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ABSTRACT
We consider a model of energy complexity in Radio Networks in

which transmitting or listening on the channel costs one unit of

energy and computation is free. This simplified model captures key

aspects of battery-powered sensors: that battery-life is most influ-

enced by transceiver usage, and that at low transmission powers,

the actual cost of transmitting and listening are very similar.

The energy complexity of tasks in single-hop (clique) networks

are well understood [6, 9, 20, 32]. Recent work of Chang et al. [8]

considered energy complexity in multi-hop networks and showed

that Broadcast admits an energy-efficient protocol, by which we

mean each of the n nodes in the network spends O(polylog(n))

energy. This work left open the strange possibility that all natu-
ral problems in multi-hop networks might admit such an energy-

efficient solution.

In this paper we prove that the landscape of energy complexity

is rich enough to support a multitude of problem complexities.

Whereas Broadcast can be solved by an energy-efficient protocol,

exact computation of Diameter cannot, requiring Ω(n) energy. Our

main result is that BreadthFirstSearch has sub-polynomial energy

complexity at most 2
O (

√
logn log logn)

= no(1)
; whether it admits an

efficient O(polylog(n))-energy protocol is an open problem.

Our main algorithm involves recursively solving a generalized

BFS problem on a “cluster graph” introduced by Miller, Peng, and

Xu [31]. In this application, we make crucial use of a close rela-

tionship between distances in this cluster graph, and distances

in the original network. This relationship is new and may be of

independent interest.

We also consider the problem of approximating the network

Diameter. From our main result, it is immediate that Diameter can
be 2-approximated using no(1)

energy per node. We observe that,

for all ϵ > 0, approximating Diameter to within a (2 − ϵ) factor

requires Ω(n) energy per node. However, this lower bound is only

due to graphs of very small diameter; for large-diameter graphs,
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we prove that the diameter can be nearly 3/2-approximated using

O(n1/2+o(1)
) energy per node.
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1 INTRODUCTION
Consider a network of n tiny sensors scattered throughout a Na-

tional Park. We’d like the sensors to organize themselves, so that in

the event of a forest fire, say, information about it can be efficiently
broadcast to the entire network.

In this extremely low power setting, sensors would need to spend

most of their time with their transceiver units shut off to conserve

power. In a steady state, we might expect that we have a good

labelling of the nodes, and each node with label i wakes up at times

of the form jP + i , where j runs through every positive integer, and

P , the polling period, is also a positive integer. Each node wakes

up just long enough to receive a message and forward it on any

neighbors with label i + 1. In this way, at the expense of adding P to

the latency, the nodes are able to reduce their power consumption

by a factor of P , compared to the always-on scenario.

Once P has been optimized, which should be a function of the

available power, the next issue is how to find a good labelling effi-

ciently. In this paper we focus mainly on the problem of computing

BFS labelings: a given source s has label zero, and all other devices

label themselves by the distance (in hops) to s . Such a labeling gives

a 2-approximation to the diameter, and via up-casts and down-casts,

allows for time- and energy-efficient dissemination of a message

from any origin. Thus, the problem of finding a BFS labelling is a

very natural question in this context.

1.1 The Model
We work within the classic Radio Network model [10], but in con-

trast to most prior work in this model, we treat energy (defined

below) as the primary measure of complexity and time to be impor-

tant, but secondary.
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There are |V | devices associated with the nodes of an unknown
undirected graph G = (V ,E). Time is partitioned into discrete steps.

All devices agree on time zero,
1
and agree on some upper bound

n ≥ |V |. In each timestep, each device performs some computa-

tion and chooses to either idle, listen to the channel, or transmit
a message. If a device v chooses to listen, and exactly one device

u ∈ N (v) transmits a messagemu , then v receivesmu . In all other

cases, v receives no feedback from the environment.
2
Devices can

locally generate unbiased random bits; there is no shared random-

ness. Let RN[b] denote this Radio Network model, where b is the

maximum number of bits per message. All of our algorithms work

in RN[O(logn)] and all our lower bounds apply even to RN[∞].

Cost Measures. An algorithm runs in time t if all devices halt
and return their output by timestep t . Typically the algorithm is

randomized, with some probability of failure, but t is a function
of n or other given parameters, not a random variable. The energy
cost of v ∈ V is the number of timesteps for which v is listening or

transmitting. (This is motivated by the fact that the sleep mode of
tiny devices is so efficient that it is reasonable to approximate its

energy-cost by zero, and that transceiver usage is often the most

expensive part of a computation. Moreover, at low transmission

powers, transmitting and listening are comparable; see, e.g., [34,

Fig. 2] and [5, Table 1].) The energy cost of the algorithm is the

maximum energy cost of any device.

Energy Complexity. Most prior work on energy complexity has

focused on single-hop (clique) networks, typically under the as-

sumption that |V |= n is unknown, and that some type of collision-

detection is available.
3
Because of the high degree of symme-

try, there are only so many interesting problems in single-hop

networks. Nakano and Olariu [32] proved that the Initialization
problem (assign devices distinct IDs in {1, . . . , |V |= n}) can be

solved with O(log logn) energy. Bender et al. [6] showed that with

collision-detection, all n devices holding messages can transmit

all of them using O(log(log
∗ n)) energy. Chang et al. [9] proved

that Θ(log(log
∗ n)) is optimal, and more generally, settled the

complexity of LeaderElection and ApproximateCounting (estimat-

ing “n”) in all the collision-detection models, with and without

randomization. It was proved that collision-detection gives two

exponential advantages in energy complexity. With randomiza-

tion, LeaderElection/ApproximateCounting takes Θ(log
∗ n) energy

(without CD) or Θ(log(log
∗ n)) energy (with CD), and deterministi-

cally, they take Θ(logN ) energy (without CD [20]) and Θ(log logN )

energy (with CD), where devices initially have IDs in [N ]. See

also [18–22]. Three-way tradeoffs between time, energy, and error

probability were studied by Chang et al. [9] and Kardas et al. [24].

1
Synchronizing devices in an energy-efficient manner is an interesting open problem.

In some situations it makes sense to assume the devices begin in a synchronized state,

e.g., if the sensors are simultaneously turned on and dropped from an airplane on the

aforementioned National Park.

2
Here N (v ) = {u | {u, v } ∈ E(G )} is the neighborhood of v . A more powerful

model allows for collision detection, i.e., differentiation between zero and two or more

transmitters in N (v ). Since collision detection only gives a polylog(n) advantage in

any complexity measure (Local-Broadcast in Section 2 allows each vertex to differ-

entiate between zero and two or more transmitters in polylog(n) rounds w.h.p.) and

we are insensitive to such factors, we assume the weakest model, without collision

detection.

3
Sender-side CD enables devices to detect if another device is transmitting; receiver-

side CD lets receivers detect if at least two devices are transmitting.

Very recently Chang et al. [8] extended the single-hop notion of

energy complexity to multi-hop networks (G is not a clique), and
proved nearly sharp upper and lower bounds on Broadcast, both
in RN[O(logn)] and the same model when listeners have collision

detection. Without CD the energy complexity of Broadcast is be-
tween Ω(log

2 n) and O(log
3 n); with CD it is between Ω(logn) and

O
(

logn log logn
log log logn

)
.

Other Energy Models. Other notions of energy complexity have

been studied in radio networks. For example, when distances be-

tween devices are very large, transmitting is significantly more

expensive than listening, and it makes sense to design algorithms

that minimize the worst-case number of transmissions per device.

Gasnieniec et al. [13], Klonowski and Pajak [26], and Berenbrink

et al. [7] studied broadcast and gossiping problems under this cost

model. Klonowski and Sulkowska [27] defined a distributed model

in which devices are scattered randomly at points in [n1/d
]
d
and

can choose their transmission power dynamically. Several works

have looked at energy complexity against an adversarial jammer,
where the energy cost is sometimes a function of the adversary’s

energy budget. See, e.g., [15, 23, 25, 29].

Time Complexity. Most prior work in the RN model has studied

the time complexity of basic primitives such as LeaderElection,
Broadcast, BFS, etc. We review a few results most relevant to

our work. Bar-Yehuda et al.’s [3] decay algorithm solves BFS in

O(D log
2 n) time and Broadcast in O(D logn + log

2 n) time. Here

D is the diameter of the network. Since Ω(D) is an obvious lower

bound, the question is which log-factors are necessary. Alon et

al. [2] proved that the additive log
2 n term is necessary in a strong

sense: even with full knowledge of the graph topology, Broadcast
needs Ω(log

2 n) time even when D = O(1). Kushilevitz and Man-

sour [28] proved that if devices are forbidden from transmitting

before hearing the message, then Ω(D log(n/D)) time in necessary.

Czumaj and Davies [12] (improving [16]) gave a Broadcast algo-
rithm running in O(D logD n + polylog(n)) time, which is optimal

when D > nϵ . These Broadcast algorithms do not solve BFS. Im-

proving the classic O(D log
2 n) decay algorithm for BFS, Ghaffari

and Haeupler [14] solve BFS in O(D log(n) log log(n) + polylog(n))

time.

New Results. It is useful to coarsely classify energy-efficiency

bounds as either feasible or infeasible. We consider polylog(n) en-

ergy to be feasible and polynomial energy nΩ(1)
to be infeasible.

4
It

is not immediately obvious that there are any natural, infeasible

problems, especially if we are considering the full power of RN[∞],

where message congestion is not an issue. In this paper we demon-

strate that the energy landscape is rich, and that even coarsely

classifying the energy complexity of simple problems is technically

challenging and demands the development of new algorithm design

techniques. Our results are as follows

• We develop a recursive BreadthFirstSearch algorithm

in RN[O(logn)] with “intermediate” energy-complexity

2
O (

√
logn log logn)

= no(1)
. The algorithm involves simulating

itself on a clustered version of the input graph. Due to the

4
These definitions seem to be robust to certain modeling assumptions, e.g., whether

collision detection is available.
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nature of the RN model, this simulation is not free, but in-

curs a polylogarithmic increase in energy, which restricts the

profitable depth of recursion to be at most

√
logn/log logn.

• We give examples of some “hard” problems in energy-

complexity, even when the model is RN[∞]. The problem

of deciding whether diam(G) is 1 or at least 2 takes Ω(n)

energy; in this case the hard graph G is dense. We adapt the

construction of [1] (designed for the CONGEST model) to

show that even on sparse graphs, with arboricity O(logn),

deciding whether diam(G) is 2 or at least 3 takes Ω̃(n) energy.

• To complement the hardness results, we show thatDiameter
can be nearly 3/2-approximated

5
in RN[O(logn)] with

O(n1/2+o(1)
) energy, by adapting [17, 35] and using our new

BreadthFirstSearch routine.

The existence of a subpolynomial-energy BreadthFirstSearch
algorithm is somewhat surprising for information-theoretic rea-

sons. Observe that the number of edges in E(G) that are collectively

discovered by all devices is at most the number of messages suc-

cessfully received, which itself is at most the aggregate energy cost.

Thus, if the per-device energy cost is no(1)
, we can never hope to

know about more than n1+o(1)
edges in E(G) — a negligible fraction

of the input on dense graphs! On the other hand, it is possible

to efficiently verify the non-existence of many non-edges. Given a

candidate BFS-labeling, for example, it is straightforward to verify
its correctness with polylog(n) energy.

Organization. In Section 2 we review the Miller-Peng-Xu [31]

clustering algorithm and prove that it preserves distances better

than previously known. In Section 3 we define some communica-

tions primitives and prove that they can be executed on the cluster

graph (as if it were anRN[O(logn)] network) at the cost of a polylog-

arithmic factor increase in energy usage. In Section 4 we design and

analyze a recursive BFS algorithm, which uses 2
O (

√
logn log logn)

energy. In Section 5 we consider the energy cost of approximately

computing the network’s Diameter.

2 CLUSTER PARTITIONING
Miller, Peng, and Xu [31] introduced a remarkably simple algo-

rithm for partitioning a given graph into vertex-disjoint clusters

with certain desirable properties. In this section we prove that the

MPX clustering approximately preserves relative distances from
the original graph significantly better than previously known.

Given a graph G = (V ,E), and a parameter β , each vertex v ∈ V
independently samples a random variable δv ∼ Exponential(β)

from the exponential distribution with mean 1/β . Assign each v
to the “cluster” centered at u ∈ V that minimizes distG (v,u) − δu .
Equivalently, we may think of a cluster forming at each vertex u at

time −δu , and spreading through the graph at a uniform rate of one

edge per time unit. Each vertex v is absorbed into the first cluster

to reach it, if this happens prior to time −δv , when it would start

growing its own cluster. Refer to Figure 1. Throughout the paper,

we only choose β such that 1/β is an integer.
Miller et al. [31] were primarily interested in this construction

because the algorithm parallelizes well, the clusters have diame-

ter O(log(n)/β) w.h.p., and a O(β)-fraction of the edges are “cut,”

5
I.e., it returns a value in the range

[ ⌊
2

3
diam(G )

⌋
, diam(G )

]
.

having their endpoints in distinct clusters. Haeupler and Wajc [16]

observed that this algorithm can be efficiently implemented in the

Radio Network model [10, 11], with only minor modifications.

2.1 The Cluster Graph as a Distance Proxy
Define Cl(u) to be the cluster containing u. The cluster graph,

cluster(G, β) = G∗ = (V ∗,E∗) is defined by

V ∗ = {Cl(u) | u ∈ V (G)}

and E∗ = {(Cl(u),Cl(v)) | (u,v) ∈ E(G),Cl(u) ̸= Cl(v)}.

To prove that distances in G∗ are a good proxy for distances

in G, we make use of the following lemma, which is a slight vari-

ant of lemmas by Miller, Peng, Vladu, and Xu [30, Lemma 2.2]

and Haeupler and Wajc [16, Corollary 3.8]. We include a proof for

completeness.

Define BallG (v, ℓ) = {u ∈ V | distG (u,v) ≤ ℓ} to be the ball of

radius ℓ around v .

Lemma 2.1. Let G∗ = cluster(G, β) be the cluster graph for G. For
every positive integer j and ℓ > 0, the probability that the number of
G∗-clusters intersecting BallG (v, ℓ) is more than j is at most

(1 − exp(−2ℓβ))
j .

Proof. Condition on the time t that the (j + 1)st signal would

reach vertex v , as well as on the identities v1, . . . ,vj of the vertices
whose signals reach v before time t . Due to the memoryless prop-

erty of the exponential distribution, each of these arrival times are

independently distributed as min{t , dist(vi ,v)} −X ≤ t −X , where

X ∼ Exponential(β).

Now, if max1≤i≤j Xi > 2ℓ, then BallG (v, ℓ) cannot intersect
any clusters except those centered at v1, . . . ,vj , because they do

not reach BallG (v, ℓ) until times ≥ t − ℓ, whereas the first signal
reached v before time t − 2ℓ, and has therefore already flooded all

of BallG (v, ℓ) before time t − ℓ. Thus,

P (BallG (v, ℓ) intersects more than j clusters)

≤ P (∀i ∈ [1, j],Xi ≤ 2ℓ)

= (1 − exp(−2ℓβ))
j . □

Anatural way to show thatG∗ approximately preserves distances

in G is to consider the fraction of edges in a shortest path that are

“cut” by the partition, which corresponds to applying Lemma 2.1

with ℓ = 1/2 and j = 1.
6
This was the approach taken in [8],

but it only guarantees that the fraction of edges cut concentrates

around its expectation (O(β)) for paths of length Ω̃(poly(β−1
)). In

Lemmas 2.2 and 2.3 we use Lemma 2.1 in a different way to bound

the ratio of distances in G to those in G∗, which works even for

relatively short distances. Lemma 2.2 applies to all distances (and

suffices for our BFS application in Section 4) whereas Lemma 2.3

applies to distances Ω(β−1
log

2 n).

6
One imagines a vertex ve in the middle of an edge e ; e is cut iff BallG (ve , 1/2)

intersects two clusters, which must cover distinct endpoints of e .
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Figure 1: Constructing a cluster graph. At left, the original graph; with the (rounded) start time, −δv , marked on each vertex.
The cluster centers have been darkened, and the dotted lines indicate edges that cross a cluster boundary. At right, the corre-
sponding cluster graph. Note that the distances in the cluster graph are broadly proportional to the original distances, but can
vary significantly.

Lemma 2.2. Let G∗ = cluster(G, β) be a clustering of G. There
exists a constant C such that for every pair u,v ∈ V (G),

P
(
distG∗ (Cl(u),Cl(v)) ∈

[ ⌊
distG (u,v) · β

8 log(n)

⌋
,

⌈distG (u,v) · β⌉ ·C log(n)

] )
≥ 1 −

1

n3
.

More generally, let P = (u, . . . ,v) be any length-d path connecting u
andv . With probability 1− 1

n3
, there exists a path P∗ inG∗ connecting

Cl(u) and Cl(v) with length at most d ·Cβ log(n), where each cluster
in P∗ intersects P .

Proof. First observe that the probability of any δv -value being
outside [0, 4 log(n)/β) is≪ n−4

and hence all clusters have radius

less than 4 log(n)/β with probability≪ n−3
. This gives the lower

bound on distG∗ (u,v).

For the upper bound, define ℓ to be the integer 1/β . Fix any

length-d path P from u to v (e.g., a shortest path, with d =

distG (u,v)), and cover its vertices with

⌈
d

2ℓ+1

⌉
paths of length 2ℓ.

Applying Lemma 2.1 to the center vertexu ′ of one of these subpaths,
we conclude that the number of clusters that intersect BallG (u ′, ℓ),
(which includes the entire subpath) is more than j with probability

(1 − exp(−2βℓ))j = (1 − exp(−2))
j , (1)

Choosing j to be the appropriate multiple of log(n), we can make

this probability≪ n−4
. Taking a union bound over the ≈ βd/2 < n

subpaths, the probability that any subpath intersects more than

C log(n) clusters is≪ n−3
. This concludes the proof. □

Lemma 2.2 suffices to achieve our main result, BFS labeling in

2
O (

√
logn log logn)

energy, but the exponent can be improved by

a constant factor by using Lemma 2.3 whenever applicable. We

include the proof of Lemma 2.3 since it may be of independent

interest.

Lemma 2.3. Let G∗ = cluster(G, β) be a clustering of G. There
exists a constant C such that for every pair u,v ∈ V (G)

P
(
distG∗ (Cl(u),Cl(v)) ∈

[
distG (u,v) · β

8 log(n)

, distG (u,v) ·Cβ

] )
≥ 1 −

1

n3
.

Proof. We condition on the event that all cluster radii are at

most 4 log(n)/β , which fails to hold with probability ≪ n−3
. As

before, the lower bound on distG∗ (u,v) follows from this event.

Furthermore, this implies that sufficiently distant segments on the

shortest u-v path are essentially independent.

As before, cover the vertices of the shortestu-v path with length-

2ℓ subpaths, ℓ = 1/β , and color the subpaths with 4 log(n) + 1 colors

such that any two subpaths of the same color are at distance at

least 8 log(n)/β . Each color-class contains Ω(logn) subpaths. By

Lemma 2.1 and (1), the number of clusters intersecting subpaths

of a particular color class is stochastically dominated by the sum

of Ω(logn) geometrically distributed random variables with con-

stant expectation
1

1−(1−exp(−2))
= exp(2). By a Chernoff bound, the

probability that this sum deviates from its expectation by more

than a constant factor is 1/poly(n). Hence, for sufficiently large C
(controlling the number of summands and the tolerable deviation)

the probability that any color-class hits too many distinct clusters

is≪ n−3
. □

Remark 2.1. Lemma 2.3 cannot be improved by more than con-
stant factors. It is easy to construct families of graphs for which both
the upper and lower bounds are tight, with high probability, depending
on which vertex pairs are chosen.

2.2 Distributed Implementation
The definition of cluster(G, β) immediately lends itself to a dis-

tributed implementation in radio networks, as was noted in [16].

For completeness we show how it can be reduced to calls to

Local-Broadcast.

Local-Broadcast: We are given two disjoint vertex sets S and

R, where each vertex u ∈ S holds a message mu . An
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Local-Broadcast algorithm guarantees that for every v ∈ R
with N (v) ∩ S ̸= ∅, with probability 1 − f , v receives some

messagemu from at least one vertex u ∈ N (v) ∩ S. We only

apply this routine with f = 1/poly(n).

Lemma 2.4. Local-Broadcast can be implemented in
O(log ∆ log f −1

) time and energy, where ∆ ≤ n − 1 is an up-
per bound on the maximum degree. Senders use O(log f −1

) energy;
receivers that hear a message use O(log ∆) energy in expectation;
receivers that hear no message use O(log ∆ log f −1

) energy.

Proof. This lemma follows from a small modification to the

Decay algorithm [4], which is known to be optimal in terms of time;
see Newport [33]. For the sake of completeness, we provide a proof

here. Each sender u ∈ S repeats the following O(log f −1
) times.

Randomly pick an Xu ∈ [1, log ∆] such that P (Xu = t) ≥ 2
−t

and

transmitmu at time step Xu . The energy of any sender is clearly

O(log f −1
) with probability 1. For a receiver v ∈ R, if the number

of senders in N (v) is in the range [2
t−1, 2t ], v will receive some

message with constant probability in the tth timestep of every

iteration. Receivers with no adjacent sender will never detect this,

and spend Θ(log ∆ log f −1
) energy. □

We show that cluster(G, β) can be computed, w.h.p., using

4 log(n)/β Local-Broadcasts in the communication network G =

(V ,E). Every vertex u will learn its cluster-identifier ID(Cl(u))) and

get a label L(v) such that L(v) = 0 iff v is a cluster center and

L(v) = i iff there is a u ∈ N (v) with L(u) = i − 1 such that

Cl(u) = Cl(v). If L(v) = i , we say that v is at layer i .
The graph cluster(G, β) is constructed as follows. Every vertex

v picks a value δv ∼ Exponential(β) and sets its start time to be

startv ← ⌈
4 log(n)

β − δv ⌉. With probability at least 1 − 1/n3
, all

start times are positive. For i = 1 to 4 log(n)/β , do the following.

At the beginning of the ith iteration, if v is not yet in any cluster

and startv = i , then v becomes a cluster center and sets L(v) = 0.

During the ith iteration, we execute Local-Broadcast with S being

the set of all clustered vertices andR the set of all as-yet unclustered

vertices. The message of u ∈ S contains ID(Cl(u)) and L(u). Any

vertex v ∈ R receiving a message from u ∈ S joins u’s cluster and
sets L(v) = L(u) + 1. Lemma 2.5 follows immediately from the

above construction.

Lemma 2.5. The cluster graph cluster(G, β) can be constructed
using 4 log(n)/β Local-Broadcasts with probability 1 − 1/n3. This
takes O(log

3
(n)/β) time and O(log

3
(n)/β) energy per vertex.

3 COMMUNICATION PRIMITIVES FOR THE
CLUSTER GRAPH

Our BFS algorithm forms a cluster graph G∗ and computes BFS

recursively on numerous subgraphs of G∗. In order for this type

of recursion to work, we need to argue that algorithms on the

(abstract) G∗ can be simulated, with some time and energy cost,

on the underlying G. We focus on algorithms that are composed

exclusively of calls to Local-Broadcast (as our BFS algorithm is),

but the method can be used to simulate arbitrary radio network

algorithms.

We use the primitives Down-cast and Up-cast to allow cluster

centers to disseminate information to their constituents and gather

information from some constituent.

Down-cast: There is a setU of vertices such that each u ∈ U
is a cluster center, and the goal is to let eachu ∈ U broadcast

a messagemu to all members of Cl(u).

Up-cast: There is a set U of vertices such that each u ∈ U
wants to deliver a messagemu to the center of Cl(u). Any

cluster centerv with at least one u ∈ U ∩Cl(v) must receive

any message from one such vertex.

Lemma 3.1. Up-cast and Down-cast can be implemented with

O
(

log
3 n

β log(1/β )

)
calls to Local-Broadcast on G, in which each vertex

participates in O(logn) Local-Broadcasts. I.e., the total time and en-

ergy per vertex are O
(

log
5 n

β log(1/β )

)
and O(log

3 n), respectively.

Proof. Consider the following two quantities:

C = O(log
(1/β )

n). By Lemma 2.1, C is an upper bound on

the number of clusters intersecting N (v) ∪ {v}, with high

probability. Intuitively, C represents the contention at v .
D = 4 log(n)/β is the maximum radius of any cluster, i.e.,

the maximum L-value is at most D.

If there were only one cluster, then doing an Up-cast
or Down-cast would be easily reducible to O(log(n)/β)

Local-Broadcasts. In order to minimize interference between

neighboring clusters, we modify, slightly, the clustering algorithm

so that all constituents of a cluster have shared randomness.

When a new cluster center v is formed, it generates a subset

SCl(v )
⊂ [ℓ], ℓ = Θ(C logn), by including each index independently

with probability 1/C. It disseminates SCl(v )
to all members of

Cl(v) along with ID(Cl(v)). It is straightforward to show that with

probability 1 − 1/poly(n), for every v ,

There exists j ∈ [ℓ] : j ∈ SCl(v )
and for all u ∈ N (v), j ̸∈ SCl(u)

(2)

Down-cast is implemented in D stages, each stage consisting of

ℓ steps. In step j of stage i , we execute Local-Broadcast with S
consisting of every v with a message to send such that L(v) = i − 1

and j ∈ SCl(v )
, and with R consisting of every u with L(u) = i

and j ∈ SCl(u)
. By (2), during stage i , every layer-i vertex in every

participating cluster receives the cluster center’s message with high

probability. An Up-cast is performed in an analagous fashion.

Each Up-cast/Down-cast performs ℓD = Θ(CD logn) =

O(
log

3 n
β log(1/β )

) executions of Local-Broadcast on G, for a total

of O(
log

5 n
β log(1/β )

) time. Each vertex v participates in O(|SCl(v )
|)

Local-Broadcasts, which is O(logn) w.h.p., for a total of O(log
3 n)

energy. □

Lemma 3.2. A call to Local-Broadcast on the cluster graph

G∗ = cluster(G, β) can be simulated with O
(

log
3 n

β log(1/β )

)
calls to

Local-Broadcast on G; each vertex in V (G) participates in O(logn)

Local-Broadcasts.

Proof. Let S and R be the sets of sending and receiving clus-

ters in G∗. All members of C know that C is in S or R. The

Local-Broadcast algorithm has three steps.
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(1) Begin by doing a Down-cast in each C ∈ S. Each member

of C learns the messagemC .

(2) Perform one Local-Broadcast onG , with sender set

⋃
C ∈S C

and receiver set

⋃
C ′∈R C

′
. At this point, w.h.p., every R-

cluster adjacent to an S-cluster has at least one constituent

that has received a message.

(3) Finally, do one Up-cast on every cluster C ∈ R to let the

cluster center of C learn one message from a constituent of

C , if any.

The algorithm clearly satisfies the requirement of Local-Broadcast
on cluster(G, β). The number of calls to Local-Broadcast on G

is O (CD logn) = O
(

log
3 n

β log(1/β )

)
and each vertex participates in

O(logn) of them. □

4 BFS WITH SUB-POLYNOMIAL ENERGY
4.1 Technical Overview
Suppose every vertex in the graph could cheaply compute its dis-

tance from the source up to an additive ±ρ error. Given this knowl-

edge, we could trivially solve exact BFS in Õ(D) time and Õ(ρ)

energy per vertex, simply by letting vertices sleep through steps

that they need not participate in. In particular, we would advance

the BFS wavefront one layer at a time using calls to Local-Broadcast,
except that each vertexu would sleep through the first

�distG (s,u)−ρ

calls to Local-Broadcast, where �distG is the approximate distance.

It would be guaranteed to fix distG (s,u) (and halt) in the next 2ρ
calls to Local-Broadcast.

Lemmas 2.2 and 2.3 suggest a method of obtaining approximate

distances. If we computed the cluster graph G∗ = cluster(G, β) and

then computed exact distances on G∗, Lemmas 2.2 and 2.3 allow us

to approximate all distances from the source, up to an additive error

of Õ(β−1
) (for small distances) and multiplicative error ofw2

(for

larger distances), wherew = Θ(logn) is a sufficiently large multiple

of logn. Note that, from the perspective of energy efficiency, the

main advantage to computing distances in G∗ rather than G is that

G∗ has a smaller diameterwβ · diam(G).

Our algorithm computes distances up to D by advancing the BFS
wavefront in ⌈βD⌉ stages, extending the radius β−1

per stage. The

ith wavefrontWi is defined to be the vertex set

Wi = {u ∈ V (G) | distG (S,u) = iβ−1},

where S is the set of sources. (Recall that β−1
is an integer.) To

implement the ith stage correctly it suffices to activate a vertex set

Xi that includes all the affected vertices, in particular:

Xi ⊃ {u ∈ V (G) | distG (S,u) ∈ [iβ−1, (i + 1)β−1
]} (w.h.p.)

In order for each vertex u to decide whether it should join Xi or
sleep through the ith stage,u maintains lower and upper bounds on

its distance to the ith wavefront, or more accurately, the distance

from its cluster Cl(u) toWi in G.

Invariant 4.1. Before the ith stage begins, each vertex u knows
Li (Cl(u)) andUi (Cl(u)) such that

distG (Wi ,Cl(u)) = distG (S,Cl(u)) − iβ−1 ∈ [Li (Cl(u),Ui (Cl(u))].

Clearly, if some clusterC satisfies Invariant 4.1 at stage i −1 with

the interval [Li−1(C),Ui−1(C)], it also satisfies Invariant 4.1 at stage

i with Li (C) = Li−1(C)−β−1
andUi (C) = Ui−1(C)−β−1

since the (i−
1)th stage advances the wavefront by exactly β−1

. In the algorithm

these are calledAutomatic Updates; they can be done locally, without
expending any energy. In order to keep the interval [Li (C),Ui (C)]

relatively narrow (and hence useful for keeping vertices inC asleep),

we occasionally refresh it with a Special Update. LetW ∗i ⊆ V (G∗) be
the clusters inG∗ that intersect the wavefrontWi . We call BFS on a

subgraph G∗i of G
∗
from the source-setW ∗i , up to a radius of Z [i].

The only clusters that participate in this recursive call are those that

are likely to be relevant, i.e., those C for which Li (C) ≤ Z [i] · β−1
.

(The Z [i] sequence will be defined shortly.) After this recursive

call completes we update [Li (C),Ui (C)] for all participating C by

applying Lemmas 2.2 and 2.3 to the (exact) distance distG∗i (W ∗i ,C)

obtained in the cluster graph.

Specification. Our Recursive-BFS procedure (see Figure 2) takes

four parameters: G, the graph, S ⊂ V (G), the set of sources, A ⊆
V (G), the set of active vertices (which is a superset of S), and D, the
depth of the search. When we make a call to Recursive-BFS, every
vertex can locally calculateD andwhether it is in S orA.7G∗ denotes
the cluster graph returned by cluster(G, β), where β is a parameter

fixed throughout the computation. We computeG∗ once, just before
the first recursive call to Recursive-BFS(G, ·, ·, ·); subsequent calls
to Recursive-BFS on G with different (S,A,D) parameters can use

the same G∗. It is important to remember that G can be either the

actual radio network (RN) or a virtual RN on which we can simulate

RN algorithms, with a certain overhead in terms of time and energy.

At the termination of Recursive-BFS(G, S,A,D), every vertex u ∈ A
returns distA(S,u) if it is at most D, and ∞ otherwise. Vertices in

V (G)\A expend no energy.

Correctness. If one believes that the algorithm (Figure 2) faithfully

implements the high level description given so far, its correctness is

immediate. Every time we set [Li (C),Ui (C)] the interval is correct

with probability 1 − 1/poly(n), either because [Li−1(C),Ui−1(C)] is

correct (an Automatic Update), or because they are set according

to Lemmas 2.2 and 2.3, which hold with probability 1 − 1/poly(n)

(Special Update). If Li (C) is correct for all C , then Xi will include
all vertices necessary to compute the (i + 1)th wavefront, and the

ith stage will succeed, up to the 1/poly(n) error probability inher-

ent in calls to Local-Broadcast. The main question is whether the

procedure is efficient.

Efficiency. We will argue that for a very specific Z [·] sequence,

which guides the Special Update steps, the following claims hold:

Claim 1. Each vertex is included in the set Xi for Õ(1) values of i .

Claim 2. For each vertex u, Cl(u) is included inG∗i for Õ(1) values
of i .

Our algorithms (cluster and Recursive-BFS) are based solely on

calls to Local-Broadcast. Define En(D) to be the number of calls to

Local-Broadcast that one vertex participates in when computing

BFS to distance D. If Claims 1 and 2 hold, then

En(D) ≤ Õ(1) · En(Õ(βD)) + Õ(β−1
) (3)

7
The purpose of theA parameter is to refrain from computing useless information. E.g.,

when we compute the distance from the clustersW ∗
i intersecting the i th wavefront,

we are only interested in distances to clusters intersecting as-yet unvisited vertices

(those intersecting A), not settled vertices “behind” the wavefront.
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Recursive-BFS(G, S,A,D)

[Initialize Distance Estimates]
1. Call Recursive-BFS(G∗, S∗,A∗,D∗) where D∗ = wβD. For each cluster C in A∗,

L0(C)← distA∗ (S
∗,C) ·

1

βw
, U0(C)← max

{
wβ−1,w2 · L0(C)

}
.

2. A = A\{u | L0(Cl(u)) = ∞}. (Deactivate vertices at distance greater than D , w.h.p.)
3. For i from 0 to ⌈βD⌉ − 1

[Iteratively Advance BFS Wavefront β−1 Steps]
4. Define Xi = {u ∈ A | Li (Cl(u)) ≤ β−1}.

5. Advance BFS wavefront fromWi toWi+1 using β−1
calls to Local-Broadcast. Only vertices in Xi participate in this step.

6. A← A\{u | distG (S,u) < (i + 1)β−1}. (Deactivate settled vertices.)
[Estimate Distances to (i + 1)th WavefrontWi+1]

7. Define G∗i+1
to be the subgraph of G∗ induced by

Υ = {C ∈ A∗ | Li (C) ≤ (Z [i + 1] + 1) · β−1}.

Vertices in Υ-clusters participate in a Special Update. Call Recursive-BFS(G∗,W ∗i+1
,Υ,Z [i + 1]). For each cluster C with

distG∗i+1

(W ∗i+1
,C) = x , set

Li+1(C)← min{Z [i + 1] · β−1
+ 1, x · β−1/w},

Ui+1(C)← min{Ui (C) − β−1, max{x , 1} · β−1w}.

8. Active vertices that did not participate in the Special Update perform an Automatic Update. For each C ∈ A∗\Υ,

Li+1(C)← Li (C) − β−1

Ui+1(C)← Ui (C) − β−1

Figure 2

The Õ(β−1
) term accounts for the cost of computingG∗ (Lemma 2.5)

and the Õ(1) times a vertex is included in Xi (Claim 1), each of

which involves β−1 Local-Broadcasts on G. Every recursive call

to Recursive-BFS(G∗, ·, ·,D ′) has D ′ = Õ(βD) and by Claim 2 each

vertex participates in Õ(1) such recursive calls. Moreover, accord-

ing to Lemma 3.2, the energy overhead for simulating one call to

Local-Broadcast on G∗ is Õ(1) calls to Local-Broadcast on G. This
justifies the first term of (3). The time and energy of our algorithm is

analyzed in Theorem 4.6. As a foreshadowing of the analysis, if D0

is the distance threshold of the top-level call to Recursive-BFS, we

will set set β = 2
−
√

logD0 log logn
and apply (3) to recursion depth√

logD0/log logn.

The Z -Sequence. The least obvious part of the Recursive-BFS
algorithm is the Z -sequence, which guides how Special Updates are

performed. Recall thatw = Θ(logn) is a sufficiently large multiple

of logn; if we are computing BFS to distance D in G, then we

need never compute BFS beyond distance D∗ ≥ wβD in G∗. The
Z -sequence is defined as follows.

Y [i] = max

j≥0

{2j such that 2
j |i} (i ≥ 1)

I.e., Y = (1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 16,

1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 32, . . .)

Z [0] = D∗

Z [i] = min{D∗, α · Y [i]}, where α = 4 (i ≥ 1)

D∗ = min

j≥0

{α2
j
such that α2

j ≥ wβD}

In other words, Z is derived by multiplying Y by α = 4, truncating

large elements at D∗, and beginning the sequence at 0, with Z [0] =

D∗. (Here Z [0] corresponds to the distance threshold D∗ used in

Step 1 of Recursive-BFS to estimate distances to the 0th wavefront

W0 = S .)
Figure 3 gives an example, from the perspective of a single cluster,

of how the distance estimate evolve over time.

Organization of Section 4. In Section 4.2 we prove a num-

ber of lemmas that relate to the correctness and efficiency of

Recursive-BFS, including proofs of Claims 1 and 2. In Section 4.3 we

analyze the overall time and energy-efficiency of the BFS algorithm.

4.2 Auxiliary Lemmas
Lemma 4.1 justifies how distance estimates are updated in Steps 1,

7, and 8 of Recursive-BFS in order to preserve Invariant 4.1, with

high probability.

Lemma 4.1. LetWi be the ith wavefront; let Υ include all clusters
C such that distG (Wi ,C) ∈ [iβ−1, (i + Z ′)β−1

]; and let G∗i be the
subgraph of G∗ induced by Υ. If Cl(u) ∈ Υ and distG (S,u) ≥ iβ−1,
then w.h.p.,

distG (Wi ,u) ∈

[
min

{
Z ′

β
+ 1, distG∗i (W ∗i ,Cl(u)) ·

1

wβ

}
,

max

{
1, distG∗i (W ∗i ,Cl(u))

}
·
w

β

]
Proof. If d = distG (Wi ,u) ≥ Z ′β−1

+ 1 then the lower bound is

already correct, so suppose that d ≤ Z ′β−1
. Let P be any length-d
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Figure 3: Part of the time evolution of the distance of a fixed cluster, C , from the frontier in the cluster graph G∗. The x -axis is time spent
moving the wavefront across the underlying graph G . Every vertical tick mark is a time at which this is suspended, so that, recursively, BFS
can be done on the cluster graphG∗, starting from the current wavefront. The height of each such tick mark indicates the depth to which this
search is to be done. The y-axis is the distance ofC to the wave front, in G∗. The top curve shows the irregular, but monotonic, decrease of this
distance over time. The bottom curve, in blue, shows the high-probability lower bound on this distance, from the perspective of the cluster in
question. Note that every time the top curve intersects a tick mark, the cluster must participate in the BFS on the cluster graph, or this BFS
will fail. Every time the bottom curve intersects a tick mark, the cluster will wake up in order to participate in the BFS, because it thinks it
may be needed. Note that, by design, the lower curve often passes just above the tick marks without actually intersecting them. The reader
should bear in mind that these two curves chart the actual/likely distance of C to the wavefront in G ; the algorithm maintains the related
interval [Li (C ), Ui (C )], which bounds distances from C to the wavefront in G .

path fromu toWi inG . Lemma 2.2 implies that w.h.p., there is a path

P∗ in G∗i fromW ∗i to Cl(u) with length at most O(βd logn) < wβd ,
and so distG∗i (W ∗i ,Cl(u)) ≤ wβd , as required.

This upper bound follows from the cluster diameter upper bound

K = 8 log(n)/β ≤ w/(2β) − 1. Thus, if distG∗i (W ∗i ,Cl(u)) = d ′ then

distG (Wi ,u) ≤ (d ′ + 1) · (K + 1) ≤ max{d ′ + 1} ·wβ−1
. □

Lemma 4.1 shows that Step 1 of Recursive-BFS initializes

L0(·),U0(·) to satisfy Invariant 4.1, w.h.p. Here Υ = A∗ is the set

of all active clusters; if distA(S,u) ∈ [0,D] (the relevant range),

then Lemma 4.1 guarantees that distA(S,u) ∈ [L0(Cl(u)),U0(Cl(u))]

after Step 1. The estimates set in Step 8 of Recursive-BFS are triv-
ially correct; Lemma 4.1 also guarantees that the lower and upper

bounds fixed in Step 7 are correct.

We use several properties of the Z sequence, listed in Lemma 4.2.

Lemma 4.2. Fix an index i .
(1) For any number b ≥ α , define j > i to be the smallest index

such that Z [j] ≥ b. Then

j − i ≤ b/α .

Suppose the number b additionally satisfies that b ≤ Z [i]
and b ∈ {α , 2α , 4α , 8α , . . .D∗}. Then we have Z [i] = b and
j − i = Z [j]/α .

(2) Define j > i to be the smallest index such that Z [j] > Z [i] or
Z [j] = D∗. Then we have j − i = Z [i]/α ; moreover, all indices
k ∈ {i + 1, . . . , j − 1} satisfy that Z [k] ≤ Z [i]/2.

Proof. Parts 1 and 2 follow from the fact that in the Y -sequence,

the values at least 2
ℓ
appear periodically with period 2

ℓ
. Thus, the

values at least α2
ℓ
in the Z -sequence also appear periodically with

period 2
ℓ
. □

We are now prepared to prove Claim 1.

Proof of Claim 1. It follows from Invariant 4.1 that Xi , as de-
fined in Step 4 of Recursive-BFS, includes all active vertices within

distance β−1
of the ith wavefrontWi . It remains to show no u is

included in Xi for more than poly(logn) indices i .
Suppose thatu ∈ Xi for i > 0. It follows that Li (Cl(u)) ≤ β−1

and

that in the previous stage, Li−1(Cl(u)) ≤ 2β−1
. Since Z [i] ≥ α = 4,

it must have been that Cl(u) was included in Υ and participated

in the Special Update (Step 7 of Recursive-BFS) before stage i . If
distG∗i (W ∗i ,Cl(u)) = x and after the Special Update, Li (Cl(u)) ≤ β−1

,

it must be that x ≤ w , and hence Ui (Cl(u)) ≤ w2β−1
. Thus, u may

participate in at mostw2
more stages (joining Xi ,Xi+1, . . . ,Xi+w2 )

before its distance is settled and it is deactivated, in Step 6 of

Recursive-BFS. □

Before proving Claim 2 we begin with three auxiliary lemmas,

Lemmas 4.3, 4.4, and 4.5. We defer the proofs of these three lemmas

to the full version of the paper.

Lemma 4.3. Recall α = 4. Suppose cluster C is included in G∗i and
G∗j , but not in G

∗
i′ for any i

′ ∈ {i + 1, . . . , j − 1}. Then we have

Li (C)

8α
≤

j − i

β
≤ max

{
1

β
,
Li (C)

α

}
.

Lemma 4.4. SupposeC appears inG∗i andG
∗
j but not inG

∗
i′ for any

i ′ ∈ {i + 1, . . . , j − 1}. Suppose that when Li (C) is set during a Special
Update (Step 7 of Recursive-BFS), we have Li (C) = (Z [i]/β) + 1. It
must be that Z [j] > Z [i] or Z [j] = D∗.

In the Recursive-BFS algorithm, the upper bound estimatesUi (C)

are all monotonically decreasing with i , due to the way Special and

Automatic Updates are performed in Steps 7 and 8. On the other

hand, the lower bound estimates Li (C) are only monotonically

decreasing during Automatic Updates and may oscillate many times

over the execution of the algorithm. (See Figure 3 for a depiction

of how this happens.) Since U ·(·)-values offer a more stable way to

measure progress, we need to connect them with the L ·(·)-values,
which directly influence the composition of Xi and G

∗
i .
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Lemma 4.5. If [Li (C),Ui (C)] is set during a Special Update step,
then

Ui (C) ≤ max{2w2 · Li (C), 2w2 · β−1}

We are now in a position to prove Claim 2, that each vertex

participates in G∗i for at most Õ(1) indices i .

Proof of Claim 2. Suppose that C participates in a Special Up-

date that sets [Li (C),Ui (C)] with Ui (C) ≥ 2w2 · β−1
and that the

next interval to be set by a Special Update is [Lj (C),Uj (C)]. Then

(j − i) ≥
β · Li (C)

8α
≥

β ·Ui (C)

16αw2
. (4)

The first inequality of (4) follows from Lemma 4.3 and the second

inequality from Lemma 4.5. Since U∗(C) is decremented by at least

β−1
in each stage, (4) implies that

Uj (C) ≤ Ui (C) − (j − i) · β−1 ≤ Ui (C)

(
1 −

1

16αw2

)
.

In other words, C participates in at most log
1+Θ(1/w2

)
D =

Θ(w2
logD) = O(log

3 n) Special Updates until some stage i in which
Ui (C) < 2w2 · β−1

, after whichC participates in at mostO(w2
) Spe-

cial Updates all constituents of C settle their distance from the

source and are deactivated. □

4.3 Time and Energy Complexity of BFS
The remainder of this section constitutes a proof of Theorem 4.6.

Theorem 4.6. Let G = (V ,E) be a radio network, s ∈ V be a
distinguished source vertex, and D = maxu distG (s,u). A Breadth

First Search labeling can be computed in Õ(D) · 2O (

√
logD log logn)

time and Õ(1) · 2O (

√
logD log logn) energy, with high probability.

The main problem is to compute BFS up to some threshold dis-

tance D0. Once we have a solution to this problem, we can obtain

bounds in terms of the (unknown) D parameter by testing every

D0 = 2
k
that is a power of 2, stopping at the first value that labels all

ofV (G). We use a call to Local-Broadcast as a unit of measurement

of both time and energy, i.e., calling Local-Broadcast takes one unit
of time, and every participating vertex expends one unit of energy.

(By Lemma 2.4 actual time and energy are at most aO(log
2 n) factor

larger.)

The algorithm we apply is a slightly modified Recursive-BFS,
where all cluster graphs in all recursive invocations are constructed

with β = 2
−
√

logD0 log logn
. We only apply Recursive-BFS to recur-

sion depth L =

√
logD0/log logn, at which point we revert to the

trivial BFS algorithm that settles all distances up to D ′ using D ′

time and energy, by calling Local-Broadcast D ′ times.

Define Enr (D ′) to be the number of calls to Local-Broadcast that
a vertex participates in when computing BFS to distance D ′, and
when the recursion depth is r ∈ [0,L]. Thus, we have

Enr (D ′) =

{
Õ(1) · Enr+1(Õ(βD ′)) + Õ(β−1

) if r < L
D ′ if r = L

By Lemma 2.5 the cost to create the cluster graph G∗ is Õ(β−1
). By

Claim 1 each vertex appears inXi for Õ(1) stages i , and for each, par-
ticipates in β−1

calls to Local-Broadcast. These costs are covered by
the Õ(β−1

) term. All calls to Recursive-BFS on G∗ involve comput-

ing BFS to some distance at most D∗ = wβD ′ = Õ(βD ′). By Claim 2,

every vertex participates in Õ(1) such recursive calls. Moreover, by

Lemma 3.2, every cluster C (vertex in G∗) that participates in a call

to Local-Broadcast on G∗ can be simulated such that constituent

vertices of C participate in Õ(1) calls to Local-Broadcast on G . The
costs of recursive calls are represented by the Õ(1) · Enr+1(Õ(βD ′))
term.

When the recursion depth r reaches L, the maximum value of

D ′ is therefore at most

DL = D0 · (Õ(β))
L

= (Õ(1))
L

= 2
O (

√
logD0 log logn),

since βL = D−1

0
. Thus, the energy cost of the top-level recursive

call is at most

En0(D0) = (Õ(1))
L · (DL + Õ(β−1

)) = Õ(1) · 2O (

√
logD0 log logn).

We can set up a similar recursive expression for the time of this

algorithm.

Timer (D ′) ≤


O(D ′) + Õ(β−1

) ·

⌈βD′⌉−1∑
i=0

Timer+1(Z [i]) if r < L

D ′ if r = L

The r = L case is the time of the trivial algorithm, so we focus on

justifying the expression for r < L. The time to advance the BFS

wavefront over all ⌈βD ′⌉ stages of Step 5 isO(D ′). We treat Step 1 as

the Special Update for i = 0 with Z [0] = D∗. In general, the Special

Update for stage i takes Timer+1(Z [i]) time with respect to G∗, and

each unit of time (i.e., a call to Local-Broadcast) is simulated in G
in time linear in the maximum cluster diameter, namely Õ(β−1

). By

Lemma 4.2, each value b ∈ B = {α , 2α , 4α , . . . ,D∗} appears less
than (βD ′/b) times in Z [0], . . . ,Z [⌈βD ′⌉ −1], hence we can rewrite

the sum as

∑
b ∈B (βD ′/b) · Timer+1(b). Assuming inductively that

Timer+1(b) is b · (Õ(1))
L−(r+1)

, which holds when r + 1 = L, we have

Timer (D ′) ≤ O(D ′) + Õ(β−1
) ·

∑
b ∈B

(βD ′/b) · Timer+1(b)

= O(D ′) + Õ(1) ·
∑
b ∈B

(D ′/b) · b · (Õ(1))
L−(r+1)

= D ′ · (Õ(1))
L−r

Hence Time0(D0) = D0 · (Õ(1))
L

= Õ(D0) · 2O (

√
logD0 log logn)

.

5 HARDNESS OF DIAMETER
APPROXIMATION

In this section, we show that certain approximations of diameter

cannot be computed in o(n) energy, even allowing messages of

unlimited size. Our lower bounds also hold in the setting where the

network supports collision detection, i.e., in each time slot t , each
listener v is able to distinguish between the following two cases:

(i) at least two vertices in N (v) transmit at time t (noise), or (ii) no
vertex in N (v) transmits at time t (silence). All proofs in this section

are omitted due to the page constraint.

Theorem 5.1. The energy complexity of computing a (2 − ϵ)-
approximation of diameter is Ω(n), even on the class of unit-disc
graphs.

Theorem 5.1 is proved by showing that it takes Ω(n) energy to

distinguish between (i) an n-vertex complete graph Kn (which has
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diameter 1), or (ii) an n-vertex complete graph minus one edge

Kn − e (which has diameter 2).

Theorem 5.2. The energy complexity of computing an (3/2 − ϵ)-
approximation of diameter is Ω(n/log

2 n), even on graphs ofO(logn)-
arboricity or O(logn) treewidth.

The proof of Theorem 5.2 follows the framework of [1], which

shows that computing diameter takes Ω(n/log
2 n) time in the

CONGEST model, or more generally Ω

(
n

B logn

)
time in the

message-passing model with B-bit message size constraint. Note

that a time lower bound in CONGEST does not, in general, imply

any lower bound in RN[∞], which has no message size constraint.
The main challenge for proving Theorem 5.2 is that we allow mes-

sages of unbounded length.

5.1 Upper Bounds
The approximation ratios in Theorems 5.1 and 5.2 cannot be im-

proved. Observe that BFS already gives a 2-approximation of diam-

eter, as D ′ = maxu ∈V (G )
{distG (s,u)} ∈ [diam(G)/2, diam(G)], and

we know that a BFS can be computed in no(1)
energy.

Theorem 5.3. There is an algorithm that computes a 2-
approximation of diameter in n1+o(1) time and no(1) energy.

If we allow an energy budget of n
1

2
+o(1)

then it is possible to

achieve a nearly 3/2-approximation by applying the algorithm

of [17, 35], which computes a D ′ such that ⌊2diam(G)/3⌋ ≤ D ′ ≤
diam(G). More precisely, if we write diam(G) = 3h + z, where h is a

non-negative integer, and z ∈ {0, 1, 2}, then D ′ ∈ [2h + z, diam(G)]

for the case z = 0, 1, and D ′ ∈ [2h + 1, diam(G)] for the case z = 2.

Note that this does not contradict the Ω(n) energy lower bound

for distinguishing between diam(G) = 1 and diam(G) = 2 in Theo-

rem 5.1, nor does it contradict Theorem 5.2.

Theorem 5.4. There is an algorithm that computes an approxima-
tion D ′ such that ⌊2diam(G)/3⌋ ≤ D ′ ≤ diam(G) in n3/2+o(1) time
and n1/2+o(1) energy.
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