabilistic Algorithms for the Wakeup
Problem in Single-Hop Radio Networks. In Proceedings of the 13th International
Symposium on Algorithms and Computation (ISAAC). 535-549.

J. Kabarowski, M. Kutylowski, and W. Rutkowski. 2006. Adversary Immune Size
Approximation of Single-Hop Radio Networks. In Proceedings Third International
Conference on Theory and Applications of Models of Computation (TAMC). 148—
158.

M. Kardas, M. Klonowski, and D. Pajak. 2013. Energy-Efficient Leader Elec-
tion Protocols for Single-Hop Radio Networks. In Proceedings 42nd International
Conference on Parallel Processing (ICPP). 399-408.

V. King, S. Pettie, J. Saia, and M. Young. 2018. A Resource-competitive Jamming
Defense. Distributed Computing 31 (2018), 419-439. Issue 6.

M. Klonowski and D. Pajak. 2018. Brief Announcement: Broadcast in Radio
Networks, Time vs. Energy Tradeoffs. In Proceedings 37th ACM Symposium on
Principles of Distributed Computing (PODC). 115-117. https://doi.org/10.1145/
3212734.3212786

Marek Klonowski and Malgorzata Sulkowska. 2016. Energy-optimal algorithms
for computing aggregative functions in random networks. Discrete Mathematics
& Theoretical Computer Science 17, 3 (2016), 285-306.

E. Kushilevitz and Y. Mansour. 1998. An Q(D log(N /D)) Lower Bound for
Broadcast in Radio Networks. SIAM J. Comput. 27, 3 (1998), 702-712.

M. Kutylowski and W. Rutkowski. 2003. Adversary Immune Leader Election
in ad hoc Radio Networks. In Proceedings 11th Annual European Symposium on
Algorithms (ESA). 397-408. https://doi.org/10.1007/978-3-540-39658-1_37

G. L. Miller, R. Peng, A. Vladu, and S. C. Xu. 2015. Improved Parallel Algorithms
for Spanners and Hopsets. In Proceedings of the 27th ACM on Symposium on
Parallelism in Algorithms and Architectures (SPAA). 192-201.

G. L. Miller, R. Peng, and S. C. Xu. 2013. Parallel graph decompositions using
random shifts. In Proceedings of the 25th Annual ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA). 196-203.

K. Nakano and S. Olariu. 2000. Energy-Efficient Initialization Protocols for Single-
Hop Radio Networks with No Collision Detection. IEEE Trans. Parallel Distrib.
Syst. 11, 8 (2000), 851-863.

C. Newport. 2014. Radio Network Lower Bounds Made Easy. In Proceedings of
the 28th International Symposium on Distributed Computing (DISC). 258-272.

J. Polastre, R. Szewczyk, and D. Culler. 2005. Telos: enabling ultra-low power
wireless research. In Proceedings of the 4th International Symposium on Information
Processing in Sensor Networks (IPSN). 364-369.

L. Roditty and V. Vassilevska Williams. 2013. Fast approximation algorithms for
the diameter and radius of sparse graphs. In Proceedings 45th ACM Symposium
on Theory of Computing (STOC). 515-524.

https://doi.org/10.1145/3212734.3212786
https://doi.org/10.1145/3212734.3212786
https://doi.org/10.1007/978-3-540-39658-1_37

	Abstract
	1 Introduction
	1.1 The Model

	2 Cluster Partitioning
	2.1 The Cluster Graph as a Distance Proxy
	2.2 Distributed Implementation

	3 Communication Primitives for the Cluster Graph
	4 BFS with Sub-polynomial Energy
	4.1 Technical Overview
	4.2 Auxiliary Lemmas
	4.3 Time and Energy Complexity of BFS

	5 Hardness of Diameter Approximation
	5.1 Upper Bounds

	References

