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A B S T R A C T   

The use of dynamic systems models by scientists, managers, and policy-makers is becoming more common due to 
the increasingly complex nature of ecological and socio-economic problems. Unfortunately, most scientific 
training in the life sciences only includes dynamic modeling as elective, supplementary courses at a beginners- 
level, which is not conducive to generating the expertise needed to properly develop, test, and learn from 
dynamic modeling approaches and risks utilization of poor quality models and adoption of unreliable re
commendations. The objective of this paper is to fill part of that gap, particularly regarding model experi
mentation, by summarizing key concepts in experimental design for simulation experiments and illustrating 
hands-on examples of experiments needed for developing a deeper understanding of complex, dynamic systems. 
The experiments include extreme conditions testing, sensitivity analyses of model behaviors given variation in 
both parameter values and graphical (table) functions, and “what-if?” experiments (e.g., counterfactual trajec
tories, boundary-adequacy tests, and intervention threshold experiments). Each experimental example describes 
the theoretical foundation of the test, illustrates its application using an ecological systems model, and increases 
in degree of difficulty from novice to advanced skill levels. By doing so, we demonstrate consistent, scientific 
means to glean valuable insights about the model's structure-behavior link, uncover any unforeseen model flaws 
or incorrect formulations, and enhance the confidence (validity) of the model for its intended use.   

1. Introduction 

Mathematical models, particularly dynamic systems models, are 
quantitative descriptions of the natural and social processes underlying 
the functions and patterns observed in the real world. Models have 
become increasingly useful for scientists, managers, and policy-makers 
due to their ability to capture complex natural and socio-economic 
processes (and the couplings between them) and present them in a way 
that inspires scientific creativity, improves management decision- 
making, informs policy-making processes, and critiques or enlightens 
prevailing mental models (Meadows and Robinson 1985;  
Sterman 1994; Sterman 2002). Despite this growing interest in and use 
of dynamic modeling approaches, most scientific training in the life 
sciences only includes modeling and simulation of such systems as 
elective or minor courses at a beginners-level or are applied to problems 
with a narrow model boundary or scope (e.g., single- to a few system 
processes rather than interactions between ecologic, environmental, 
agricultural, and economic elements), which may limit accumulation of 
diverse modeling expertise in such fields. The general lack of scientific 
training needed to generate capable expertise to properly develop, test, 

and learn from dynamic modeling approaches can lead to poor quality 
models that produce unreliable management recommendations, espe
cially in systems that cannot be reasonably physically studied or tested 
because of spatial or temporal limitations. Because of this growing gap, 
resources are needed to aid scientists in improving their proficiency in 
model development and use. The aim of this paper is to fill part of that 
gap, particularly regarding model experimentation. 

Typically, the modeling process encompasses five key steps: 1) 
problem articulation, boundary definition, identification of reference 
mode behaviors, establishment of relevant time horizons, and statement 
of modeling objectives; 2) dynamic hypothesis formation and conceptual 
model development (e.g., causal maps, subsystem diagrams, etc.); 3) 
quantitative model development, whereby equations, parameters, initial 
conditions, and decision rules are specified to arrive at a simulate-able 
model; 4) model evaluation (or testing), whereby developers inspect 
model structures and outputs to estimate its overall performance to
wards the model goals (which often includes comparison of model 
generated data to observed data, extreme condition and/or sensitivity 
testing, etc.); and 5) policy/strategy design and evaluation, whereby 
modelers specify scenarios of interest, often stated as “what-if?” 
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questions, and implement scientific (replicable) experiments aimed at 
answering the models objectives and crafting effective management 
interventions or policy recommendations (Sterman 2000). This process 
is iterative in nature where knowledge gained in one stage can be used 
to update and improve model components at other stages or in sub
sequent revision processes (Grant et al., 1997; Ford 1999;  
Sterman 2000). 

Model testing (step 4 above) is particularly important since the re
sults of this stage are used to evaluate model performance and behavior, 
validate use of the model as well as quantify the uncertainties, weak
nesses, or shortcomings identified throughout the modeling process 
(Forrester and Senge 1980; Barlas 1989a and 1989b). Within the model 
testing stage, modelers typically rely on comparisons of model gener
ated data with observed data from the real-world system. Although 
intuitive and illustratively simple to interpret, successful behavior mode 
reproduction can be a misleading indicator of model strength, since 
some models may reproduce similar reference modes equally well, but 
can create significant discrepancies in output behaviors with even 
miniscule changes in model structure or parameter values 
(Rahmandad and Sterman 2008). While it is true that no model is 
perfect (i.e., it cannot perfectly represent the real-world system and its 
behaviors), failure to fully understand the range of possible behavior 
modes a model may exhibit (and why it exhibits them) or to appreciate 
the model's weaknesses limits the learning process and bypasses op
portunities for model improvement. This could become problematic, 
since identification of high-leverage management or policy changes 
(step 5 above) may not be observable if a model is lacking key in
formation links, feedback processes, or structural elements that could 
have easily been included if recognized (step 4 above). Recognizing 
model limitations and knowledge gaps are important steps in admiring 
the problem at hand and appreciating its complexity, particularly in 
light of the complex, dynamic nature of the systems being studied, such 
as ecological or agricultural systems (Grant et al., 1997; Dalton 1975;  
Turner et al., 2016). 

Unfortunately, experimental model testing is an overlooked step of 
the modeling process (Peterson and Eberlein 1994; Kleijnen et al., 
2005), many tests that should be completed are abandoned after 
checking the model's ability to replicate historical data (Sterman 2002), 
and our intuitions about the cause-and-effect relationships, even in 
simple systems, is extremely poor (Sterman 1994; Cronin et al., 2009;  
Sterman, 2009). Therefore, it is critically important when developing 
and evaluating a dynamic model, one should incorporate a variety of 
scientific tests aimed at measuring the robustness of the model to sig
nificant parameter value or structure alterations, develop a deeper 
understanding of system's structure, and evaluate alternative system 
states arising from varying management decision rules. Learning to 
effectively design and implement a variety of such experiments is a 
useful addition to any modeling practitioner's tool box as it would aid in 
multiple stages of the modeling process (e.g., model boundary identi
fication, hypothesis formation, overall model evaluation, and inter
pretation of key model insights) and hedge against bias or faulty in
ferences about model validity. 

The objective of this paper is to summarize some concepts central to 
the design of experiments, specifically simulation experiments, and the 
common tests useful for developing a deeper understanding of complex, 
dynamic systems. This is a valuable contribution for the systems mod
eling fields on the whole, since much of the development of these tests 
reside in business management and operations research literature. To 
facilitate the diffusion of and improvement in using these model ex
periments for ecological and agricultural model applications, concepts 
from traditional experimental design are translated into important 
considerations for design of simulation experiments (Sections 2 and 3; 
readers interested in the theory and methodology underlying these se
lected simulation experiments are encouraged to start here). Then 
several illustrative examples are provided and discussed (Section 4; 
readers interested more in the application of the modeling experiments 

may start here and reference the theoretical sections as needed). The 
paper concludes with brief comments about the proper development 
and use of systems models. 

2. Design of experiments: basic framework and key terminology 

The main tenets of traditional design of experiments (DOE) include 
control, replication, and randomization. Experiments are investigations 
where the system under study is under the control of the investigator, 
meaning that subjects of the investigation, nature of treatments or 
manipulations, and measurement procedures are all set or designed by 
the experimenter (Cox and Reid 2000). With experimental controls, 
investigators should account for potential sources of error and varia
bility through systematic DOE (Sanchez 2005). Replication (or repeti
tion) to gain more data is required to obtain more precise results (e.g., 
narrower confidence intervals), while randomization (i.e., random 
order of experimental treatments such that one's performance does not 
depend on another) guards against the possible insertion of investigator 
biases in system response to treatments (Cavazzuti 2013;  
Sanchez 2005). Both replication and randomization are requirements of 
good DOE in order to avoid systematic errors as well as estimate the 
magnitude of random errors (Cox and Reid 2000). 

In performing DOE, and assuming the problem at hand is well de
fined (modeling step 1), the experimenter chooses factors (or variables 
or parameters) in which to vary and the design space (or range) that 
each factor is allowed to vary within (Cavazzuti 2013). Factors may be 
qualitative, quantitative, discrete, or continuous in nature. In practice, 
the number and nature of parameters, treatment values or ranges, and 
replications are selected based on what can be afforded by the in
vestigators. In terms of inputs (e.g., treatments), outputs (dependent 
variables), and goals (e.g., objective functions), the latter two are also 
called response variables while the former may be referred to as the 
sample space. A scenario or design point is a combination of values for all 
factors (Kleijnen et al., 2005). 

Effective DOE increases the efficiency of an investigation by limiting 
(or eliminating) trial-and-error treatment strategies and avoiding con
founding results that make implementation or adoption of findings 
difficult (Kleijnen et al., 2005). Some traditional DOE designs include 
randomized complete block, full and fractional factorial, central com
posite, Box-Behnken, Plackett-Burman, Taguchi, Latin Hypercube, se
quential bifurcation, and frequency-based, among many others. The 
purpose is not to review these designs in depth but simply acknowledge 
the diversity of useful designs available depending on the problem at 
hand.1 Below, some variations of these designs are shown in the ap
plications specific to modeling dynamic systems. Lastly, DOE should be 
viewed through the context of not only the environment that an ex
periment takes place (e.g., field, soil, animals, etc.), but also the context 
of the experimenter, because no experiment exists unless someone has 
asked a particular question, found no suitable answer, and thought it 
was important enough to invest the time and resources to carry out 
(Pearce 1983). In the terms of dynamic systems models, experimenter 
context can include both the modeling or programming language one 
uses to carry out an experiment about the real-world, as well as the 
experimenter's own mental model (Peterson and Eberlein 1994). 

3. Design of simulation experiments 

The DOE is an essential but often overlooked step in the modeling 
process (specifically steps 4 and 5 defined above; Pearce 1983;  
Kleijnen et al., 2005; Peterson and Eberlein 1994). Many important 
tests are never done or investigators simply stop with replication of 
historical data (Sterman 2002). Still worse, unplanned, hit-or-miss 

1 Interested readers are encouraged to see references cited in this section for 
in-depth reviews of these procedures. 

B.L. Turner   Ecological Modelling 434 (2020) 109246

2



experimentation can often be frustrating, inefficient, and ultimately 
unhelpful (Kelton and Barton 2003). This can be extremely proble
matic, since the boundaries of our mental models and the inferences we 
make about complex dynamic systems tends to be deficient 
(Sterman 1994). Simulation models can be used to mimic complex 
systems but can be manipulated in ways that are too slow, too costly, 
unethical, or simply impossible to complete in the real-world (Peck 
2004; Sterman 2002). For example, it may be too slow or costly to 
perform a grazing management study across an entire area of interest 
(e.g., whole ranch, county, or watershed-scales) or test the impact of 
redesigning an irrigation district delivery system. Likewise, when in
volving scarce resources (e.g., ground water or surface-water dependent 
systems) or threatened or endangered species, it may be viewed as 
unethical to proceed with the degree of manipulation needed for tra
ditional experimentation. Models can therefore be used to represent 
such systems and allow for experimentation and learning about the 
real-world given such constraints. 

Often in traditional DOE, the number of variables selected is small 
and their range of variability restricted due to social or economic 
constraints (e.g., limited time, labor, and budgets; biologic, ecologic, or 
ethical limitations). Modern modeling platforms overcome these ex
perimental constraints given their ability to simulate systems across 
time and space rapidly and without consequences (intended or other
wise) to the real-world. Although model experiments are generally free 
of the constraints encountered when conducting real-world experi
ments, the same general principles apply, namely design of treatments 
and controls, randomization or estimation of uncertainty in the system, 
sample size considerations, and replicability so others can repeat and 
extend experiments elsewhere (Sterman 2000; Peck 2004;  
Kennedy 2019). Additionally, model experiments should be conducted 
in a reflective and iterative manner so that testing uncovers model 
flaws, challenges assumptions, and encourages critique and improve
ment in mental models and real-world systems (Fig. 1) (Sterman 2000). 
By doing so, simulation speeds up and strengthens the learning process, 
stimulates improvement in both mental and formal models, improves 
our intuition about system dynamics, and because the complex nature 
of dynamic systems, makes simulation the only practical way to test 
models (Sterman 1994; Sterman 2002). 

Although there is variability in the descriptions of simulation ex
periments due to nuances in alternative modeling paradigms, there are 
at least three common shared purposes for design and use of simulation 
experiments: (i) evaluate the robustness of the system model, (ii) de
veloping depth of system understanding, and (iii) comparing effec
tiveness of alternative assumptions, decision rules, or policies 
(Ford 1999; Sterman 2000; Kleijnen et al., 2005). However, it is im
portant to recognize that there are a variety of other tests useful for 
model calibration and evaluation, such as behavior reproduction tests 
(Oliva 2003; Martinez-Moyano and Richardson 2013) that are typical of 
many modeling applications across skill levels. In addition, there are 
highly advanced model development and analysis procedures, such as 
bootstrapping for parameter value confidence interval estimation and 
hypothesis testing (purpose i and ii above; Dogan 2007), feedback loop 
dominance and eigenvalue elasticity analysis (purpose ii above;  
Oliva 2015; Oliva 2016; Naumov and Oliva 2018; Kampmann and Oliva 
2020), or integration of behavioral economic theory into dynamic de
cision-making frameworks employed in models (purpose iii above;  
Langarudi and Bar-on 2018; Mohaghegh and Größler 2020) that re
quire the most expert modeling skill and a combination of mathema
tical or programming software applications. Each of these are beyond 
the scope of this paper. Here, we focus on a non-exhaustive but com
prehensive set of experimental tests to aid in the three purposes de
scribed above and that progress in difficulty to guide users from novice 
to advanced skill levels.2 

3.1. Experiments for system robustness to extreme conditions 

Much knowledge and information about the real-world pertains to 
the behaviors and consequences given extreme conditions that, if in
corporated into a model, results in improved model performance both 

Fig. 1. Iterative management and modeling processes, whereby mental models, formal models, and the real-world outcomes feedback on each other to create the 
dynamics of systems we observe. 

2 An important note here is that tests applied to dynamic models can be used 
to assess more than one objective. For example, an extreme condition test, 
which is a kind of sensitivity test, may be used to assess model equations and 
behavior under extreme conditions as well as to uncertain parameter values and 
the overall model structure (i.e., are physical laws conformed to?; are the de
cision rules of actors representative given extreme conditions?). 
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in and out of the normal operating region (Forrester and Senge 1980). 
Therefore, models should possess internal robustness, meaning that the 
behaviors produced by the model should be realistic even when ex
treme input, parameter, or decision-rules are imposed on the model 
(Sterman 2000). 

Extreme condition experiments may be implemented as switches 
(turning variables on or off) or step or pulse functions with inordinately 
high or low values relative to the model's standard formulation (minus 
infinity, zero, plus infinity; Forrester and Senge 1980). Extreme con
dition tests are one of the most important experiments to consider 
during the model evaluation and testing stage because a) it is a pow
erful experiment for uncovering flaws in the model and b) it enhances 
model utility for analyzing how a system operates outside its normal 
region (Forrester and Senge 1980; Martinez-Monyano and Richardson 
2013). Interpretation of extreme conditions test results depends on the 
application at-hand, but should follow rules of logic and reasoning re
garding possible, and realistic, real-world behaviors. For example, plant 
production cannot occur without water for evapotranspiration, a water 
reservoir cannot store negative volumes of water, and small-holder li
vestock herd sizes cannot go below zero. Likewise, with unlimited 
water, plant production should reach its biological limit and then cease 
to grow, unlimited rainfall will fill the reservoir to its capacity at which 
point it begins to overflow, and livestock herd sizes may grow under 
favorable conditions but be subject to their available feed resources 
(i.e., if forage resource and stored feed levels become static herd sizes 
should cease to grow). The extreme condition test aids in identification 
of model flaws and inconsistencies, and therefore the mental models of 
those in the system. As such, extreme condition tests act as model 
“reality checks” (Peterson and Eberlien 1994). 

3.2. Experiments for developing depth of system understanding 

All models include some degree of uncertainty due to assumptions 
made about parameter values, causal relationships, the model structure 
itself, and errors in input data (Leinweber 1979; Hekimoǧlu and Barlas 
2016). Therefore, experiments are required to develop depth of un
derstanding about the particular system of interest. There are many 
ways these tests can be done, including the use of step, ramp, or pulse 
functions as well as sensitivity analyses (Forrester and Senge, 1980;  
Barlas 2007). Sensitivity experiments, particularly behavior-mode (or 
multiple-mode sensitivity) tests, are a principal method used to shed 
light on the possible dynamics, distribution, and uncertainties of dif
ferent behaviors that may arise from a given system (Tank-Neilson 
1980; Forrester and Senge 1980; Saltelli et al., 2000). Behavior sensi
tivity tests identify whether or not shifts in model parameter values or 
relationships (including graphical or table functions) can create dif
ferent behavior modes or cause the model to fail previously-passed 
behavior tests (Forrester and Senge 1980). The latter is an important 
feature of policy analysis described below. 

When experimenting with uncertain parameter values, a sample 
design must be constructed which specifies the number of simulations 
to include in the sensitivity tests as well as the range assigned to each 
parameter value (preferably twice as large as statistical or judgmental 
considerations suggest; Ford and Flynn, 2005; Hekimoǧlu and Barlas 
2016; Sterman 2000). Although parameter values may be altered one 
variable at a time, it is recommended that multiple parameters be ad
justed simultaneously in order to analyze their combined effect on 
model output (Hekimoǧlu and Barlas 2016) and that any inter
dependencies may be identified (Ford and Flynn 2005). When con
ducting sensitivity experiments, it is critical to identify which type of 
sensitivity is being measured: numerical sensitivity (where a change in 
assumptions results in changes in numerical results), behavior-mode 
sensitivity (where a change in assumptions changes the model's patterns 
of behavior), or policy sensitivity (where a change in assumption re
verses the impacts of a proposed decision; Sterman 2000). Each method 
described below outlines useful ways of measuring numerical, 

behavioral, and policy sensitivity. 
Due to the nature of simulation in general, all models express nu

merical sensitivity. Therefore, one objective of sensitivity experiments 
is to identify which inputs or parameters have the largest effect on 
model output or state variables. Ford and Flynn (2005) demonstrate a 
statistical screening procedure for multivariate sensitivity analysis 
based on the correlation coefficient (CC, ranging from −1 to 1), typi
cally denoted r, given as 

=r (X X̄)(Y Ȳ)
(X X̄) (Y Ȳ)

i i

i
2

i
2 (1) 

where r represents the CC, xi and x̄ are the point values of the in
dependent variable at time i and the mean x value, and yi and ȳ are the 
point values for the dependent value at time i and the mean y value. For 
each unit of time in the simulation, a CC is estimated for the each in
dependent variable on the dependent variable, which can be used to 
identify possible interdependencies (i.e., when input variables, in the 
real-world, vary dependently with one another), in which model ad
justments to account for relationships may be necessary. The CC also 
allows one to rank the most influential factors on a given state variable. 
Using this approach facilitates estimation of tolerance intervals with a 
given confidence level (Hahn and Meeker 1991; van Belle 2002). 

Although sensitivity experiments on parameter values are necessary 
in order to understand the effect individual or groups of parameters 
have on a particular model, such tests must be complemented with 
sensitivity experiments of graphical (table) functions, which are 
common in dynamic systems models (Ford, 1999; Eker et al., 2014). 
Graphical functions represent the relationship between two variables, 
one the independent and one the dependent variable (Deaton and 
Winebrake 2000; Eker et al., 2014).3 They are useful especially when 
real-world relationships between two variables are known to exist but 
where specific analytic equations are unknown, although if analytic 
equations are known from prior research these are often included as 
graphical functions. Because of the subjectivity associated with gra
phical functions there is added uncertainty in model outputs 
(Eker et al., 2014). Eker et al. (2014) extended a method by Hearne 
(2010) to generate alternative functional forms of graphical functions 
in an automated matter to facilitate graphical function sensitivity ex
periments. Based on perturbation theory, the method uses “distortion 
functions” multiplied by the model's original graphical function to ar
rive at alternative nonlinear relationships between independent and 
dependent variables. Distortion functions are composed of independent 
parameters that create alternative functional forms and are easy to test 
experimentally using the same procedures as those used to test para
meter value sensitivity (Eker et al., 2014). The simplest distortion 
function, triangular, is given by 

= + x c
p c

h(x, p, m) 1 m ( )

= >c
a x p
b x p
,
, (2) 

where m represents the maximum deviation from 1 (ranging from −1 
to 1) and p is the point where this deviation occurs (ranging from 0 to 
1). Different combinations of distortion function parameter values re
sult in different table function shapes. Distortion functions may be 
linear (triangular) or nonlinear (sine or cubic) in nature, however, tri
angular functions are most easily controlled and interpreted, especially 
using scatter plots and correlation coefficients (Eker et al., 2014). 

Lastly, Hekimoǧlu and Barlas (2016) demonstrate, using traditional 
sensitivity analysis, a means to differentiate changes in model behavior 

3 Graphical functions are also called table functions, and are often para
meterized as a series of x-y coordinates representing the relationship between 
an input variable (x) and the response (y) that is used elsewhere in a model. 
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modes and quantify behavioral sensitivity outcomes. Behavior-modes 
are most simply defined as the pattern over time expressed in the 
variable of interest (see Appendix Fig. A1). The primary behavior 
modes are zero/constant, linear growth/decline, exponential growth/ 
decline, goal seeking growth/decline, S-shaped growth/decline, growth 
and decline or decline and growth, and oscillation with/without 
growth/decline (Walrave 2016). When identifying shifts in behavior- 
mode, a behavior pattern measure must be specified and created in the 
model for further analysis given the lack of automated means to identify 
and measure behavior-mode changes. After selecting input parameters, 
their ranges of values, and conducting the sensitivity experiment, in
dividual trial results are screened (by visual inspection of the output 
data) and grouped into those that exhibit similar behavior modes. Next, 
pattern measures are estimated (e.g., growth rates, periods or ampli
tudes of oscillations, peak-point of a boom-bust cycle, etc.) and re
gressed against standardized input parameter values of the sensitivity 
trials, i.e., by 

x x̄
x (3) 

where x represents the nonstandardized parameter value, and x̄ and σx 

are the mean and standard deviation of parameter values.4 Using 
standardized parameter values improves interpretation of regression 
results (Kleijnen 1995). Regression outputs can then be used to examine 
the nature of influence and rank of importance of each parameter on the 
behavior pattern, which can shed light on potential high leverage 
parameters in the model. For example, t-tests indicate significance 
while the signs of the regression coefficients indicate the direction of 
correlation (or polarity) between the parameter and the behavior 
measure (assuming parameter values used in sensitivity came from 
independent distributions). 

3.3. Experiments for comparing appropriateness of alternative assumptions 
and effectiveness of new decision-rules or policies (counterfactuals or what- 
ifs?) 

Whereas the above experiments are generally conducted by varying 
parameter values or functions, experiments for comparing the appro
priateness of new assumptions or effectiveness of new management 
decisions or policies to achieve desired system behaviors are conducted 
through manipulating components of the model structure itself. Such 
experiments are also called intervention studies, changed-behavior- 
prediction tests, boundary-adequacy tests, or policy-sensitivity tests 
(Forrester 1961; Forrester and Senge 1980). Often these take the form 
of designing “what-if” experiments, which include system improvement 
and boundary-adequacy tests via creation of additional model structure 
(Forrester and Senge, 1980; Morecroft, 1988; Martinez-Moyano and 
Richardson 2013). What-if experiments are typically performed using 
ad hoc adjustments of key model parameters (e.g., Repenning, 2001;  
Walrave et al., 2011) as well as functional values, functional shapes, 
and forms of decision equations (Barlas 2007). Boundary-adequacy 
experiments are uniquely important because they test whether or not 
modification of the model boundary assumptions would change policy 
recommendations arrived at in the original analysis (Forrester and 
Senge 1980). 

When future input values or forcing functions are highly uncertain, 
these tests may be applied retrospectively (i.e., backcasting) to analyze 
how “counterfactual trajectories” in key model structures would alter 
behaviors observed in the known past (Srinivasan 2015; Gunda et al., 

2018). When inputs or forcing functions have an estimated trajectory or 
distribution, models can be run into the future (or past) to forecast (or 
backcast) potential system responses to the alternative assumptions or 
conditions. Once alternative scenario, decisions, or conditions are si
mulated, the effectiveness of proposed system changes can then be 
measured to identify the degree of change in model behavior as a result 
of the alternative assumption or scenario (Yücel and Barlas, 2015). 

In order to quantify potential effects of system improvements, one 
may examine “what-if” questions through the analysis of intervention 
thresholds (i.e., the minimum intervention size and implementation 
time that results in the desired behavior change; Walrave 2016). Using 
atomic behavior patterns and their associated threshold indicators5 

(i.e., the point where a model behavior shifts from one atomic behavior 
pattern to another; often observed using the first and/or second deri
vatives), a model is iteratively tested using pre-determined intervention 
sizes and times, which represent the “what-if” questions of a proposed 
new policy, until the intervention threshold is reached or the entire 
search space has been simulated (i.e., where no intervention thresholds 
were identified). Using the resulting simulation data, an intervention 
threshold graph may be constructed to indicate the required interven
tion size at a given time to create the desired shift in behavior pattern 
(Walrave 2016). This approach can be implemented using sensitivity 
analysis (described above), but where the nature of the intervention, its 
size, and time applied to the model are sensitivity inputs parameters. 

Lastly, given the problem-oriented nature of systems analysis, 
modeling generally aims to identify remedies to problems. System im
provement tests seek to identify whether or not the modeling process or 
the policies or strategies identified by the model experiments actually 
led to improvements in the real-world's system structure and behavior 
(Sterman 2000; Martinez-Moyano and Richardson 2013). Ideally, in
tervention studies should follow good experimental design protocols, 
with control and treatment groups if possible, or with natural experi
ments comparing the results from those who changed behaviors as a 
result of the modeling process with those who did not participate 
(Sterman 2000; Oliva 2019). 

3.4. Preparing a model for laboratory testing: notes on model calibration, 
evaluation, validation 

Before the experimental examples are illustrated, it is important to 
realize that before a model is tested it must provide an adequate re
presentation of the problem at hand. This is often captured in a dynamic 
hypothesis (DH), which is a working theory about how a system's 
structure of decision-rules and feedback processes generate and per
petuate the problematic behavior of interest (Richardson and Pugh, 
1981; Sterman 2000). The DH should link observable patterns of be
havior to micro-level structures (ecologic, environmental, socio
economic, decision-making, etc.; Forrester 1985; Morecroft 1983). A 
model as a laboratory should translate the DH into a quantitative 
working model. Therefore experimental design and testing is only as 
good the DH (Oliva 2003). A model calibration process should be used 
as a test of the DH to ensure that the model captures the observed 
behaviors with the right structure (Oliva 2003). There are several 
means in which to build confidence in a model and its DH prior to 
experimental testing, including hand calibration, automated calibration 
(see Oliva 2003 for example), and statistical evaluation to observed 
behaviors. Tedeschi (2006) and Bennett et al. (2013) provide reviews of 
statistical evaluation techniques useful for comparing model predic
tions with observed data from the real system. Bennet et al. (2013) also 
provide a general procedure for model evaluation. The critical ques
tions one should answer during the model development and calibration 
phase include: 1) does the model accurately capture the DH?; 2) which 
data can/will be used for calibration versus evaluation?; 3) do the 

4 Standardizing is a means to rescale data (input or output) to achieve a mean 
of zero and standard deviation of one. Standardardization is important when 
variable or parameter scales differ (often the case in multivariate model sen
sitivity analysis) and by transforming the numerical data we add precision and 
stability and reduce multicollinearity issues. 5 A summary of these are illustrated in the Appendix. 
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expected patterns correspond to those in the real world?; and 4) is the 
model precise, accurate, or both? (Tedeschi 2006). Upon successful 
model development, one should have adequate knowledge of the 
model's performance (i.e., its strengths and accuracy, weaknesses and 
sources of errors) to be able to properly interpret results of model hy
pothesis testing. 

Although model validation is beyond the scope of this paper, it is a 
concept that all modelers must consider. Validation is the process of 
establishing confidence in a model such that it can be used for its 
particular purpose (Forrester and Senge 1980). Although some hold 
that model validity equates to truth of the model, many in the field of 
systems analysis hold that confidence is a better arbiter of validity 
because there is no feasible way to prove a model absolutely and 
completely represents reality (Forrester and 
Senge, 1980;Tedeschi 2006). Whether one adopts truth or confidence as 
their model validation criterion, it is clear that neither can be achieved 
without adequate model experimentation. Judging the validity of a 
model without having done the basic experimental tests (described 
below) exposes the investigator to tremendous risk, since it will be 
nearly impossible for them to correctly infer the full range of possible 
behaviors and outcomes given the dynamic nature of our ecological, 
agricultural, and social systems. 

4. Model application: experimentation examples with discussion 

To enhance the adoption, use, and documentation of simulation 
experiments for both novice and advanced modelers alike, we demon
strate and discuss each of the experiments described above using a 
moderately complex, dynamic systems model. The model was devel
oped based on a common problem in irrigated agricultural systems that 
rely on surface water supplies for their water sources. In such systems, 
surface water flows are diverted from a river source to provide irriga
tion water to cropland. However, surface water diversions often has 
deleterious effects to native ecosystems (in terms of both habitats and 
individual species) through the reduction in baseline water supply that 
the ecosystem has relied upon for its growth and development. In ad
dition, irrigation diversions can escalate the impact of shrinking water 
availability for the ecosystem depending on the season of year (which 
can coincide with when water use by native ecosystems is greatest), 
type of irrigation system used (e.g., conveyance structures for delivery 
and return flows as well as the type of irrigation application, such as 
drip, flood, sprinkler, all influence the infiltration, recharge, runoff, and 
return flow dynamics), and cost-effectiveness of diversion (e.g., mar
ginal cost of water and infrastructure; level of public subsidy supporting 
the system, etc.). Water diversions not used for agriculture are often 
transferred to municipal and industrial uses that have grown in con
junction with population growth and economic expansion. 
Unfortunately, degradation of native ecosystems has precipitated a 
range of losses or reductions in ecosystem functions that support human 
well-being but whose economic values have not been well captured for 
decision-makers. The tension placed on stakeholders in these systems 
continue to rise due to the array economic, political, and social interests 
at play. The case study model profiled below captures the trade-off 
between agricultural water diversions from a river source and the 
ecologic consequences to a wildlife refuge that also relies on water from 
the river (Fig. 2; an expanded model illustration and supporting model 
files are provided the Appendix Fig. A2). The purpose of the model is to 
generate insight for policy-makers about the trade-offs between a sur
face water-supplied irrigation system and a native wildlife refuge that 
resides downstream from the diversion point and surrounding crop
lands and identify possible management strategies that balance the 
economic benefit of irrigation without compromising the sustainability 
of the wildlife refuge. 

4.1. Dynamic hypothesis and model overview 

The wildlife refuge is dependent on water from the river to support 
native ecosystem plants and the native animals that rely on those plants 
for survival. As water from the river source is diverted to agricultural 
use, river flow is reduced, which slows the growth of ecosystem plants 
and threatens the native animal population (Fig. 3). The model includes 
five state variables (crops, profits, ecosystem plants, native animals, 
and irrigation diversion level) and their associated rate functions for 
growth, decomposition or harvesting, grazing loss, reproduction and 
mortality, and adjustments to the irrigation diversion amounts (Fig. 2). 
Information links that complete the biological feedback loops include 
the production rate of plants, animal reproduction rates, a forage 
availability index (i.e., the ratio of native animals to ecosystem plants 
which drives the animal mortality rate), and the growth index for crops 
(i.e., high growth rates when total biomass is low, which slowly reduces 
as plants reach maturity) and associated planting and harvesting times. 
The major socio-economic information links include the effect of 
profitability on planting density and planting density on irrigation di
version rates (e.g., when profitability is enhanced, farmers raise 
planting density; due to the additional crop biomass, irrigation diver
sions are also raised to support plant growth). Additional parameters 
include estimates for crop water demand, irrigation efficiency, mean 
river flow, grazing demand of the native animals on ecosystem plants, 
crop prices, crop planting costs, as well as the initial investment and 
discount rate needed to determine the net present value (NPV) of the 
agricultural water use. The model, executable in the freely down
loadable Vensim PLE modeling environment,6 is provided in the Ap
pendix material along with Microsoft Excel templates for data analysis 
so that readers can download and examine the model and replicate the 
experiments presented. 

An earlier version of the model was developed and presented in  
Grant et al. (1997) but has been updated here to include three im
portant feedback loops not included in the original model (two man
agement-related feedbacks and one biophysical feedback): 1) as the net 
annual returns for cropping increase, the planting volume of the next 
year's crop also increases (positive feedback denoted ‘R1’ in Fig. 2), 2) 
as the planting volume increases, so does the irrigation diversion 
amount needed to support the crop (positive feedback denoted ‘R2’ in  
Fig. 2), and 3) as the number of native animals declines, pressure is 
applied through conservationists’ effort to limit diversions from the 
river to agriculture (negative feedback denoted loop ‘B’ in Fig. 2). 

To illustrate the experimental tests described above that serve to (i) 
evaluate system robustness, (ii) develop depth of system understanding, 
and (iii) compare effectiveness of alterative assumptions, decisions, or 
policies, we designed and subjected the model to a variety of experi
ments (Table 1), including extreme conditions (where the hypothesis is 
that the model performs in logical and reasonable ways that conform to 
all physical and scientific laws), sensitivity analyses of model behavior 
given variation in parameter values and graphical functions (where the 
hypotheses are that certain parameters or functions will have greater 
influence on the behavior of the model than others), and what-if ana
lyses (where the hypotheses are that altering certain assumptions, de
cision-rules, or management strategies in the system will correct the 
problematic behavior). Each section that follows provides a description 
of how each test was implemented in the model, the results of each 
experiment, and how it is interpreted within the context of the purpose 
of the model. A summary of the rationale for each test and common 
obstacles encountered during implementation is provided (Table 2). 
These tests were chosen for several reasons: they provided a compre
hensive suite of tests useful for confidence building (in both the model 
and the modeler), model evaluation and insight generation; they align 
with the “core” tests defined by Forrester and Senge (1980), they 

6 www.vensim.com/free-download/ 
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provided a relatively straightforward scheme moving from novice- to 
advanced-skill levels, and importantly, all could completed without the 
need for external coding or additional software outside of most dynamic 
modeling platforms. 

4.2. Robustness to extreme conditions 

System structures should permit examination of extreme combina
tions of states or parameter values. In order to implement extreme 
conditions tests, one must be familiar with the structural elements of 
the system (state variables, transfer functions, information converters, 
and variables representing time-based parameters) to be able to trace 
the implications of hypothetical extreme values of variables (including 
values known to be far outside the range of known historical or possible 
values) to determine the plausibility of the model's response 
(Forrester and Senge 1980). Here, we examine extreme conditions tests 
applied to several key parameters: river flow [the primary physical 
exogenous (i.e., arising from outside the model boundary) input to the 
system; calibrated to 100 c.f.s.], irrigation efficiency (the fraction of 
applied irrigation water that is productively consumed by the crop, 
taking on a dimensionless value from zero to one, calibrated to 0.5), 
and ecosystem plant decomposition rate (which regulates the volume of 
plant biomass due to metabolic costs and eventual senescence and 
death, taking on a dimensionless value between 0 and 1, calibrated to 
0.375). Irrigation efficiency is also a significant factor influencing the 
surface water return flow rate back to the refuge. Here, the volume of 

applied irrigation water not consumed by the crop returns to the surface 
water source that supplies the native animal refuge. In the simplest 
mathematical form, 

= +rfr rf iwd rtf, (4)  

=rtf iwd iwd*ie, (5) 

where rfr is the river flow to the refuge, rf is the upstream river flow, 
iwd is the irrigation water diverted, rtf is the return flow rate, and ie is 
the irrigation efficiency. Therefore, monitoring the responses to 
changed irrigation efficiency provides an additional check on the in
ternal consistency of the model structure. 

Abnormally high flow rates did lead to small increases in ecosystem 
plants earlier in the growing season, which was able to support slightly 
greater native animal population (Fig. 4a and b), but did not sig
nificantly alter the overall behavior patterns. On the other hand, cutting 
river flow to zero c.f.s. led to an eventual collapse in ecosystem plants. 
The stock of existing biomass became depleted by month 30, due to no 
new plant growth combined with monthly biomass losses from de
composition and consumption by native animals. Because of the loss in 
ecosystem plants, the native animal population also collapses near 
month 36. Importantly, neither ecosystem plants nor native animals fall 
below zero due to the first-order negative feedback loops (not arbitrary 
constraints set by the modeler) that govern the outflow of each stock 
(i.e., “physical inventories cannot be negative”, if the desired outflow is 
greater than the level of the stock, first-order negative feedback controls 
will regulate the outflow such that the outflow rate cannot exceed the 

Fig. 2. Stylized stock-and-flow diagram of the irrigation-wildlife refuge case-study model. An expanded model diagram and model files can be found in the Appendix.  
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existing stock value). Consider a bathtub example. Without any inflow 
and the drain, or outflow, open, a full bath tub will drain water, a 
function of gravity and the height of the water in the tub. As the height 
of water declines to zero, the outflow rate also declines to zero, at 
which point the stock of water in the tub is empty even though the drain 
is open and gravitational force is still applied. Not including this kind of 
regulating feedback is a common pitfall among beginning modelers. 

Manipulating irrigation efficiency up to 100% of applied irrigation 
water led to a number of significant outcomes (Fig. 4c and d). First, the 
50% improvement in irrigation efficiency led to a 400% increase in 
crop production. Initially, this may look unreasonable. However, the 
modeler should examine such behaviors and be able to link them to the 
model structure from which they arose (Fig. 2). In this case, improving 
irrigation efficiency (100%) meant no water losses during irrigation 
(i.e., all water applied was converted into crop production). Because of 
the increase in production and therefore crop profitability in the first 
year, the strength of the two reinforcing loops in Fig. 2 (driven by 
profit's effect on planting density and planting density's effect on irri
gation diversion levels) were greatly enhanced, leading to greater 
planting densities and irrigation application levels. With greater plant 
densities, greater water applications, and no water losses in the pro
duction system, crop production grew until reaching its maximum po
tential by month 36 (Fig. 4c). With irrigation efficiency at 100%, the 
delayed return flows to the river source were eliminated. With reduced 
stream flows to the refuge and the resulting loss of ecosystem plants, the 
native animal population declines until its complete loss by month 72 
(Fig. 4d). On the other hand, when irrigation efficiency is set to 0% (i.e., 
no irrigation water applied is converted to crop growth, all applications 

become return flows), crop production was unsustainable (overlaying 
the x-axis in Fig. 4c) and there was no change in the native animal 
population (Fig. 4d), since whatever water applied was returned to the 
river source and supported ecosystem plant growth needed by the na
tive animals. 

The reduction in ecosystem plant decomposition rate to 0% created 
significant differences in ecosystem plants and native animals com
pared to the base case. With no decomposition, the stock of ecosystem 
plants was able to grow up to its biological limit subject only to losses 
via consumption by native animals (Fig. 4e). The native animal popu
lation, no longer subject to the seasonal variability in food supply, 
therefore grew in conjunction with the growth in ecosystem plants, 
reaching a new equilibrium population near 45 animals by month 60 
(Fig. 4f). Any consumptive losses in ecosystem plants by native animals 
were easily compensated for by new growth. 

The important insights that these experiments provide the modeler 
are to check that the model structure obeys basic biophysical laws. 
Populations and plant biomasses can't be negative, neither can they 
grow forever. Extreme conditions tests illuminate whether or not a 
model conforms to such laws. Additionally, when a model expresses a 
high degree of feedback (such as the feedbacks stemming from irriga
tion applications and their influence on return flows), such tests force 
the modeler to be able to explain the resulting behavior in terms of the 
existing model structure. When results do not conform to basic scien
tific laws or result in behaviors that can't be explained clearly by the 
existing model structure (which is a reflection of the dynamic hypoth
esis), the modeler should reconcile the discrepancy by revising the 
dynamic hypothesis, model structure, or both (Appendix Section 3.1. 

Fig. 3. Behavior-over-time graphs of ecosystem plants (a) and native animals (b) in the refuge before irrigation diversions (base-case) and after (30% of surface water 
diverted for agriculture) over the 30 year (360 month) time horizon of interest. 
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provides several examples of failed extreme conditions tests often en
countered in early stages by more novice modelers). 

4.3. Developing depth of system understanding 

To develop depth of system understanding, experiments that ex
amine the various behavior modes that the model can create and the 
strength of influence that various model parameters have on creating 
those behavior patterns are needed. Here, we illustrate several beha
vioral sensitivity tests by experimenting with alternative parameter 
values or functions (including graphical functions) to analyze their in
fluence on the resulting model behavior. These include varying para
meter behaviors rather than their values, multivariate sensitivity ana
lysis, graphical function sensitivity analysis, and analysis of behavior- 
modes (i.e., behavior pattern measures). 

4.3.1. Behavioral sensitivity to model parameters 
The first experimental examples demonstrate changing single 

parameters in unique ways via giving them dynamic rather than static 
values over the course of a simulation. Because of the importance of 
river flow as the primary water input for the ecosystem plants and 
native animals in the refuge as well as the crop production system 
(Fig. 2), we illustrate three experimental tests of the model using step, 
pulse, and ramp functions to vary the river flow input values into the 
system. Each of these tests are also applicable to other parts of the 
system (e.g., crop production, economics, and ecosystem components), 

but due to space considerations only tests of river flow are presented 
here. 

First, using a step function, we implement a step volume change to 
river flow, at a given step time, such that 

=
<

+
t step time

step volume t step timeriver flow
100,

100 , (6) 

where t represents time, step time = 120 months, and step volume is 
equal to 50 c.f.s. (but is adjustable based on user input for smaller or 
larger step changes, including potential reductions in river flow for 
negative values of step volume).7 

The resulting behaviors of the river flow step experiment illustrate 
several immediate and delayed responses to changes in flow behavior 
(Fig. 5a). Due to the immediate increase in available water (150% of 
base river flow) and no delay in irrigation diversion and application 
during the growing season, crop production was enhanced nearly 50% 
(Fig. 5b). In a similar fashion, ecosystem plants immediately recovered 
from the reduction created by diversions in the base case river flow and 
actually reach a new peak in primary productivity (approximately 
20,000 tons compared to 15,000 tons, or an increase of 33%, prior to 
irrigation diversion; Fig. 5c). 

Table 1 
Summary and description of experimental tests along with the model variables used to facilitate model testing. Model files and data used for each test can be found in 
the Appendix.        

Objective Experimental test Variables used Units Variable type Test description  

Evaluate robustness Extreme conditions River flow c.f.s Auxiliary Manipulation of parameter values to 
extreme high and low values to ensure the 
model is robust enough to accommodate 
even the most extreme conditions. 

Irrigation efficiency % Auxiliary 

Plant decomposition rate % Auxiliary 

Develop depth of system 
understanding 

Step River flow c.f.s. Auxiliary Manipulation of system functions and 
relationships to examine behavioral 
changes and sensitivities in the model. Pulse River flow c.f.s. Auxiliary 

Ramp River flow c.f.s. Auxiliary 

Multivariate sensitivity 
analysis 

11 simultaneous 
variables# 

– Auxiliary 

Table function sensitivity 
analysis 

Adjusted planting 
density 

% of base (tons) Graphical 

Mortality rate 1/Mo Graphical 

Sensitivity of behavior 
pattern measures 

Native animals* head Aux. of 
behavior 
pattern 
indicator 

Evaluate alternative 
assumptions, decision 
rules, or policies 

What-if / Intervention 
thresholds / Boundary 
adequacy and changed- 
behavior test 

Intervention times and 
size of expanding the 
wildlife refuge 

tons and tons/mo. 
(ecosystem plants);% 
(expansion rate); month 
(expansion time) 

Stocks, flows, 
and auxiliary 

Addition, subtraction, or alteration to 
model structure and decision-making rules 
to examine the effectiveness or feasibility 
of new management strategies or policies. 

Construction of reservoir 
storage 

c.f.s. (flows), acre-feet 
(storage) 

Stocks, flows, 
and auxiliary 

River flow rate c.f.s. (flows) Auxiliary 

System improvement Not well quantified – – 

# The 11 auxiliary variables in the sensitivity analysis included annual infrastructure costs, base crop planting density, base crop price per ton, base water 
diversions, decomposition rate, discount rate, feed resource supplement, feed resource supplement cost, irrigation efficiency, planting cost, and water consumption 
per ton of crop. 

⁎ This included native animals, mean native animals, and the first derivative of mean native animals.  

7 In the Vensim modeling environment, this may be achieved a number of 
ways but is best implemented with use of the step function [STEP(step volume, 
step time)]. 
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The reason for the disproportionate response in crop production and 
ecosystem plants are due to the disproportionate change in total inflows 
received by each area. Recall that the base river inflow was 100 c.f.s., 
irrigation diversions were 30% of the flow, irrigation efficiency was 
50%, and water not consumed by the crops became return flow back to 
the river source. In response to the step change in river flow, the total 
inflow available for crop production increased 67% (i.e., 
new waer available base water available

base water available
; or =(50 cfs * 50 %) (30 cfs * 50 %)

(30 cfs * 50 %)

= 66.7%25 cfs 15 cfs
15 cfs ). On the other hand, total inflows to the refuge 

only increased 47% (i.e., = = 47%125 cfs 85 cfs
85 cfs

40 cfs
85 cfs ). Finally, the 

native animal population does recover to its equilibrium level of 25 
head, albeit with a delay of 160 months (Fig. 5d). Unlike the immediate 
plant response to water observed in crop production and ecosystem 
plants (which are subject to delays of less than one year in their growth 

capacities), native animals are subject to biological delays for gestation 
and birth which lengthen the recovery time for the general population. 
Because of this delay, the recovery in native animals is not a sharp, one- 
point-in-time increase, but an s-shaped growth pattern from the re
duced state back to the natural population level. 

In a similar fashion, we can utilize a pulse function to periodically 
increase or decrease a particular rate or parameter values at a desired 
interval (pulse time). In this case, a pulse is used to reduce river flow by 
50% during the ecosystem plant's growing season in three year intervals 
to mimic the natural occurrence of drought conditions (the base case 
without irrigation is used here in order to more effectively observe what 
changes, if any, occur in native animals, which may not be perceptible 
given the influence of irrigation diversions shown in previous sections). 
The droughts begin at the start of the growing season (month of 
year = 4) midway through the simulation (t = 180 months), which 

Table 2 
Summary of the purpose and rationale for each experimental test and description of common obstacles, barriers, or limitations encountered during experimentation 
that potentially limit use of test (indicated from novice to advanced modelers).     

Experimental test Purpose and rationale Common obstacles, barriers, or limitations encountered  

Extreme conditions •Does the model structure withstand extreme conditions such that the 
resulting behaviors are physically realistic (e.g., non-negative physical 
stocks; growth processes that can't grow forever)? 
•If not, what internal structural elements need to be added (e.g., first-order 
negative feedback on physical outflows) or revised (e.g., internal decision 
rules)? 

•Improper model formulation on flow or rate variables (for 
novice modelers) 
•Identification of useful parameters to stress to extreme 
conditions (for novice modelers) 
•Requires extensive familiarity with the real-world system (for 
novice modelers) 
•Low level of insight (relative to other experiments) given the 
time investment made to generate test and analyze results (for 
advanced modelers) 

Step, pulse, and ramp functions •Does the model respond to changes in input parameter behaviors in 
realistic and explainable ways?  
•In what ways do the behavior mode of input parameters influence the 
behavior mode of model's endogenous structure? 

•Improper model formulation on flow/rate and/or auxiliary 
variables (novice) 
•Identification of useful parameters for testing as well as the 
nature and degree of change (novice) 
•Interpretation of model behavior changes can become more 
difficult the farther one moves away from the test variable 
(novice to advanced) 

Graphical sensitivity analysis •Is the model over-sensitive to the form of graphical (table) function form? 
Do numerical assumptions underlying graphical functions create 
significantly different behavior patterns? 

•Graphical functions incorrectly parameterized (novice 
modelers) 
•Significant number of auxiliary variables are needed for 
experimentation (novice to advanced) 

Statistical screening and 
behavior pattern measures 

•Which of the hypothesized management levers have the greatest numerical 
impact on the system variables of interest? Have we distinguished the 
“critical few” variables from the “insensitive many”?  
•Which of the hypothesized management levers have the greatest impact on 
creating an alternative behavior pattern in the system variables of interest? 

•Identification of variables to be included in sensitivity 
simulations (novice) 
•Ability to identify and differentiate between different behavior 
modes (novice) 
•Determination of range of values that variables can take on 
during simulations (novice to advanced) 
•Significant number of auxiliary variables may be needed to 
capture behavior pattern measures needed for experimentation 
(novice to advanced) 
•Statistical screening becomes increasingly labor intensive as one 
moves beyond one output variable of interest (novice to 
advanced) 

Counterfactual trajectory 
analysis 

•What if some of the key underlying assumptions used to build the model 
wrong? How might the model behave if these assumptions were altered to 
reflect counterfactual scenarios? 

•Identification of core assumptions underpinning model 
structure (novice) 
•Generating plausible alternative assumptions for identified 
variables (novice to advanced) 

Model boundary adequacy test •How can we inform stakeholders about the implications of policies/ 
strategies not yet considered because they are likely to arise outside the 
existing model boundary? Would pursuing such a strategy alter the 
recommendations made from the modeling project? 

•Ability to distinguish model structure necessary for the purpose 
versus structure that is not needed or confounding (novice) 
•Ability to identify and differentiate between different behavior 
modes (novice) 
•High degree of modeling skill required to conceptualize new 
model structures (novice to advanced) 

Intervention thresholds analysis •How much investment should be made and when in order to get the desired 
behavior pattern in the system variable of interest? 

•Ability to identify and differentiate between different behavior 
modes (novice) 
•High degree of modeling skill (novice to advanced) 
•Computationally demanding (novice to advanced)    
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mathematically can be expressed as 

=
<

+
t pst

pv t pstriver flow
100,

100 , (7) 

and 

= +
=T n

n
T

n
T

pst dcpv 2 sin cos( 2 *
2

*
n 1 (8) 

where pv is the pulse volume, t is time, pst is the pulse start time equal 
to 184 months (i.e., month 180 being the start of the 16th year, plus 
four months to arrive at the start of the natural growing season), pulse 
time τ is 6 months, and pulse period T is 36 months. The pulse in the 
above function produces a sequence of re-occurring events (re
presenting drought) via the use of a square wave function, where the 
pulse width is 6 months, the space width is 30 months, and the cycle 
time is 36 (i.e., duty cycle = 16.67%). The square wave functions yields 
a value of 1 when the wave is positive or 0 when it is not, thus, in order 
to simulate the pulse of a particular volume, the square wave is mul
tiplied by an auxiliary variable representing the desired change, dc (i.e., 

in 

this case −50 c.f.s.; Fig. 6a).8 

Similar to the step experiment above, the pulse experiment reducing 
river flow by 50% yielded both immediate and delayed responses. 
Clearly in the years with drought ecosystem plants were negatively 
affected, but do recover in subsequent years following each drought 
(Fig. 6b). Native animals are also negatively affected, but due to the 
biological delays inherent in the population, drought effects in one year 
compound into the future. For example, the reduction in ecosystem 
plants during the first drought pulse results in diminishing the native 
animals nearly 50%, but the plants are able to fully recover in the 
following years before the next drought occurs, whereas native animals 
only improve to a mean of 17.5 animals (a 30% reduction for their 
starting population). Because of the lengthened recovery time in native 
animals, the effect of each subsequent drought is amplified and re
inforces the native animal population to a new, albeit lower, equili
brium level (Fig. 6c). The result is a change in behavior pattern from a 

Fig. 4. Behavior-over-time graphs illustrating the resulting behaviors of extreme conditions tests of river flow (panels a and b; base case 100 c.f.s, 0 c.f.s, and 300 
c.f.s), irrigation efficiency (panels c and d; base case 50%, 0%, and 100%), and ecosystem plant decomposition rate (panels e and f; base case 0.375% month−1, 0% 
month−1). 

8 In the Vensim modeling environment, this can be simulated via the pulse 
train function [PULSE TRAIN (start time, pulse width, cycle time, end time)*
desired pulse volume]. 
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Fig. 5. Behavior-over-time graphs illustrating the resultant behavior changes caused by a step in river flow at 120 months (panel a) to crop production (panel b), 
ecosystem plants (panel c), and native animals (panel d). 

Fig. 6. Behavior-over-time graphs illustrating the resultant behavior changes caused by the −50 c.f.s. pulse series in river flows beginning at 160 months (panel a) to 
ecosystem plants (panel b), and native animals (panel c). 
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sustained oscillatory behavior to one that is a declining, goal-seeking, 
damped oscillation. 

The third test demonstrates a ramp function, which alters a para
meter value from a static value to one that takes on a particular slope 
(positive or negative) for a particular time-span. In this case, river flow 
increases 0.3 c.f.s. per unit of time beginning at 120 months. 
Mathematically, this is expressed as9 

=
<

+
t ramp time

ramp slope t ramp time t ramp timeriver flow
100,

100 ( *( )),

(9) 

where t is time, ramp time is 120 months, and ramp slope is 0.3. 
Given the above ramp slope and time inputs, river flow increased 

from 100 c.f.s. at month 120 to 175 c.f.s. by month 360 (Fig. 7a). Due to 
the gradual increase in available water, crop production grew linearly 
in step with river flow (Fig. 7b), while ecosystem plants exhibited more 
of goal-seeking growth behavior up to its maximum productive poten
tial near 20,000 tons (Fig. 7c). Because the recovery delay of ecosystem 
plants takes around 180 months (from 120 to 300 in Fig. 7) and the 
reproductive delays of native animals (described above), the native 
animal population exhibits an exponential growth pattern, where each 
subsequent gain in population, although initially small, compounds into 
the future (Fig. 7d). However, since ecosystem plants do reach a point 
where growth no longer occurs, a reasonable follow-up test would be to 
extend the simulation out beyond 360 months to identify at what point 
(if any) the native animal and crop production behavior patterns shift 
from exponential and linear growth to some other behavior patterns, 
most likely goal-seeking. 

Tests of these types aid the modeler in understanding how model 
structure produces unique behavior modes given a dynamic input. 

These are especially valuable for management or policy-related ques
tions due to the fact that most dynamic models have the ability to ex
hibit multiple behavior-modes, which makes it possible to examine 
potential interactions between modes or how different decision-rules 
lead to particular behavior patterns (Forrester and Senge 1980; Ap
pendix Section 3.2 provides examples of failed step, pulse, and ramp 
experiments that would necessitate mental and quantitative model re
vision). 

4.3.2. Sensitivity analysis with graphical functions 
The second set of experiments illustrate graphical function sensi

tivity analyses. In this case, two key graphical functions warranted in
vestigation: native animal mortality rate (a graphical function based on 
per capita forage availability effect on mortality; B1 in Fig. 2) and crop 
profit effect on planting density (R1 in Fig. 2). Because mortality rate 
directly influences the native animal population and does not feed back 
to the cropping system, we only examine the effect of altered mortality 
rates on the animal population. On the other hand, the influence of 
expected planting density reaches beyond the cropping system to 
second- and third-order effects on the ecosystem plants and native an
imals; therefore, we examine crop system financial performance (via 
the net present value, or NPV, of irrigation, which integrates crop 
production and economic prices and costs) as well as the native animal 
population. Each of these graphical functions were manipulated using 
the distortion function procedure outlined by Eker et al. (2014) after  
Hearne (2010), illustrated with two simple examples in Fig. 8. Although 
there are an array of alternative distortion functions one may use to 
manipulate the graphical function, here we employ the one of the 
simplest, a single point triangular distortion (Eq. (2)), in order to 
minimize additional model variables required for the experiment while 
maintaining a distortion that is easily interpretable (for a full discussion 
on the strengths and weaknesses of variable distortion function possi
bilities, see Eker et al., 2014). 

To complete the sensitivity analysis, 100 simulations were 

Fig. 7. Behavior-over-time graphs illustrating the resultant behavior changes caused by a ramp in river flow at 120 months (panel a) to crop production (panel b), 
ecosystem plants (panel c), and native animals (panel d). 

9 In the Vensim modeling environment, this function is most easily im
plemented use the ramp function [RAMP(ramp slope, ramp time, end time)]) 
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completed for each graphical function by varying the maximum de
viation, m, from −1 to 1, and point of maximum departure, p, from 0 to 
1 (see Eq. (2)).10 For the most part, the model was insensitive to 
changes in graphical functions (Fig. 9). Altering the mortality rate 
function revealed primarily only one behavior pattern, decline-and-goal 
seeking (Fig. 9a), with only three out of the 100 simulations producing 

a markedly different ending population size. Examining the native an
imal mean and standard deviations showed that the monthly variation 
in population was demonstrably low relative to changes in the mortality 
rate graphical function (Fig. 9b). Similar results were observed for 
changes in expected planting density (Fig. 9c and d). Only two out of 
100 simulations produced a significantly different outcome for both 
native animals and NPV of irrigation (Fig. 9e and f). Following Ford and 
Flynn (2005), correlation coefficients (CC) were calculated between the 
inputs, m and p, with the observed output data in native animals and 
NPV of irrigation (ending CC values shown in Table 3). Increasing the 
magnitude of the departure, m, from the original graphical functions for 

Fig. 8. Visual illustration of the effect that various possible distortion functions (panel a) contort existing graphical functions (panels b and c). Factor m represents the 
maximum departure or deviation from the initial graphical function (ranging from −1 to 1) while p is the point where this deviation occurs (ranging from 0 to 1, zero 
and one are the end points of the graphical function). 

10 Tests were implemented in Vensim modeling environment using the built- 
in Monte Carlo simulation feature, with the following specifications: number of 
simulations 100, noise seed 1234, Latin Hypercube sampling, with random 
uniform distribution of input parameter values. 
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mortality rate resulted in smaller native animals populations (indicated 
by negative polarity in the sign of the CC). Increasing the point of de
parture, p, also had a negative but weaker influence on native animals. 
This may also be intuited given the slope of the graphical function 
(Fig. 8b) given that larger departure values on per capita forage 
availability will raise mortality rate (i.e., smaller per capita forage 
availability → larger mortality rate → smaller native animal popula
tion). Similar effects on native animals were observed given m and p 

distortions on expected planting density. Conversely, larger departures 
had a positive influence on the NPV of irrigation (i.e., greater planting 
density → greater crop production and harvest → greater crop profit → 
greater NPV). 

Graphical functions and their particular shapes are often the most 
debated functions during model development and overlooked para
meter values during model testing. Given the extraordinary range of 
possibilities that graphical functions can take on, it is important that the 
model withstand alternative graphical forms. All models express nu
merical sensitivity to changes in parameter values, but models should 
be able to produce the behavior mode described in the dynamic hy
pothesis for a wide range of parameter values (including graphical 
functions). 

4.3.3. Sensitivity of behavior patterns 
The final sensitivity analysis demonstrated here pertains to multi

variate tests using statistical screening (Ford and Flynn 2005) and be
havior pattern measures (Hekimoǧlu and Barlas 2016). To facilitate 
both tests, one set of 11 parameters and their ranges were specified 
(Table 4) and simulated for 100 model runs (a form of Monte Carlo 

Fig. 9. Results of graphical function sensitivity analysis given 100 simulations of alternative graphical functions: all simulation runs of native animals (panel a) and 
the mean, minimum, maximum, and standard deviations (panel b) from altering animal mortality rate; all simulation runs of native animals (panel c), native animal 
mean, minimum, maximum, and standard deviation (panel d), all simulation runs of net present value of irrigation (panel e), and the net present value mean, 
minimum, maximum, and standard deviation (panel f) from altering expected planting density. 

Table 3 
Correlation coefficients between maximum departure magnitude, m, and point 
of maximum departure, p, used in graphical function sensitivity analysis with 
native animals and the net present value (NPV) of irrigation.        

Output measures  

Graphical function input Native animals NPV of irrigation 
mortality rate m-factor −0.47 –  

p-factor −0.18 – 
expected planting density m-factor −0.18 0.06  

p-factor −0.25 0.33 
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simulation) to observe the resulting behaviors in key system variables: 
native animals, ecosystem plants, total crop harvest, the NPV of irri
gation, and several key behavior pattern measures for native animals 
(described below). Native animals, ecosystem plants, and total crop 
harvest were chosen because these were the key stocks of the model, 
that, in the real-world, are most likely to be measured and monitored 
given the problem at hand, while NPV of irrigation (an auxiliary vari
able) was chosen given that it integrates the outcomes that arise from 
the interrelated nature of the model's agriculture, ecologic, and eco
nomic components (Table 4). Unfortunately, comprehensive sensitivity 
analysis of all uncertain parameters over their entire range of possible 
values is for most practical purposes impossible (Sterman 2000). Given 
this constraint, parameters used for sensitivity testing must be selected 
for, typically by identifying: those you suspect (hypothesize) are both 
highly uncertain and likely to be influential, those that are not entirely 
under control of decision-makers but must be managed if a desired 
outcome is to be achieved, which parameters are deemed most im
portant to decision-making by working with stakeholders or problem- 
owners, defining “worst” and “best” case scenarios about the problem 
at hand and then backing into variables needed to create such sce
narios, or some combination of the above (Sterman 2000). In this 
particular case, sensitivity input variables were selected based on their 
hypothesized uncertainty and influence on the system and those that, 
although not entirely within control of stakeholders, are key factors 
that must be managed if a solution is to be reached (Table 4). 

The statistical screening approach was used to evaluate the relative 
strength and polarity of each parameter on the key variable output 
behaviors, where the input and output values are regressed for each 
time-unit of the simulation. Varying these input parameter values si
multaneously created much more variability in system behavior-modes 
(Fig. 10) relative to the previous sensitivity tests described above. First, 
both total crop harvest and NPV of irrigation (which express linear 
growth behavior-modes) indicated a clear shift or break between 
profitable and unprofitable combinations of inputs (Fig. 10a and c). 
However, in general, both total harvest and NPV of irrigation grew 
linearly (Fig. 10b and d). On the other hand, ecosystem plants and 
native animals expressed several behavior modes (Fig. 10e and g), in 
general exhibiting a goal-seeking decline behavior-mode (Fig. 10f and 
h). 

Examination of the ending CC values between input parameters and 
system stocks indicate the relative strength and polarity of the link from 
inputs to model behavior. Positive CC values indicate positive polarity, 
negative CC values indicate negative polarity, while values closer to 0 
indicate relative weaker degree of influence and values closer to −1 or 
1 indicating stronger degree of influence on the system behavior. The 
two variables with the strongest influence across the entire system were 
base water diversions and irrigation efficiency (CCs ranging from 

−0.76 to +0.58; Table 5). The next most influential variables included 
base crop planting density and price per ton of crop (CCs ranging from 
−0.29 to +0.27). The remaining input parameters held relatively weak 
influence on system behaviors (CC values between −0.15 and 0.15). A 
key insight of the CC analysis that corroborates the dynamic hypothesis 
as well as previous model testing is the polarity between agricultural 
components (total crop harvest) and the ecosystem (ecosystem plants 
and native animals). For the most part, parameters that have a positive- 
polarity influence on agricultural components expressed a negative- 
polarity influence on ecosystem components, and vice versa. The value 
of the CC analysis is that it illustrates and quantifies the trade-offs be
tween the agricultural and ecological components in this system. Lastly, 
one may notice the annual cycle in ecosystem plants and native ani
mals, which is driven by the annual growth season in plants and the 
resulting balance with native animals. However, the trajectory of their 
behaviors does not express this annual oscillation, since the overall 
behavior pattern changes depending on whether or not the growth was 
greater than or equal to decomposition and grazing (in which case 
plants are stable, if not, they decline), or if births were greater than or 
equal to deaths (in which case animals are stable, if not, animals de
cline). Therefore in this case, the CC values would not be significantly 
different if the cycle point varies at the end of the simulation (i.e., the 
trajectory or spread in CC values would not be different, only the 
ending point values). However, in more cyclical or oscillatory systems, 
one may examine the behavior pattern of the CC itself, to understand 
how the CC between inputs and behavior patterns evolve over the 
course of the simulation (Ford and Flynn 2005). 

To take statistical screening a step further and complete the beha
vior pattern measures analysis, the same parameters and ranges of 
values were used but rather than observing changes in specific system 
variables, we observe the resulting changes in the output of behavior 
pattern measures, in this case for native animals. After visually 
screening the sensitivity results, we observe that native animals ex
pressed several behavior modes: 1) goal-seeking decline-and growth to 
a new equilibrium; 2) goal-seeking decline to a reduced population; 3) 
goal-seeking collapse (defined as population-levels below three ani
mals, which effectively eliminates any possibility of successful species 
reproduction); and 4) linear decline (Fig. 10g and h; generic behavior 
modes shown in the Appendix Fig. A1). After grouping the data based 
on visually classifying the behavior patterns, we specify pattern mea
sures that differentiate each unique pattern: equilibrium level (pattern 
1, n = 39) defined as the mean native animals at the final month; in
flection point and inflection level (pattern 2, n = 12) defined by the 
largest value of the first derivative of mean animals and the level of 
animals at that point; time to collapse (pattern 3, n = 43) defined at the 
time at which native animals falls below three, and slope (pattern 4, 
n = 6) defined as the difference between initial and final native animals 

Table 4 
Model parameters, their base values, and bounds on the range of uncertainty applied to the 100 model simulations during statistical screening and behavior pattern 
sensitivity analyses.      

Model parameters Base value Lower bound Upper bound  

Agriculture    
Base crop planting density (ton/unit area) 100 75 125 
Base water diversions (% of river flow) 30% 20% 40% 
Irrigation efficiency (% water applied converted into crop production) 50% 40% 60% 
Water consumption per ton of crop (c.f.s./ton) 0.3 0.2 0.4 
Ecologic    
Decomposition rate of ecosystem plants (%) 37.5% 35% 40% 
Feed resource supplement (tons/head/month) 0 0 0.25 
Economic    
Crop price ($/ton) $30 $20 $40 
Planting cost ($/ton) $50 $25 $75 
Annual infrastructure cost ($/year) $10,000 $5,000 $15,000 
Feed resource supplement cost ($/ton) $295 $215 $375 
Discount rate (%) 3% 2% 4% 
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divided by the final simulation time. Following Hekimoǧlu and 
Barlas (2016), simulation runs were grouped by behavior pattern, 
pattern measures were estimated from each simulation run, values were 
standardized (Eq. (3)), and then input parameters were regressed to 
behavior pattern measures for each behavior pattern. 

Regression equations using the eleven parameters in Table 5 were 

built to examine the effects that each had on the key output behavior 
pattern measure (Table 6). Regression results indicate the most sig
nificant parameters that lead to a particular behavior pattern. The re
gression equations for the two most common behavior patterns (goal- 
seeking decline with growth to equilibrium, n = 39; goal-seeking col
lapse, n = 43) were: 

Fig. 10. Results of sensitivity analysis given 100 simulations of alternative parameter values for the eleven inputs: all results of total crop harvest (panel a) and the 
mean, minimum, maximum, and standard deviations in crop harvest (panel b); all results of net present value of irrigation (panel c) and its mean, minimum, 
maximum, and standard deviation (panel d); all results of ecosystem plants (panel e), and the ecosystem plants mean, minimum, maximum, and standard deviation 
(panel f); and all results for native animals (panel g) and the mean, minimum, maximum, and standard deviation of native animals (panel h). 
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Equilibrium level = 0.14base annual infrastructure costs – 0.36base 
crop planting density + 0.02base planting cost – 0.79base water di
versions – 0.17decomposition rate + 0.03discount rate + 0.07feed 
resource supplement – 0.11feed resource supplement costs – 0.47irri
gation efficiency – 0.21price per ton-base crop – 0.0003water con
sumption per ton of crop 

Time of collapse = –0.37base annual infrastructure 
costs + 0.31base crop planting density + 0.19base planting 
cost + 0.40base water diversions – 0.10decomposition rate + 0.35dis
count rate + 0.11feed resource supplement + 0.06feed resource sup
plement costs + 0.02irrigation efficiency + 0.20price per ton-base 
crop – 0.20water consumption per ton of crop 

Not shown in equation form are the results for inflection point and 
inflection level (used for behavior pattern 2 described above) since no 
significant parameters were identified, or for slope (used for pattern 4 
described above) due to inadequate sample size. It was not surprising 
that no significant parameters were identified in the case of behavior 
pattern 2, which is the same generic behavior pattern as pattern 4 (goal- 
seeking collapse). The most significant parameter in goal-seeking col
lapse, base water diversion rate, also had the lowest p-values for both 
behavior pattern measures for pattern 2. Therefore, we may infer that 
the primary behavior mode expressed by the model is goal-seeking 
decline (n = 12 pattern 2 + 43 pattern 3 = 55 total goal-seeking 

decline) but that significant collapse is not induced unless the base 
water diversion rate reaches a high enough threshold. 

In the equilibrium case, base crop planting density, base water diver
sions, irrigation efficiency, and price per ton all significantly influenced 
the equilibrium population size the native animal population was able 
to achieve. Importantly, all significant factors possessed negative po
larities. For example, greater planting density, water diversions, irri
gation efficiency, or crop price lead to lower equilibrium levels in na
tive animals. This logically follows due to the trade-off between the 
agricultural system productivity and ecosystem productivity given 
feedback processes influencing the allocation of resources. The other 
major behavior pattern was goal-seeking decline to a nonviable popu
lation, where the behavior pattern measure was the time to collapse. In 
this case, the only significant factor was base water diversion, while other 
important variables were annual infrastructure costs and discount rate. 
Insignificance of other factors indicate less importance in creating the 
observed behavior pattern. 

Results from both the statistical screening and behavior mode sen
sitivity analysis are summarized in Table 7. Key input parameters are 
ranked based on their influence and polarity on either maintaining a 
higher equilibrium of native animals versus the time to collapse in 
native animals in the goal-seeking collapse case. 

4.4. Comparative analysis of alternative assumptions, decision rules, or 
policies (counterfactuals or what-ifs?) 

Whereas the tests to this point have dealt with examining robustness 
and developing depth of system understanding (both of which primarily 
reside in model development and evaluation stages of the modeling 
process), the remaining tests focus on effectively using a model to 
generate insights needed for constructing and advocating for policy or 
strategy recommendations. Generating model insights via alternative 
assumptions, decision-rules, or policies can take the form of counter
factual trajectory analyses, boundary-adequacy tests on model behavior 
and policy recommendations, or intervention studies, each of which can 
be formulated using “what-if” experiments. These experiments provide 
opportunities to examine how emergent pressures arise or can be mi
tigated for, whether or not the effects of additional model structure in 
biophysical, decision-making, spatial components, or the interactions 
among them, changes the final model results and management re
commendations, and to estimate the risk associated with adopting 
particularly new decisions or policies (Forrester and Senge 1980). We 
illustrate three such tests by posing specific what-if questions aimed at 
generating management insights via counterfactual trajectories, 
boundary-adequacy, and intervention thresholds. 

4.4.1. Counterfactual trajectories 
Counterfactual trajectories involve altering the basic model 

Table 5 
Ending correlation coefficients (CC) between each input parameter used during 
sensitivity analysis with key stocks in the system, crop harvest, net present 
value (NPV) of irrigation, ecosystem plants, and native animals. Positive CC 
values indicate positive polarity (e.g., increasing base water diversions in
creases total crop harvest) while negative CC values indicate negative polarity 
(e.g., increasing base water diversions decreases ecosystem plants).        

correlation coefficient with system variable of interest 
Input parameter total crop 

harvest 
NPV of 
irrigation 

ecosystem 
plants 

native 
animals  

base annual 
infrastructure costs 

−0.236 −0.329 0.143 0.229 

base crop planting 
density 

0.266 0.156 −0.163 −0.285 

base planting cost −0.084 −0.122 0.051 0.003 
base water diversions 0.578 0.516 −0.763 −0.698 
decomposition rate −0.010 0.030 −0.103 −0.115 
discount rate 0.024 −0.152 0.098 −0.021 
feed resource 

supplement 
−0.059 −0.079 0.117 0.096 

feed resource 
supplement cost 

0.092 0.060 −0.105 −0.044 

irrigation efficiency 0.580 0.525 −0.401 −0.317 
price per ton-base crop 0.274 0.470 −0.165 −0.292 
water consumption per 

ton of crop 
0.120 0.098 −0.033 −0.013 

Table 6 
Regression results for the equilibrium level of goal-seeking decline with growth to equilibrium pattern, inflection point and level for goal-seeking decline behavior 
pattern, and time to collapse for goal-seeking decline pattern to a nonviable population size.                

equilibrium level (n = 39) inflection point (n = 12) inflection level (n = 12) time of collapse (n = 43) 
Input parameter stand. co.1 t-statistic p-value stand. co t-statistic p-value stand. co t-statistic p-value stand. co t-statistic p-value  

base annual infrastructure costs 0.14 1.64 0.11 1.30 0.59 0.66 −0.32 −0.39 0.76 −0.37 −1.67 0.11 
base crop planting density −0.36 −4.01 0.00 2.10 1.27 0.42 −1.21 −1.96 0.30 0.31 1.42 0.16 
base planting cost 0.02 0.30 0.77 0.19 0.16 0.90 0.15 0.35 0.79 0.19 0.79 0.43 
base water diversions −0.79 −10.44 0.00 9.39 1.31 0.41 −5.52 −2.07 0.29 0.40 2.08 0.05 
decomposition rate −0.17 −1.95 0.06 1.06 0.61 0.65 −0.72 −1.11 0.47 −0.10 −0.48 0.63 
discount rate 0.03 0.40 0.70 0.74 1.21 0.44 −0.30 −1.33 0.41 0.35 1.75 0.09 
feed resource supplement 0.07 0.81 0.43 1.03 1.09 0.47 −0.56 −1.60 0.36 0.11 0.46 0.65 
feed resource supplement cost −0.11 −1.29 0.21 −0.72 −0.82 0.56 0.45 1.38 0.40 0.06 0.28 0.78 
irrigation efficiency −0.47 −5.64 0.00 5.10 1.54 0.37 −2.88 −2.33 0.26 0.02 0.10 0.92 
price per ton-base crop −0.21 −2.74 0.01 1.21 1.07 0.48 −0.55 −1.32 0.41 0.20 0.91 0.37 
water consumption per ton of crop 0.00 0.00 1.00 0.25 0.27 0.83 −0.21 −0.61 0.65 −0.20 −0.92 0.37 

1 standardized coefficient value.  
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assumptions or conditions in ways that are either known to be wrong, 
haven't been observed in the historical record, or were not assumed 
important enough during model development to be included in the 
model structure. A counterfactual trajectory is therefore a quantifiable 
and rigorous “thought experiment”. A key assumption of the model 
presented here is that there has been and will be a consistent, reliable 

surface water source based on existing information (calibrated to a 
long-run mean of 100 c.f.s.). A reasonable hypothesis would be that the 
insights generated by the model would be significantly different if a 
counterfactual condition regarding incoming surface water flows were 
used. Therefore, we posed the following what-if question: What if the 
river flow assumptions (100 c.f.s. across the time-horizon of simulation) 

Table 7 
Summary of statistical screening and behavior mode sensitivity analyses indicating relative ranking of impact and polarity that input 
parameters have on native animal population.     

Ranking Equilibrium level of native animals Time of collapse in native animals  

1 base annual infrastructure costs (+) base water diversions (-) 
2 feed resource supplement (+) irrigation efficiency (-) 
3 base planting cost (+) price per ton-base crop (-) 
4 water consumption per ton of crop (-) base crop planting density (-) 
5 discount rate (+) decomposition rate (-) 
6 feed resource supplement cost (+) feed resource supplement cost (-) 
7 decomposition rate (-) discount rate (-) 
8 base crop planting density (-) water consumption per ton of crop (-) 
9 price per ton-base crop (-) base planting cost (+) 
10 irrigation efficiency (-) feed resource supplement (+) 
11 base water diversions (-) base annual infrastructure costs (+) 

Fig. 11. Results of applying a counterfactual trajectory in river flow (panel a) to irrigation diversions (panel b), crop production (panel c), ecosystem plants (panel d), 
native animals (panel e), and net present value of irrigation (panel f). 
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are incorrect? An alternative assumption is that river flow is highly 
variable due to climate and watershed characteristics, varying from 
zero (i.e., no-flow is the worst drought years) to 125 c.f.s (representing 
the occasional wet years of exceptional precipitation). 

To test this counterfactual assumption in the model, minimum (zero 
c.f.s.), maximum (125 c.f.s.), and standard deviations (75 c.f.s.) in river 
flow rate were added to the model as auxiliary variable inputs to river 
flow. River flow, rf (recall as an input to Eq. (4)) then becomes a 
random function, 

µrf N( , )2 (10) 

where μ is the mean river flow (100 c.f.s.) and σ is the expected stan
dard deviation in flow rate.11 

Using this alternative assumption, we generate a dynamic rather 
than static trajectory in river flow (Fig. 11a). Due to the river flow 
variability, irrigation diversion rates during the growing season are less 
reliable (Fig. 11b), leading to a decline in crop production (Fig. 11c). 
This is due to the economic response in the agricultural sector, which 
alters cropping intensity based on changes in profitability (loop R1 in  
Fig. 2). The more profitable the agricultural sector, the greater invest
ment in agriculture leading to greater crop intensity; the less profitable, 
lesser investment and intensity. This feedback contributes to the gra
dual decline in crop production as the intensity of production lessens 
over time. Ecosystem plants responded annually changes in flow 

(Fig. 11d), but because of habitat loss during droughts and in the most 
sensitive parts of the year the native animal population declines 
(Fig. 11e). Finally, the NPV of irrigation never approached breakeven- 
since crop production declines, revenues were not able to recoup costs 
of irrigation (Fig. 11f). 

What management or policy recommendations would be altered 
given this counterfactual assumption in river flow? First, altering flows 
to include both wet and dry year cycles does not alleviate the pressure 
to the native animal population, as any benefit of improved habitat and 
per capita forage availability experienced during wet years is not en
ough to overcome the losses in dry years. Therefore, the management 
and policy concerns for the native population remains regardless of the 
flow assumptions compared here. However, new management pressures 
arise in the agricultural sector given the collapse in crop production and 
economic failure of investing in the irrigation system. If, given the al
ternative river flow trajectory, collapse in the agricultural sector is 
expected, policy-makers would be faced with the trade-off of either not 
approving the investment (if being analyzed prospectively), halting 
crop production before the irrigation investment NPV worsens after the 
first 10 years (if being analyzed retrospectively), or creating support 
mechanisms for the agricultural sector such that it is less susceptible to 
reductions in river flow (e.g., insurance that offsets annual losses; im
provements in irrigation efficiency). 

The first two responses would lead to improvements in native an
imal population since irrigation diversion would cease but would en
sure a non-viable agricultural sector. In the third response, the decline 
in native animal population would only accelerate, since irrigation di
versions would not be as responsive to changes in river flow (under an 
insurance scheme) or because of the reduction in return flows to the 
refuge (under improved irrigation efficiency). Therefore, given these 
counterfactual river flow assumptions, management and policy 

Fig. 12. Additional model structure representing reservoir storage 
and release added for boundary adequacy testing (panel a) and results 
of boundary adequacy (behavior) test illustrating changes in the na
tive animal population under the base case and surface water diver
sion scenarios (30% diversion) to native animals given the expanded 
model boundary to include reservoir storage and release (panel b). 

11 In the Vensim modeling environment, the built in function RANDOM 
NORMAL can be used, such as RANDOM NORMAL(river flow min, river flow 
max, river flow mean, river flow standard deviation, river flow seed value). 
Including the seed value provides means for adequate comparisons across si
mulations because the seed provides unique random sequence of values for each 
unique seed value. 
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pressures arising due to agricultural collapse would erode conservation- 
oriented efforts to balance irrigation economics and the wildlife refuge. 
Under the original, static river flow assumption, reductions in base 
water diversion rate and irrigation efficiency were pinpointed as the 
most significant factors conducive of sustaining a stable native animal 
population (Table 4). Counterfactual trajectories such as these aid in 
examining the trade-offs and consequences of alternative assumptions 
(Appendix Section 3.4. provides an example of a failed counterfactual 
tests). 

4.4.2. Boundary-adequacy testing 
Boundary adequacy testing can be used in the context of model 

structure (is the model boundary appropriate given the model pur
pose?), behavior (can new model structure be conceptualized that sig
nificantly alters its behavior?), or policy (how does modifying the 
model boundary alter policy recommendations?; Forrester and 
Senge, 1980). Here we focus on model boundary tests in the context of 
behavior and policy recommendations. The current model boundary 
(Fig. 2) encompasses the wildlife refuge that is habitat for the eco
system plants and native animals, the surrounding cropland, and the 
river flow that supplies surface water diversions for irrigation. A 

relevant boundary-adequacy test would be expansion of the model 
boundary to include a new state (stock) variable capable of expressing 
its own unique dynamics. After adding the new structure, we can then 
examine how the expanded model may influence the problem of in
terest. In this case, we expand the model boundary by asking: what-if 
the watershed constructed a reservoir system for irrigation deliveries 
that would help regulate river flow and avoid the effects caused by 
seasonal river flow diversions for irrigation? The hypothesis here would 
be that the reservoir would help redistribute the water supply from the 
non-growing season to the growing season thereby reducing the impact 
of irrigation to the refuge. To complete this test, additional model 
structure was added representing reservoir storage and release 
(Fig. 12a). 

In the added structure, a certain percentage of river flow (30%) is 
diverted for storage with the remainder immediately released for the 
ecosystem (70%). The diversions enter a reservoir storage, which incurs 
losses due to natural leakage and evaporation (0.001%) and through 
downstream releases. Releases downstream are a function of the re
servoir release time (capturing average residence time of water in sto
rage, ≈12 months) plus the water released for irrigation during the 
crop growing season (i.e., no water for irrigation is released during the 

Fig. 13. Boundary adequacy (policy) test for optimal water diversion rates with and without reservoir storage and the resulting behavior patterns in reservoir storage 
(panel a), incoming flow to the refuge (panel b), ecosystem plants (panel c), crop production (panel d), native animals (panel e), and net present value of irrigation 
(panel f). 
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non-growing season). Since no new agronomic assumptions are in
cluded in this scenario, once water for irrigation is delivered it remains 
subject to the same irrigation efficiencies and return flow rates as the 
base case. By storing water during the non-growing season and re
leasing it throughout the year, we hypothesize that a different behavior 
pattern will arise in the native animal population. The resulting beha
vior patterns given the expanded model boundary are then compared to 
the behaviors prior to model boundary expansion. Adding the reservoir 
storage and release structure did improve the native animal population 
size relative to 30% direct surface water diversions for irrigation, but 
did not change the overall behavior pattern (Fig. 12b). This is a strong 
test of the model boundary that, due to the resulting behavior in native 
animals, strengthens confidence in the original boundary. If the test 
resulted in a different behavior-mode in native animals, reexamining 
the original model structure and its links to the native animal popula
tion would be warranted. 

An additional boundary experiment includes examining alternative 
policy recommendations that would arise given the expanded model 
boundary and structure representing reservoir storage. First, we iden
tify the management recommendation concerning irrigation diversions 
under the original model boundary and given the policy-goal is to 
achieve a stable native animal population in equilibrium that still al
lows for profitable crop production. We then identify the management 
recommendation under the expanded model boundary and compare 
that to the original recommendation. In order to identify these points, 
the base water diversion rate used for determining irrigation was ma
nipulated by hand until the policy-goal conditions were reached. 

Under the original model boundary, the base water diversion rate 
found to balance native animals without jeopardizing crop production 
and profitability was 25% of river flows. Without any reservoir storage 
potential (Fig. 13a), incoming river flow to the refuge is anchored to the 
total river flow, 100 c.f.s., in the non-growing season, but is subject to 
large declines during the growing season (to as low as 70 c.f.s) when the 

refuge needs water the most (Fig. 13b). Due to return flows, the in
coming flow to the refuge peaks over 100 c.f.s., but the marginal benefit 
of the additional flow is negligible since it occurs after the primary 
growing season. Ecosystem plants, with the reduction in incoming river 
flows during the growing season, declines to a peak of 12,000 tons 
(Fig. 13c), while crop production peaks at 2,000 tons (Fig. 13d). The 
goal to maintain a viable native animal population and a profitable 
agricultural system is achieved, with mean animals ending at 15 head 
(Fig. 13e) and NPV of irrigation ending above $200,000 (Fig. 13f). 

Under the expanded model boundary, the storage water diversion 
rate (i.e., the percentage of river flow diverted to storage) found to 
balance native animals without jeopardizing crop production and 
profitability was also 25%. Given that diversion rate, reservoir storage 
would need to be capable of storing between 40,000 and 50,000 acre- 
feet of water (Fig. 13a). Because the river flow is being redistributed 
with storage, the incoming flow to the refuge was anchored at 75 rather 
than 100 c.f.s. (Fig. 13b). However, the refuge receives more water 
during the growing season, up to 90 c.f.s., due to the releases from 
storage combined with return flows from the irrigation system. This 
leads to a more stable ecosystem plant community (Fig. 13c) and 
greater irrigation levels supportive of almost double crop production 
(Fig. 13d). With a more stable plant community, native animals reach 
equilibrium near 20 head (+33% compared to the original re
commendation above). The NPV of irrigation reached over $800,000 
(or a 400% increase over the original recommendation) due to in
creased crop productivity. As observed here, the expanded model 
boundary would lead to significantly different management re
commendations (Appendix Section 3.4. provides examples of failed 
boundary-adequacy tests one might encounter). 

4.4.3. Determination of intervention thresholds 
Finally, we estimate the intervention thresholds (i.e., the minimum 

intervention size and intervention time that results in the desired 

Fig. 14. Intervention threshold analysis results given 10,000 simulations of unique combinations of intervention size and time: percentile intervals for ecosystem 
plants (panel a), net present value of irrigation (panel b), and native animals (panel c); intervention threshold graph (panel d) illustrates the minimal refuge 
intervention size at each particular intervention time needed to shift the native population from decline to growth or decline to growth and restoration of original 
population size. 
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behavior change) for the native species population. As shown in Fig. 3, 
the atomic behavior pattern exhibited by the native animal population 
given irrigation diversions is goal-seeking decline. The desired post- 
intervention behavior would be s-shaped growth, which would reflect a 
population that increases up to a new equilibrium level equal to the 
baseline population prior to irrigation diversion (potential behavior 
shown Appendix Fig. A1). Assume that construction of the reservoir 
system, described in the previous section, would not be approved due to 
other social, environmental, and economic concerns (e.g., rural com
munity relocation, fish habitat connectivity, uncertain NPV due to 
regulatory and litigation costs). Other possible interventions include 
reintroducing new animals once the population declines below a po
pulation threshold determined by the policy-makers or importing feed 
resources as supplement to offset losses in ecosystem plants. 

Both of these interventions are unfortunately low leverage. We can 
infer from the previous experiments the chain of causality driving na
tive animal population declines: the feedback process between eco
system plants (regulated by river flow) and native animals via per ca
pita forage availability. Declines in native animal population are a 
symptom of the problem which, at the structural level, arises where 
river flow supplies the refuge. Reintroducing animals or supplying feed 
resource supplementation are symptomatic-solutions which may work 
only in the short-term and at a very high cost to the system (Appendix  
Section 3.4. provides the simulation evidence for these). A more fun
damental solution would be address the problem at the refuge level. For 
example, what if rather than focusing on symptomatic solutions of the 
native animal population (via policy-interventions that “prop up” the 
population), investment is made in expanding the wildlife refuge? 
Under such a scenario, effort may be made to improve the surrounding 
habitat for the population and expand the wildlife refuge, thereby in
creasing the per capita forage availability. 

In order to implement this test, a refuge expansion intervention 
function is added to the model (similar to the step equation in Eq. (6)) 
where a specified refuge expansion rate (zero to 100%) and refuge ex
pansion time are determined. The refuge expansion intervention applies 
to the stock of ecosystem plants based on the refuge expansion rate (e.g., 
a 100% refuge expansion rate would double the size of the current re
fuge). Expanding the suitable habitat would create additional land 
costs, but with greater forage availability for native animals, we would 
hypothesize that the behavior pattern of native animals is shifted from a 
decline-oriented behavior to one of s-shaped growth and stabilization. 

To test this hypothesis and identify the minimum intervention 
needed for returning the native animal population back to its initial 
state (mean 25 animals), we apply a Latin grid experimental design 
(similar to the sensitivity tests in Section 4.3.3) with the input para
meters being refuge expansion rate (ranging from zero, no expansion, to 
one, doubling the refuge size, in increments of 0.01) and refuge ex
pansion time (ranging from 120 months to 240 months in increments of 
1.2 months). This Latin grid experimental design (100×100) resulted 
in 10,000 simulations, one for every unique combination of refuge ex
pansion rate and refuge expansion time.12 The Latin grid design is pre
ferred over Monte Carlo simulation in this case because of the explicit 
interest in identifying the specific intervention size and time that results 
in the desired behavior pattern. Use of Monte Carlo simulation risks 
duplicating certain input values (or at least very near combinations of 
values) and does not guarantee that all possible combinations of input 
values will be sampled. A Latin grid design ensures all possible com
binations of input values are sampled and, although computationally 
intensive, is still more efficient than the required sample size to achieve 

the necessary input combinations using Monte Carlo simulation. 
Following Walrave (2016) an indicator value was specified to de

termine if the desired behavior shift was achieved. In this case, the 
indicator variable used was the moving average of native animals and 
its first derivative.13 Mean native animals was chosen as the behavior 
pattern measure given that the behavior of native animals inherently 
oscillates (due to annual reproduction and mortality dynamics) and 
because the oscillation can grow or decline as ecosystem conditions 
change such as it does with the onset of irrigation (i.e., the population 
does not oscillate around a stable fixed point). Using the moving- 
average smooths out these oscillations, resulting in a behavior where 
the signs of the first and second derivatives are quite stable. Under goal- 
seeking decline the value of the first derivative of mean native animals 
is negative and under goal-seeking growth it is positive. Therefore, we 
monitor the number of sign changes in the first derivative of mean 
native animals from negative to positive. If a change in sign does occur, 
we then identify if the mean population size reaches its desired level 
prior to irrigation (25 animals). 

The results of the intervention experiment are shown in Fig. 14, 
including the percentile intervals and intervention threshold graph. 
Percentile intervals display the percentage of simulations falling within 
a particular range at a given point in time. As expected, ecosystem 
plants increased as a result of refuge expansion (Fig. 14a), with over 
half of the intervention combinations resulting in peaks up to 21,000 
tons. Due to the additional land costs involved with improving the 
surrounding habitat and expanding the refuge, the NPV of irrigation 
does decline, but even the most extreme outcomes result in positive 
NPV near $100,000 (Fig. 14b). Importantly, these two outcomes illus
trate that the intervention strategy does expand the refuge and can do 
so without financially taxing the system to an unprofitable level. 

The behavior pattern changes in the native animal population re
sulting from the intervention combination were much more dynamic 
relative to ecosystem plants and NPV of irrigation (Fig. 14c). Nearly 
half of the simulations made no shift in behavior pattern (40% of all 
simulations). Of the 60% of simulations that did create a behavior 
pattern shift from goal-seeking decline to s-shaped growth, only 9% 
achieved a mean native animal population of 25 animals. 

Using the resulting simulation data, an interventions threshold 
graph was constructed to illustrate the combination of minimum refuge 
intervention sizes and refuge intervention times that would be required to 
achieve an s-shaped growth to equilibrium of at least 25 animals 
(Fig. 14d). In order to shift the behavior pattern from decline to growth, 
the minimum refuge intervention size was 39% in month 120, increasing 
up to 50% in month 240 (denoted as ẋ > 0). Any refuge intervention size 
below 39% would not reverse the native animal population decline. In 
order to restore the native animal population (denoted as ẋ >0; ӯ 
>25), the minimum refuge intervention size would have to be at least 
79% at month 120, up to 95% by month 186. After month 186, the 
intervention size would have to be more than double the size of the 
current refuge (over 1 on Fig. 14d, outside the range of values per
formed in the experiment). The resulting graphs indicate the minimum 
combination of intervention inputs needed to create a shift the domi
nant feedback processes (i.e., tipping point) from goal-seeking decline 
(negative feedback) to s-shaped growth (positive feedback). An im
portant note regarding intervention thresholds such as these is that the 
intervention combinations included in the experiment had dissimilar 
incubation times due to a fixed end point of the simulation at 360 
months. Because of this, novel behavior characteristics may be 

12 In the Vensim modeling environment, these simulations were completed in 
under five minutes. With the grid selection based on refuge expansion rate, the 
10 year or 120 month period for refuge intervention time was not evenly dis
tributed. Therefore, the simulation results were matched to the nearest whole 
month. 

13 The natural behavior mode for native animals is oscillation, but with the 
onset of irrigation, the overall pattern becomes goal-seeking decline. However, 
the infinitesimal changes in native animals, even under goal-seeking decline, 
still express oscillations albeit with smaller and smaller amplitudes. Because the 
first derivative of oscillatory behavior modes is misleading, we use the first 
derivative of the moving average of the stock (Walrave 2017). 
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exhibited beyond month 360 that would not be observable with a fixed 
final simulation time, but could be included under a dynamic final si
mulation time. 

5. Conclusion 

Dynamic systems models are increasingly used by scientists, man
agers, and policy-makers due to the growing complexity and inter
dependency of problems that persist in ecologic and socio-economic 
systems. Coupled to this is the growing awareness that, when con
fronted with such complexity, our human intuition rarely properly in
fers the underlying dynamics driving decision-making and its outcomes. 
Formal mathematical models are therefore essential tools for improving 
our understanding and decision-making in the face of such complexity. 
The above experimental examples illustrate a number of key tests (with 
increasing degree of difficulty from novice to advanced skill levels) any 
investigator can and should perform in order to evaluate and test their 
particular model. Each of the experiments demonstrate several key 
lessons: 1) that model experiments help uncover unforeseen flaws or 
incorrect formulations, including flaws in our own mental models, since 
all models are based on our mental representations of a given problem 
or system; 2) that good model experiments provide a means to glean 
valuable insights about the structure and behavior of a model; and 3) 
model experiments enhance the confidence (validity) of the model for 
its intended use, especially after the iterative process of identifying 
errors or flaws in model structure or behavior, updating and improving 
our mental model, and then revising the formal simulation model in 
turn. The comprehensive suite of tests explored is not an exhaustive list 
of model testing procedures as there a number of other advanced 
methods for understanding uncertain parameter values, identifying 
dominant feedback structures, and testing alternative decision-making 
theories. Although insightful, such tests are beyond the skill-level of 
novice modelers and depending on the problem and objective of the 
model, the insights generated may not be important to the issue or 
efficient to attain given the required investment in time and resources. 

Novices should be aware of what expert modelers will recognize 
from the experiments and discussion presented above – that model 
development and experimentation is an iterative process, often re
quiring numerous iterations of experimentation, analysis, and revision 
(to both mental and simulation models; Fig. 1). The experimental re
sults and discussion in this paper are the final product of that iterative 
process. In early stages of development, a model will not perform 
adequately when exposed to the barrage of tests outlined above and 
novices will soon find errors or omissions in model structure that lead 
to implausible or unexpected behaviors that require explanation and 
correction. The model presented above was exposed to numerous 
rounds of revision and correction prior to “passing” the model behavior 
experiments. Then it was exposed to comprehensive sensitivity ana
lyses. After adequately withstanding the sensitivity tests, the model 
moved forward to the more complex experiments dealing with 

alternative assumptions and structure. Novices should not be dis
couraged when their models fail any of these tests along the reiterative 
modeling process. Failing any one test can be expected and provides the 
needed feedback to the modeler about which model component needs 
to be improved prior to looking for strategy or policy insights to guide 
decision-making. 

The increasing interest in and more frequent application of systems 
models by ecologists, agriculturalists, and natural resource managers is 
a positive indicator of the recognition of modeling as a valuable tool to 
better understand and manage the complex, dynamic systems that we 
operate in. Employing such models has the potential to increase our 
understanding of the many, poorly understood feedback processes that 
must be well-managed if such systems are to function as society desires. 
If researchers who begin or are currently using systems modeling ap
proaches do not have at least a basic understanding of the highly 
iterative, systems analysis process or of the fundamental experimental 
tests that are required to build confidence that the resulting model is 
trustworthy to be used, the potential for making management and 
policy recommendations based on fundamentally flawed analyses (i.e., 
incorrect and unreliable model recommendations) is high. This paper 
provides a basic introduction and guide to experimental testing of a 
developed model in order to build confidence that the model is capable 
of providing robust insight into a given problem. By providing this 
guide, we hope that more modelers will be better prepared to build, 
evaluate, and test their models such that the resulting model-generated 
insights will be more capable of mitigating unintended consequences or 
improving desired functions of the complex ecological or natural re
source systems we are tasked with managing. 
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Appendix 

1. Understanding behavior modes 

Behavior modes expressed over time are indicators of the underlying feedback processes that interact to produce the observed behavior pattern of 
a particular variable of interest in a system. From a systems thinking perspective, these feedback processes are often simplified into single-loop 
positive (reinforcing) or negative (balancing) processes perceived to be the dominant parameters or feedback structure. Unfortunately, without a 
rigorous quantitative analysis, identification of the most influential parameters and feedback structure is spurious at best. Therefore, it is important 
to be able to differentiate between alternative behavior modes via their mathematical indicators (e.g., the first- and second derivatives; Fig. A1). 
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2. Model documentation 

Included in the supplementary material are: a) a copy of the model formulated in Vensim modeling environment (Ventana Systems); b) Microsoft 
Excel file that includes all simulation results and is a template for analyzing the results of the experiments; and c) data file of the intervention 
thresholds results. Fig. A2 provides an expanded conceptual model of Fig. 2 in the paper for additional details regarding auxiliary variables included 
around the core feedback structure. 

3. Examples of common model revisions made during iterative model testing process 

One may observe that the model presented in the paper successfully passed all of the performed tests. As noted in the text, modeling is an iterative 
process, the presented results being the end of a longer series of experimentation and model revision. In order to illustrate how these techniques and 
tests work together in practice in an iterative model development, testing, and revision process, this appendix section provides examples of situations 
where the model (either mental or quantitative) failed a test and therefore required revision of the model. The revisions here are meant to illustrate 
common mistakes that many, particularly beginners, may encounter, not an exhaustive protocol for model error identification. 

3.1. Extreme conditions tests 
There are several common errors or mistakes one may find when the extreme conditions test is failed. Consider the example from section 4.3.1 

where river flow is increased from 100 c.f.s. to 150 c.f.s., and the resulting behavior pattern observed in ecosystem plants and native animals is 

Fig. A1. Atomic behavior patterns and their associated key characteristics observed in the first (ẋ) and second (ẍ) derivative.  
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runaway, exponential growth (Fig. A3a and b). In order to correct this, we may inspect the stock-flow and auxiliary structures around ecosystem 
plants and native animals. We may find that we originally parameterized the graphical function ecosystem growth rate with a minimum value of 0.002 
at 20,000 tons of ecosystem plants. Because many dynamic modeling programs default to extrapolation of graphical functions at the end points for 
input values beyond the parameterized range, having a positive value for the growth rate at the estimated biophysical maximum value of 20,000 tons 
means that for any value of ecosystem plants above 20,000 tons defaults to a 0.002 growth rate per month (Fig. A3 panel c), leading to greater 

Fig. A2. Expanded stock-and-flow diagram of the irrigation-wildlife case-study model.  

Fig. A3. Example of failed extreme conditions test due to open-ended bound on the ecosystem growth rate function (see Fig. A2).  
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ecosystem plants subject to the same 0.002 growth rate per month. This leads to the runaway growth behavior in Fig. A3 panel a. The native animal 
population, without any forage limitation, also grows in conjunction with ecosystem plants (Fig. A3 panel b). By adjusting the ecosystem growth rate to 
0 at the biophysical maximum for the habitat in the refuge, 20,000 tons, means that any values of ecosystem plants above 20,000 tons will default to 0 
for the growth rate (Fig. A3 panel d), and therefore ecosystem plants will cease to grow exponentially. 

Suppose that change is made and we expect to see the problem corrected in the model, yet we still observe runaway exponential growth in native 
animals and runaway exponential decay in ecosystem plants (Fig. A4). We again examine the stock-flow and auxiliary variable structures around each 
variable. We find that the resulting behavior pattern is due to grazing loss to ecosystem plants increasing exponentially (Fig. A4 panel a) due to the fact 
that grazing loss is directly proportional to native animals (Fig. A4 panel b). In reality, we know that ecosystem plants and native animals, being a 
physical quantities, cannot take on negative values (in the case of ecosystem plants) or grow forever despite the fact that there are no resources to do 
so (in the case of native animals). Further checks of the model reveals that native animals was first parameterized with a static natality values, with 
natality possessing a greater value than the mortality index. When natality>mortality, the result is exponential growth in the population. In order to 
alleviate this issue, a dynamic natality rate was developed (Fig. A4 panel c). The assumption here would be that if the population declines below the 
expected equilibrium value of 25 animals, the natality rate also declines due to the greater energy requirements for searching for and finding 
reproductive mates. Correcting this should bring the dynamic natality rate into equilibrium with the mortality rate (a function of the forage availability 
index, Fig. A2). By doing so, native animals (and therefore grazing loss) will be constrained. In addition, we don't want ecosystem plants to take on 
negative values. Examining the outflows reveals that the model lacked first-order negative feedback controls to regulate the stock-flow dynamics to 
be physically conserved. In the first instance, grazing loss was simply a function of consumption rate (= native animals X forage consumption per month). 
With the revised model, grazing loss is regulated by ecosystem plants such that the grazing cannot exceed the available biomass in the ecosystem plant 
stock [grazing loss = MIN(consumption rate, ecosystem plants – decomposition)]. 

3.2. Step, pulse, and ramp functions 
Examining how a model responds to various steps, pulses, or ramps is an valuable exercise in developing depth of system understanding, and like 

extreme conditions tests, helps identify places for model improvement when the simulation results fail to align with expected or observed behaviors 
in the real-world system. 

First, consider a step change in planting costs (the most significant annual input cost to the irrigation system) from $50 to $100 dollars per ton 
(Fig. A5 panel a). Due to the increase in cost, we would expect profitability to decline, leading to feedback sequence of declines in subsequent 
planting and irrigation rates, crop production, and finally long-term profits. However, we see that annual costs decline into negative values (Fig. A5 
panel b). Because annual costs are an outflow from cumulative profits (Fig. A2) and stock or state variables are typically difference equations 

Fig. A4. Example of failed extreme conditions test due lack of first-order negative feedback processes on stock variables and static natality parameter value that 
necessarily lead to runaway exponential growth (panels a and b), with the inclusion of a dynamic natality rate (panel c). 
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(stock = inflow – outflow), when outflows take on negative values they inadvertently increase the value of the stock (which in this case is the 
profitability of the irrigation system). Since profitability is improved rather and stressed, the adjusted crop planting density is continually adjusted 
up, further reinforcing crop profitability (R1 in Fig. A2). The observation that annual costs become negative is clear indication that we erroneously 
inserted the wrong sign, either to the cost function (flow) or cumulative profit equation (stock). Identifying and reversing the sign so that costs are 
positive, which have a negative effect on profitability, corrects the issue. 

In Section 4.3.1., a pulse function was applied to river flow in order to mimic periodic drought conditions (Fig. A6 panel a) and observe the 
responses in ecosystem plants and native animals. In an earlier iteration of the test, suppose we observe that native animals are hardly effected by the 
loss of ecosystem plants in drought years and that they “rebound” back to near their long-run equilibrium value much too quickly (Fig. A6 panels b 
and c). Having previously examined the stock-flow structures around ecosystem plants, as well as the natality rate in native animals, we now examine 
the forage availability index (= ecosystem plants / native animals) influence on mortality rate (B1 in Fig. A2). This graphical function was parameterized 
using a distribution derived from data collected from the real-world system, with a mean ≈200 tons per head (corresponding to ≈14% mortality 
rate). Unfortunately, this form of graphical function breaks several best modeling practices. First, graphical functions should not start and end in the 
same place (in this case, at 0% mortality rate on the tails of each side of the curve). Because of the function is parabolic, with one side exhibiting a 
positive slope and another side exhibiting a negative slope, interpretation of the polarity of this variable on native animals is confounding, because it 
both accelerates and slows mortality rate depending on which side of the distribution the forage availability index value falls on. Although some 
circumstances may call for using a specified distribution (which many programs allow via built-in function rather than graphical/table functions), it 
is questionable here since the estimated mortality rate given the drought conditions (only 5 out of the 30 years) falls near the right and left bounds of 
the distribution for mortality rate due to sampling for ecosystem plants that did not accurately account for years of drought. Graphical functions can 
indeed be nonlinear but should have either a positive or negative slope, not both. In this case, removing the left tail (positive slope of the distribution;  
Fig. A6 panel e), corrects the polarity error resulting in native animals that express a more realistic and expected decline in behavior pattern (Fig. A6 
panel f). 

Not all model revisions will be in the quantitative model, but rather correct model performance that we did not properly intuit should lead us to 
revise our mental model. Consider a linear ramp function similar to that applied to river flow in Section 4.3.1., but instead applied to irrigation 
efficiency. In the river flow test, a linear increase in river flow led to a linear increase in crop production (Fig. 7) and profits. This was simple enough to 
mentally intuit, since there was no change in the rate in which water was converted into crop production only the volume of water applied as 
irrigation. However, applying a positively-sloped ramp change to irrigation efficiency (Fig. A7 panel a) increases the rate at which irrigation 
applications are converted into crop production (Fig. A7 panel b). However, because of the economic feedback between the cropping system and 
profitability (R1 and R2 in Fig. A2), greater crop production improves profit, signaling for greater planting densities in subsequent years, which 
increases demand for and applications of irrigation water that produces greater crop volumes because of the positively-sloped ramp. Intuitively, we 
may suspect that the linear improvement in irrigation efficiency would lead to linear increases in the cropping system. The result, however, is a 
nonlinear or exponential increase in water use, crop production, and profitability due to the underlying feedback processes (Fig. A2). In this 
particular test, the model was operating correctly and helped expose a limitation in our mental model. Updating our mental models to be more 

Fig. A5. Example of unexpected model response to a step function in planting costs (panel a) and the resulting decrease (into negative values) in annual costs (panel 
b) and the management response to increase adjusted crop planting density (panel c). 
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representative of the dynamic and nonlinear nature of the systems we work in, although challenging, is greatly enhanced by the use of models for this 
reason. 

3.3. Identification of behavior patterns 
As described in Table 2, one of the common limitations in novice modelers is properly differentiating between alternative behavior patterns. 

Given the irrigation-wildlife refuge data (Fig. 3) and the atomic behavior patterns (Fig. A1), we can identify the resulting behavior patterns exhibited 
from the sensitivity analysis or expected patterns of behavior during intervention analysis (Fig. A8). 

3.4. Comparative analysis of alternative assumptions, decision rules, or policies (counterfactuals or what-ifs?) 
The final set of examples illustrate some iterative model revision steps during counterfactual trajectory analysis, boundary-adequacy testing, and 

intervention analysis. Counterfactual trajectories provide a means to examine model behavior under alternative basic assumptions underpinning the 
model about past or potential future conditions. However, the failure to adequately envision conditions that are significantly different than the 
original model assumptions may mislead modelers to conclude that the problem-behavior being modeled is robust enough that even under alter
native conditions the same behavior patterns are observed. This could become particularly problematic when decisions will be based on insights 

Fig. A6. Example of unexpected model response to a pulse function in river flow (panel a) and the resulting behavior in ecosystem plants (panel b) and native animals 
(pane c) due to an improperly reasoned graphical function for the forage availability index effect on mortality rate (panel d). One solution to the graphical function 
(panel e) results in the more realistic behaving decline in native animals (panel f). 
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generated from counterfactual tests. For example, the counterfactual test in Section 4.4.1. represented a test for extremely variable river flow 
(distributed from 0 to 125 c.f.s.) and illustrated that both the native animals and the irrigation system would be highly vulnerable to long-term 
variability in river flows. However, if the counterfactual assumptions are more conservative (e.g., river from 60 to 125 c.f.s.; Fig. A9 panel a), the 
resulting behavior patterns in crop production (panel b), ecosystem plants (panel c), and native animals (panel d) would be the same as the observed 
conditions that motivated the study. Failure to envision a significantly new set of conditions runs the risk of basing new strategy or policy changes on 
flawed insights about the range of possible behavior patterns the model expresses. 

Boundary-adequacy tests require expansion of the model structure to incorporate elements previously not contained in the original endogenous 
feedback structure of the model. This requires creativity to envision and design new model structure. Failure to do so may lead modelers to look for 
alternative adjustments to expand model structure. For example, a stock may be disaggregated into a series of stock-flow structures. In this case, the 
stock of native animals may be disaggregated into several age-classes that progress from younger to older individuals (Fig. A10 panel a). Un
fortunately, this does not expand the model boundary, only adds specificity to model structure within the existing model boundary. Simulating the 
model with the disaggregated native animal stocks leads to an oscillatory behavior pattern in native animals (Fig. A10 panel b) and ecosystem plants 
(Fig. A10 panel c) which is not observed in the real-world system (Fig. 3 in Section 4.1), which may lead one to make erroneous conclusions about 
the adequacy of the existing model boundary and structure. 

Another boundary-adequacy pitfall is likely to be insuring that, once new model structure is created, that the feedback connectivity is correctly 
linked with the original model structures. For example, consider the reservoir storage stock-flow structure from Section 4.4.2. Assume that the new 
structure is correctly formulated and upon simulation, the reservoir storage stock indeed behaves the way we would expect (Fig. A11 panel a). 
However, the volume of flow entering the river refuge (Fig. 11 panel b) remains static, and the resulting dynamics in ecosystem plants and native 
animals (Fig. 11 panels c and d) remain unchanged. Because the reservoir storage capacity is not infinite, we know that some water has to be released 
downstream to the refuge, so the fact that river refuge flow is static is a key indicator that not all of the feedback connections have been incorporated 
yet. 

Lastly, in searching for interventions to alleviate the systemic root-cause of the problem, we can test our intuitions about strategies that would 
work only symptomatically in the short-term. For example, reintroducing animals (Fig. A12 panel a) only increases the native animal population for the 
year they are introduced, since the ecosystem plants required to support the population remain unchanged (panel b) as irrigation water diversion 
continues to support the base crop production (panel c). On the other hand, supplemental feeding for native animals (up to 95% of their forage demand) 
to alleviate pressure on ecosystem plants does work in the short- to medium-term (Fig. A13 panels a and b), but because revision to the water 
allocation mechanisms that drive both the refuge and irrigation system remain unchanged, the irrigation system (represented by crop production and 
adjusted water irrigation level, panels c and d) is still allowed to grow, albeit at a slower rate due to the costs of importing the supplemental feed. 
Although feeding works moderately well, the long-term result of the system is the same as if no feeding would have occurred. 

Fig. A7. Example of a correct nonlinear response in the system from a linear change in an input parameter. In this instance, irrigation efficiency (panel a) is increased 
linearly via a ramp function, which creates a nonlinear response in crop production (panel b), profits (panel c), and adjusted crop planting density (panel d), which 
reinforce each other through the economic feedback of the system (R1 in Fig. A2). 
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Fig. A8. Panel a illustrates the four behavior patterns expressed during multivariate sensitivity analysis. Panel b illustrates the potential behavior patterns that could 
be expressed during intervention thresholds analysis. 
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Fig. A9. Panel a illustrates a counterfactual assumption in river flow (distributed from 60 to 120 c.f.s.) and the resulting behavior pattern in crop production (panel 
b), ecosystem plants (panel c), and native animals (panel d). 
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Fig. A10. Disaggregation of the stock of native animals (panel a) disguised as a model boundary adequacy test, with the resulting behavior pattern in native animals 
(labeled ‘revised’; panel b) and ecosystem plants (panel c). 
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Fig. A11. Model boundary test using the reservoir storage scenario described in the paper but with an error in the water balance equations that drive water to the 
wildlife refuge. Reservoir storage (panel a) provides irrigation water, however the water entering the river refuge (panel b) is static, indicating that there are no 
return flows accounted for in this particular simulation. The reduced water to the refuge reduces ecosystem plants and therefore native animals. 
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Fig. A12. Failed intervention test using native animal introduction (panel a) with no improvement to ecosystem plants (panel b) or trade-off to crop production 
(panel c) that drives the irrigation system behaviors. 
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