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ABSTRACT  
 
Real-time fatigue health monitoring has the potential to serve as a valuable complement to 
structural health monitoring (SHM) for bridge inspections. SHM is an objective supplement 
to visual bridge inspections and provides data on a bridge’s fatigue condition between often 
infrequent visits from inspectors. Current methods of continuous structural health monitoring 
for condition assessment are performed by collecting measured bridge response subjected to 
operational traffic from an array of sensors installed on fatigue critical members of a bridge. 
The measured responses are used to determine the remaining fatigue life of the bridge.  

The large amount of data involved in this process complicates the design of a system 
that will automate the data collection process at a bridge, analyze that data, and display 
information about bridge health to researchers and engineers. Variations in bridge designs 
and condition assessment algorithms also necessitate that such a system be modular and 
adaptable to allow for expansion to additional structures. A new system has been developed 
that separates bridge SHM from the data storage and communication system. This 
architecture creates a reliable interface for sending data from one or more bridges to a cloud 
server where it can be processed using modular algorithms that can be adapted for different 
use cases. The cloud-based web service and data repository makes bridge structural health 
data available to researchers at all steps of the process. This system provides significant 
advantages over previous platforms for structural health monitoring and condition 
assessment, most notably in the areas of modularity, extensibility, and reliability. 
 
Keywords: Real-time computing, distributed architecture, REST API, data and system 
preservation, fatigue health monitoring, structural health monitoring, bridge signature, 
statistical hypothesis testing 
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INTRODUCTION 
 
There are about 640,000 bridges in the US. About 40% of these bridges are over 50 years old, 
and 9.1% were judged to be structurally deficient by the American Society of Civil Engineers 
in 2017. The average age of a bridge in the US is about 43 years, meaning that in the coming 
years many of these bridges will reach the end of their intended lives. These bridges are 
essential pieces of infrastructure, with an average of 188 million trips across structurally 
deficient bridges occurring each day (ASCE, 2017). For steel bridges, cyclical loading by 
heavy trucks is a principal cause of fatigue damage and cracking. 

Most state Departments of Transportations (DOTs) do not have sufficient funds for 
the upkeep of their bridges and require federal funds. Currently required 2-year bridge 
inspections are visual and subjective. We need tools and objective measurement-based 
methods for bridge owners for bridge management and decision making. In addition, steel 
bridges prone to fatigue cracks need assessment of their remaining fatigue lives, since they 
are subjected to cyclic heavy truck loadings. 

Real-time structural health monitoring (SHM) is an objective supplement to visual 
bridge inspections and provides data on a bridge’s condition between often infrequent visits 
by bridge inspectors. Current methods of continuous structural health monitoring for 
condition assessment are performed by collecting measured bridge response subject to 
operational traffic from an array of sensors installed on a bridge. The measured operational 
responses are used to assess the bridge condition and identify any potential damage.  

In this research bridge condition assessment is implemented using statistical bridge 
signatures and probabilistic hypothesis testing. A bridge signature envelope prototype is 
generated using a bootstrapping method which gives the expected response of the bridge 
under live load, operational traffic events. This signature envelope represents a confidence 
interval for the response of a healthy bridge that can be used to monitor bridges for potential 
damage. A bridge is considered healthy if a sample of recent events falls within range of this 
signature envelope. Hypothesis testing based on a nonparametric rank sum test is used to 
determine the likelihood that a sample of recent events represents a significant divergence 
from the expected bridge response based on all prior events. This test generates a condition 
assessment of bridge health as a single value that can be used to generate alerts for bridge 
managers based on the severity of the bridge’s divergence from the expected response. 

The results of this condition assessment as well as subsequent predictions of 
remaining fatigue life of bridge components are displayed to researchers and engineers 
through a Fatigue Health Portal (FHP). The FHP can simultaneously monitor bridges owned 
by each state DOT or each district’s bridge manager. The FHP can automatically send alerts 
if a bridge behavior exceeds the normal bounds of operational behavior by exceeding 
predetermined confidence intervals and can display more detailed bridge health visualizations 
that can be used by engineers for quick decision making. Using this measurement-based 
objective approach, if it is deemed to be deficient, the target bridge will be inspected earlier 
than the required 2-year period. More frequent inspections of targeted bridges for in-depth 
study can lead to timely bridge repairs, retrofits, or replacement. This early detection of 
structural damage due to fatigue is cost saving, by preventing further bridge damage and 
leading to a more reliable and safer highway system. 
 
INNOVATIONS 
 
The most significant innovations in the design of a real-time structural health monitoring 
system made during this research have to do with improving the computational, data, and 
network efficiency of the system, simplifying maintenance and expansion to new structures, 
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and increasing system reliability. The key innovations used in this research are: distributed 
architecture, extensibility to new structures, REST API, and data and system preservation. 
 
Distributed Architecture. The components of the fatigue life monitoring system are 
distributed between computers housed at the bridges being monitored, in the cloud, and on 
the workstations of researchers and engineers who are monitoring a bridge. This significantly 
reduces the computing power and storage space required by the system housed at the bridge. 
The cloud part of the infrastructure further allows the workflow for a bridge to be broken up 
into two distributed phases, with preliminary data processing steps performed on the 
computer housed at the bridge, and the rest performed in the cloud. The total amount of data 
collected at each bridge is very large, but once usable traffic events are extracted, the amount 
of data that needs to be sent to the cloud is manageable, so this architecture allows for a 
significant reduction in the network bandwidth required to send bridge data to the cloud. All 
original data is still stored at the bridge as a backup, but only the selected data required to 
analyze a bridge’s condition is sent to the cloud server. 
 
Extensibility to new structures. Unlike the prior prototype (Zhao, 2017), the new system is 
designed to ease extending the monitoring to new types of bridge such as truss, girder, cable 
stayed, and suspension bridges as well as other structures such as roller coasters, mechanical 
systems, airplanes, and aerospace structures. The structural health assessment algorithms for 
each bridge are defined as a scientific workflow, which is a series of data manipulation and 
analysis steps sequenced to create a reproducible information pipeline. Once the algorithms 
for a new kind of bridge are written, setting up a workflow and initializing that structure in 
the web service requires minimal setup. While the system currently implements one analysis 
workflow for the Powder Mill Bridge, researchers can compare different algorithms by 
creating more workflows that run in parallel with the first. For example, this could be done to 
validate a small change to one workflow step, or to compare different decision-making 
algorithms such as one algorithm based on machine learning and another based upon 
statistical hypothesis testing. The data and scientific processes for each bridge are kept 
separate, so that workflows for new bridges can be added. These workflows can express 
differences in analysis algorithms based on structural attributes such as the number of girders 
or layout of sensors, as well as larger differences such as bridge materials and construction 
methods. 
 
REST API. The interaction between the different components of the fatigue life monitoring 
system is made possible by an application programming interface (API) design according to 
the principals of representational state transfer (REST). This architectural style is the 
standard for complex web services and allows either computers at the bridge or end users of 
the system to access resources and data in the cloud, through a predefined set of stateless 
operations. The API allows these interactions to be standardized even when there are 
differences in data types between bridges. 
 
Data and system preservation. The workflow processing system stores data and scientific 
programs in separate directories. These directories are synchronized with a backup cloud 
storage platform, so that a data loss incident affecting the cloud server does not lead to data 
loss. All of the data and programs associated with each new bridge are stored in a new 
directory, so that changes to a bridge workflow cannot affect the workflow of another bridge. 
Additionally, all bridge data is easily accessible through the web interface to the cloud 
storage platform and will remain accessible even while the system is being restored to 
address hardware malfunction. 
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POWDER MILL BRIDGE DATA ACQUISITION (DAQ) ARCHITECTURE 
 
The data acquisition system at the Powder Mill Bridge in Barre, MA was installed by Dr. 
Sanayei and his team when the bridge was constructed in 2009 and instrumented by 
Geocomp Inc., Acton MA. This system includes 100 strain gauges, 69 temperature sensors, 
16 uniaxial-accelerometers, 16 biaxial-tiltmeters, and 2 pressure plates. These sensors are 
connected to high speed data acquisition boxes, which in turn relay data to the bridge 
computer to be uploaded to the cloud (Saberi, M. R. et al. 2016). Figure 1 shows data 
acquisition boxes installed underneath the Powder Mill Bridge. 

 

 
Figure 1. Above: Powder Mill Bridge in Barre, Massachusetts, USA;  
Below: Data acquisition system underneath the bridge by Geocomp 
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Fatigue Health Portal (FHP) Physical Architecture 
 
Raw data from the DAQ system at a bridge is first relayed to an internet-connected computer 
located at the bridge. The Live Load Monitoring computer is represented by the leftmost blue 
column in Figure 2. The bridge computer converts that data to formats that can be easily 
processed by common software, and then can perform any number of initial processing steps 
from the overall workflow. Where to divide the workflow between the bridge and cloud 
computers is generally decided as a point where file sizes drop sharply, in this case 
immediately after single truck extraction.  The portion of the system can also be easily 
replaced by a software simulation for testing, without affecting the operation of later stages of 
the system. This is the Simulated Structure described in Figure 2. 

The cloud web service which supports the fatigue health portal is currently run in a 
no-cost environment hosted on an Amazon Web Services (AWS) EC2 server. The Backend 
Web Service is represented by the central orange box in Figure 2. AWS is currently the 
industry standard for cloud hosting and provides a high degree of freedom in deploying 
services and technologies. The current server is an EC2 t2.micro type instance, which is 
eligible for the AWS free tier and is currently sufficient for processing around 1000 events an 
hour. This server could be scaled up to a more powerful EC2 instance without major changes, 
and without large increases in cost, should the need arise (Amazon Elastic Compute Cloud 
(EC2) Documentation). This server runs Ubuntu 16.04 LTS (Long Term Support), 
guaranteeing that major upgrades will not be necessary for the next five years (Ubuntu Server 
Guide, 2016). This type of Linux server allows for flexibility in the type of research scripts 
that can be run and simplifies development and reuse of the web service software. Notably, 
this system can execute compiled MATLAB programs using the MATLAB Runtime 
Environment, which can be installed natively on Linux systems without the need for a 
MATLAB license (MATLAB Compiler Documentation). 
 All operational data and programs for each bridge are backed up to the cloud storage 
platform Box using a custom sync tool (Box API Overview). Box allows for almost unlimited 
data storage in a directory structure analogous to that already in use on the cloud server. Box 
is also already used extensively by many academic institutions, meaning that researchers will 
be automatically familiar with the interface, and the process of sharing research data with 
collaborators within and between universities will be simplified. 
 
Fatigue Health Portal (FHP) Software Architecture 
 
The central software component of the fatigue life monitoring system shown in Figure 2 is a 
web service that receives data from the computer located at the bridge, stores it, and invokes 
processing of this data into results that drive the web interface to the fatigue life portal. The 
web service both receives and serves data through its Representative State Transfer (REST) 
application programming interface (API) (Narumoto, M. et al., 2018). The web service 
triggers the workflow processing system when new events are uploaded and can also be 
instructed to run this processes at set intervals. This system contains the scientific code and 
algorithms that perform intermediate processing steps and draw conclusions about bridge 
health. Finally, the fatigue life portal is implemented as a separate web application that 
requests bridge data from the web service as needed and displays the bridge status to 
engineers or researchers. 

There must always be at least one computer at each instrumented bridge or structure 
to record the measured data, extract the live load events, and upload the usable data to the 
cloud, but the number of cloud servers in the system could range between one for each bridge 
to only one server that handles the data for several bridges being monitored. The software 
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components of the system are designed so that some share of the data processing can be 
performed on the bridge computer and the rest in the cloud, configurable based on the 
available bandwidth and data storage capacity. The Fatigue Health Portal (depicted in green 
in Figure 2) is a separate software component that can be hosted on the same cloud server 
that handles bridge data, or on a separate server.  

 
Figure 2. Fatigue Health Portal (FHP) system architecture 

 
The cloud bridges web service is implemented in Python using the Flask web framework 
(Python 3.6.5 Documentation, Flask 1.0.2 Documentation). This includes the REST API, an 
indexing system for the list of supported bridges, and the code to trigger the workflow 
processing system when new events are added. This module interacts with the software 
running on the bridge computer and the fatigue life portal through the REST API, and 
interacts with the workflow processing system using a limited set of pre-specified directories.  
 The workflow processing system is implemented in Python and is capable of running 
any kind of scientific scripts that can be executed in a Linux environment. This system works 
by defining a set of processes along with the locations of their input and output data. 
Therefore, the structure of the data directory for a workflow can be defined in almost any 
consistent way when writing the rules of that workflow, although it will almost always be 
preferable to create a single directory containing all bridge data and a second directory 
containing every program in a workflow, which can be stored side by side in the workflow 
directory. Each process is also defined as having a set of dependent processes that must be 
run before that process. For example, the process that performs hypothesis testing currently 
specifies the process that convert strain data directly from the bridge to girder distribution 
factors as a dependency. The workflow processing system is independent of the cloud bridges 
web service and can be run without any knowledge of the web service. Thus, a workflow may 
contain more than two components and – in fact – can contain any number of components. 

The FHP displays the condition of each bridge to researchers and engineers based on 
a statistical Bridge Signature and probabilistic Hypothesis Testing. The primary visual 
representation of the health of a bridge is the signature graph that is rendered for each girder. 
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This graph is generated using a statistical bootstrapping method to generate a 95% confidence 
interval for the expected response of a healthy girder. The current response of the bridge 
based on the last 50 events is then plotted on this signature graph (Follen et al., 2014). A 
bridge girder can be considered healthy if its current response is in range of the bridge 
signature. Figure 3 shows the signature of a girder with different types of simulated damage, 
while Figure 4 shows the healthy bridge signatures for the six girders at the Powder Mill 
Bridge.  

 
Figure 3. Bridge signature damage cases for girder one 
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Figure 4. Healthy signatures for all girders at the Powder Mill Bridge 
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Figure 5. Damage Detection Hypothesis Test Decision Matrix 

 
A single measure of damage for a bridge is also calculated using probabilistic 

Hypothesis Testing to give an immediate view of bridge health to the bridge manager. The 
damage detection module implemented for the Powder Mill Bridge is based on a Wilcoxon 
rank-sum test, a widely used nonparametric hypothesis test which determines whether the 
two samples arise from the same distribution at a defined significance level. In the proposed 
method developed by Zhao (2017), the most recently collected 50 events, which is 
approximately the average number of usable single-vehicle events collected in a week at the 
PMB, are considered as a sample. All previously collected events are considered as the base 
set. The Wilcoxon rank-sum test is performed between detrended GDFs from the recent set of 
samples and the base set with a given significance level. These detrended GDFs are generated 
based on a multiple regression model which removes the effects of environmental factors 
such as temperature, frozen ground, and vehicle travel path from the data, leaving only 
leaving only the live load distribution due to the geometry of the bridge. Figure 5 shows the 
decision matrix for the damage detection hypothesis, which was originally developed by 
Reiff et. al (2016). As shown in Figure 5, there are two types of errors presented. Type I 
errors result from concluding a healthy bridge damaged, leading to over-preparedness. Type 
II errors result from concluding a damaged bridge healthy, leading to under-preparedness. 
The significance level also corresponds to the probability of a Type I error for individual 
girders. The outcome variable from the rank-sum test, h, is a binary variable equal to 0 or 1, 
with a value of unity implying that the recent set is different from the base set. These binary 
outcome variables of the rank-sum test are used to construct a bridge Damage Index (DI) as 
(4) (Reiff et. al, 2016). 
 The overall Type II error is defined as having all the girders with detrended GDFs 
having the same detrended GDF distributions as the base set for a damaged bridge. For the 
undamaged case, 18.9% of the trials have DI values larger than zero, which is a measure of 
the overall likelihood of a Type I error across all trials. For the damaged cases, 100% of the 
trials have DI values larger than zero, which implies that all the damaged cases are identified, 
thus the overall likelihood of a Type II error is zero for the 10,000 trial simulations 
considered. For all damaged cases, 100% of trials have DI values that are equal or larger than 
3/6, which means at least three girders can be identified as damaged for all the scenarios 
considered. In Figure 7, the simulation trials are performed with significance level equal to 
0.1%. In this simulation, lowering the significance level does reduce the capability to detect 
damage, which is illustrated by comparing the results in Figure 6 and Figure 7 with high DI 
values. Nevertheless, the overall Type II error is still zero for the 10,000 trials considered and 
the overall Type I error for this case dropped significantly. From the simulated experiments, 
the proposed method illustrates that the proposed approach, which is based on detecting 
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damage using changes in the detrended GDFs, was found to be very effective for detection of 
damage and simultaneously led to a very low probability of false damage alarms. The DI 
values are used to generate a single bridge condition represented by a color that is presented 
to the bridge manager. These are the same colors used in Figure 6 and Figure 7 so the 
condition will be green if zero or one girders are damaged, yellow if two or three girders are 
damaged, and red if more than half of the girders are damaged. 
 The FHP website is implemented as a static web page using AJAX to dynamically 
load bridge data and the JavaScript visualization library D3 to render bridge health 
visualizations. The portal always displays the most recent data and is a separate software 
component from the analysis modules, so changes may be made to bridge visualizations 
independently of the rest of the system. Additionally, it is possible to create multiples 
versions of the portal using the same data source, either to accommodate different audiences 
or experiment with new kinds of visualizations.  

 
CONCLUSIONS 
 
The fatigue health portal is a powerful tool for managing our ageing steel bridges subjected to 
operational loading due to daily traffic. Bridge owners, engineers, and researchers have real-
time access to structural fatigue and health data for monitoring and management. The cloud-
based architecture of the fatigue life portal is efficient both in its use of computing resources 
and the labor required by bridge engineers and researchers. This system eliminates the need 
for manual data transfers and processing and provides engineers “real-time” protocol for 
access to bridge data and bridge condition assessments. The modular design of the Fatigue 
Health Portal (FHP) makes it easy to expand to new bridges. Website code and scientific 
code are kept entirely separate so that bridge engineers can make changes without knowing 
website code. This separation also simplifies maintenance because improvements can be 
made to the website without influencing the scientific workflow. Storing bridge data in Box 
provides a reliable cloud backup with a very simple restoration procedure. Additionally, most 
researchers in academic settings are already familiar with Box, so the Box web interface 
provides a valuable secondary interface for accessing and sharing bridge data. 
 
 

Figure 6. Damage Detection Rate from 
10000 Trials with α=5% 

Figure 7. Damage Detection Rate from 
10000 Trials with α=1% 
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FUTURE WORK 
 
In the immediate future, new bridges and structures could be added to “remaining fatigue 
life” monitoring using FHP. Data collection is already ongoing at the Memorial Bridge in 
Portsmouth, NH, and could be integrated into the existing system using the REST API. Each 
new bridge added to the system will require a unique workflow, with the degree of difference 
between that workflow and the existing workflow for the Powder Mill Bridge depending 
largely on the degree of difference between the structure and instrumentation of those 
bridges. The fatigue life portal also allows for easy experimentation between different 
damage detection algorithms. Techniques such as artificial neural networks have been shown 
to be valuable in assessing the condition of steel bridges (Weinstein, 2018), and could be 
implemented as an alternate workflow for the Powder Mill Bridge by substituting only one 
workflow step. The FHP can be used for any structural system subjected to cyclic loading 
such as: wind turbines, transmission towers for power lines, airplanes, rotating machinery, 
petrochemical plants, nuclear power plants, and automobiles. The market for FHP is not 
limited to the U.S., as steel fatigue is a systemic problem in most industrial and developing 
countries. 
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