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Abstract

This paper evaluates the ability of two different data-driven models to detect and localize simulated structural damage in an
in-service bridge for long-term structural health monitoring (SHM). Strain gauge data collected over 4 years is used to char-
acterize the undamaged state of the bridge. The Powder Mill Bridge in Barre, Massachusetts, U.S., which has been instrumen-
ted with strain gauges since its opening in 2009, is used as a case study, and the strain gauges used in this study are located at
26 different stations throughout the bridge superstructure. A linear regression (LR) model and an artificial neural network
(ANN) model are evaluated based on the following criteria: (a) the ability to accurately predict the strain at each location in
the undamaged state of the bridge; (b) the ability to detect simulated structural damage to the bridge superstructure; and (c)
the ability to localize simulated structural damage. Both the LR and the ANN models were able to predict the strain at the
26 stations with an average error of less than 5%, indicating that both methodologies were effective in characterizing the
undamaged state of the bridge. A calibrated finite element model was then used to simulate damage to the Powder Mill
Bridge for three damage scenarios: fascia girder corrosion, girder fracture, and deck delamination. The LR model proved to
be just as effective as the ANN model at detecting and localizing damage. A recommended protocol is thus presented for
integrating data-driven models into bridge asset management systems.

Structural health monitoring (SHM) has become an
increasingly important field in asset management. SHM
allows for remote monitoring of infrastructure, which
could include instrumentation to measure and store data
in relation to temperature, pH levels, humidity, strains,
accelerations, or deflections. It is essential, however, for
bridge owners to translate SHM data into useable infor-
mation for making decisions about the service life and
maintenance of the asset. In this paper, the Powder Mill
Bridge (PMB) in Barre, Massachusetts, U.S., is used as a
case study for developing a protocol for using strain
gauge data for long-term monitoring of the structural
health of a bridge. Since its opening in 2009, the PMB
has been instrumented with strain gauges, among other
SHM sensors (/). The strain readings from single-vehicle
truck events collected from 2012 to 2016 are used to
characterize the behavior of the undamaged state of the
bridge. During each truck event, the strain readings are
collected at 26 different stations on the PMB (2). Using
25 strain readings as inputs, mathematical models are
trained to predict the output strain at the 26th station.

Two different methodologies for developing the unda-
maged bridge model are compared: linear regression
(LR) and artificial neural networks (ANN). LR relates
the strain readings at all stations to one another using a
linear function, while ANNs are capable of interpreting
and characterizing nonlinear and complex relationships
between the strains at the 26 stations.

The first step was to determine how well the two mod-
els could predict the strain at each location on the bridge
under undamaged conditions. Both the LR and the
ANN models were able to predict the strain at each sta-
tion with an average error of less than 5%, thus
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establishing confidence in the models’ ability to charac-
terize the bridge behavior under undamaged conditions.
Following, a calibrated finite element model (FEM) in
SAP2000 was used to simulate damage on the PMB.
Three damage scenarios were considered: girder fracture,
fascia girder corrosion, and deck delamination. Previous
research done by Weinstein et al. showed that using
ANNSs it was possible to detect damage in a bridge, but
localization was not possible for all scenarios (2). This
research thus expanded the work of Weinstein et al. with
the main contributions being (a) to compare the damage
detection and localization ability of a LR model with an
ANN model and (b) to provide a recommended
approach for future implementation in bridge manage-
ment systems (2).

Structural Performance Assessment using
Physics-Based and Data-Driven Approaches

Background

In the field of SHM, there are two primary types of
computer-based models used to analyze the structural
health of infrastructure: physics-based models and data-
driven models. Physics-based models involve the devel-
opment of a structural model, such as an FEM, that con-
siders the geometry, material properties, interactions
between multiple bodies, and other system variables and
uses that information to numerically assess possible
behavior outcomes as a result of external forces or stres-
ses (3). Data-driven models do not require a priori inputs;
instead, large amounts of response data are used to learn
and characterize the relationships between different com-
ponents of a system. In this research, data-driven models
are proposed as a reliable method for SHM, and a
physics-based model was used to simulate various dam-
age scenarios on the bridge. It is thus necessary to under-
stand both approaches and their applications in the field
of SHM.

Physics-Based Models in SHM

The research of Toksoy and Aktan represents an early
application similar to how SHM is performed today: in
situ testing results are analyzed in parallel with results
from an FEM to understand the changes in the behavior
of a structure over time (4). During the construction
phase of the PMB, Sanayei et al. used strain gauge data
from truck load tests on the bridge to calibrate and
update an FEM for future SHM (5). Santini-Bell et al.
and Sanayei et al. further expanded on the idea of using
the calibrated FEM to generate objective load ratings of
the PMB based on both the observed condition of the
bridge from an inspection as well as the actual system
response of the bridge under in situ load testing (I, 6).

Garcia-Palencia et al. also developed a methodology for
calibrating the stiffness, mass, and damping parameters
of the FEM to create a baseline behavior model of the
bridge to be used for future damage detection (7).
Research indicates that physics-based models are power-
ful at analyzing global and local structural behavior
under various loading conditions as well as indicating
the presence of damage, hence their continued use in the
field of SHM (8, 9). However, as modeling programs
continue to change and improve, the practice of model-
ing itself has become more complex. Weber and Paultre
discussed the intricacies of modeling and model updating
of a truss tower to identify damage within the structure
(10). Despite the power and versatility of physics-based
models, these models can be cumbersome to construct,
require a deep understanding of the system before imple-
mentation, and must be continuously calibrated and
updated to reflect changing conditions on the bridge,
leading to the rise in popularity of data-driven models

(9).

Data-Driven Models in SHM

Data-driven models rely on statistical and mathematical
interpretations of data. One of the simplest models used
in statistical analysis is linear regression (LR). In an LR
analysis, a model is trained to determine optimal coeffi-
cients relating input variables to an output variable that
result in the lowest prediction error over the training
dataset (/7). Many relationships can be characterized
through an LR analysis. For example, Seo et al. used an
LR approach and strain gauge readings as inputs to
develop a protocol for assigning objective load ratings to
steel bridges (/2). LR is one of the simplest methods for
characterizing the relationship between multiple vari-
ables, but it may not be applicable when relationships
between variables are nonlinear. During the past few
decades, numerous prediction methods capable of char-
acterizing nonlinear variable relationships have been
developed in the fields of statistics and machine learning
(13).

Machine learning is a subfield of artificial intelligence
that uses data to find patterns and make predictions.
Many machine learning methods build on and extend an
LR approach. In this research, ANNs were selected as a
methodology for implementing machine learning because
of their ability to fit both linear and nonlinear behavior.
Hornik et al. showed that ANNs can be used to approxi-
mate virtually any function, thus making them an ideal
framework to study the behavior of complex infrastruc-
ture (/4). In an SHM application, Smarsly et al. devel-
oped a small-scale, four-story test structure in a
laboratory setting with one accelerometer at each story
level (15). Using one ANN at each location, simulated



Kaspar et al

SOUTH SOUTH FIELD  NORTH NORTH
ABUTMENT PIER SPLICE  PIER ABUTMENT
le 38'-65/8" > 77 -11/4" » 14'-51/4" It 38'-65/8"
I [11.75m] = [23.50 m] [4.40m] T [11.75m] ﬂ:
! D\ 1 | GIRDER 1 /") (’\ A _—Ti !
| 1l \ |
T o \*() ‘ GIRDER2>> ‘ ) \‘<’ ‘ -
oo || p DI \ GIRDERB}\ ‘ X N ‘ |
Sl WS ARt
e AT | GIRDER 4 N\ ;
8= ‘ ‘\J ‘\J‘ 1 ):J ‘ ‘ I \J‘ ‘ ‘ !
L A O L |_GIRDERS /3 j O ( ) i
! @ ( ) ‘ GIRDER 6 5 ‘ L ‘ ‘ |
| \ T |
| ]
[WSTRAINGAUGE ~ ATEMPERATURE SENSOR  DYTILTMETER  @ACCELEROMETER]|

Figure |I. Instrumentation setup on the Powder Mill Bridge (PMB). Adapted from Weinstein et al. (2).

bridge damage was detected and localized, using various
ANN properties over multiple runs. In lieu of acceler-
ometer data, Kudva et al. used strain readings generated
by an FEM and trained ANNSs located on a 4x4 bay to
detect and localize damage (/6). The analyses by Smarsly
et al. and Kudva et al. are perhaps the most similar to
the work done by Weinstein et al. (2, 15, 16). However,
instead of using strain readings generated by an FEM,
Weinstein et al. used measured strain data from the
PMB to train ANNSs at various locations on the bridge
and found that damage was detected but not localized
for all scenarios (2). To address the lack of localization,
an alternative to the ANN methodology as a means of
localizing damage in all scenarios was explored, thus
providing an approach for integrating a data-driven
model into a bridge SHM system.

Case Study: Powder Mill Bridge (PMB)

The PMB in Barre, Massachusetts is a three-span steel-
girder bridge connecting Vernon Ave to Massachusetts
Route 122 over the Ware River. Six steel girders are in
composite action with a continuous concrete deck slab
spanning 47m long by a width of 12.7m at the south
and center spans and increasing to a width of 19 m at the
north abutment. Since its opening in 2009, PMB has
been instrumented with 100 strain gauges, 66 tempera-
ture sensors, 16 biaxial tiltmeters, and 16 accelerometers
as shown in Figure 1. Details in relation to the placement
and types of SHM instrumentation on the PMB are dis-
cussed in Sanayei et al. and Santini-Bell et al. (/, 5). The
green circles represent the 26 stations where the strain
readings were extracted for this research.

PMB is adjacent to a waste management transfer sta-
tion, thus heavy trucks inducing a live load on the bridge

are frequent. The strain readings from single-vehicle,
heavy truck loads, here referred to as truck events, were
used as the inputs to the data-driven models. All truck
events were single-vehicle truck events with a maximum
positive strain at the midspan greater than 39 microstrain
centered on either the southbound or the northbound
lanes of the PMB. By using only single-vehicle, heavy
truck events in this analysis, the behavior of the structure
under similar loading conditions is analyzed and thus
changes in the behavior that may indicate damage are
more likely to be detected. Weinstein et al. also per-
formed a sensitivity analysis showing that the simulated
damage effects are sufficiently representative regardless
of the transverse location of the truck within each vehicle
lane (2). A description of the program developed to pro-
cess the truck events can be found in Weinstein et al. (2).
The post-processed strain reading thus represents the
change in strain as a result of the load induced by the sin-
gle truck events.

Strain gauges were used for measuring the strain from
each truck event at a sampling rate of 50 Hz (0.2-s inter-
vals) to a data acquisition box located underneath the
bridge (2). From this dataset, only the maximum strains
were extracted for each location as well as the corre-
sponding strains at the other 25 stations to ensure a high
signal-to-noise ratio. For example, Figure 2 shows the
corresponding strains at 25 stations throughout the
bridge when the station Girder 1 Station 2 (G1-S2)
reaches its maximum strain of approximately -20 micro-
strain for a sample truck event. The blue star represents
the target output strain while the other 25 strain readings
marked by circles represent the input strains for the
model. The goal of the model is to predict the output
strain at a single location given only the input strains at
the 25 other locations. As a result, an individual model
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Figure 2. Extraction of the maximum output strain at location
G1-S2 and the corresponding input strains at the other 25
locations.

was developed for each location on the bridge, thus total-
ing 26 different models to characterize the entire bridge.
Throughout this paper, the term individual model refers
to the model trained at one specific location whereas the
final model refers to the cumulative results of the models
at all 26 stations. The final LR and ANN models were
evaluated in their ability to (a) accurately predict the
strain at each station under undamaged conditions, (b)
detect simulated bridge damage, and (c) localize simu-
lated bridge damage.

Preliminary Model Testing

A total of 1,929 truck events collected over 4 years were
used in this research and randomly divided to be used for
two purposes: 1,509 truck events were used in the train-
ing phase and 420 truck events were set aside to run the
preliminary model and damage tests, which was the same
breakdown used by Weinstein et al. for comparison (2).
MATLAB was first used to determine the coefficients
and parameters for both the LR and ANN models that
resulted in the lowest prediction errors over the 1,509
truck events. Each individual model was then tested
against the 420 truck events to determine the prediction
errors of the trained model.

Damage Detection

The models were trained to predict the outcome at each
location under undamaged conditions. However, this
research focuses on the final model’s ability to detect and
localize bridge damage in the structure. The hypothesis is
that, under damaged conditions, the prediction errors of

the model will be larger than in the undamaged state. To
test this hypothesis, several damage scenarios were devel-
oped and simulated using an FEM in SAP2000. Details
in relation to the development and calibration of the
FEM can be found in Sanayei et al. (5). Once the model
was calibrated and validated, various simulated bridge
damage scenarios were applied to the structure.

Reiff et al. identified three damage scenarios that typi-
cal bridges are susceptible to and provided references to
bridges displaying these damage conditions (/7). Case 1
represents varying degrees of fascia girder corrosion,
whereby the exposed exterior girders experience corro-
sion from drainage, rain, and other environmental fac-
tors. This was modeled by reducing the elastic modulus
of the web of the girder by 5%, 10%, and 15%. Case 2 is
the most critical structurally, with a girder fracture simu-
lated at the midspan of Girder 2. To simulate the girder
fracture, the elastic modulus was reduced to close to zero
at the midspan. Case 3 represents deck delamination in
the southbound lane, which was modeled by reducing the
elastic modulus of the deck concrete by 35% in the south-
bound lane. It was estimated that the maintenance cost
of deck repairs was equivalent to the combined total of
all other maintenance costs on a typical bridge, empha-
sizing the prevalence and persistence of deck delamina-
tion (/8). Early detection of damage can thus reduce
maintenance costs and increase safety of bridges.

For each bridge damage scenario, as well as in the
undamaged state, a single simulated HS20 truck was run
over the FEM centered on both the northbound and the
southbound directions (2). The peak strain at all 26 dif-
ferent locations was identified for each damage scenario
and the 25 strains at the corresponding locations were
also extracted. To determine the effects of the simulated
bridge damage on the FEM, the percent difference
between the strains in the undamaged state and the
strains in each damage scenario was compiled for both
the southbound and northbound directions. The percent
difference was then applied to the truck event with unda-
maged conditions to create a new truck event with strain
readings reflecting the bridge simulated damage.

The simulation process was repeated to simulate dam-
age on multiple truck events. A truck event that has been
modified through this process will here be referred to as
a truck event with simulated damage conditions, while a
truck event that has been unchanged will be referred to
as a truck event with undamaged conditions. For each
truck event with undamaged or simulated damaged con-
ditions, the final LR and ANN models are used to pre-
dict the strain at all stations on the bridge and the
prediction errors of the model are compiled. It is antici-
pated that the model will yield higher prediction errors
when predicting the strains at each station for the truck
events with simulated damage conditions.
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Figure 3. Data breakdown used for both the linear regression and artificial neural network models.

Damage is simulated on the truck events in the testing
dataset. A total of 20 bridge damage detection computer
runs were performed in this research, each containing a
unique breakdown of 20 truck events with simulated
damage conditions and 400 truck events with undamaged
conditions as shown in Figure 3. For each damage detec-
tion run, the models were tested to determine if the model
could detect a difference between the prediction errors of
the 400 truck events with undamaged conditions com-
pared with the prediction errors from 20 truck events
with simulated damage conditions. Only 20 truck events
with simulated damage conditions were used, as this rep-
resents the approximate number of heavy, single-vehicle
truck events that occur on the PMB in one week. To
ensure that each bridge damage detection run contained
a unique set of 20 truck events with simulated damage
conditions, a 20-fold cross-validation pattern was used to
allocate which truck events remained undamaged and
which truck events were used for simulating damage.
Cross validation involves selecting the truck events with
simulated damage conditions in a rotating pattern for
each damage detection run rather than randomly allocat-
ing events into the damaged and undamaged categories,
so as to test 400 unique truck events with simulated dam-
age conditions over the course of the 20 damage detec-
tion runs (/7).

Damage detection is here defined as the ability of the
trained models to detect a difference between the

prediction errors of the truck events with undamaged
bridge conditions and the prediction errors of the truck
events with simulated damage conditions using a
Wilcoxon rank-sum test. A Wilcoxon rank-sum test is a
method used to determine if two sets of data are statisti-
cally different. This test was selected because of the abil-
ity to compare two datasets of different sizes (/9). There
are two types of prediction errors in this analysis: a Type
I error would be false damage detection in the unda-
maged case, while a Type II error would be a failure to
identify damage. The null hypothesis of the Wilcoxon
rank-sum test is that the prediction errors from the 400
truck events with undamaged conditions and the predic-
tion errors from the 20 truck events with simulated dam-
age conditions have the same median and variance at all
locations while assuming a normal distribution (20). The
test generates a p-value that represents a value between 0
and 1 that evaluates the null hypothesis, with a low p-
value indicating that the null hypothesis should be
rejected. Using a significance level of 0.1%, Weinstein
et al. noted that no Type I or Type II errors occurred
during the damage detection analysis, thus the same
significance level was implemented in this research (2). A
p-value less than the significance level of 0.001 thus indi-
cated with 99.9% certainty that the prediction errors of
the two datasets were different, and thus damage was
detected by the model at that station. The p-values from
each damage detection run were evaluated and the
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Table I. Description of Bridge Damage Scenarios and Corresponding Criteria to Determine If Damage was Effectively Localized

Damage scenario

Description

Localization criteria

Case la

Case |Ib

Case Ic

Case 2

Case 3

Fascia Girder Corrosion: 5% reduction of the
elastic modulus of the web of Girder | across
the entire length of the span

Fascia Girder Corrosion: 15% reduction of the
elastic modulus of the web of Girder | across
the entire length of the span

Fascia Girder Corrosion: 25% reduction of the
elastic modulus of the web of Girder | across
the entire length of the span

Girder 2 Fracture: A section of Girder 2 at the
midspan is altered to have an elastic modulus
close to zero

Half Deck Delamination: 35% reduction in the
elastic modulus of the deck concrete across

Largest prediction error located on Girder |
Largest prediction error located on Girder |
Largest prediction error located on Girder |
Largest prediction error located at the midspan

of Girder 2

Largest prediction error located on Girder | or
Girder 2

the southbound deck lane

percentage of damage detection runs with detected dam-
age was evaluated for each station.

Damage Localization

Damage localization here refers to the models’ ability to
identify the location on the bridge at which the damage
scenario was simulated, both longitudinally and trans-
versely. For example, Case 1 consists of corrosion
applied to Girder 1. Damage is considered to be effec-
tively localized for this damage scenario if the largest
prediction errors generated by the final model are
located at any of the stations on Girder 1. Table 1 shows
a summary of the damage scenarios as well as the locali-
zation criteria used.

Results

Preliminary Model Testing

The first criterion evaluated was the ability of the LR
and ANN models to predict the strain at each station
under undamaged conditions. The average prediction
error of all 26 stations compiled from the 420 testing
events was 3.9% for the final LR model and 2.7% for
the final ANN model. The results indicate that both
models were able to reliably predict the strain at each
station under the undamaged scenario. Having low pre-
diction errors in the training phase provides the user with
more certainty in the model if significant prediction
errors occur when using the model for damage detection
purposes.

Damage Detection Results

A Wilcoxon rank-sum test was performed for each dam-
age detection run at each station to determine the final

LR and ANN models’ ability to detect damage. If the p-
value was less than the significance level, then damage
was considered to be detected for that damage detection
run. The percentage of the 20 damage detection runs for
which damage was detected is shown in Table 2. Damage
detection was evaluated for three bridge damage scenar-
ios as well as an undamaged scenario, Case U, where all
420 events represent the undamaged bridge.

The results indicate that no stations detected bridge
damage in any of the damage detection runs when tested
against undamaged truck events, thus the final LR model
did not produce Type I errors. For comparison, the final
ANN model also did not produce any Type I errors. The
results also indicate that most sensors detected damage
in at least one of the 20 damage detection runs with mul-
tiple stations detecting damage in all 20 damage detec-
tion runs. For most of the damage scenarios, damage
was more easily detected at Stations 4, 6, and 8. This is
likely because of the higher strain readings at these sta-
tions compared with Stations 2 and 10, so the changes
because of the simulated damage are more easily distin-
guished from the noise. Similarly, external Girders 1 and
6 did not detect damage as readily as some of the other
girders despite Girder 1’s proximity to the simulated
damage. This could be because the traffic lanes were cen-
tered above Girders 2-5, so the strain readings were
lower along the exterior girders. With the simulated 5%,
15%, and 25% fascia girder corrosion, 100% detection
rates were found at 4, 8, and 11 different stations respec-
tively using the final LR model. Using the final ANN
model, damage was detected for all damage detection
runs at 3, 12, and 11 different stations respectively for
the three stages of fascia girder corrosion, indicating sim-
ilar results. For the Case 2 girder fracture, 12 stations
detected damage in all damage detection runs using the
final LR model compared with 10 stations using the final
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Table 2. Percentage of Damage Detection Runs with Detected Damage at Each Station for the Final Linear Regression Model

Percentage of runs with damage detected

Undamaged Girder | corrosion Girder 2 fracture Deck delamination
Case la Case |Ib Case Ic
Sensor location Case U 5% 15% 25% Case 2 Case 3
GI-S2 0 25 90 100 0 60
GI-Sé6 0 10 20 70 10 30
GI-S8 0 15 55 95 100 0
GI-SI0 0 100 100 100 0 0
G2-S2 0 20 95 100 95 10
G2-54 0 100 100 100 100 100
G2-S6 0 100 100 100 100 0
G2-S8 0 40 45 50 100 0
G2-SI10 0 80 100 100 0 10
G3-52 0 25 60 95 0 0
G3-54 0 60 100 100 100 95
G3-S6 0 100 100 100 100 5
G3-S8 0 40 70 100 100 0
G3-SI10 0 90 100 100 20 0
G4-S2 0 65 95 95 95 95
G4-54 0 75 100 100 95 100
G4-S6 0 0 0 0 100 0
G4-S8 0 0 25 70 100 95
G4-S10 0 0 0 10 30 40
G5-52 0 15 60 70 100 85
G5-S6 0 30 50 60 100 0
G5-S8 0 10 75 90 10 100
G5-S10 0 0 90 95 5 75
G6-S2 0 0 5 60 75 0
G6-54 0 0 0 0 100 55
G6-S6 0 5 20 40 90 5
Number of stations 0 4 8 | 12 3

with 100% detection

ANN model. Lastly, both the final LR model and the
final ANN model were able to detect the Case 3 deck
delamination in all damage detection runs at three differ- 200
ent stations. It can thus be said with 99.9% confidence
that both final models were able to detect damage at G2-86: 149%
more than one station on the bridge for all damage sce-
narios, with the two final models generating similar
detection capabilities.

Northbound Truck Event

100

Prediction Error (%)

Damage Localization Results

/
!/
7

Damage localization was assessed individually for the 20
truck events with simulated damage conditions in all 20 100 4 .

damage detection runs, thus totaling 400 truck events =2 e _h'ﬁml;';t:gezamage
with simulated damage conditions. It was hypothesized S, 510 4 2 5
that the model would generate the largest prediction on 4 1 & o

errors at the location of simulated damage as a result of Bt

the change in structural behavior. For example, Figure 4
shows the prediction errors at each location along the
bridge when the final LR model was tested using a north-
bound truck event with simulated Case 2 damage

Figure 4. Prediction error of the final linear regression model
for a Case 2 northbound truck event with simulated damage
conditions.
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Figure 5. Prediction error of the final linear regression model
for a Case 2 southbound truck event with simulated damage
conditions.

conditions. The prediction errors of a sample north-
bound truck event under undamaged conditions have
also been included for comparison. Because the simu-
lated damage was induced at the midspan of Girder 2,
damage was considered to be effectively localized for this
truck event with simulated damage conditions.
Conversely, Figure 5 shows the largest prediction error
occurring on Girder 4 for the same damage scenario
using a southbound truck event, thus damage was not
effectively localized.

The final LR and ANN models were thus evaluated to
determine the percentage of the 186 northbound events
and 214 southbound events for which the model was able
to localize each damage scenario, as shown in Table 3.
The results from the southbound and northbound truck
events were analyzed separately to note the effects of the
direction of the vehicle on the models’ ability to localize
damage. The results indicate that, regardless of the math-
ematical model used, the northbound truck events were
effectively localized while the southbound truck events
were not. The following section investigates further into
the possible reasons behind this distinction. Ultimately,
these results stress the importance of separating the truck
events based on direction of traffic.

Discussion

The results indicate success in simulated damage detec-
tion for all scenarios and damage localization for north-
bound truck events. Because both the LR and the ANN
models were not able to localize damage effectively for
the southbound truck events with simulated damage con-
ditions, the localization criteria were further scrutinized.

Table 3. Percentage of Northbound and Southbound Truck
Events Where Simulated Bridge Damage Was Effectively Localized

Linear regression Artificial neural network

Damage

scenarios  Northbound Southbound Northbound Southbound
Case la 98.9% 11.7% 87.1% 2.8%
Case Ib 98.9% 0.0% 84.9% 0.0%
Case lc 98.9% 0.0% 82.3% 0.0%
Case 2 98.4% 52.8% 96.8% 0.5%
Case 3 97.3% 0.0% 98.9% 0.5%

The process for simulating damage involved extracting
the strains at all stations on the bridge during a truck event
for both the undamaged and damaged conditions. The
percent difference in strain between the undamaged and
damaged conditions was determined, and this percentage
was applied to actual truck event strains to simulate truck
events with damage conditions. It was initially hypothe-
sized that the stations closest to the simulated damage
experienced the largest changes in strain as a result of the
damage. However, further inspection showed this only to
be true for northbound truck events, thus resulting in bet-
ter localization results. For the southbound events, the
location of the largest change in strain generated by the
FEM varied for each damage scenario and did not always
align with the localization criteria selected. This is reflected
in the results as shown in Figure 5, where large prediction
errors can be seen at the location of simulated damage
(G2-S6) as well as at other stations on the bridge where a
change in structural behavior is noted by the final LR
model. Further inspection showed that the FEM also
noted significant changes in strain at these locations in
addition to at the midspan of Girder 2. This could be as a
result of load redistribution on the bridge: as the south-
bound lane undergoes simulated damage, the adjacent gir-
ders are also subjected to increased loading. Furthermore,
the indeterminacy of the bridge could also contribute to
increased strains at additional stations as well as at the
location of simulated damage when testing the damage
scenarios in the southbound lane. While damage was not
effectively localized using the localization criteria used, the
final LR and ANN models were able to indicate the criti-
cal locations at which a change in structural behavior
occurred. It was thus possible to localize damage using
engineering judgment to interpret changes in the bridge
structural behavior.

Proposed Management Strategy
Applicability

PMB, a three-span steel girder bridge, served as the case
study and thus the application of this research is targeted
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Figure 6. Sample flow chart for integrating a data-driven model into bridge inspection protocol.

at similar bridges. Girder bridges are the oldest and most
common bridge type in the world and currently make up
more than half of all state bridges in New Hampshire
(21). PMB is located adjacent to a waste management
transfer station in a low-traffic area, and thus a typical
loading event consists of a single-vehicle, heavy truck
event. This type of loading condition is not uncommon:
examples include isolated bridges servicing coal mines in
West Virginia, timber harvesting operations in Maine, or
any other kind of manufacturing plant or distribution
center with heavy shipments.

Both mathematical models implemented in this
research were trained using 1,509 truck events compiled
over 4 years to characterize the undamaged state of the
bridge. Strain readings were captured at four or five dif-
ferent locations per girder at the critical locations for a
three-span bridge, and the models were tested using
approximately one week’s worth of truck events. It is
thus necessary to have an instrumentation system
installed at the inception of the bridge with enough strain
gauges and truck events to capture the bridge’s behavior.
The critical assumption that is made when training a
data-driven model for this application is that the trained
model represents the undamaged state of the bridge. If a
bridge with existing damage were instrumented with
strain gauges and a data-driven model were trained
under the guidelines provided by this paper, the model
would not be able to detect the existing damage in the
bridge. It would, however, likely be able to detect any
future changes in the structural behavior. The process
for how a model could be trained and continuously

updated over the life of the bridge is subsequently
discussed.

Proposed Monitoring Strategy

Once a trained LR or ANN model of the bridge has been
developed, the model can then be tested at periodic inter-
vals to determine if damage is detected. Bridge inspection
routinely occurs every 24 months; depending on how
much data is available, the trained model could be tested
every week, for example, which was the time frame used in
this study. Using one week’s worth of truck events, a
Wilcoxon rank-sum test can be performed to test for a sta-
tistical difference between the prediction errors from the
new events compared with the prediction errors from the
original testing dataset. If damage is detected and repairs
are made to the bridge, a new model will need to be
trained to represent the new, assumed healthy state of the
bridge. Older versions of the trained model could be used
to analyze small, long-term changes in structural behavior
such as creep and bridge bearing deterioration or to retest
the bridge after repairs have been made; more research is
needed to confirm these hypotheses. Figure 6 represents a
sample decision-making flow chart illustrating how a
data-driven model can be integrated within existing inspec-
tion protocol for long-term bridge monitoring.

Conclusion

When comparing the LR and ANN methodologies, the
final LR model proved to be just as reliable as the final
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ANN model at predicting the strain at each station on
the bridge under undamaged conditions as well as detect-
ing and localizing damage under simulated damage con-
ditions. This is remarkable given the simplicity and ease
of use of LR. Approximately 1,500 truck events were suf-
ficient to characterize the behavior of the bridge under
undamaged conditions with average prediction errors of
approximately 5% at each station for both final models.
Damage was detected in all 20 damage detection runs
when testing the final models with one week of truck
events with simulated damage conditions. Both final
models were also able to identify the locations at which
changes in structural behavior occurred, though these
locations did not always correspond to the localization
criteria used.

Compared with the ANN, the trained LR model is
perhaps of more value to the engineer. Once the model
has been trained, each variable is given a coefficient that
relates all stations on the bridge to one another. This
information could be useful in interpreting current and
future behavior of the bridge. Deciphering the relation-
ship between the different variables in an ANN is more
complicated and requires a deep understanding of the
mathematical foundations of ANN. Because of its sim-
plicity and power, LR is recommended as an initial
approach for model training. The results in this research
suggest that a trained LR model with low prediction
errors of approximately 5% should be able to detect and
localize changes in structural behavior of the bridge
caused from fascia girder corrosion, girder fracture, and
deck delamination. Should the LR model generate large
prediction errors in the preliminary testing phase, it is
possible that the ANN methodology could be used to
train an appropriate model.

Finally, engineering judgment is critical for interpret-
ing information about the current and future states of the
system. However, this research has shown the power that
data-driven models can offer as a remote monitoring tool
for infrastructure management.

Future Work

The results from this research are promising for both the
future of PMB as well as other bridges nationwide.
Further analysis should be done to identify the number
of strain gauges needed to detect damage in a structure.
For example, a full sensitivity analysis could be per-
formed to better understand how many strain gauges are
needed and the location of the gauges to fully character-
ize the bridge behavior. A sensitivity analysis could also
be performed to determine the minimum number of
truck events used in the testing dataset to detect damage
without generating many false positives. When selecting
truck events for the training and testing of the models,

the data collected over 4 years was purposefully rando-
mized. However, an analysis could be done to determine
the impact of seasonal and diurnal temperature changes
on the strain readings. Long-term monitoring of the
PMB using this model would allow for confirmation of
the recommended protocol and generate information in
relation to the type and severity of damage that the
model is able to detect and localize.

The next step in this research is to test this same meth-
odology on a different bridge. This paper focuses on
bridges with heavy, single-vehicle truck events, but other
SHM instrumentation such as accelerometers or tilt-
meters could be used as the input data to the model
detecting damage over time. This methodology could
also be used for localized damage detection. The
Memorial Bridge constructed in Portsmouth, New
Hampshire in 2009 became one of just a few bridges in
the world to implement gusset-less bridge connections
(22). Because of the lack of inspection protocol and data
in relation to these connections, training a mathematical
model to detect damage could be especially advanta-
geous for long-term monitoring.

Acknowledgments

The research team is grateful to Tufts University, in particular
Masoud Sanayei and Jordan Weinstein for sharing information
in relation to the data collected at the Powder Mill Bridge.

Author Contributions

The authors confirm contributions to the paper as follows:
study conception and design: K. Kaspar, E. Santini-Bell, M.
Petrik, M. Sanayei; data collection: M. Sanayei; analysis and
interpretation of results: K. Kaspar, M. Petrik, E. Santini-Bell,
M. Sanayei; draft manuscript preparation: K. Kaspar, M.
Petrik, E. Santini-Bell. All Authors reviewed the results and
approved the final version of the manuscript.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with
respect to the research, authorship, and/or publication of this
article.

Funding

The author(s) disclosed receipt of the following financial sup-
port for the research, authorship, and/or publication of this
article: This material is based on work partially supported by
the National Science Foundation under Grant No. 0620258
and funding from the NHDOT Research Advisory Council.

References

1. Santini-Bell, E., P. J. Lefebvre, M. Sanayei, B. R. Brenner,
J. D. Sipple, and J. Peddle. Objective Load Rating of a
Steel-Girder Bridge using Structural Modeling and Health



Kaspar et al

10.

Monitoring. Journal of Structural Engineering, Vol. 139,
No. 10, 2013, pp. 1771-1779. http://doi.org/10.1061/
(ASCE)ST.1943-541X.0000599.

. Weinstein, J. C., M. Sanayei, and B. R. Brenner. Bridge

Damage Identification using Artificial Neural Networks.
Journal of Bridge Engineering, Vol. 23, No. 11, 2018, p.
04018084.  https://doi.org/10.1061/(ASCE)BE.1943-5592.
0001302.

. Kakadiaris, I. A. Physics-Based Modeling, Analysis and

Animation. Technical Report No. MS-CIS-93-45. Univer-
sity of Pennsylvania Department of Computer and Infor-
mation Science, 1993.

. Toksoy, T., and A. E. Aktan. Bridge-Condition Assess-

ment by Modal Flexibility. Experimental Mechanics, Vol.
34, No. 3, 1994, pp. 271-278. https://doi.org/10.1007/
BF02319765.

Sanayei, M., J. E. Phelps, J. D. Sipple, E. Santini-Bell, and
B. R. Brenner. Instrumentation, Nondestructive Testing,
and Finite-Element Model Updating for Bridge Evaluation
using Strain Measurements. Journal of Bridge Engineering,
Vol. 17, No. 1, 2012, pp. 130-138. http://doi.org/10.1061/
(ASCE)BE.1943-5592.0000228.

Sanayei, M., A. J. Reiff, B. R. Brenner, and G. R. Imbaro.
Load Rating of a Fully Instrumented Bridge: Comparison
of LRFR Approaches. Journal of Performance of Con-
structed Facilities, Vol. 30, No. 2, 2016, p. 04015019. http://
doi.org/10.1061/(ASCE)CF.1943-5509.0000752.
Garcia-Palencia, A. J., E. Santini-Bell, J. D. Sipple, and
M. Sanayei. Structural Model Updating of an In-Service
Bridge using Dynamic Data. Structural Control and Health
Monitoring, Vol. 22, No. 10, 2015, pp. 1265-1281. http:
//doi.org/10.1002/stc.1742.

. Kim, C., and M. Kawatani. Pseudo-Static Approach for

Damage Identification of Bridges Based on Coupling
Vibration with a Moving Vehicle. Structure and Infrastruc-
ture Engineering — Maintenance, Management, Life-Cycle
Design and Performance, Vol. 4, No. 5, 2008, pp. 371-379.
https://doi.org/10.1080/15732470701270082.

Shahidi, G. Physics-Based and Data-Driven Methods with
Compact Computing Emphasis for Structural Health Moni-
toring. Doctoral dissertation. Lehigh University, 2016.
Weber, B., and P. Paultre. Damage Identification in a
Truss Tower by Regularized Model Updating. Journal of
Structural Engineering, Vol. 136, No. 3, 2010, pp. 307-316.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

James, G., D. Witten, T. Hastie, and R. Tibshirani. An
Introduction to Statistical Learning: With Applications in R.
Springer, New York, N.Y., 2013.

Seo, J., T. M. Czaplewski, J. Kimn, and G. Hatfield. Inte-
grated Structural Health Monitoring System and Multi-
Regression Models for Determining Load Ratings for
Complex Steel Bridges. Measurement, Vol. 75, 2015,
pp. 308-319. http://dx.doi.org/10.1016/j.measurement.
2015.07.043.

Bishop, C. M. Pattern Recognition and Machine Learning.
Springer, Cambridge, 2006.

Hornik, K. M., M. Stinchcombe, and H. White. Multilayer
Feedforward Networks Are Universal Approximators.
Neural Networks, Vol. 2, 1989, pp. 359-366.

Smarsly, K., K. Dragos, and J. Wiggenbrock. Machine
Learning Techniques for Structural Health Monitoring.
Proc., 8th European Workshop on Structural Health Moni-
toring (EWSHM ), Bilbao, Spain, 2016.

Kudva, J. N., N. Munir, and P. W. Tan. Damage Detection
in Smart Structures Using Neural Networks and Finite-
Element Analyses. Smart Materials and Structures, Vol. 1,
1992, pp. 106-112.

Reiff, A. J., M. Sanayei, and R. M. Vogel. Statistical
Bridge Damage Detection using Girder Distribution Fac-
tors. Engineering Structures, Vol. 109, 2016, pp. 139-151.
Lee, S. K. Current State of Bridge Deterioration in the
U.S. — Part 2. Materials Performance, Vol. 51, 2012,
pp- 2-7.

Mann, H. B., and D. R. Whitney. On a Test of Whether
One of Two Random Variables Is Stochastically Larger
than the Other. The Annals of Mathematical Statistics, Vol.
18, 1947, pp. 50-60.

Sugiyama, M. Introduction to Statistical Machine Learning.
Morgan Kaufmann, Cambridge, Mass., 2016.

New Hampshire Department of Transportation. Bridge
Program Recommended Investment Strategy. New Hamp-
shire Department of Transportation, 2018.

University of New Hampshire. The Living Bridge Ports-
mouth Memorial Bridge: Project Overview. https://living
bridge.unh.edu/. Accessed June 21, 2018.

Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foundation.


http://doi.org/10.1061/(ASCE)ST.1943-541X.0000599
http://doi.org/10.1061/(ASCE)ST.1943-541X.0000599
https://doi.org/10.1061/(ASCE)BE.1943-5592.0001302
https://doi.org/10.1061/(ASCE)BE.1943-5592.0001302
https://doi.org/10.1007/BF02319765
https://doi.org/10.1007/BF02319765
http://doi.org/10.1061/(ASCE)BE.1943-5592.0000228
http://doi.org/10.1061/(ASCE)BE.1943-5592.0000228
http://doi.org/10.1061/(ASCE)CF.1943-5509.0000752
http://doi.org/10.1061/(ASCE)CF.1943-5509.0000752
http://doi.org/10.1002/stc
http://doi.org/10.1002/stc
https://doi.org/10.1080/15732470701270082
http://dx.doi.org/10.1016/j.measurement.2015.07.043
http://dx.doi.org/10.1016/j.measurement.2015.07.043
https://livingbridge.unh.edu/
https://livingbridge.unh.edu/

