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Abstract
Structural health monitoring of complex structures is often limited by restricted accessibility to locations of interest within 
the structure and availability of operational loads. In this work, a novel output-only virtual sensing scheme is proposed. 
This scheme involves the implementation of the modal expansion in an augmented Kalman filter. The performance of the 
proposed scheme is compared with two existing methods. Method 1 relies on a finite element model updating, batch data 
processing, and modal expansion (MUME) procedure. Method 2 employs a recursive sequential estimation algorithm, which 
feeds a substructure model of the instrumented system into an augmented Kalman filter (AKF). The new scheme referred to 
as Method 3 (ME-AKF), implements strain estimates generated via Modal Expansion into an AKF as virtual measurements. 
To demonstrate the applicability of the aforementioned methods, a rollercoaster connection was instrumented with acceler-
ometers, strain rosettes, and an optical sensor. A comparison of estimated dynamic strain response at unmeasured locations 
using three alternative schemes is presented. Although acceleration measurements are used indirectly for model updating, 
the response-only methods presented in this research use only measurements from strain rosettes for strain history predic-
tions and require no prior knowledge of input forces. Predicted strains using all methods are shown to sufficiently predict the 
measured strain time histories from a control location and lie within a 95% confidence interval calculated based on modal 
expansion equations. In addition, the proposed ME-AKF method shows improvement in strain predictions at unmeasured 
locations without the necessity of batch data processing. The proposed scheme shows high potential for real-time dynamic 
estimation of the strain and stress state of complex structures at unmeasured locations.

Keywords  Rollercoaster structure · Nondestructive testing · Structural health monitoring · Model updating · Modal 
identification · Modal expansion · Output-only system identification · Dynamic substructuring · Augmented Kalman filter · 
Strain predictions

1  Introduction

Structural complexity has increased over the decades as 
new structural systems, materials, construction methods, 
and innovative designs emerge. As an example of a complex 
structural system, this work presents a rollercoaster struc-
ture. Innovations in rollercoaster designs aim to increase the 
speed of the train along the tracks by means of rapid changes 
in altitude and track orientations in an effort to enhance the 
rider’s experience by intensifying the passenger’s thrill [1]. 
Similarly, the design of traditional infrastructure, e.g. build-
ings and bridges, has been growing in complexity due to the 
ever-increasing load capacity and traffic resulting in chal-
lenging structural designs.

Safety standards of complex structures, such as bridges, 
rollercoasters, or wind turbine towers, require frequent 
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inspections for assessment of structural condition [2–4]. 
These inspections are often visual and are carried out by 
maintenance crews going over the length of the structure 
(bridge girders and decks, railway tracks, rollercoaster 
tracks, wind turbine towers, etc.). Safety of maintenance 
procedures is of paramount importance. The development of 
remote sensing technologies and procedures for the assess-
ment of complex structural components is essential for the 
improvement of workplace safety while preserving structural 
integrity. Remote monitoring and dynamic prediction of the 
response of the structure to live loads can provide meaning-
ful and rapid information for decision-making on preventa-
tive maintenance, asset management, and structural safety.

Virtual sensing techniques can be implemented for the 
estimation of strains or stresses at inaccessible locations or 
critical points, where isolated sensor readings can be affected 
by localized effects due to stress concentrations [5, 6]. Esti-
mation of strain time histories at unmeasured locations can 
be achieved using sparse measurements and methods which 
operate in both batch and recursive schemes. The first cat-
egory operates on batches of the obtained measurements and 
utilizes an established mapping between measured and virtu-
ally predicted locations, such as the one provided by modal 
expansion [7–9]. On the other hand, recursive schemes such 
as those relying on Bayesian-type filters [10–12], offer an 
online sequential estimation. When real-time estimation is 
not required, schemes relying on Bayesian filters can also 
operate on batch data using smoothing algorithms to refine 
estimations [13, 14].

The use of limited sets of measured batch sets of strain 
time histories combined with an updated model and a modal 
expansion method has been shown to provide accurate strain 
time histories at unmeasured locations in a simple cantilever 
beam [15]. Full-field dynamic stress–strain predictions using 
an updated analytical model and expansion procedures have 
proven to provide reliable results in wind turbine structures 
and under various measured loading conditions [16]. Pin-
gle and Avitabile’s research demonstrated the robustness 
of modal expansion procedure using displacement data. 
Although noise can cause estimation uncertainty in results 
obtained using these procedures, it has been shown that 
if enough participating modes are included in the process 
the estimation error is minimal [17]. A more recent study 
shows that the expansion of experimental mode shapes by a 
finite element model has the potential to reduce stress/strain 
estimation errors [18]. This finding was reached by com-
paring the results obtained from using mode shapes from 
a finite element model to the results obtained from using 
expanded experimental mode shapes. Prediction of reliable 
strain time histories is also highly influenced by the quality 
of the mathematical model employed to represent the struc-
ture under study. The quality of the mathematical models 
can be improved through model updating. Among the most 

common approaches for model updating of linear dynamic 
systems is the eigensystem realization algorithm (ERA) 
[19] when combined with the natural excitation technique 
(NExT) [20]. The combined use of these two methodologies, 
NExT-ERA has shown to be effective in identifying modal 
parameters of real-size complex structures [21–23]. Accel-
eration measurements are commonly used when employing 
modal identification algorithms. However, strain measure-
ments have been found to be as informative as acceleration 
measurements for the identification of lower vibration modes 
in certain applications [24, 25].

Recursive estimation of strain time histories is another 
common approach. The Kalman Filter has frequently been 
adopted for state estimation and virtual sensing [26–28]. In 
this Bayesian estimator a reduced order model, formulated 
as a set of state-space equations, is used for the estimation of 
the dynamic state (displacements, velocities, and/or acceler-
ations) of the structure based on measured data (e.g., strains, 
displacements, accelerations, etc.) [29]. Although Kalman 
filtering was originally proposed for use based on complete 
knowledge of the input forces of the structural system [12], 
several modifications to this algorithm, in which the input 
could be unknown, have been proposed and validated [30, 
31]. In a recent study, accelerations and strains from a truck 
chassis is used to study the accuracy of an Augmented 
Kalman Filter (AKF) extended with a fixed-lag smoother 
and a smoothed joint input-state estimation algorithm. The 
results of this study show that although strain time histories 
are affected by a large model error, fatigue life predictions 
are reliable using both methods [32]. In a very recent work, 
Tatsis et al.[33] demonstrate the use of substructuring within 
an AKF for input-state estimation under limited measure-
ment availability. Similarly, Noppe et al. [34] compare the 
estimated strain time history response of a wind turbine 
using modal expansion and the AKF. These two methods 
employ acceleration measurements and a thrust load signal. 
Results from this study show that time-domain predictions 
are a good match with the measured response using both 
techniques with some discrepancies due to discontinuities 
in the thrust force signal. In addition, predictions in the fre-
quency domain obtained from the AKF demonstrate higher 
discrepancies than predictions calculated with modal expan-
sion procedures.

In this paper, in-service strain time histories measured 
from a full-scale rollercoaster structure are used to predict 
strain time histories at unmeasured locations using both a 
batch estimation approach and two recursive estimation 
schemes. A rollercoaster connection was instrumented with 
four strain rosettes and three orthogonally placed accel-
erometers. Acceleration measurements are used to verify 
modal parameters extracted from strain times histories. 
Due to the complexity of the loading and lack of informa-
tion to estimate the loading produced by each rollercoaster 



Journal of Civil Structural Health Monitoring	

123

passage, output-only methods are suitable for the estima-
tion of strains at unknown locations along with the bracket 
connection under study. Three methodologies are used for 
the prediction of strain time histories. A substructure of the 
instrumented connection is extracted using the Craig–Bamp-
ton method. Method 1, referred to as model updating and 
modal expansion (MUME), makes use of batch data set and 
conventionally deployed offline methods for modal identifi-
cation and finite element model updating of a section of the 
rollercoaster. The NExT-ERA algorithm is used to estimate 
the modal parameters of the structure. The identified modal 
parameters are then used to update a FEM of a section of 
the rollercoaster in conjunction with ANSYS’s Workbench’s 
DesignXplorer which employs Kriging and a multi-objective 
optimization approach [35]. Strain response at unmeasured 
locations are then estimated in a substructured connection 
by means of modal expansion procedures based on sparse 
strain measurements. Confidence bounds on the strain pre-
dictions are provided by propagating the estimation uncer-
tainty through modal expansion. In Method 2, the AKF and 
a substructure of the connection are used, as proposed in a 
recent work of the authors [36], for real-time estimation. 
In contrast to past work, the updated model from Method 
1 is represented in a state-space formulation and used to 
determine strains at unmeasured locations using the AKF. In 
Method 3, the authors propose the use of strain predictions 
from a control location using modal expansion procedures 
as new observations in the AKF. Both the modal expansion 
and the AKF approach can be run in real-time if a model has 
been first updated and the modal expansion equations have 
been set up with baseline recordings. An essential distinc-
tion between Method 1 and Methods 2–3 lies in the type of 
estimation that is delivered. In Method 1 the estimation of 
strain histories is deterministic by definition but extended 
with the estimation of confidence intervals. In this work, we 
further offer a strain error estimate based on modal expan-
sion equations for quantifying the uncertainty contained in 
strain estimates. On the other hand, estimations of the strain 
histories from the AKF consider model error and noise cor-
ruption of observations as stochastic processes into account 
by virtue of the filter’s process and measurement noise. The 
estimated strain time histories from these approaches are 
compared with measured data from control locations.

2 � Methodology

The passage of a rollercoaster train produces a complex 
loading pattern on the structure that is hard to measure, 
model, or predict. The train has seven cars, each car has 
4-road wheels, 4-sideguide wheels, and 4-upstop wheels 
for a total of 12 wheels per car and 78 wheels per train. 
These wheels are never simultaneously in contact with the 

rails due to centrifugal forces and the intricate geometry of 
the structure, which leads to a complex unknown loading 
pattern. Due to a lack of accurate loading information, out-
put-only methods are deemed essential for the estimation 
of strains at unknown locations on the connection bracket.

This section presents the approaches used for the esti-
mation of strain time histories at unmeasured locations 
using response-only measurements. The first method is 
based on model updating followed by modal expansion 
(MUME). The second method uses the updated finite ele-
ment model and the Augmented Kalman filter (AKF) for 
online estimation of strain time histories at unmeasured 
locations. The third method, a newly proposed method 
referred to as modal expansion combined with AKF (ME-
AKF), implements predictions from modal expansion into 
the AKF to improve online predictions.

2.1 � Method 1: model updating and modal 
expansion (MUME)

In this method, natural frequencies and mode shapes are 
first identified from strain and acceleration time history 
measurements. Subsequently, the identified natural fre-
quencies are used to calibrate or update the linear elastic 
finite element model of a section of a rollercoaster. In this 
research, a Kriging model was also used to create and opti-
mize the structural model. Finally, the modal expansion 
method is used to predict the strain response at locations of 
interest as well as error propagation of the estimated strain 
responses. Figure 1 presents an overview of this process.

2.1.1 � Modal identification

NExT-ERA, an output-only or operational modal analy-
sis method, is used to estimate the modal parameters of 
the structure [37]. In the application of this method, the 
cross-correlation function of all measurements with a ref-
erence channel is first estimated using the inverse Fou-
rier transform of the corresponding cross-spectral density 
functions. Then, the eigensystem realization algorithm 
(ERA) is used to realize a mathematical model of the sys-
tem in state-space using the estimated cross-correlation 
function previously obtained. Finally, the natural frequen-
cies, mode shapes and damping ratios of the system are 
extracted from state and measurement matrices. The case 
study presented makes use of stabilization diagrams to 
determine the model order [38]. These diagrams allow 
for the visualization of natural frequencies (or poles) as 
a function of model order. An identified mode is deemed 
stable and physical if the natural frequencies do not vary 
for increasing model orders.
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2.1.2 � Model updating

The expected outcome of the model updating process is a 
finite element model that reliably represents the measured 
data. In this study, ANSYS Workbench was used to model 
the structure and update the model. The DesignXplorer [35] 
module of ANSYS was employed to create and optimize 
a Kriging model. The use of this module allowed for the 
evaluation of parameter sensitivity while providing a better 
understanding of the structure at a little computational cost.

The use of a Kriging model allows for efficient optimi-
zation of the difference between the model-predicted and 
identified natural frequencies obtained from measurements. 
Kriging relates the updating model parameters with model 
outputs using a small number of training data sets. Prior 
to the creation of a kriging model a set of sampling points 
was generated to cover the design space. This process is 
referred as Design of Experiments (DOE). There are several 
DOE algorithms available in engineering literature such as 
Monte Carlo methods, Latin Hypercube and Central Com-
posite Design (CCD) [39]. These methods generate a group 
of sampling points such that the space of random input 
parameters is explored in the most efficient way [40]. The 
central composite design of experiments algorithm is used 

to create the Kriging model. The Central Composite Design 
(CCD) algorithm has been found to be effective when used 
in large-scale finite element models when evaluating struc-
tural dynamics [41–43]. This method combines one center 
point, points along the axis of the input parameters, and 
the points determined by a fractional factorial design [35]. 
This algorithm determines the overall trend of the FE model 
using the stiffness of longitudinal springs located at the left 
and right ends of the section of the rollercoaster (input 
parameters) and the natural frequencies (output parameter) 
obtained from modal analysis. Once a Kriging model was 
defined, a multi-objective genetic algorithm was used for 
the optimization process. Longitudinal spring stiffnesses at 
the end cross-sections of the rollercoaster (3 at each end) are 
obtained as a result of the optimization process. Once a reli-
able model is built, estimates of strains or dynamic behavior 
at unmeasured locations can be inferred [8, 44].

2.1.3 � Modal expansion and error propagation

In this method, estimation of strain time histories at unmeas-
ured locations makes use of the updated FEM and the modal 
expansion approach. Strain time histories �(t) can be cal-
culated as a linear combination of strain mode shapes and 
strain modal contribution time histories as,

where �� is the strain mode shape matrix and q�(t) are the 
response strains time histories in modal coordinates. Using 
a modal expansion approach, the strain mode shape matrix 
can be written as a subset of measured (subscript m) and 
predicted (subscript p) degrees of freedom (DOF): 

�� =

[

Φ�,m

Φ�,p

]

 . If there is a good correlation between the 

updated FEM and identified modal parameters, measured 
strains can be used to determine q�(t) and estimate structural 
response at predicted DOFs.

where �̂p(t) are the estimated strains using mode shapes of 
the updated FEM. Error inhered to mathematical simplifica-
tions or measurements can cause estimated strains to deviate 
from reality.

(1)�(t) = ��q�(t)

(2)�m(t) = �𝜀,m�̂𝜀(t)

(3)�̂𝜀(t) =
(

ΦT
𝜀,m

Φ𝜀,m

)−1

ΦT
𝜀,m

�m(t) = Φ+
ε,m

�m(t)

(4)�̂p(t) = Φ𝜀,pΦ
+
𝜀,m

�m(t)

(5)�p(t) = �̂p(t) + 𝛿�p

Fig. 1   Method 1. MUME method overview
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where ��p is the strain estimation error and is assumed to 
follow a zero-mean normal distribution N

(

0, ��p

)

 . Strain 
estimation errors are approximated in this study using the 
residuals at measured DOFs. These residuals are defined as 
the difference between measurements and those using the 
estimated modal response �̂𝜀(t).

where �m is the residual between estimated strains at meas-
ured DOFs �̂m(t) and actual measured strain time histories 
at measured DOFs �m(t) . Nm is the number of measured 
DOFs. The strain estimation error is approximated as the 
average of residuals at all measured DOFs. The error stand-
ard deviation ��p is then estimated as the standard deviation 
of ��p(t) over a considered time window and is used to set 
confidence intervals on strain predictions. This method is 
implemented using a limited set of measured time histories 
of strains in a rollercoaster connection. Implementation pro-
cedures and resulting strain prediction are described in 
upcoming sections.

2.2 � Method 2: augmented kalman filter (AKF)

In this recursive estimation method, the AKF is used, as pro-
posed in previous research [36] and its predicted strains are 
compared against MUME. The AKF and MUME comprise 
inherently different functionalities. Method 1 or MUME is 
more suited for offline or batch estimation, whereas Method 
2 or AKF aims to be implemented for real-time estimation. 
The updated model in Method 1, is used to determine strains 
at unmeasured location using the AKF with a substructur-
ing approach. Figure 2 presents a flowchart of the method 
subsequently discussed. A support bracket of a rollercoaster 
connection is represented in state-space formulation. The 
prediction of strains within the substructure is then per-
formed using the AKF, a substructured model, and based 
on a limited number of noisy measurements of strain.

The instrumented connection of the rollercoaster is repre-
sented in state-space formulation of the dynamic equations.

where,k = 1,… ,N  is the time step, �k is the state vec-
tor (displacements and velocities),�(t) are the measured 
response quantities, matrices A, B, G, and J, are the dis-
crete-time state space matrices [45]. Given that in this 
research strain measurements are collected, instead of 

(6)�m(t) = �̂m(t) − �m(t)

(7)��p(t) =

∑Nm

i=1
rm(t)

Nm

(8)xk +1 = Axk + Bpk + wk

(9)yk = Gxk + Jpk + vk

displacement measurements, matrix G is pre-multiplied 
by the displacement differential matrix for the DOFs of 
interest, {�} = [�]{�} . Where matrix T can be obtained by 
differentiation of displacements expressed through shape 
functions and nodal displacements of a finite element [46]. 
In doing so, strain measurements can be directly imple-
mented in the AKF algorithm. Random vectors �k and �k , 
represent the process and measurement noise, respectively. 
These noise terms are assumed to be mutually uncorre-
lated, zero-mean, white noise signals with known covari-
ance matrices � and �, respectively . Vector �k contains 
the excitation or input forces acting on the substructure’s 
boundaries. Input forces are defined at the connection 
surfaces of the substructure. In the instrumented roller-
coaster connection input forces are located at the two side 
surfaces, connecting the bracket to the rails, and the bot-
tom surface, connecting the bracket to the main girder. 
Interface forces are considered in the X, Y, and Z global 
directions. Additional force constraints are imposed at 
each interface to reduce the number of estimated forces 
to a total of 9 forces, 3 forces at each boundary joint, 
corresponding to each global direction. Having a single 
resultant in each direction for each interface avoids ill-
conditioning of the estimation.

The prediction of strains within the substructure is based 
on a sparse number of measured strain time histories. Given 
that the driving forces of the substructure dynamics are 
unknown, the state is augmented with the input vector to 

form the so-called augmented state vector �a
k
=

[

�k
�k

]

 . Simi-

larly, the process noise is augmented to �a
k
=

[

�k

�
�

k

]

 , where 

Fig. 2   Method 2. Flowchart of AKF method
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�
�

k
 represents the process noise of the input. Therefore, the 

input estimation is through the following representation [47],

where �a and �a designate the augmented system and output 
matrices respectively, written as,

A random walk model is here assumed for the evolution 
of the unknown augmented input. Based on this approach, 
both input and state are recursively estimated with the stand-
ard Kalman filter algorithm, as shown in Fig. 3. Initial value 
zero can be assumed as an initial step for the prediction of 
state and one for the first estimation of the covariance. As 
shown in further works on joint input-state estimation [30, 
48], the input may be reliably reconstructed only at the 
locations where some measurement exists regardless of the 
initial value of state assumed. However, the state estima-
tion is reliably estimated due to the availability of the state-
space model of the system. In the prediction step, the state is 
advanced based on the equations of the system, while in the 
update step, the predicted state is updated through a Bayes 
formula using the latest strain measurements.

2.3 � Method 3: modal expansion and augmented 
kalman filter (ME‑AKF)

This newly proposed method fuses the predicted strain 
response from modal expansion, while recursively estimat-
ing strain time histories using the AKF. Figure 4 presents a 
flowchart of this method. The proposed ME-AKF assumes 
that the structure’s or substructure’s FEM is reliable and 

(10)�a
k +1

= Aaxa
k
+ wa

k

(11)�k = Gaxa
k
+ vk

(12)�a =

[

A B

0 I

]

(13)�a =
[

� �
]

that predictions obtained from modal expansion equations 
are within a reasonable confidence interval. Virtual strain 
prediction obtained from modal expansion are used with 
actual measured strains in the Kalman Filter in conjunc-
tion with the substructure of the rollercoaster connection. 
Given that the strain mode shape matrix, Φε, remains con-
stant over time, for a particular number of predicted DOFs, 
the state-space model can be modified to include strain 
predictions from modal expansion as new observations. 
Equation (11) or the output equation should be modified 
to reflect the new observations. The modified state-space 
model is then augmented as shown in Eqs. (12), (13) and 
subsequently deployed in Fig. 3. It should be highlighted 
that once the AKF tuning process is concluded, estimates 
of strains at unmeasured locations can be calculated. 
Although tuning of the filter is performed offline, the pre-
dicted state can be used for online estimations.

Fig. 3   Augmented Kalman 
Filter (AKF) Algorithm

Fig. 4   Method 3. Flowchart of ME-AKF method
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3 � Case study: rollercoaster structure

3.1 � Field testing

For a rollercoaster structure in the US, an instrumentation 
system including sensors, using battery-powered wireless 
data acquisition unit, is used to measure the structure’s 
response to moving loads. Strain rosette gauges using quar-
ter arm bridges, accelerometers, thermistors, and an optical 
sensor were installed on a connection of interest. Figure 5 
shows the location of the instrumented connection. The con-
nection consists of a 38.1 mm (1.5 inch) thick steel plate 

bracket that connects to the main box girder located in the 
lower part of the rollercoaster’s superstructure. This con-
nection is located approximately 10 m (32.8 ft) high and 
near the midspan between two columns. The span length is 
approximately 15 m (50 ft). Two circular rails, running along 
the rollercoaster structure, guide the rollercoaster train. 
These rails are supported by two ends of the bracket. The 
rail tubes, the brackets, and the support girder are welded 
together and made of ASTM A572 grade 50 steel. Data col-
lected at a sampling frequency of 200 Hz, from 10 rides and 
under a full train service (with 26 water dummies) is used 
for the estimation of strain time histories in the connection. 
Water dummies of approximately 50 kg (110 lb) each were 
used to simulate the average weight of passengers. The total 
train weight is approximately 11,300 kg (25,000 lb) and 
contains seven cars with one pilot car. Each car has 4-road 
wheels, 4-sideguide wheels, and 4-upstop wheels for a total 
of 12 wheels per car and 87 wheels per train that lead to a 
complex unknown loading pattern. In addition, the stiffness 
and damping of the train were not available during testing. 
Due to the complexity of the loading and lack of informa-
tion, the authors considered output-only methods as more 
suitable for the estimation of strains at unknown locations 
along with the bracket connection.

Four strain rosettes were installed at 50.8 mm (2 inches) 
from the weld toe connecting the bracket to the main girder. 
Figure 6 shows the strain rosettes installed in the connection. 
Mean and standard deviations, of data captured by left side 
the bracket, are shown in Fig. 7. The arms of each strain 
rosette are color-coded to match the measured response 
graph line colors shown in Fig. 7. Lighter colors represent 
strains measured by the left-front strain rosette while darker 
colors show strains measured by the left-back strain rosette. 
The optical sensor signal peaks downward when the roll-
ercoaster train arrives and leaves the bracket. Mean values 
indicate that strains start fluctuating prior to the arrival of 

Fig. 5   Instrumented bracket location with close-up view of bracket 
and instrumentation

Fig. 6   Strain rosettes installed 
on the rollercoaster instru-
mented bracket
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the train and continue varying after its departure. Standard 
deviations (SD) of the data collected is in average between 
one to two microstrains for all loading arrangements on the 
left-front side and about 6 microstrains in average for the 
left-back side. Although repeatability between rides might 
be affected by gravity-driven train speed and axle load dis-
tribution, variations are still small in the left-front location. 
Given the consistency and repeatability of the data captured 
by this strain rosette, strains captured at this location and for 
a loading of 26 water dummies are used to validate strain 
predictions.

Tension and compression strain cycles are evident in all 
arms of the strain rosette when the train crosses the bracket. 
In addition, collected strains are mirroring each other in 
about the same magnitude experiencing tension in one side 
while compression in the other side of the bracket. There-
fore, it is evident that the instrumented bracket is experienc-
ing flexural stresses during each train passage. Furthermore, 
orthogonal arms experience different magnitude of strains. 
Peak strain values can differ up to six times.

Accelerometers in three orthogonal (X, Y, and Z) orien-
tations were also placed on the left-back side of the target 
bracket. Figure 8 shows the raw measured accelerations from 
a full train passage and the location of accelerometers.

Data from these accelerometers indicate that acceleration 
measurements increase as the train approaches the bracket, 
reaching a maximum amplitude right after the train leaves 
the instrumented bracket. Higher magnitude of accelerations 
is captured from the accelerometer oriented in the X-axis 
which is expected given that the instrumented connection is 
located in a section with vertical and horizontal curvature 
and little bracing is found in this orientation. Acceleration 
time histories are used to corroborate natural frequencies 
identified using strain time histories. Although accelera-
tions are typically used for modal identification, only one 
set of triaxial accelerometers was mounted on the connec-
tion. Thus, limited modal information can be extracted from 
these set of acceleration measurements.

Signal to noise ratios (SNR) for each arm of the strain 
rosettes placed on the instrumented connection are calcu-
lated to determine the suitability of the stain time histories 
for estimation of modal parameters. SNR is defined as the 
ratio of signal power to the noise power calculated in terms 
of root mean square of the amplitude of the signal and noise 
time histories [49]. Noise for each strain rosette arm is 
defined as the data captured for about 14 s after each train 
passage and for about 88 s. In addition, the signal is defined 
to start 1.5 s before and end 1.5 s after the train arrival. 

Fig. 7   Strain data from the left-back and left-front rosettes
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Figure 9 show the SNR in dB estimated for all strain rosette 
arms.

The strain rosette arms that measured higher magnitude 
signals are characterized by higher SNR values. The left-side 
locations of the connection comprise overall higher SNR 
values. Given that strain time histories collected from the 
middle arms of all rosettes indicate a low SNR, the strains 
collected from these arms will be excluded from the modal 
identification and modal expansion processes.

3.2 � Finite element model

The complete design or as-built drawings of the roller-
coaster structure are not available to the research team. 
Therefore, a section of the rollercoaster was scanned using 

Lidar technology. A section of about 30 m (100 ft) of the 
rollercoaster including the instrumented connection were 
scanned with a 3D laser scanner to capture overall geom-
etry and a portable Coordinate Measuring Machine (CMM) 
to more accurately cross-scan a connection and its weld. 
Figure  10 shows the scanners employed to capture the 
geometry of the rollercoaster section. The 3D scanner used 
was the Focus3D X 330. This scanner has a ranging error 
of ± 2 mm and levels each scan with an accuracy of 0.015° 
and a range of ± 5° [50]. In addition, a CMM arm with a 
precision of ± 0.020 mm and with a 6-Degrees of Freedom 
(DOF) probe [51] was used to determine in more detail the 
geometry of the instrumented connection.

After the rollercoaster section was scanned, the obtained 
point cloud was converted to a CAD model for drafting 

Fig. 8   Acceleration data in time domain and accelerometer orientation in space

Fig. 9   Signal to noise ratio of 
measured strain rosette time 
histories
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and simplification prior to importing to ANSYS. Figure 11 
shows the finite element model of the section of the roller-
coaster. The arrow shows the location of the instrumented 
bracket. A combination of frame, shell and solid elements 
are used for finite element modeling. Rails and columns of 

the rollercoaster are modeled using frame elements. The 
main girder running along the rollercoaster is a box girder 
modeled using shell elements. Due to the vertical and hori-
zontal changes in curvature along the structure, the addi-
tional DOFs provided by 8-node shell elements were deemed 
necessary when creating the model. Brackets connecting the 
main girder to the rails are modeled using 20-node solid ele-
ments. Due to the complexity of the geometry a combination 
of square and triangular or tetrahedral shape elements is used 
in the model. ASTM A572 grade 50 steel is assigned to all 
elements of the rollercoasters.

A finer mesh is used for brackets closer to the instru-
mented connection. The instrumented connection includes 
additional weld elements modeled with 20-node solid ele-
ments directly connected to the bracket solid elements. Con-
nection between railings and brackets is ensured through 
rigid links connected to all contact nodes on sides of the 
brackets in contact with the railings. The rollercoaster’s 
upright support columns are fixed at the base. In addition, 
the rollercoaster’s left and right ends are constrained with 
three longitudinal springs which orientations are aligned 
with the principal axes of the ends of the rollercoaster’s 
cross-section. To reduce the number of unknown param-
eters, all degrees of freedom at each termination point were 
coupled to one node at the centroid of the termination point 
with six DOFs. A sensitivity analysis of the stiffness param-
eters at termination points showed that natural frequencies of 
the rollercoaster had little correlation to rotational springs. 
Therefore, only three translational springs aligned with the 
principle axes of the end cross-sections were used at each 

Fig. 10   Scanning of rollercoaster section. Top: 3D LiDAR Scanner. 
Bottom: CMM arm

Fig. 11   Rollercoaster Section 
Model and close-up view of 
instrumented bracket FEM 
mesh
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termination point of the rollercoaster. A total of six linear 
spring stiffnesses (three at each end) are used as updating 
parameters of the FE model of the rollercoaster section to 
improve the analytical natural frequencies compared to the 
measured ones.

3.2.1 � Connection substructure

The analysis of complex and large structures, such as roller-
coasters, can be simplified by substructuring the component 
of interest. Dynamic substructuring allows for fast analy-
sis of a substructure without the need of re-analyzing the 
entire structure [52]. Model updating as well as Bayesian 
filtering algorithms are computationally demanding due to 
the large size of the Finite Element Models under study. 
Component Mode Synthesis techniques (CMS) use compo-
nent modes and characteristic interface modes to character-
ize the dynamic behavior of a substructure [53]. One of the 
most commonly adopted techniques is the Craig-Bampton 
method. This method assumes that a finite element model 
can be divided into substructures in which only interface 
degrees of freedom (DOFs) belong to more than one sub-
structure, making each substructure linearly dependent. The 
outcome of this method is a set of relatively low-dimensional 
stiffness and mass matrices, which contain the natural fre-
quency, and mode shape information of the structure[54]. 
The deployment of the Craig Bampton method in large 
structures, such as bridges and wind turbines, has shown to 
reduce the computational effort by more than three orders 
of magnitude while maintaining the accuracy of the model 
[55–57]. The method requires to partition the substructure 
into boundary and internal degrees of freedom. The dynamic 
behavior of the substructure is represented by the following 
equation of motion,

where �, C and K correspond to mass, damping, and 
stiffness matrices respectively. u is the displacement vec-
tor and � is the force exciting the system over time. Single 
and double dot accents correspond to first and second time-
derivatives of displacement, respectively. Subscripts ‘b’ cor-
responds to the boundary or interface degrees of freedom 
(DOFs) and subscripts ‘i’ refer to the internal DOFs of the 
substructure.

The physical coordinates can be transformed into 
Craig–Bampton coordinates by the following transformation,
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The first column partition of the Craig-Bampton trans-
formation matrix, �cm , relates physical displacements at the 
boundary to physical displacements of the internal degrees 
of freedom. This first column partition is usually known as 
the interface constraint mode matrix where �b = −�−1

ii
�ib . 

The second column partition, � , contains the fixed-base mode 
shapes. This partition can be physically interpreted as the dis-
placements of the internal degrees of freedom relative to the 
displaced boundary. �I are the mode shapes of the constrained 
substructure while �m corresponds to the generalized modal 
displacements and contains only the solution for the most sig-
nificant modes. This truncation is justified by the small contri-
bution of the response in higher frequency modes.

By initially substituting Eq. (2) in Eq. (1) and subsequently 
by means of a Galerkin projection, the equation of motion for 
the substructure can be written as follows,

or in a compact form:

The dimension of the reduced system matrices M̃, �̃, and�̃ 
equals to the number of boundary DOFs plus the number of 
modes retained for the internal DOFs. Equation (4) is used to 
estimate the modal response of the substructure (i.e., natural 
frequencies and strain mode shapes) and state estimation of the 
substructure (i.e. displacements, velocities, and accelerations) 
when employed in the AKF.

The rollercoaster in this study is substructured, using the 
Craig-Bampton method, by partitioning the bracket of inter-
est and its weld from the rails and the main rollercoaster box 
girder. Boundary nodes are defined to be those intersecting 
the instrumented bracket and rails as well as those intersecting 
the main girder and the bracket, while the remaining nodes 
are considered as internal nodes. The resulting substruc-
ture is shown as a close-up view in Fig. 11. The model was 
reduced from 80,165 nodes for the entire modeled structure 
to 25,854 nodes in the substructure and from 27,421 to 4,842 
solid elements. Model updating is performed for the overall 
rollercoaster model. The substructure model of the monitored 
bracket and its weld are used for modal expansion implemen-
tation and in the AKF framework for estimation of strains at 
unmeasured locations on the bracket.
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(17)M̃ ̈̃u(t) + C̃ ̇̃u(t) + K̃ũ(t) = f̃(t)
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4 � Case study: strain predictions

4.1 � Method 1: MUME

This section provides the strain predictions via the model 
updating and modal expansion (MUME) method. Natu-
ral frequencies and mode shapes are first identified from 
strain time histories and verified with acceleration time 
histories. Then, identified natural frequencies are used 
to calibrate the linear elastic Finite Element Model of a 
section of a rollercoaster. The calibrated model is finally 
used in the modal expansion method to estimate the strain 
time histories at unmeasured DOFs.

4.1.1 � Signal processing and modal identification

Measured raw strains and accelerations are first filtered to 
reduce noise contamination in modal parameter estimates. 
Data cleansing involves the removal of voltage spikes and 
filtering. A total of approximately 17 min of data at a fre-
quency sampling of 200 Hz are used. Table 1 presents a 
summary of processing procedures used for strain and accel-
eration data prior to modal identification.

Power spectral density functions of measured strains and 
accelerations are shown in Figs. 12 and  13, respectively. 
Strain rosette arms with higher SNR values have distinc-
tive peaks in frequency domain plots. In these plots, peaks 
indicate the natural frequencies of the rollercoaster. Corre-
spondingly, middle arms (Q2381, Q2387, Q2378, Q2384) 
provide little energy at the frequency range of interest, thus 
are excluded from modal identification procedures.

Table 1   Data processing summary

Data type Pre-filtering manipulation Filter used

Strains Observed large outliers and voltage peaks are removed by 
averaging between adjacent data point

A band pass FIR filter is used in the at 0.1 to 30 Hz

Accelerations – A band pass FIR filter is used starting at 2 Hz and 
ending at 30 Hz. Add window type

Fig. 12   PSD of measured strains
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Acceleration data in the frequency domain shows dis-
tinctive peaks in data collected in the X-direction and a 
few peaks in the Y-direction. On the other hand, accelera-
tion data in the Z-direction is discarded due to a lack of 
significant magnitude in the response experienced in this 
orientation.

In-service strain and acceleration data recorded under 
different loading conditions is used to determine the modal 
properties of the rollercoaster. Modal parameters are esti-
mated using the NExT-ERA methods. The NExT method is 
employed using the responses of all orthogonal arms of the 
strain rosettes. Free vibration response of the rollercoaster 
is estimated using the inverse Fourier transform of cross 
power spectral densities (CPSD) with hamming windows 

overlapped 50%. Arm Q2377 from the left front rosette is 
taken as the reference channel. Data collected from this arm 
has the highest SNR and clear peaks when plotted in fre-
quency domain. The ERA method is employed to identify 
the modal parameters of the structure using 2,000 data points 
(or 10 s) of free vibration data from 8 channels (orthogonal 
arms of all rosettes) and a 8,000 × 1,000 Hankel matrix. The 
successful application of this method requires the selection 
of the order of the state-space model. A stabilization dia-
gram is used to determine the lowest model order that can 
provide all the modes of interest [58, 59]. Figure 14 shows 
the stabilization diagram obtained using strain time histories 
from orthogonal arms of all strain rosettes. Red dotted lines 
enclose the identified natural frequencies.

Fig. 13   PSD of measured 
accelerations

Fig. 14   Strain time histories 
stabilization diagram
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Acceleration time histories are used to verify the natural 
frequencies identified from strain measurements. A stabiliza-
tion diagram employing data measured by X- and Y-direc-
tion accelerometers is presented in Fig. 15. Accelerations 
from X-direction is used as reference for CPSD.

Based on the stabilization diagrams obtained from both 
strain and acceleration measured data, the most excited 
vibration modes are between 3.5 Hz and 9.1 Hz. Some natu-
ral frequencies that are visible in the strain-based stabiliza-
tion diagram are indistinguishable in the acceleration-based 
diagram and vice-versa. For instance, a clear peak at 5.3 Hz 
is visible in the strain-based diagram while no peaks are evi-
dent at this frequency in the acceleration-based diagram. The 
differences can be attributed to the location and orientation 
of the sensors [60]. Table 2 presents the identified natural 
frequencies and damping ratios using strain and acceleration 
data. Given that mode shapes are only available from strain 
time histories, further use of modal parameters for model 

updating and modal expansion are based only on strain time 
histories.

4.1.2 � FEM updating

Once the natural frequencies of the rollercoaster are identi-
fied using measured data, the rollercoaster’s FEM is updated 
to match the natural frequencies shown in Table 2. A Kriging 
model and the multi-objective algorithm for optimization are 
implemented to update the six boundary spring stiffness val-
ues of the model. The outcome of the optimization process is 
a FEM representative of the instrumented rollercoaster and 
adequate for implementation of the methods presented in 
this research. ANSYS’s Workbench’s DesignXplorer [35] is 
deployed for the updating. Mode shapes of the first 7 modes 
(between 3.5 Hz and 9.1 Hz), obtained after optimization of 
the left and right boundary conditions of the section of the 
rollercoaster, are shown in Fig. 16.

FEM strain mode shapes are compared to measured strain 
shapes in Fig. 17. In this figure, strain mode shape ordi-
nates are stacked sequentially only for visual comparison 
purposes. Comparison of FEM strain shapes at location of 
orthogonal arms of the strain rosettes shows good agreement 
with identified modes at 7.23 Hz and 9.07 Hz. Although 
other FEM mode shapes show discrepancies with meas-
ured counterparts at certain locations, there is still an over-
all agreement between model and measured strain shapes. 
Given that strain rosettes on the right side of the bracket have 
low SNR, arms Q2385 and Q2386 show larger discrepancies 
between measured and FEM shapes.

Table 3 A comparison of natural frequencies and mode 
shapes (RMS error and MAC) obtained from measured 
strains and FEM.

Fig. 15   Acceleration time histo-
ries stabilization diagram

Table 2   Identified natural frequencies and damping ratios

* Superscript ‘a’ highlights additional modes identified with accelera-
tion measurements

From strain data From acceleration data

Number fn (Hz) Damping 
ratios (%)

Number* fn (Hz) Damping 
ratios (%)

1 3.5 1.43 1 3.5 0.96
– – 0.54 1a 4.5 0.75
2 5.3 – – – –
3 7.2 0.27 3 7.2 0.12
4 7.8 0.21 4 7.8 0.22
– – – 5a 8.9 0.14
5 9.1 0.13 6 9.1 0.12
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Comparison of natural frequencies, ferror, show a maxi-
mum error in natural frequencies of -7.45% for the second 
FEM mode of vibration at 5.34 Hz indicating a reasonable 
match between the FEM and measurements. The largest 
RMS error and lowest MAC value is found for mode 3 at 
7.83 Hz. Although, this mode was initially considered in 
the model updating process, the low MAC value of 0.10 
indicates that identified mode does not correspond to the 

FEM mode and thus is excluded in further calculations 
for response prediction. The low modal damping ratios 
are within the acceptable range for steel structures with 
without any nonstructural components.

The initial rollercoaster model was used in previous 
research [36] and resulted in good predictions when the 
standard AKF was deployed. However, the model updat-
ing procedure provides a more reliable FEM for the 

Fig. 16   Natural frequencies and mode shapes from FE model of rollercoaster
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implementation of the modal expansion. Table 4 presents 
a comparison between the initial and updated FE model’s 
end stiffnesses and natural frequencies.

4.1.3 � Strain predictions and uncertainty quantification

The modal expansion method is used next to predict strains 
at the left-front strain rosette. Strain mode shapes from the 
FEM and measurements from strain gauges are used to cal-
culate the strain time history at unmeasured DOFs. Data 
from the left-front rosette is only used for validation and not 
employed in the modal expansion procedure. The number of 
modes considered in the modal expansion process should 
be less than the number of measurements (sensors) used. 
Given that not all modes are identified using the measured 
strain time histories, FEM modes are reorganized to pri-
oritize the better matching modes. The considered modes 
are 1, 2, 3, and 5. Root mean square (RMS) errors between 

predicted strains and measured strains at the location of the 
left-front strain rosette are calculated for several combi-
nations of sensors and the number of modes. Normal and 
shear strain time histories estimations are generated. Normal 
strain time histories are taken from orthogonal arms while 
shear time histories are calculated based on all rosette arms 
( �xy = 2�45◦arm −

(

�0◦arm + �90◦arm
)

 ). Fig. 18 shows the RMS 
error of predicted normal and shear strain time histories 
while changing the number of measurements and number 
of modes used for the prediction. For instance, the intersec-
tion between three measurements and two FEM mode shapes 
represent the RMS error obtained for predictions using the 
three highest quality measurements and the first two match-
ing mode shapes. Quality of measurements used for predic-
tion is based on the SNR previously calculated.

The RMS error calculated for normal and shear predic-
tions is generally lower in the predictions of normal strains. 
Higher values of error are found overall for the prediction 

Fig. 17   Mode shapes and natural frequencies from measured strains and FEM

Table 3   Identified natural 
frequencies and damping ratios 
vs FEM natural frequencies

*Natural frequency number match with measured strain natural frequencies

From strains measurements From FEM ferror(%) RMSerror MAC

Number Natural fre-
quency (Hz)

Damping 
ratios (%)

*Number Natural fre-
quency (Hz)

1 3.50 1.43 1FEM (1) 3.46 1.45 0.28 0.78
2 5.34 0.54 2FEM (2) 5.77  − 7.45 0.26 0.75
– – – 3FEM 5.99 – – –
3 7.23 0.27 4FEM (3) 6.80 6.64 0.21 0.88
4 7.83 0.21 5FEM (4) 8.10  − 3.33 0.74 0.10
– – – 6FEM 8.93 – – –
5 9.07 0.13 7FEM (5) 9.07 0 0.20 0.91
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of shear strains compared to normal strains. Considering 
that shear strains are calculated based on strain data col-
lected from all arms of the rosette, noise from these sensors 
will be reflected in these calculations affecting predictions 
and RMS error values. Accuracy in the predictions is highly 
dependent on the quality of the data and the reliability of 
the FEM. Therefore, adding noisy measurements with low 
SNR will increase the prediction error. Best predictions are 
computed when the first three modes (modes 1, 2, 3) are 
used in conjunction with the 3 to 4 sensors/measurements 
with the highest SNR.

Predicted strains at the left-front side of the instrumented 
connection from two case scenarios are shown in Fig. 19. 
The predicted strains from Case 1 scenario use modes 1, 
and 2 together with the following three measured strain 
time histories: at left-back εx strain (Q2382), left-back shear 
strain (calculated using Q2380, Q2381, and Q2382), and 

right-back shear strain (calculated using Q2386, Q2387, and 
Q2388). Predictions corresponding to Case 2 scenario using 
modes 1, 2, and 3 together with the same three measured 
strain time histories used in Case 1. These two case sce-
narios correspond to the lowest RMS errors among normal 
and shear strain predictions. Case 1 scenario yields an aver-
age RMS error of 0.65 µε, while Case 2 has an average error 
of 0.98 µε.

Predicted strains from both cases seem to efficiently pre-
dict the overall behavior of εx and γxy strains and closely 
correlate to measured strains. Larger errors are observed in 
predicted εy strains (Q2379) for Case 2. Although an addi-
tional FEM mode was included in this case, Q2379 shows a 
larger difference between measured mode shape and FEM 
mode shape. In addition, the magnitude of strains measured 
and SNR values by this strain rosette arm are considerably 
lower compared to εx strains (Q2377) and the shear strains. 

Table 4   Initial and updated finite element model comparison of spring stiffness and natural frequencies

*Natural frequency number match with measured strain natural frequencies

Spring Stiffness (kN/m)

Location Initial Updated

X right end 10,468 15,715
Y right end 4,422 2,933
Z right end 5,649 6,171
X left end 7,536 2,156
Y left end 50,009 16,610
Z left end 16,490 2,630

Natural Frequencies (Hz)

Number Initial *Updated

1FEM 4.36 3.46 (1)
2FEM 5.95 5.77 (2)
3FEM 6.27 5.99
4FEM 7.34 6.80 (3)
5FEM 8.36 8.10
6FEM 8.99 8.93
7FEM 10.68 9.07 (5)

Fig. 18   RMS error for εx, εy, and γxy strain history predictions for the left-front strain rosette
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It is therefore likely that the inherent measurement noise can 
be more prominently affecting these signal readings. Case 
1 predictions of εx, εy, and γxy strains lie closer to the meas-
ured strains. Given that shear strains are calculated based on 
measurements from all arms of a strain rosette, deviations 
in shear strain predictions can be attributed to accumulated 
error from measuring gauges. Although both case scenarios 
succeed at predicting the εx and γxy strains, Case 1 estimates 
of strains show better overall fit.

The uncertainty of predicted strains is calculated for 
Case 1 using Eqs. (2) and (3). The measured DOFs are 
used to back-calculate the strain modal coordinates at 
each time. Given the non-stationary nature of the signal, 
the error is also expected to be non-stationary and there-
fore, the response time history is divided into four zones 

assuming constant error variance at each zone. Each zone 
is defined based on the magnitude of strains measured. 
Zones 1 and 4 occur before and after train passage, respec-
tively. Zone 2 starts about 3 s before train arrival and ends 
about a second before train arrival. Although during this 
time zone some preceding strains exist due to the train 
passage, these lie outside the dominant strains zone. Zone 
3 includes strains occurring due to a train passage and its 
aftermath. It starts about a second before train arrival and 
ends about two seconds after train departure. A high-pass 
hamming window filter is used to obtain a mean of zero 
for the time history of the strain estimation error ( ��p ). 
Figure 20 shows the error estimated for each zone defined 
over the time history of a train ride. The prediction error 
at each zone is assumed to follow a Gaussian distribution 

Fig. 19   Comparison of strain predictions using different number of modes in MUME. Overall view and close-up view

Fig. 20   Strain estimation error 
( ��p ) time history for MUME 
predictions
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with zero mean and a different standard deviation obtained 
using the residuals as stated in Eq. (3).

A larger standard deviation is calculated during the train 
passage and right after the train passage (zone 3) in Fig. 20. 
Within this zone, the standard deviation of the error is cal-
culated at 5.1 µε. Prediction errors are provided for the 
estimated strain time histories in Fig. 21. Estimated strains 
using MUME method show to be in good agreement with 
measured strains and within a 95% quantile interval (i.e., ± 2 
error standard deviation).

4.2 � Method 2: AKF

In this section, the AKF is used with a substructure of the 
instrumented connection for the prediction of response 
as proposed in previous research [36]. The updated FEM 
model, using Method 1, and the AKF are used to determine 
strains at unmeasured locations. Fig. 18 shows the prediction 
of normal and shear strains at the left-front of the connec-
tion. These strain history predictions are based on meas-
urements from the left-back and right-front rosettes. The 
tuning of covariance matrices for the process and measure-
ment noise is performed heuristically, based on time histo-
ries of normal and shear strains obtained from strain rosette 
measurements. The covariance of the process Q and meas-
urement noise R are tunable parameters, which are config-
ured based on the confidence that may be attributed to the 
precision of the model and the measurements respectively. 
The range of these covariances depends on the range of the 
state and measurement variables themselves (unless regu-
larization is employed). This is due to the additive effect in 

the calculation of the prior state and innovation covariance 
(which participates in the calculation of the Kalman gain). 
More importantly, however, it is the ratio of these covariance 
(QR−1) that largely affects the convergence of the estimates. 
The interested reader is referred to this work for a formal 
analysis on the effects of these noise sources [61].

Based on the above discussion, after tuning, the pro-
cess noise standard deviation for the state is set to 10−11 
for the response and 10−6 for the input part of the aug-
mented state vector. In addition, the standard deviation 
of the measurement noise for the left-back location is set 
to 10−11, 10−11, 10−11 for εx, εy, and γxy respectively, and 
10−13, 10−12, 10−12 for the right front location. Here, strain 
measurements are used, corresponding to low amplitudes, 
which further leads to low attributed covariance levels. 
When these numbers shift close to machine precision, 
thereby affecting algorithmic performance, regularization 
of the state and observation variables would be required. In 
this case, this was not necessary.

Predictions from Method 1 are included in Fig. 21 for 
comparison purposes. In addition, the confidence inter-
val limits located at two standard deviations are shown 
as shaded areas. Strain measurements lie within the 95% 
interval in most of the time histories. The predicted strains 
follow the overall trend of normal and shear strains calcu-
lated from the measured data. Methods 1 (MUME) and 2 
(AKF) result in accurate strain predictions at locations with 
high magnitude of strains while larger prediction errors are 
observed at locations with lower magnitude response where 
strains might be corrupted by measurement noise. Given 
that the input loads are not measured in either method and 

Fig. 21   Method 1 (MUME) and Method 2 (AKF) strain predictions for comparison with measured strains at the left-front location
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that a heuristic approach is used for the estimation of noise 
covariance values when implementing the AKF, the esti-
mated strain histories are considered to be in sufficiently 
good agreement with the measured strains at this location 
using both methods.

There are advantages and disadvantages when using the 
MUME method or the AKF method in a substructure. When 
implementing model-based predictions and model updat-
ing, the reliability of strain predictions is highly dependable 
to the completeness and accuracy of updated FEM and the 
available set of measurements. Therefore, prior to imple-
menting MUME, a close examination of the measured data 
and the initial model is recommended. On the other hand, 
the AKF incorporates modeling and measurement uncer-
tainties in the algorithm. However, tuning of covariance 
matrices for the process and measurement noise can be a 
time-consuming process since it is performed heuristically. 
The AKF does not provide a realistic prediction of error 
(covariance) for the estimated strain time histories, since the 
state covariance tends to quickly converge to a value which 
limit is defined by the selected tuning variances. These lat-
ter noise covariance values, i.e., the state and measurement 
noise covariance, is not typically corresponding to the values 
of the true system. Lastly, it should be noted that the imple-
mentation of the AKF requires the additional assumption of 
an evolution equation for the unknown input (here a random 
walk), which may act at the expense of accuracy, when not 
representative of the actual input dynamics.

4.3 � Method 3: ME‑AKF

In this proposed method, the state-space model of Method 
2 is modified to include virtual measurement equations. In 
Method 2 measurements from the left-back and right-front 
side of the bracket are employed for prediction of strains at 
the location of left front rosette. ME-AKF scheme imple-
ments predictions obtained from ME at the left front rosette 
as new observations in the AKF. Process and measurement 
noise are modified to tune the new system. The process noise 
standard deviation of the state is set to 10−11 and 10−5 for 
the input part of the augmented state vector. In addition, 
the measurement noise standard deviation for the left-back 
location is modified to 10−13, 10−13, 10−13 for εx, εy, and γxy 
respectively, 10−13, 10−13, 10−13 for the right front location, 
and 10−15, 10−14, 10−14 for the left-front location, which is 
the virtual location. The lower noise levels of the virtual 
observation imply that higher levels of confidence are given 
to ME predictions. The addition of virtual ME-based strain 
predictions to this modified system provides additional infor-
mation regarding nearby DOFs, forcing the filter to correct 
states linked to the unknown location of interest. Figure 22 
shows the obtained strain time histories using ME-AKF 
scheme as well as MUME and AKF for comparison purpose.

Strain time history comparisons show that the implemen-
tation of additional stain observations yields predictions 
closer to the measured strains. Table 5 shows the RMS error 
for each predicted strain history. Although predictions from 
the previously implemented AKF resulted in relatively good 
overall estimates, additional information derived from ME 
strain predictions improves ME-AKF results. In addition, 
ME predictions can be especially valuable if engineering 
judgment is used to determine the most informative mode 
shapes and measurements. While predictions by MUME are 
comparable to ME-AKF, the execution of the AKF algo-
rithm allows for online application at little computational 
cost. Both ME and AKF methods have the potential to be 
run in real-time, i.e., in online estimation mode. An online 
ME implementation involves first the calculation of the �+

�,m
 

matrices for each predicted location offline. Figure 23 shows 
the standard deviation derived from the covariance of the 
state estimate by means of the AKF algorithm. The value 
of the standard deviation is progressively reduced as strain 
predictions are estimated over time for Methods 2 and 3. 
However, the standard deviations of the estimated strains 
decrease rapidly, in less than a second to values of 10–7 
microstrains in the ME-AKF, while the AKF converges at 
a much higher value. This trend is indicative of the faster 
convergence of the ME-AKF algorithm, yet it should be 
noted that these predictions for the state covariance – as 
aforementioned—are not yielding a realistic estimate of 
the uncertainty that is present within the strain estimates. 
A more realistic estimate is delivered by means of the pro-
posed empirical rule introduced in Eq. (7) in the context of 
the MUME approach.

The robustness of strain predictions from the implementa-
tion of the ME-AKF utilizing a substructure in an in-service 
complex structure has been demonstrated by directly com-
paring measured strain time histories with predictions of 
classical approaches. When applying the ME-AKF method, 
it should be noted the potential implementation of this 
method to real-time estimates. Since tuning of the filter can 
take place in an offline preparatory phase, e.g., when instru-
menting a new system, the predicted state (displacement, 
velocity, and acceleration) following tuning completion can 
be used for real-time estimations and fast decision making.

5 � Discussion

This paper presents an output-only framework for strain 
prediction in unmeasured locations of a monitored com-
plex structure. The case study of a connection of an in-ser-
vice rollercoaster is presented for illustrating the proposed 
approach. Three virtual sensing approaches are utilized 
for the estimation of strain time histories at unmeasured 
locations within the connection. The first methodology is 



Journal of Civil Structural Health Monitoring	

123

based on classical model updating and modal expansion 
(MUME) to estimate a mapping of the strain response 
at unmeasured locations of an instrumented connec-
tion. The second methodology employs the Augmented 
Kalman filter (AKF) and a model of a substructure of the 
instrumented connection for dynamic estimation of strain 
response at unmeasured locations. A comparison of these 
two methods allows for a cross-validation and recognition 
of the advantages and disadvantages in their implementa-
tion. Subsequently, a third method is proposed. The ME-
AKF method makes use of predicted strain histories from 
ME as virtual observations in the AKF. All three methods 
rely on the utilization of a mechanics-based structural 
model. In addition, a substructuring technique is imple-
mented to reduce computational effort in all methods. The 
output-only methods presented in this research employ 

the dynamic response from strain rosettes and require no 
knowledge of input forces.

A direct comparison of measured and predicted strain 
time histories demonstrates that the strain predictions 
obtained from all approaches provide reliable estimates of 
strain time histories during train passage. Considering (i) the 
low SNR at some of the sensors, and (ii) the lack of input 
load measurements, the estimated strain time histories pro-
vide sufficiently good agreement with the measured strains 
using all methods. However, the proposed ME-AKF meth-
odology provides slightly more accurate predictions without 
the need for batch processing of data.

Although the accuracy of classical approaches such 
as the MUME scheme have been well documented and 
tested, this paper extends this prediction with an estimate 
of prediction errors which provides realistic confidence 
bound for strain predictions. The AKF is implemented in 
an in-service set-up with sparse strain-only measurements. 
Contrary to MUME, AKF is a Bayesian estimation scheme 
that allows for the consideration of modeling errors and 
measurement noise. However, non-optimal tuning of the 
process noise and measurement noise covariances can 
cause inaccuracies in the predicted strain histories. On 
the other hand, the predictions using MUME procedure 

Fig. 22   Method 1 (MUME), Method 2 (AKF) and Method 3 (ME-AKF) strain predictions and comparison with measured strains at the left-front 
location

Table 5   RMS error strain predictions

εx (µε) εy (µε) γxy (µrad)

MUME 1.3 1.4 2.4
AKF 3.7 2.4 6.4
ME-AKF 1.3 1.4 2.2
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are highly dependent on the quality of the model, while 
the AKF shows more flexibility regarding modeling errors 
and can still provide reasonably accurate results in the 
presence of large modeling errors. AKF predictions can 
be improved if additional observations are included in the 
system. Additional observations can be virtual as proposed 
in this study. The weight of different observations in the 
ME-AKF can be adjusted based on the level of confidence 
on different observations. For example, in this study, the 
virtual observations from ME are assigned lower error 
covariance compared to the error covariance assigned to 
actual sensor measurements due to the high level of con-
fidence on the MUME results.

Tuning of the AKF filter can be a cumbersome process 
but it can be performed offline and in a preliminary step. 
Therefore, the predicted time histories following tuning 
completion can be used for real-time estimations and fast 
decision making. Automation of the tuning of the AKF’s 
process is preferable and suggested as subject for further 
research. Although the effectiveness of the AKF is demon-
strated using limited control locations, predictions at critical 
locations (e.g., weld lines) can be demonstrated in further 
research.

In addition, assumptions made during the modeling pro-
cess, and mathematical approximations when updating the 
FE model can affect the predictive accuracy in the methods 
presented. It should be noted that in the case of AKF these 
assumptions do not refer only to the system itself, but also to 
the dynamic model describing the unknown input (random 
walk is considered in this study). The presence of errors due 
to the modeling and measurements noise in field monitor-
ing data, is unavoidable and limits the precision of strain 
estimates. Nevertheless, the prediction errors are mitigated 
in the ME-AKF compared to the AKF results.

The proposed Method 3: ME-AKF is a versatile method 
offering great promise for implementation in any complex 
structure experiencing unknown dynamic loading such as 
bridges, wind turbines, transmission towers, and machinery. 
The applicability of the proposed methodology is demon-
strated and evaluated with operational strain measurements 
obtained from a rollercoaster support structure.

This paper proposes practical approaches anticipated to 
be utilized for fatigue prognosis, stress distribution evalua-
tion, or structural performance assessment under existing or 
future loading. In addition, an output-only framework comes 
with the added benefit of applicability during in-service con-
ditions if instrumentation can be permanently in place.

6 � Conclusions

In this study, three methods (MUME, AKF and ME-AKF) 
are successfully implemented and compared for estimation 
of strain time histories at unmeasured locations of a roller-
coaster connection using sparse sensor measurements. Strain 
predictions from all methods closely predict the measured 
strain time histories at a control point. The MUME method 
enables the prediction of unknown strains at unknown loca-
tions making use of batch data. This method benefits from 
engineering judgement for improvement of strain predic-
tions as these predictions are highly dependent on the used 
finite element model as well as the quality of data. Realistic 
confidence bounds are derived for the estimated strain time 
histories through an empirical approach. The accuracy of 
confidence bounds is verified when comparing the predicted 
response to the measured counterparts. The AKF method 
enables prediction of unknown strains at unknown locations 
in an online mode. The AKF method is more forgiving about 
possible modeling errors due to its flexibility. However, the 
AKF strain predictions are not as accurate as the MUME 
predictions. Therefore, the ME-AKF is proposed as a new 
scheme that improves AKF strain predictions via use of 
additional virtual data from ME as new observations in the 
AKF. This proposed method improves the predictions of the 
AKF and can reliably be used for real-time prediction of 
strains of complex connections at unmeasured locations. The 

Fig. 23   Method 2 (AKF) and Method 3 (ME-AKF) Standard Devia-
tion



Journal of Civil Structural Health Monitoring	

123

weight of the additional virtual observations compared to 
the sensor data can be tuned based on their relative level of 
confidence. All three methods have advantages for applica-
tion in different settings based on the needs of the project as 
discussed in this paper.
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