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ARTICLE INFO ABSTRACT

The use of dynamic systems models by scientists, managers, and policy-makers is becoming more common due to
the increasingly complex nature of ecological and socio-economic problems. Unfortunately, most scientific
training in the life sciences only includes dynamic modeling as elective, supplementary courses at a beginners-
level, which is not conducive to generating the expertise needed to properly develop, test, and learn from
dynamic modeling approaches and risks utilization of poor quality models and adoption of unreliable re-
commendations. The objective of this paper is to fill part of that gap, particularly regarding model experi-
mentation, by summarizing key concepts in experimental design for simulation experiments and illustrating
hands-on examples of experiments needed for developing a deeper understanding of complex, dynamic systems.
The experiments include extreme conditions testing, sensitivity analyses of model behaviors given variation in
both parameter values and graphical (table) functions, and “what-if?” experiments (e.g., counterfactual trajec-
tories, boundary-adequacy tests, and intervention threshold experiments). Each experimental example describes
the theoretical foundation of the test, illustrates its application using an ecological systems model, and increases
in degree of difficulty from novice to advanced skill levels. By doing so, we demonstrate consistent, scientific
means to glean valuable insights about the model's structure-behavior link, uncover any unforeseen model flaws
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or incorrect formulations, and enhance the confidence (validity) of the model for its intended use.

1. Introduction

Mathematical models, particularly dynamic systems models, are
quantitative descriptions of the natural and social processes underlying
the functions and patterns observed in the real world. Models have
become increasingly useful for scientists, managers, and policy-makers
due to their ability to capture complex natural and socio-economic
processes (and the couplings between them) and present them in a way
that inspires scientific creativity, improves management decision-
making, informs policy-making processes, and critiques or enlightens
prevailing mental models (Meadows and Robinson 1985;
Sterman 1994; Sterman 2002). Despite this growing interest in and use
of dynamic modeling approaches, most scientific training in the life
sciences only includes modeling and simulation of such systems as
elective or minor courses at a beginners-level or are applied to problems
with a narrow model boundary or scope (e.g., single- to a few system
processes rather than interactions between ecologic, environmental,
agricultural, and economic elements), which may limit accumulation of
diverse modeling expertise in such fields. The general lack of scientific
training needed to generate capable expertise to properly develop, test,
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and learn from dynamic modeling approaches can lead to poor quality
models that produce unreliable management recommendations, espe-
cially in systems that cannot be reasonably physically studied or tested
because of spatial or temporal limitations. Because of this growing gap,
resources are needed to aid scientists in improving their proficiency in
model development and use. The aim of this paper is to fill part of that
gap, particularly regarding model experimentation.

Typically, the modeling process encompasses five key steps: 1)
problem articulation, boundary definition, identification of reference
mode behaviors, establishment of relevant time horizons, and statement
of modeling objectives; 2) dynamic hypothesis formation and conceptual
model development (e.g., causal maps, subsystem diagrams, etc.); 3)
quantitative model development, whereby equations, parameters, initial
conditions, and decision rules are specified to arrive at a simulate-able
model; 4) model evaluation (or testing), whereby developers inspect
model structures and outputs to estimate its overall performance to-
wards the model goals (which often includes comparison of model
generated data to observed data, extreme condition and/or sensitivity
testing, etc.); and 5) policy/strategy design and evaluation, whereby
modelers specify scenarios of interest, often stated as “what-if?”
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questions, and implement scientific (replicable) experiments aimed at
answering the models objectives and crafting effective management
interventions or policy recommendations (Sterman 2000). This process
is iterative in nature where knowledge gained in one stage can be used
to update and improve model components at other stages or in sub-
sequent revision processes (Grant et al.,, 1997, Ford 1999;
Sterman 2000).

Model testing (step 4 above) is particularly important since the re-
sults of this stage are used to evaluate model performance and behavior,
validate use of the model as well as quantify the uncertainties, weak-
nesses, or shortcomings identified throughout the modeling process
(Forrester and Senge 1980; Barlas 1989a and 1989b). Within the model
testing stage, modelers typically rely on comparisons of model gener-
ated data with observed data from the real-world system. Although
intuitive and illustratively simple to interpret, successful behavior mode
reproduction can be a misleading indicator of model strength, since
some models may reproduce similar reference modes equally well, but
can create significant discrepancies in output behaviors with even
miniscule changes in model structure or parameter values
(Rahmandad and Sterman 2008). While it is true that no model is
perfect (i.e., it cannot perfectly represent the real-world system and its
behaviors), failure to fully understand the range of possible behavior
modes a model may exhibit (and why it exhibits them) or to appreciate
the model's weaknesses limits the learning process and bypasses op-
portunities for model improvement. This could become problematic,
since identification of high-leverage management or policy changes
(step 5 above) may not be observable if a model is lacking key in-
formation links, feedback processes, or structural elements that could
have easily been included if recognized (step 4 above). Recognizing
model limitations and knowledge gaps are important steps in admiring
the problem at hand and appreciating its complexity, particularly in
light of the complex, dynamic nature of the systems being studied, such
as ecological or agricultural systems (Grant et al., 1997; Dalton 1975;
Turner et al., 2016).

Unfortunately, experimental model testing is an overlooked step of
the modeling process (Peterson and Eberlein 1994; Kleijnen et al.,
2005), many tests that should be completed are abandoned after
checking the model's ability to replicate historical data (Sterman 2002),
and our intuitions about the cause-and-effect relationships, even in
simple systems, is extremely poor (Sterman 1994; Cronin et al., 2009;
Sterman, 2009). Therefore, it is critically important when developing
and evaluating a dynamic model, one should incorporate a variety of
scientific tests aimed at measuring the robustness of the model to sig-
nificant parameter value or structure alterations, develop a deeper
understanding of system's structure, and evaluate alternative system
states arising from varying management decision rules. Learning to
effectively design and implement a variety of such experiments is a
useful addition to any modeling practitioner's tool box as it would aid in
multiple stages of the modeling process (e.g., model boundary identi-
fication, hypothesis formation, overall model evaluation, and inter-
pretation of key model insights) and hedge against bias or faulty in-
ferences about model validity.

The objective of this paper is to summarize some concepts central to
the design of experiments, specifically simulation experiments, and the
common tests useful for developing a deeper understanding of complex,
dynamic systems. This is a valuable contribution for the systems mod-
eling fields on the whole, since much of the development of these tests
reside in business management and operations research literature. To
facilitate the diffusion of and improvement in using these model ex-
periments for ecological and agricultural model applications, concepts
from traditional experimental design are translated into important
considerations for design of simulation experiments (Sections 2 and 3;
readers interested in the theory and methodology underlying these se-
lected simulation experiments are encouraged to start here). Then
several illustrative examples are provided and discussed (Section 4;
readers interested more in the application of the modeling experiments
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may start here and reference the theoretical sections as needed). The
paper concludes with brief comments about the proper development
and use of systems models.

2. Design of experiments: basic framework and key terminology

The main tenets of traditional design of experiments (DOE) include
control, replication, and randomization. Experiments are investigations
where the system under study is under the control of the investigator,
meaning that subjects of the investigation, nature of treatments or
manipulations, and measurement procedures are all set or designed by
the experimenter (Cox and Reid 2000). With experimental controls,
investigators should account for potential sources of error and varia-
bility through systematic DOE (Sanchez 2005). Replication (or repeti-
tion) to gain more data is required to obtain more precise results (e.g.,
narrower confidence intervals), while randomization (i.e., random
order of experimental treatments such that one's performance does not
depend on another) guards against the possible insertion of investigator
biases in system response to treatments (Cavazzuti 2013;
Sanchez 2005). Both replication and randomization are requirements of
good DOE in order to avoid systematic errors as well as estimate the
magnitude of random errors (Cox and Reid 2000).

In performing DOE, and assuming the problem at hand is well de-
fined (modeling step 1), the experimenter chooses factors (or variables
or parameters) in which to vary and the design space (or range) that
each factor is allowed to vary within (Cavazzuti 2013). Factors may be
qualitative, quantitative, discrete, or continuous in nature. In practice,
the number and nature of parameters, treatment values or ranges, and
replications are selected based on what can be afforded by the in-
vestigators. In terms of inputs (e.g., treatments), outputs (dependent
variables), and goals (e.g., objective functions), the latter two are also
called response variables while the former may be referred to as the
sample space. A scenario or design point is a combination of values for all
factors (Kleijnen et al., 2005).

Effective DOE increases the efficiency of an investigation by limiting
(or eliminating) trial-and-error treatment strategies and avoiding con-
founding results that make implementation or adoption of findings
difficult (Kleijnen et al., 2005). Some traditional DOE designs include
randomized complete block, full and fractional factorial, central com-
posite, Box-Behnken, Plackett-Burman, Taguchi, Latin Hypercube, se-
quential bifurcation, and frequency-based, among many others. The
purpose is not to review these designs in depth but simply acknowledge
the diversity of useful designs available depending on the problem at
hand.' Below, some variations of these designs are shown in the ap-
plications specific to modeling dynamic systems. Lastly, DOE should be
viewed through the context of not only the environment that an ex-
periment takes place (e.g., field, soil, animals, etc.), but also the context
of the experimenter, because no experiment exists unless someone has
asked a particular question, found no suitable answer, and thought it
was important enough to invest the time and resources to carry out
(Pearce 1983). In the terms of dynamic systems models, experimenter
context can include both the modeling or programming language one
uses to carry out an experiment about the real-world, as well as the
experimenter's own mental model (Peterson and Eberlein 1994).

3. Design of simulation experiments

The DOE is an essential but often overlooked step in the modeling
process (specifically steps 4 and 5 defined above; Pearce 1983;
Kleijnen et al., 2005; Peterson and Eberlein 1994). Many important
tests are never done or investigators simply stop with replication of
historical data (Sterman 2002). Still worse, unplanned, hit-or-miss

! Interested readers are encouraged to see references cited in this section for
in-depth reviews of these procedures.
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Fig. 1. Iterative management and modeling processes, whereby mental models, formal models, and the real-world outcomes feedback on each other to create the

dynamics of systems we observe.

experimentation can often be frustrating, inefficient, and ultimately
unhelpful (Kelton and Barton 2003). This can be extremely proble-
matic, since the boundaries of our mental models and the inferences we
make about complex dynamic systems tends to be deficient
(Sterman 1994). Simulation models can be used to mimic complex
systems but can be manipulated in ways that are too slow, too costly,
unethical, or simply impossible to complete in the real-world (Peck
2004; Sterman 2002). For example, it may be too slow or costly to
perform a grazing management study across an entire area of interest
(e.g., whole ranch, county, or watershed-scales) or test the impact of
redesigning an irrigation district delivery system. Likewise, when in-
volving scarce resources (e.g., ground water or surface-water dependent
systems) or threatened or endangered species, it may be viewed as
unethical to proceed with the degree of manipulation needed for tra-
ditional experimentation. Models can therefore be used to represent
such systems and allow for experimentation and learning about the
real-world given such constraints.

Often in traditional DOE, the number of variables selected is small
and their range of variability restricted due to social or economic
constraints (e.g., limited time, labor, and budgets; biologic, ecologic, or
ethical limitations). Modern modeling platforms overcome these ex-
perimental constraints given their ability to simulate systems across
time and space rapidly and without consequences (intended or other-
wise) to the real-world. Although model experiments are generally free
of the constraints encountered when conducting real-world experi-
ments, the same general principles apply, namely design of treatments
and controls, randomization or estimation of uncertainty in the system,
sample size considerations, and replicability so others can repeat and
extend experiments elsewhere (Sterman 2000; Peck 2004;
Kennedy 2019). Additionally, model experiments should be conducted
in a reflective and iterative manner so that testing uncovers model
flaws, challenges assumptions, and encourages critique and improve-
ment in mental models and real-world systems (Fig. 1) (Sterman 2000).
By doing so, simulation speeds up and strengthens the learning process,
stimulates improvement in both mental and formal models, improves
our intuition about system dynamics, and because the complex nature
of dynamic systems, makes simulation the only practical way to test
models (Sterman 1994; Sterman 2002).

Although there is variability in the descriptions of simulation ex-
periments due to nuances in alternative modeling paradigms, there are
at least three common shared purposes for design and use of simulation
experiments: (i) evaluate the robustness of the system model, (ii) de-
veloping depth of system understanding, and (iii) comparing effec-
tiveness of alternative assumptions, decision rules, or policies
(Ford 1999; Sterman 2000; Kleijnen et al., 2005). However, it is im-
portant to recognize that there are a variety of other tests useful for
model calibration and evaluation, such as behavior reproduction tests
(Oliva 2003; Martinez-Moyano and Richardson 2013) that are typical of
many modeling applications across skill levels. In addition, there are
highly advanced model development and analysis procedures, such as
bootstrapping for parameter value confidence interval estimation and
hypothesis testing (purpose i and ii above; Dogan 2007), feedback loop
dominance and eigenvalue elasticity analysis (purpose ii above;
Oliva 2015; Oliva 2016; Naumov and Oliva 2018; Kampmann and Oliva
2020), or integration of behavioral economic theory into dynamic de-
cision-making frameworks employed in models (purpose iii above;
Langarudi and Bar-on 2018; Mohaghegh and GroBler 2020) that re-
quire the most expert modeling skill and a combination of mathema-
tical or programming software applications. Each of these are beyond
the scope of this paper. Here, we focus on a non-exhaustive but com-
prehensive set of experimental tests to aid in the three purposes de-
scribed above and that progress in difficulty to guide users from novice
to advanced skill levels.?

3.1. Experiments for system robustness to extreme conditions

Much knowledge and information about the real-world pertains to
the behaviors and consequences given extreme conditions that, if in-
corporated into a model, results in improved model performance both

2 An important note here is that tests applied to dynamic models can be used
to assess more than one objective. For example, an extreme condition test,
which is a kind of sensitivity test, may be used to assess model equations and
behavior under extreme conditions as well as to uncertain parameter values and
the overall model structure (i.e., are physical laws conformed to?; are the de-
cision rules of actors representative given extreme conditions?).
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in and out of the normal operating region (Forrester and Senge 1980).
Therefore, models should possess internal robustness, meaning that the
behaviors produced by the model should be realistic even when ex-
treme input, parameter, or decision-rules are imposed on the model
(Sterman 2000).

Extreme condition experiments may be implemented as switches
(turning variables on or off) or step or pulse functions with inordinately
high or low values relative to the model's standard formulation (minus
infinity, zero, plus infinity; Forrester and Senge 1980). Extreme con-
dition tests are one of the most important experiments to consider
during the model evaluation and testing stage because a) it is a pow-
erful experiment for uncovering flaws in the model and b) it enhances
model utility for analyzing how a system operates outside its normal
region (Forrester and Senge 1980; Martinez-Monyano and Richardson
2013). Interpretation of extreme conditions test results depends on the
application at-hand, but should follow rules of logic and reasoning re-
garding possible, and realistic, real-world behaviors. For example, plant
production cannot occur without water for evapotranspiration, a water
reservoir cannot store negative volumes of water, and small-holder li-
vestock herd sizes cannot go below zero. Likewise, with unlimited
water, plant production should reach its biological limit and then cease
to grow, unlimited rainfall will fill the reservoir to its capacity at which
point it begins to overflow, and livestock herd sizes may grow under
favorable conditions but be subject to their available feed resources
(i.e., if forage resource and stored feed levels become static herd sizes
should cease to grow). The extreme condition test aids in identification
of model flaws and inconsistencies, and therefore the mental models of
those in the system. As such, extreme condition tests act as model
“reality checks” (Peterson and Eberlien 1994).

3.2. Experiments for developing depth of system understanding

All models include some degree of uncertainty due to assumptions
made about parameter values, causal relationships, the model structure
itself, and errors in input data (Leinweber 1979; Hekimoglu and Barlas
2016). Therefore, experiments are required to develop depth of un-
derstanding about the particular system of interest. There are many
ways these tests can be done, including the use of step, ramp, or pulse
functions as well as sensitivity analyses (Forrester and Senge, 1980;
Barlas 2007). Sensitivity experiments, particularly behavior-mode (or
multiple-mode sensitivity) tests, are a principal method used to shed
light on the possible dynamics, distribution, and uncertainties of dif-
ferent behaviors that may arise from a given system (Tank-Neilson
1980; Forrester and Senge 1980; Saltelli et al., 2000). Behavior sensi-
tivity tests identify whether or not shifts in model parameter values or
relationships (including graphical or table functions) can create dif-
ferent behavior modes or cause the model to fail previously-passed
behavior tests (Forrester and Senge 1980). The latter is an important
feature of policy analysis described below.

When experimenting with uncertain parameter values, a sample
design must be constructed which specifies the number of simulations
to include in the sensitivity tests as well as the range assigned to each
parameter value (preferably twice as large as statistical or judgmental
considerations suggest; Ford and Flynn, 2005; Hekimoglu and Barlas
2016; Sterman 2000). Although parameter values may be altered one
variable at a time, it is recommended that multiple parameters be ad-
justed simultaneously in order to analyze their combined effect on
model output (Hekimoglu and Barlas 2016) and that any inter-
dependencies may be identified (Ford and Flynn 2005). When con-
ducting sensitivity experiments, it is critical to identify which type of
sensitivity is being measured: numerical sensitivity (where a change in
assumptions results in changes in numerical results), behavior-mode
sensitivity (where a change in assumptions changes the model's patterns
of behavior), or policy sensitivity (where a change in assumption re-
verses the impacts of a proposed decision; Sterman 2000). Each method
described below outlines useful ways of measuring numerical,
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behavioral, and policy sensitivity.

Due to the nature of simulation in general, all models express nu-
merical sensitivity. Therefore, one objective of sensitivity experiments
is to identify which inputs or parameters have the largest effect on
model output or state variables. Ford and Flynn (2005) demonstrate a
statistical screening procedure for multivariate sensitivity analysis
based on the correlation coefficient (CC, ranging from —1 to 1), typi-
cally denoted r, given as

R 0. TP (¢ JEih 0
VEXG - XPE(Y - 9P 8]

where r represents the CC, x; and X are the point values of the in-
dependent variable at time i and the mean x value, and y; and y are the
point values for the dependent value at time i and the mean y value. For
each unit of time in the simulation, a CC is estimated for the each in-
dependent variable on the dependent variable, which can be used to
identify possible interdependencies (i.e., when input variables, in the
real-world, vary dependently with one another), in which model ad-
justments to account for relationships may be necessary. The CC also
allows one to rank the most influential factors on a given state variable.
Using this approach facilitates estimation of tolerance intervals with a
given confidence level (Hahn and Meeker 1991; van Belle 2002).

Although sensitivity experiments on parameter values are necessary
in order to understand the effect individual or groups of parameters
have on a particular model, such tests must be complemented with
sensitivity experiments of graphical (table) functions, which are
common in dynamic systems models (Ford, 1999; Eker et al., 2014).
Graphical functions represent the relationship between two variables,
one the independent and one the dependent variable (Deaton and
Winebrake 2000; Eker et al., 2014).° They are useful especially when
real-world relationships between two variables are known to exist but
where specific analytic equations are unknown, although if analytic
equations are known from prior research these are often included as
graphical functions. Because of the subjectivity associated with gra-
phical functions there is added uncertainty in model outputs
(Eker et al., 2014). Eker et al. (2014) extended a method by Hearne
(2010) to generate alternative functional forms of graphical functions
in an automated matter to facilitate graphical function sensitivity ex-
periments. Based on perturbation theory, the method uses “distortion
functions” multiplied by the model's original graphical function to ar-
rive at alternative nonlinear relationships between independent and
dependent variables. Distortion functions are composed of independent
parameters that create alternative functional forms and are easy to test
experimentally using the same procedures as those used to test para-
meter value sensitivity (Eker et al., 2014). The simplest distortion
function, triangular, is given by

h(x,p,m):1+w
p —cC
{a,xSp
cC =
b, x>p 2

where m represents the maximum deviation from 1 (ranging from —1
to 1) and p is the point where this deviation occurs (ranging from 0 to
1). Different combinations of distortion function parameter values re-
sult in different table function shapes. Distortion functions may be
linear (triangular) or nonlinear (sine or cubic) in nature, however, tri-
angular functions are most easily controlled and interpreted, especially
using scatter plots and correlation coefficients (Eker et al., 2014).
Lastly, Hekimoglu and Barlas (2016) demonstrate, using traditional
sensitivity analysis, a means to differentiate changes in model behavior

3 Graphical functions are also called table functions, and are often para-
meterized as a series of x-y coordinates representing the relationship between
an input variable (x) and the response (y) that is used elsewhere in a model.
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modes and quantify behavioral sensitivity outcomes. Behavior-modes
are most simply defined as the pattern over time expressed in the
variable of interest (see Appendix Fig. Al). The primary behavior
modes are zero/constant, linear growth/decline, exponential growth/
decline, goal seeking growth/decline, S-shaped growth/decline, growth
and decline or decline and growth, and oscillation with/without
growth/decline (Walrave 2016). When identifying shifts in behavior-
mode, a behavior pattern measure must be specified and created in the
model for further analysis given the lack of automated means to identify
and measure behavior-mode changes. After selecting input parameters,
their ranges of values, and conducting the sensitivity experiment, in-
dividual trial results are screened (by visual inspection of the output
data) and grouped into those that exhibit similar behavior modes. Next,
pattern measures are estimated (e.g., growth rates, periods or ampli-
tudes of oscillations, peak-point of a boom-bust cycle, etc.) and re-
gressed against standardized input parameter values of the sensitivity
trials, i.e., by

X — X

ox 3)

where x represents the nonstandardized parameter value, and x and o,
are the mean and standard deviation of parameter values.” Using
standardized parameter values improves interpretation of regression
results (Kleijnen 1995). Regression outputs can then be used to examine
the nature of influence and rank of importance of each parameter on the
behavior pattern, which can shed light on potential high leverage
parameters in the model. For example, t-tests indicate significance
while the signs of the regression coefficients indicate the direction of
correlation (or polarity) between the parameter and the behavior
measure (assuming parameter values used in sensitivity came from
independent distributions).

3.3. Experiments for comparing appropriateness of alternative assumptions
and effectiveness of new decision-rules or policies (counterfactuals or what-

ifs?)

Whereas the above experiments are generally conducted by varying
parameter values or functions, experiments for comparing the appro-
priateness of new assumptions or effectiveness of new management
decisions or policies to achieve desired system behaviors are conducted
through manipulating components of the model structure itself. Such
experiments are also called intervention studies, changed-behavior-
prediction tests, boundary-adequacy tests, or policy-sensitivity tests
(Forrester 1961; Forrester and Senge 1980). Often these take the form
of designing “what-if” experiments, which include system improvement
and boundary-adequacy tests via creation of additional model structure
(Forrester and Senge, 1980; Morecroft, 1988; Martinez-Moyano and
Richardson 2013). What-if experiments are typically performed using
ad hoc adjustments of key model parameters (e.g., Repenning, 2001;
Walrave et al., 2011) as well as functional values, functional shapes,
and forms of decision equations (Barlas 2007). Boundary-adequacy
experiments are uniquely important because they test whether or not
modification of the model boundary assumptions would change policy
recommendations arrived at in the original analysis (Forrester and
Senge 1980).

When future input values or forcing functions are highly uncertain,
these tests may be applied retrospectively (i.e., backcasting) to analyze
how “counterfactual trajectories” in key model structures would alter
behaviors observed in the known past (Srinivasan 2015; Gunda et al.,

“ Standardizing is a means to rescale data (input or output) to achieve a mean
of zero and standard deviation of one. Standardardization is important when
variable or parameter scales differ (often the case in multivariate model sen-
sitivity analysis) and by transforming the numerical data we add precision and
stability and reduce multicollinearity issues.
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2018). When inputs or forcing functions have an estimated trajectory or
distribution, models can be run into the future (or past) to forecast (or
backcast) potential system responses to the alternative assumptions or
conditions. Once alternative scenario, decisions, or conditions are si-
mulated, the effectiveness of proposed system changes can then be
measured to identify the degree of change in model behavior as a result
of the alternative assumption or scenario (Yiicel and Barlas, 2015).

In order to quantify potential effects of system improvements, one
may examine “what-if” questions through the analysis of intervention
thresholds (i.e., the minimum intervention size and implementation
time that results in the desired behavior change; Walrave 2016). Using
atomic behavior patterns and their associated threshold indicators”
(i.e., the point where a model behavior shifts from one atomic behavior
pattern to another; often observed using the first and/or second deri-
vatives), a model is iteratively tested using pre-determined intervention
sizes and times, which represent the “what-if” questions of a proposed
new policy, until the intervention threshold is reached or the entire
search space has been simulated (i.e., where no intervention thresholds
were identified). Using the resulting simulation data, an intervention
threshold graph may be constructed to indicate the required interven-
tion size at a given time to create the desired shift in behavior pattern
(Walrave 2016). This approach can be implemented using sensitivity
analysis (described above), but where the nature of the intervention, its
size, and time applied to the model are sensitivity inputs parameters.

Lastly, given the problem-oriented nature of systems analysis,
modeling generally aims to identify remedies to problems. System im-
provement tests seek to identify whether or not the modeling process or
the policies or strategies identified by the model experiments actually
led to improvements in the real-world's system structure and behavior
(Sterman 2000; Martinez-Moyano and Richardson 2013). Ideally, in-
tervention studies should follow good experimental design protocols,
with control and treatment groups if possible, or with natural experi-
ments comparing the results from those who changed behaviors as a
result of the modeling process with those who did not participate
(Sterman 2000; Oliva 2019).

3.4. Preparing a model for laboratory testing: notes on model calibration,
evaluation, validation

Before the experimental examples are illustrated, it is important to
realize that before a model is tested it must provide an adequate re-
presentation of the problem at hand. This is often captured in a dynamic
hypothesis (DH), which is a working theory about how a system's
structure of decision-rules and feedback processes generate and per-
petuate the problematic behavior of interest (Richardson and Pugh,
1981; Sterman 2000). The DH should link observable patterns of be-
havior to micro-level structures (ecologic, environmental, socio-
economic, decision-making, etc.; Forrester 1985; Morecroft 1983). A
model as a laboratory should translate the DH into a quantitative
working model. Therefore experimental design and testing is only as
good the DH (Oliva 2003). A model calibration process should be used
as a test of the DH to ensure that the model captures the observed
behaviors with the right structure (Oliva 2003). There are several
means in which to build confidence in a model and its DH prior to
experimental testing, including hand calibration, automated calibration
(see Oliva 2003 for example), and statistical evaluation to observed
behaviors. Tedeschi (2006) and Bennett et al. (2013) provide reviews of
statistical evaluation techniques useful for comparing model predic-
tions with observed data from the real system. Bennet et al. (2013) also
provide a general procedure for model evaluation. The critical ques-
tions one should answer during the model development and calibration
phase include: 1) does the model accurately capture the DH?; 2) which
data can/will be used for calibration versus evaluation?; 3) do the

5 A summary of these are illustrated in the Appendix.
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expected patterns correspond to those in the real world?; and 4) is the
model precise, accurate, or both? (Tedeschi 2006). Upon successful
model development, one should have adequate knowledge of the
model's performance (i.e., its strengths and accuracy, weaknesses and
sources of errors) to be able to properly interpret results of model hy-
pothesis testing.

Although model validation is beyond the scope of this paper, it is a
concept that all modelers must consider. Validation is the process of
establishing confidence in a model such that it can be used for its
particular purpose (Forrester and Senge 1980). Although some hold
that model validity equates to truth of the model, many in the field of
systems analysis hold that confidence is a better arbiter of validity
because there is no feasible way to prove a model absolutely and
completely represents reality (Forrester and
Senge, 1980;Tedeschi 2006). Whether one adopts truth or confidence as
their model validation criterion, it is clear that neither can be achieved
without adequate model experimentation. Judging the validity of a
model without having done the basic experimental tests (described
below) exposes the investigator to tremendous risk, since it will be
nearly impossible for them to correctly infer the full range of possible
behaviors and outcomes given the dynamic nature of our ecological,
agricultural, and social systems.

4. Model application: experimentation examples with discussion

To enhance the adoption, use, and documentation of simulation
experiments for both novice and advanced modelers alike, we demon-
strate and discuss each of the experiments described above using a
moderately complex, dynamic systems model. The model was devel-
oped based on a common problem in irrigated agricultural systems that
rely on surface water supplies for their water sources. In such systems,
surface water flows are diverted from a river source to provide irriga-
tion water to cropland. However, surface water diversions often has
deleterious effects to native ecosystems (in terms of both habitats and
individual species) through the reduction in baseline water supply that
the ecosystem has relied upon for its growth and development. In ad-
dition, irrigation diversions can escalate the impact of shrinking water
availability for the ecosystem depending on the season of year (which
can coincide with when water use by native ecosystems is greatest),
type of irrigation system used (e.g., conveyance structures for delivery
and return flows as well as the type of irrigation application, such as
drip, flood, sprinkler, all influence the infiltration, recharge, runoff, and
return flow dynamics), and cost-effectiveness of diversion (e.g., mar-
ginal cost of water and infrastructure; level of public subsidy supporting
the system, etc.). Water diversions not used for agriculture are often
transferred to municipal and industrial uses that have grown in con-
junction with population growth and economic expansion.
Unfortunately, degradation of native ecosystems has precipitated a
range of losses or reductions in ecosystem functions that support human
well-being but whose economic values have not been well captured for
decision-makers. The tension placed on stakeholders in these systems
continue to rise due to the array economic, political, and social interests
at play. The case study model profiled below captures the trade-off
between agricultural water diversions from a river source and the
ecologic consequences to a wildlife refuge that also relies on water from
the river (Fig. 2; an expanded model illustration and supporting model
files are provided the Appendix Fig. A2). The purpose of the model is to
generate insight for policy-makers about the trade-offs between a sur-
face water-supplied irrigation system and a native wildlife refuge that
resides downstream from the diversion point and surrounding crop-
lands and identify possible management strategies that balance the
economic benefit of irrigation without compromising the sustainability
of the wildlife refuge.
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4.1. Dynamic hypothesis and model overview

The wildlife refuge is dependent on water from the river to support
native ecosystem plants and the native animals that rely on those plants
for survival. As water from the river source is diverted to agricultural
use, river flow is reduced, which slows the growth of ecosystem plants
and threatens the native animal population (Fig. 3). The model includes
five state variables (crops, profits, ecosystem plants, native animals,
and irrigation diversion level) and their associated rate functions for
growth, decomposition or harvesting, grazing loss, reproduction and
mortality, and adjustments to the irrigation diversion amounts (Fig. 2).
Information links that complete the biological feedback loops include
the production rate of plants, animal reproduction rates, a forage
availability index (i.e., the ratio of native animals to ecosystem plants
which drives the animal mortality rate), and the growth index for crops
(i.e., high growth rates when total biomass is low, which slowly reduces
as plants reach maturity) and associated planting and harvesting times.
The major socio-economic information links include the effect of
profitability on planting density and planting density on irrigation di-
version rates (e.g., when profitability is enhanced, farmers raise
planting density; due to the additional crop biomass, irrigation diver-
sions are also raised to support plant growth). Additional parameters
include estimates for crop water demand, irrigation efficiency, mean
river flow, grazing demand of the native animals on ecosystem plants,
crop prices, crop planting costs, as well as the initial investment and
discount rate needed to determine the net present value (NPV) of the
agricultural water use. The model, executable in the freely down-
loadable Vensim PLE modeling environment,® is provided in the Ap-
pendix material along with Microsoft Excel templates for data analysis
so that readers can download and examine the model and replicate the
experiments presented.

An earlier version of the model was developed and presented in
Grant et al. (1997) but has been updated here to include three im-
portant feedback loops not included in the original model (two man-
agement-related feedbacks and one biophysical feedback): 1) as the net
annual returns for cropping increase, the planting volume of the next
year's crop also increases (positive feedback denoted ‘R1’ in Fig. 2), 2)
as the planting volume increases, so does the irrigation diversion
amount needed to support the crop (positive feedback denoted ‘R2’ in
Fig. 2), and 3) as the number of native animals declines, pressure is
applied through conservationists’ effort to limit diversions from the
river to agriculture (negative feedback denoted loop ‘B’ in Fig. 2).

To illustrate the experimental tests described above that serve to (i)
evaluate system robustness, (ii) develop depth of system understanding,
and (iii) compare effectiveness of alterative assumptions, decisions, or
policies, we designed and subjected the model to a variety of experi-
ments (Table 1), including extreme conditions (where the hypothesis is
that the model performs in logical and reasonable ways that conform to
all physical and scientific laws), sensitivity analyses of model behavior
given variation in parameter values and graphical functions (where the
hypotheses are that certain parameters or functions will have greater
influence on the behavior of the model than others), and what-if ana-
lyses (where the hypotheses are that altering certain assumptions, de-
cision-rules, or management strategies in the system will correct the
problematic behavior). Each section that follows provides a description
of how each test was implemented in the model, the results of each
experiment, and how it is interpreted within the context of the purpose
of the model. A summary of the rationale for each test and common
obstacles encountered during implementation is provided (Table 2).
These tests were chosen for several reasons: they provided a compre-
hensive suite of tests useful for confidence building (in both the model
and the modeler), model evaluation and insight generation; they align
with the “core” tests defined by Forrester and Senge (1980), they

® www.vensim.com/free-download/


http://www.vensim.com/free-download/
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Fig. 2. Stylized stock-and-flow diagram of the irrigation-wildlife refuge case-study model. An expanded model diagram and model files can be found in the Appendix.

provided a relatively straightforward scheme moving from novice- to
advanced-skill levels, and importantly, all could completed without the
need for external coding or additional software outside of most dynamic
modeling platforms.

4.2. Robustness to extreme conditions

System structures should permit examination of extreme combina-
tions of states or parameter values. In order to implement extreme
conditions tests, one must be familiar with the structural elements of
the system (state variables, transfer functions, information converters,
and variables representing time-based parameters) to be able to trace
the implications of hypothetical extreme values of variables (including
values known to be far outside the range of known historical or possible
values) to determine the plausibility of the model's response
(Forrester and Senge 1980). Here, we examine extreme conditions tests
applied to several key parameters: river flow [the primary physical
exogenous (i.e., arising from outside the model boundary) input to the
system; calibrated to 100 c.f.s.], irrigation efficiency (the fraction of
applied irrigation water that is productively consumed by the crop,
taking on a dimensionless value from zero to one, calibrated to 0.5),
and ecosystem plant decomposition rate (which regulates the volume of
plant biomass due to metabolic costs and eventual senescence and
death, taking on a dimensionless value between 0 and 1, calibrated to
0.375). Irrigation efficiency is also a significant factor influencing the
surface water return flow rate back to the refuge. Here, the volume of

applied irrigation water not consumed by the crop returns to the surface
water source that supplies the native animal refuge. In the simplest
mathematical form,

rfr = 1f — iwd + rtf, (C))

rtf = iwd — iwd*ie,

(5)

where rfr is the river flow to the refuge, rf is the upstream river flow,
iwd is the irrigation water diverted, rtf is the return flow rate, and ie is
the irrigation efficiency. Therefore, monitoring the responses to
changed irrigation efficiency provides an additional check on the in-
ternal consistency of the model structure.

Abnormally high flow rates did lead to small increases in ecosystem
plants earlier in the growing season, which was able to support slightly
greater native animal population (Fig. 4a and b), but did not sig-
nificantly alter the overall behavior patterns. On the other hand, cutting
river flow to zero c.f.s. led to an eventual collapse in ecosystem plants.
The stock of existing biomass became depleted by month 30, due to no
new plant growth combined with monthly biomass losses from de-
composition and consumption by native animals. Because of the loss in
ecosystem plants, the native animal population also collapses near
month 36. Importantly, neither ecosystem plants nor native animals fall
below zero due to the first-order negative feedback loops (not arbitrary
constraints set by the modeler) that govern the outflow of each stock
(i.e., “physical inventories cannot be negative”, if the desired outflow is
greater than the level of the stock, first-order negative feedback controls
will regulate the outflow such that the outflow rate cannot exceed the
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Fig. 3. Behavior-over-time graphs of ecosystem plants (a) and native animals (b) in the refuge before irrigation diversions (base-case) and after (30% of surface water

diverted for agriculture) over the 30 year (360 month) time horizon of interest.

existing stock value). Consider a bathtub example. Without any inflow
and the drain, or outflow, open, a full bath tub will drain water, a
function of gravity and the height of the water in the tub. As the height
of water declines to zero, the outflow rate also declines to zero, at
which point the stock of water in the tub is empty even though the drain
is open and gravitational force is still applied. Not including this kind of
regulating feedback is a common pitfall among beginning modelers.
Manipulating irrigation efficiency up to 100% of applied irrigation
water led to a number of significant outcomes (Fig. 4c and d). First, the
50% improvement in irrigation efficiency led to a 400% increase in
crop production. Initially, this may look unreasonable. However, the
modeler should examine such behaviors and be able to link them to the
model structure from which they arose (Fig. 2). In this case, improving
irrigation efficiency (100%) meant no water losses during irrigation
(i.e., all water applied was converted into crop production). Because of
the increase in production and therefore crop profitability in the first
year, the strength of the two reinforcing loops in Fig. 2 (driven by
profit's effect on planting density and planting density's effect on irri-
gation diversion levels) were greatly enhanced, leading to greater
planting densities and irrigation application levels. With greater plant
densities, greater water applications, and no water losses in the pro-
duction system, crop production grew until reaching its maximum po-
tential by month 36 (Fig. 4c). With irrigation efficiency at 100%, the
delayed return flows to the river source were eliminated. With reduced
stream flows to the refuge and the resulting loss of ecosystem plants, the
native animal population declines until its complete loss by month 72
(Fig. 4d). On the other hand, when irrigation efficiency is set to 0% (i.e.,
no irrigation water applied is converted to crop growth, all applications

become return flows), crop production was unsustainable (overlaying
the x-axis in Fig. 4c) and there was no change in the native animal
population (Fig. 4d), since whatever water applied was returned to the
river source and supported ecosystem plant growth needed by the na-
tive animals.

The reduction in ecosystem plant decomposition rate to 0% created
significant differences in ecosystem plants and native animals com-
pared to the base case. With no decomposition, the stock of ecosystem
plants was able to grow up to its biological limit subject only to losses
via consumption by native animals (Fig. 4e). The native animal popu-
lation, no longer subject to the seasonal variability in food supply,
therefore grew in conjunction with the growth in ecosystem plants,
reaching a new equilibrium population near 45 animals by month 60
(Fig. 4f). Any consumptive losses in ecosystem plants by native animals
were easily compensated for by new growth.

The important insights that these experiments provide the modeler
are to check that the model structure obeys basic biophysical laws.
Populations and plant biomasses can't be negative, neither can they
grow forever. Extreme conditions tests illuminate whether or not a
model conforms to such laws. Additionally, when a model expresses a
high degree of feedback (such as the feedbacks stemming from irriga-
tion applications and their influence on return flows), such tests force
the modeler to be able to explain the resulting behavior in terms of the
existing model structure. When results do not conform to basic scien-
tific laws or result in behaviors that can't be explained clearly by the
existing model structure (which is a reflection of the dynamic hypoth-
esis), the modeler should reconcile the discrepancy by revising the
dynamic hypothesis, model structure, or both (Appendix Section 3.1.
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Table 1
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Summary and description of experimental tests along with the model variables used to facilitate model testing. Model files and data used for each test can be found in

the Appendix.

Objective Experimental test Variables used Units Variable type Test description
Evaluate robustness Extreme conditions River flow cfs Auxiliary Manipulation of parameter values to
extreme high and low values to ensure the
Irrigation efficiency % Auxiliary model is robust enough to accommodate
even the most extreme conditions.
Plant decomposition rate % Auxiliary
Develop depth of system Step River flow c.f.s. Auxiliary Manipulation of system functions and
understanding relationships to examine behavioral
Pulse River flow c.fs. Auxiliary changes and sensitivities in the model.
Ramp River flow c.f.s. Auxiliary
Multivariate sensitivity 11 simultaneous - Auxiliary
analysis variables”
Table function sensitivity Adjusted planting % of base (tons) Graphical
analysis density
Mortality rate 1/Mo Graphical
Sensitivity of behavior Native animals* head Aux. of
pattern measures behavior
pattern
indicator

Intervention times and
size of expanding the
wildlife refuge

What-if / Intervention
thresholds / Boundary
adequacy and changed-
behavior test

Evaluate alternative
assumptions, decision
rules, or policies

Construction of reservoir
storage

tons and tons/mo.
(ecosystem plants);%
(expansion rate); month
(expansion time)

c.f.s. (flows), acre-feet
(storage)

Stocks, flows,
and auxiliary

Addition, subtraction, or alteration to
model structure and decision-making rules
to examine the effectiveness or feasibility
of new management strategies or policies.
Stocks, flows,

and auxiliary

River flow rate

c.f.s. (flows) Auxiliary

System improvement Not well quantified

# The 11 auxiliary variables in the sensitivity analysis included annual infrastructure costs, base crop planting density, base crop price per ton, base water
diversions, decomposition rate, discount rate, feed resource supplement, feed resource supplement cost, irrigation efficiency, planting cost, and water consumption

per ton of crop.

* This included native animals, mean native animals, and the first derivative of mean native animals.

provides several examples of failed extreme conditions tests often en-
countered in early stages by more novice modelers).

4.3. Developing depth of system understanding

To develop depth of system understanding, experiments that ex-
amine the various behavior modes that the model can create and the
strength of influence that various model parameters have on creating
those behavior patterns are needed. Here, we illustrate several beha-
vioral sensitivity tests by experimenting with alternative parameter
values or functions (including graphical functions) to analyze their in-
fluence on the resulting model behavior. These include varying para-
meter behaviors rather than their values, multivariate sensitivity ana-
lysis, graphical function sensitivity analysis, and analysis of behavior-
modes (i.e., behavior pattern measures).

4.3.1. Behavioral sensitivity to model parameters

The first experimental examples demonstrate changing single
parameters in unique ways via giving them dynamic rather than static
values over the course of a simulation. Because of the importance of
river flow as the primary water input for the ecosystem plants and
native animals in the refuge as well as the crop production system
(Fig. 2), we illustrate three experimental tests of the model using step,
pulse, and ramp functions to vary the river flow input values into the
system. Each of these tests are also applicable to other parts of the
system (e.g., crop production, economics, and ecosystem components),

but due to space considerations only tests of river flow are presented
here.

First, using a step function, we implement a step volume change to
river flow, at a given step time, such that

100, t < step time

river flow = .
{100 + step volume, t > step time

(6)

where t represents time, step time = 120 months, and step volume is
equal to 50 c.f.s. (but is adjustable based on user input for smaller or
larger step changes, including potential reductions in river flow for
negative values of step volume).”

The resulting behaviors of the river flow step experiment illustrate
several immediate and delayed responses to changes in flow behavior
(Fig. 5a). Due to the immediate increase in available water (150% of
base river flow) and no delay in irrigation diversion and application
during the growing season, crop production was enhanced nearly 50%
(Fig. 5b). In a similar fashion, ecosystem plants immediately recovered
from the reduction created by diversions in the base case river flow and
actually reach a new peak in primary productivity (approximately
20,000 tons compared to 15,000 tons, or an increase of 33%, prior to
irrigation diversion; Fig. 5c).

7In the Vensim modeling environment, this may be achieved a number of
ways but is best implemented with use of the step function [STEP(step volume,
step time)].
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Summary of the purpose and rationale for each experimental test and description of common obstacles, barriers, or limitations encountered during experimentation
that potentially limit use of test (indicated from novice to advanced modelers).

Experimental test

Purpose and rationale

Common obstacles, barriers, or limitations encountered

Extreme conditions

*Does the model structure withstand extreme conditions such that the
resulting behaviors are physically realistic (e.g., non-negative physical
stocks; growth processes that can't grow forever)?

«If not, what internal structural elements need to be added (e.g., first-order
negative feedback on physical outflows) or revised (e.g., internal decision
rules)?

sImproper model formulation on flow or rate variables (for
novice modelers)

«Identification of useful parameters to stress to extreme
conditions (for novice modelers)

*Requires extensive familiarity with the real-world system (for
novice modelers)

*Low level of insight (relative to other experiments) given the
time investment made to generate test and analyze results (for
advanced modelers)

Step, pulse, and ramp functions

*Does the model respond to changes in input parameter behaviors in
realistic and explainable ways?

«In what ways do the behavior mode of input parameters influence the
behavior mode of model's endogenous structure?

«Improper model formulation on flow/rate and/or auxiliary
variables (novice)

«Identification of useful parameters for testing as well as the
nature and degree of change (novice)

«Interpretation of model behavior changes can become more
difficult the farther one moves away from the test variable
(novice to advanced)

Graphical sensitivity analysis

«Is the model over-sensitive to the form of graphical (table) function form?
Do numerical assumptions underlying graphical functions create
significantly different behavior patterns?

*Graphical functions incorrectly parameterized (novice
modelers)

+Significant number of auxiliary variables are needed for
experimentation (novice to advanced)

Statistical screening and
behavior pattern measures

*Which of the hypothesized management levers have the greatest numerical
impact on the system variables of interest? Have we distinguished the
“critical few” variables from the “insensitive many”?

*Which of the hypothesized management levers have the greatest impact on
creating an alternative behavior pattern in the system variables of interest?

«Identification of variables to be included in sensitivity
simulations (novice)

«Ability to identify and differentiate between different behavior
modes (novice)

«Determination of range of values that variables can take on
during simulations (novice to advanced)

+Significant number of auxiliary variables may be needed to
capture behavior pattern measures needed for experimentation
(novice to advanced)

«Statistical screening becomes increasingly labor intensive as one
moves beyond one output variable of interest (novice to
advanced)

Counterfactual trajectory

analysis

*What if some of the key underlying assumptions used to build the model
wrong? How might the model behave if these assumptions were altered to
reflect counterfactual scenarios?

«Identification of core assumptions underpinning model
structure (novice)

*Generating plausible alternative assumptions for identified
variables (novice to advanced)

Model boundary adequacy test

*How can we inform stakeholders about the implications of policies/
strategies not yet considered because they are likely to arise outside the
existing model boundary? Would pursuing such a strategy alter the
recommendations made from the modeling project?

«Ability to distinguish model structure necessary for the purpose
versus structure that is not needed or confounding (novice)
«Ability to identify and differentiate between different behavior
modes (novice)

High degree of modeling skill required to conceptualize new
model structures (novice to advanced)

Intervention thresholds analysis

*How much investment should be made and when in order to get the desired
behavior pattern in the system variable of interest?

+Ability to identify and differentiate between different behavior
modes (novice)

High degree of modeling skill (novice to advanced)
-Computationally demanding (novice to advanced)

The reason for the disproportionate response in crop production and
ecosystem plants are due to the disproportionate change in total inflows
received by each area. Recall that the base river inflow was 100 c.f.s.,
irrigation diversions were 30% of the flow, irrigation efficiency was
50%, and water not consumed by the crops became return flow back to
the river source. In response to the step change in river flow, the total

inflow available for crop production increased 67% (i.e.,

new waer available — base water available , or (50 cfs * 50%) — (30 cfs * 50%) __
base water available ’ (30 cfs * 50%)

25cfs — 15 cfs

e = 66.7%). On the other hand, total inflows to the refuge

only increased 47% (i.e., % :2 zz = 47%). Finally, the
native animal population does recover to its equilibrium level of 25
head, albeit with a delay of 160 months (Fig. 5d). Unlike the immediate
plant response to water observed in crop production and ecosystem

plants (which are subject to delays of less than one year in their growth

10

capacities), native animals are subject to biological delays for gestation
and birth which lengthen the recovery time for the general population.
Because of this delay, the recovery in native animals is not a sharp, one-
point-in-time increase, but an s-shaped growth pattern from the re-
duced state back to the natural population level.

In a similar fashion, we can utilize a pulse function to periodically
increase or decrease a particular rate or parameter values at a desired
interval (pulse time). In this case, a pulse is used to reduce river flow by
50% during the ecosystem plant's growing season in three year intervals
to mimic the natural occurrence of drought conditions (the base case
without irrigation is used here in order to more effectively observe what
changes, if any, occur in native animals, which may not be perceptible
given the influence of irrigation diversions shown in previous sections).
The droughts begin at the start of the growing season (month of
year = 4) midway through the simulation (t = 180 months), which
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Fig. 4. Behavior-over-time graphs illustrating the resulting behaviors of extreme conditions tests of river flow (panels a and b; base case 100 c.f.s, 0 c.f.s, and 300
c.f.s), irrigation efficiency (panels ¢ and d; base case 50%, 0%, and 100%), and ecosystem plant decomposition rate (panels e and f; base case 0.375% month ™1, 0%

month™1).

mathematically can be expressed as

iver flow = 100, t < pst
Aver oW = 1100 + pv, t> pst )
and
T <« 2 nmt 27tn T
pv=|—-+ Z —sin(—)cos(—*(pst - f) *de
T ne1 nmw T T 2 (8)

where pv is the pulse volume, t is time, pst is the pulse start time equal
to 184 months (i.e., month 180 being the start of the 16th year, plus
four months to arrive at the start of the natural growing season), pulse
time t is 6 months, and pulse period T is 36 months. The pulse in the
above function produces a sequence of re-occurring events (re-
presenting drought) via the use of a square wave function, where the
pulse width is 6 months, the space width is 30 months, and the cycle
time is 36 (i.e., duty cycle = 16.67%). The square wave functions yields
a value of 1 when the wave is positive or O when it is not, thus, in order
to simulate the pulse of a particular volume, the square wave is mul-
tiplied by an auxiliary variable representing the desired change, dc (i.e.,
in

11

this case —50 c.f.s.; Fig. 6a).°

Similar to the step experiment above, the pulse experiment reducing
river flow by 50% yielded both immediate and delayed responses.
Clearly in the years with drought ecosystem plants were negatively
affected, but do recover in subsequent years following each drought
(Fig. 6b). Native animals are also negatively affected, but due to the
biological delays inherent in the population, drought effects in one year
compound into the future. For example, the reduction in ecosystem
plants during the first drought pulse results in diminishing the native
animals nearly 50%, but the plants are able to fully recover in the
following years before the next drought occurs, whereas native animals
only improve to a mean of 17.5 animals (a 30% reduction for their
starting population). Because of the lengthened recovery time in native
animals, the effect of each subsequent drought is amplified and re-
inforces the native animal population to a new, albeit lower, equili-
brium level (Fig. 6¢). The result is a change in behavior pattern from a

81In the Vensim modeling environment, this can be simulated via the pulse
train function [PULSE TRAIN (start time, pulse width, cycle time, end time)*-
desired pulse volume].
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and native animals (panel d).
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sustained oscillatory behavior to one that is a declining, goal-seeking,
damped oscillation.

The third test demonstrates a ramp function, which alters a para-
meter value from a static value to one that takes on a particular slope
(positive or negative) for a particular time-span. In this case, river flow
increases 0.3 c.f.s. per unit of time beginning at 120 months.
Mathematically, this is expressed as’

. 100, t < ramp time
river flow = . .
100 + (ramp slope*(t — ramp time)), t > ramp time

©)]

where t is time, ramp time is 120 months, and ramp slope is 0.3.

Given the above ramp slope and time inputs, river flow increased
from 100 c.f.s. at month 120 to 175 c.f.s. by month 360 (Fig. 7a). Due to
the gradual increase in available water, crop production grew linearly
in step with river flow (Fig. 7b), while ecosystem plants exhibited more
of goal-seeking growth behavior up to its maximum productive poten-
tial near 20,000 tons (Fig. 7c). Because the recovery delay of ecosystem
plants takes around 180 months (from 120 to 300 in Fig. 7) and the
reproductive delays of native animals (described above), the native
animal population exhibits an exponential growth pattern, where each
subsequent gain in population, although initially small, compounds into
the future (Fig. 7d). However, since ecosystem plants do reach a point
where growth no longer occurs, a reasonable follow-up test would be to
extend the simulation out beyond 360 months to identify at what point
(if any) the native animal and crop production behavior patterns shift
from exponential and linear growth to some other behavior patterns,
most likely goal-seeking.

Tests of these types aid the modeler in understanding how model
structure produces unique behavior modes given a dynamic input.

°In the Vensim modeling environment, this function is most easily im-
plemented use the ramp function [RAMP(ramp slope, ramp time, end time)])
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These are especially valuable for management or policy-related ques-
tions due to the fact that most dynamic models have the ability to ex-
hibit multiple behavior-modes, which makes it possible to examine
potential interactions between modes or how different decision-rules
lead to particular behavior patterns (Forrester and Senge 1980; Ap-
pendix Section 3.2 provides examples of failed step, pulse, and ramp
experiments that would necessitate mental and quantitative model re-
vision).

4.3.2. Sensitivity analysis with graphical functions

The second set of experiments illustrate graphical function sensi-
tivity analyses. In this case, two key graphical functions warranted in-
vestigation: native animal mortality rate (a graphical function based on
per capita forage availability effect on mortality; B1 in Fig. 2) and crop
profit effect on planting density (R1 in Fig. 2). Because mortality rate
directly influences the native animal population and does not feed back
to the cropping system, we only examine the effect of altered mortality
rates on the animal population. On the other hand, the influence of
expected planting density reaches beyond the cropping system to
second- and third-order effects on the ecosystem plants and native an-
imals; therefore, we examine crop system financial performance (via
the net present value, or NPV, of irrigation, which integrates crop
production and economic prices and costs) as well as the native animal
population. Each of these graphical functions were manipulated using
the distortion function procedure outlined by Eker et al. (2014) after
Hearne (2010), illustrated with two simple examples in Fig. 8. Although
there are an array of alternative distortion functions one may use to
manipulate the graphical function, here we employ the one of the
simplest, a single point triangular distortion (Eq. (2)), in order to
minimize additional model variables required for the experiment while
maintaining a distortion that is easily interpretable (for a full discussion
on the strengths and weaknesses of variable distortion function possi-
bilities, see Eker et al., 2014).

To complete the sensitivity analysis, 100 simulations were
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and one are the end points of the graphical function).

completed for each graphical function by varying the maximum de-
viation, m, from —1 to 1, and point of maximum departure, p, from 0 to
1 (see Eq. (2))."° For the most part, the model was insensitive to
changes in graphical functions (Fig. 9). Altering the mortality rate
function revealed primarily only one behavior pattern, decline-and-goal
seeking (Fig. 9a), with only three out of the 100 simulations producing

10 Tests were implemented in Vensim modeling environment using the built-
in Monte Carlo simulation feature, with the following specifications: number of
simulations 100, noise seed 1234, Latin Hypercube sampling, with random
uniform distribution of input parameter values.

a markedly different ending population size. Examining the native an-
imal mean and standard deviations showed that the monthly variation
in population was demonstrably low relative to changes in the mortality
rate graphical function (Fig. 9b). Similar results were observed for
changes in expected planting density (Fig. 9c and d). Only two out of
100 simulations produced a significantly different outcome for both
native animals and NPV of irrigation (Fig. 9e and f). Following Ford and
Flynn (2005), correlation coefficients (CC) were calculated between the
inputs, m and p, with the observed output data in native animals and
NPV of irrigation (ending CC values shown in Table 3). Increasing the
magnitude of the departure, m, from the original graphical functions for
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Table 3

Correlation coefficients between maximum departure magnitude, m, and point
of maximum departure, p, used in graphical function sensitivity analysis with
native animals and the net present value (NPV) of irrigation.

Output measures

Graphical function input Native animals NPV of irrigation
mortality rate m-factor -0.47 -

p-factor -0.18 -
expected planting density m-factor -0.18 0.06

p-factor -0.25 0.33

mortality rate resulted in smaller native animals populations (indicated
by negative polarity in the sign of the CC). Increasing the point of de-
parture, p, also had a negative but weaker influence on native animals.
This may also be intuited given the slope of the graphical function
(Fig. 8b) given that larger departure values on per capita forage
availability will raise mortality rate (i.e., smaller per capita forage
availability — larger mortality rate — smaller native animal popula-
tion). Similar effects on native animals were observed given m and p
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distortions on expected planting density. Conversely, larger departures
had a positive influence on the NPV of irrigation (i.e., greater planting
density — greater crop production and harvest — greater crop profit —
greater NPV).

Graphical functions and their particular shapes are often the most
debated functions during model development and overlooked para-
meter values during model testing. Given the extraordinary range of
possibilities that graphical functions can take on, it is important that the
model withstand alternative graphical forms. All models express nu-
merical sensitivity to changes in parameter values, but models should
be able to produce the behavior mode described in the dynamic hy-
pothesis for a wide range of parameter values (including graphical
functions).

4.3.3. Sensitivity of behavior patterns

The final sensitivity analysis demonstrated here pertains to multi-
variate tests using statistical screening (Ford and Flynn 2005) and be-
havior pattern measures (Hekimoglu and Barlas 2016). To facilitate
both tests, one set of 11 parameters and their ranges were specified
(Table 4) and simulated for 100 model runs (a form of Monte Carlo
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Model parameters, their base values, and bounds on the range of uncertainty applied to the 100 model simulations during statistical screening and behavior pattern

sensitivity analyses.

Model parameters Base value Lower bound Upper bound
Agriculture

Base crop planting density (ton/unit area) 100 75 125
Base water diversions (% of river flow) 30% 20% 40%
Irrigation efficiency (% water applied converted into crop production) 50% 40% 60%
Water consumption per ton of crop (c.f.s./ton) 0.3 0.2 0.4
Ecologic

Decomposition rate of ecosystem plants (%) 37.5% 35% 40%
Feed resource supplement (tons/head/month) 0 0 0.25
Economic

Crop price ($/ton) $30 $20 $40
Planting cost ($/ton) $50 $25 $75
Annual infrastructure cost ($/year) $10,000 $5,000 $15,000
Feed resource supplement cost ($/ton) $295 $215 $375

Discount rate (%)

3% 2% 4%

simulation) to observe the resulting behaviors in key system variables:
native animals, ecosystem plants, total crop harvest, the NPV of irri-
gation, and several key behavior pattern measures for native animals
(described below). Native animals, ecosystem plants, and total crop
harvest were chosen because these were the key stocks of the model,
that, in the real-world, are most likely to be measured and monitored
given the problem at hand, while NPV of irrigation (an auxiliary vari-
able) was chosen given that it integrates the outcomes that arise from
the interrelated nature of the model's agriculture, ecologic, and eco-
nomic components (Table 4). Unfortunately, comprehensive sensitivity
analysis of all uncertain parameters over their entire range of possible
values is for most practical purposes impossible (Sterman 2000). Given
this constraint, parameters used for sensitivity testing must be selected
for, typically by identifying: those you suspect (hypothesize) are both
highly uncertain and likely to be influential, those that are not entirely
under control of decision-makers but must be managed if a desired
outcome is to be achieved, which parameters are deemed most im-
portant to decision-making by working with stakeholders or problem-
owners, defining “worst” and “best” case scenarios about the problem
at hand and then backing into variables needed to create such sce-
narios, or some combination of the above (Sterman 2000). In this
particular case, sensitivity input variables were selected based on their
hypothesized uncertainty and influence on the system and those that,
although not entirely within control of stakeholders, are key factors
that must be managed if a solution is to be reached (Table 4).

The statistical screening approach was used to evaluate the relative
strength and polarity of each parameter on the key variable output
behaviors, where the input and output values are regressed for each
time-unit of the simulation. Varying these input parameter values si-
multaneously created much more variability in system behavior-modes
(Fig. 10) relative to the previous sensitivity tests described above. First,
both total crop harvest and NPV of irrigation (which express linear
growth behavior-modes) indicated a clear shift or break between
profitable and unprofitable combinations of inputs (Fig. 10a and c).
However, in general, both total harvest and NPV of irrigation grew
linearly (Fig. 10b and d). On the other hand, ecosystem plants and
native animals expressed several behavior modes (Fig. 10e and g), in
general exhibiting a goal-seeking decline behavior-mode (Fig. 10f and
h).

Examination of the ending CC values between input parameters and
system stocks indicate the relative strength and polarity of the link from
inputs to model behavior. Positive CC values indicate positive polarity,
negative CC values indicate negative polarity, while values closer to 0
indicate relative weaker degree of influence and values closer to —1 or
1 indicating stronger degree of influence on the system behavior. The
two variables with the strongest influence across the entire system were
base water diversions and irrigation efficiency (CCs ranging from
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—0.76 to +0.58; Table 5). The next most influential variables included
base crop planting density and price per ton of crop (CCs ranging from
—0.29 to +0.27). The remaining input parameters held relatively weak
influence on system behaviors (CC values between —0.15 and 0.15). A
key insight of the CC analysis that corroborates the dynamic hypothesis
as well as previous model testing is the polarity between agricultural
components (total crop harvest) and the ecosystem (ecosystem plants
and native animals). For the most part, parameters that have a positive-
polarity influence on agricultural components expressed a negative-
polarity influence on ecosystem components, and vice versa. The value
of the CC analysis is that it illustrates and quantifies the trade-offs be-
tween the agricultural and ecological components in this system. Lastly,
one may notice the annual cycle in ecosystem plants and native ani-
mals, which is driven by the annual growth season in plants and the
resulting balance with native animals. However, the trajectory of their
behaviors does not express this annual oscillation, since the overall
behavior pattern changes depending on whether or not the growth was
greater than or equal to decomposition and grazing (in which case
plants are stable, if not, they decline), or if births were greater than or
equal to deaths (in which case animals are stable, if not, animals de-
cline). Therefore in this case, the CC values would not be significantly
different if the cycle point varies at the end of the simulation (i.e., the
trajectory or spread in CC values would not be different, only the
ending point values). However, in more cyclical or oscillatory systems,
one may examine the behavior pattern of the CC itself, to understand
how the CC between inputs and behavior patterns evolve over the
course of the simulation (Ford and Flynn 2005).

To take statistical screening a step further and complete the beha-
vior pattern measures analysis, the same parameters and ranges of
values were used but rather than observing changes in specific system
variables, we observe the resulting changes in the output of behavior
pattern measures, in this case for native animals. After visually
screening the sensitivity results, we observe that native animals ex-
pressed several behavior modes: 1) goal-seeking decline-and growth to
a new equilibrium; 2) goal-seeking decline to a reduced population; 3)
goal-seeking collapse (defined as population-levels below three ani-
mals, which effectively eliminates any possibility of successful species
reproduction); and 4) linear decline (Fig. 10g and h; generic behavior
modes shown in the Appendix Fig. A1). After grouping the data based
on visually classifying the behavior patterns, we specify pattern mea-
sures that differentiate each unique pattern: equilibrium level (pattern
1, n = 39) defined as the mean native animals at the final month; in-
flection point and inflection level (pattern 2, n = 12) defined by the
largest value of the first derivative of mean animals and the level of
animals at that point; time to collapse (pattern 3, n = 43) defined at the
time at which native animals falls below three, and slope (pattern 4,
n = 6) defined as the difference between initial and final native animals
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divided by the final simulation time. Following Hekimoglu and
Barlas (2016), simulation runs were grouped by behavior pattern,
pattern measures were estimated from each simulation run, values were
standardized (Eq. (3)), and then input parameters were regressed to
behavior pattern measures for each behavior pattern.

Regression equations using the eleven parameters in Table 5 were
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built to examine the effects that each had on the key output behavior
pattern measure (Table 6). Regression results indicate the most sig-
nificant parameters that lead to a particular behavior pattern. The re-
gression equations for the two most common behavior patterns (goal-
seeking decline with growth to equilibrium, n = 39; goal-seeking col-
lapse, n = 43) were:
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Table 5

Ending correlation coefficients (CC) between each input parameter used during
sensitivity analysis with key stocks in the system, crop harvest, net present
value (NPV) of irrigation, ecosystem plants, and native animals. Positive CC
values indicate positive polarity (e.g., increasing base water diversions in-
creases total crop harvest) while negative CC values indicate negative polarity
(e.g., increasing base water diversions decreases ecosystem plants).

correlation coefficient with system variable of interest

Input parameter total crop NPV of ecosystem native
harvest irrigation plants animals

base annual —0.236 —0.329 0.143 0.229
infrastructure costs

base crop planting 0.266 0.156 -0.163 —-0.285
density

base planting cost —0.084 —0.122 0.051 0.003

base water diversions 0.578 0.516 —0.763 —0.698

decomposition rate —0.010 0.030 —0.103 —0.115

discount rate 0.024 —0.152 0.098 —0.021

feed resource —0.059 —-0.079 0.117 0.096
supplement

feed resource 0.092 0.060 —0.105 —0.044
supplement cost

irrigation efficiency 0.580 0.525 —0.401 —0.317

price per ton-base crop 0.274 0.470 —0.165 —0.292

water consumption per 0.120 0.098 —0.033 —0.013

ton of crop

Equilibrium level = 0.14base annual infrastructure costs — 0.36base
crop planting density + 0.02base planting cost — 0.79base water di-
versions — 0.17decomposition rate + 0.03discount rate + 0.07feed
resource supplement — 0.11feed resource supplement costs — 0.47irri-
gation efficiency — 0.21price per ton-base crop — 0.0003water con-
sumption per ton of crop

Time of collapse -0.37base annual infrastructure
costs + 0.31base crop planting density + 0.19base planting
cost + 0.40base water diversions — 0.10decomposition rate + 0.35dis-
count rate + 0.11feed resource supplement + 0.06feed resource sup-
plement costs + 0.02irrigation efficiency + 0.20price per ton-base
crop — 0.20water consumption per ton of crop

Not shown in equation form are the results for inflection point and
inflection level (used for behavior pattern 2 described above) since no
significant parameters were identified, or for slope (used for pattern 4
described above) due to inadequate sample size. It was not surprising
that no significant parameters were identified in the case of behavior
pattern 2, which is the same generic behavior pattern as pattern 4 (goal-
seeking collapse). The most significant parameter in goal-seeking col-
lapse, base water diversion rate, also had the lowest p-values for both
behavior pattern measures for pattern 2. Therefore, we may infer that
the primary behavior mode expressed by the model is goal-seeking
decline (n 12 pattern 2 + 43 pattern 3 = 55 total goal-seeking

Table 6
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decline) but that significant collapse is not induced unless the base
water diversion rate reaches a high enough threshold.

In the equilibrium case, base crop planting density, base water diver-
sions, irrigation efficiency, and price per ton all significantly influenced
the equilibrium population size the native animal population was able
to achieve. Importantly, all significant factors possessed negative po-
larities. For example, greater planting density, water diversions, irri-
gation efficiency, or crop price lead to lower equilibrium levels in na-
tive animals. This logically follows due to the trade-off between the
agricultural system productivity and ecosystem productivity given
feedback processes influencing the allocation of resources. The other
major behavior pattern was goal-seeking decline to a nonviable popu-
lation, where the behavior pattern measure was the time to collapse. In
this case, the only significant factor was base water diversion, while other
important variables were annual infrastructure costs and discount rate.
Insignificance of other factors indicate less importance in creating the
observed behavior pattern.

Results from both the statistical screening and behavior mode sen-
sitivity analysis are summarized in Table 7. Key input parameters are
ranked based on their influence and polarity on either maintaining a
higher equilibrium of native animals versus the time to collapse in
native animals in the goal-seeking collapse case.

4.4. Comparative analysis of alternative assumptions, decision rules, or
policies (counterfactuals or what-ifs?)

Whereas the tests to this point have dealt with examining robustness
and developing depth of system understanding (both of which primarily
reside in model development and evaluation stages of the modeling
process), the remaining tests focus on effectively using a model to
generate insights needed for constructing and advocating for policy or
strategy recommendations. Generating model insights via alternative
assumptions, decision-rules, or policies can take the form of counter-
factual trajectory analyses, boundary-adequacy tests on model behavior
and policy recommendations, or intervention studies, each of which can
be formulated using “what-if” experiments. These experiments provide
opportunities to examine how emergent pressures arise or can be mi-
tigated for, whether or not the effects of additional model structure in
biophysical, decision-making, spatial components, or the interactions
among them, changes the final model results and management re-
commendations, and to estimate the risk associated with adopting
particularly new decisions or policies (Forrester and Senge 1980). We
illustrate three such tests by posing specific what-if questions aimed at
generating management insights via counterfactual trajectories,
boundary-adequacy, and intervention thresholds.

4.4.1. Counterfactual trajectories
Counterfactual trajectories involve altering the basic model

Regression results for the equilibrium level of goal-seeking decline with growth to equilibrium pattern, inflection point and level for goal-seeking decline behavior
pattern, and time to collapse for goal-seeking decline pattern to a nonviable population size.

equilibrium level (n = 39)

inflection point (n = 12)

inflection level (n = 12) time of collapse (n = 43)

Input parameter stand. co.'  t-statistic p-value stand. co t-statistic p-value stand. co t-statistic p-value stand.co t-statistic p-value
base annual infrastructure costs 0.14 1.64 0.11 1.30 0.59 0.66 -0.32 -0.39 0.76 -0.37 -1.67 0.11
base crop planting density —0.36 —-4.01 0.00 2.10 1.27 0.42 -1.21 -1.96 0.30 0.31 1.42 0.16
base planting cost 0.02 0.30 0.77 0.19 0.16 0.90 0.15 0.35 0.79 0.19 0.79 0.43
base water diversions -0.79 —10.44 0.00 9.39 1.31 0.41 —5.52 —2.07 0.29 0.40 2.08 0.05
decomposition rate -0.17 -1.95 0.06 1.06 0.61 0.65 -0.72 -1.11 0.47 -0.10 —0.48 0.63
discount rate 0.03 0.40 0.70 0.74 1.21 0.44 —0.30 -1.33 0.41 0.35 1.75 0.09
feed resource supplement 0.07 0.81 0.43 1.03 1.09 0.47 —0.56 —1.60 0.36 0.11 0.46 0.65
feed resource supplement cost —0.11 -1.29 0.21 -0.72 -0.82 0.56 0.45 1.38 0.40 0.06 0.28 0.78
irrigation efficiency —0.47 —5.64 0.00 5.10 1.54 0.37 —2.88 -2.33 0.26 0.02 0.10 0.92
price per ton-base crop —0.21 —-2.74 0.01 1.21 1.07 0.48 —0.55 —-1.32 0.41 0.20 0.91 0.37
water consumption per ton of crop  0.00 0.00 1.00 0.25 0.27 0.83 -0.21 —-0.61 0.65 —-0.20 —-0.92 0.37

! standardized coefficient value.
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Table 7
Summary of statistical screening and behavior mode sensitivity analyses indicating relative ranking of impact and polarity that input
parameters have on native animal population.

Ecological Modelling 434 (2020) 109246

Ranking Equilibrium level of native animals Time of collapse in native animals

1 base annual infrastructure costs (+) base water diversions (-)

2 feed resource supplement (+) irrigation efficiency (-)

3 base planting cost (+) price per ton-base crop (-)

4 water consumption per ton of crop (-) base crop planting density (-)

5 discount rate (+) decomposition rate (-)

6 feed resource supplement cost (+) feed resource supplement cost (-)

7 decomposition rate (-) discount rate (-)

8 base crop planting density (-) water consumption per ton of crop (-)
9 price per ton-base crop (-) base planting cost (+)

10 irrigation efficiency (-) feed resource supplement (+)

11 base water diversions (-) base annual infrastructure costs (+)
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Fig. 11. Results of applying a counterfactual trajectory in river flow (panel a) to irrigation diversions (panel b), crop production (panel c), ecosystem plants (panel d),
native animals (panel e), and net present value of irrigation (panel f).

assumptions or conditions in ways that are either known to be wrong,
haven't been observed in the historical record, or were not assumed
important enough during model development to be included in the
model structure. A counterfactual trajectory is therefore a quantifiable
and rigorous “thought experiment”. A key assumption of the model
presented here is that there has been and will be a consistent, reliable
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surface water source based on existing information (calibrated to a
long-run mean of 100 c.f.s.). A reasonable hypothesis would be that the
insights generated by the model would be significantly different if a
counterfactual condition regarding incoming surface water flows were
used. Therefore, we posed the following what-if question: What if the
river flow assumptions (100 c.f.s. across the time-horizon of simulation)
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reservoir Fig. 12. Additional model structure representing reservoir storage
leakage rate a and release added for boundary adequacy testing (panel a) and results
of boundary adequacy (behavior) test illustrating changes in the na-
o tive animal population under the base case and surface water diver-
o sion scenarios (30% diversion) to native animals given the expanded
" model boundary to include reservoir storage and release (panel b).
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are incorrect? An alternative assumption is that river flow is highly
variable due to climate and watershed characteristics, varying from
zero (i.e., no-flow is the worst drought years) to 125 c.f.s (representing
the occasional wet years of exceptional precipitation).

To test this counterfactual assumption in the model, minimum (zero
c.f.s.), maximum (125 c.f.s.), and standard deviations (75 c.f.s.) in river
flow rate were added to the model as auxiliary variable inputs to river
flow. River flow, rf (recall as an input to Eq. (4)) then becomes a
random function,

rf~N(u,02) (10)

where y is the mean river flow (100 c.f.s.) and o is the expected stan-
dard deviation in flow rate."’

Using this alternative assumption, we generate a dynamic rather
than static trajectory in river flow (Fig. 11a). Due to the river flow
variability, irrigation diversion rates during the growing season are less
reliable (Fig. 11b), leading to a decline in crop production (Fig. 11c).
This is due to the economic response in the agricultural sector, which
alters cropping intensity based on changes in profitability (loop R1 in
Fig. 2). The more profitable the agricultural sector, the greater invest-
ment in agriculture leading to greater crop intensity; the less profitable,
lesser investment and intensity. This feedback contributes to the gra-
dual decline in crop production as the intensity of production lessens
over time. Ecosystem plants responded annually changes in flow

"1n the Vensim modeling environment, the built in function RANDOM
NORMAL can be used, such as RANDOM NORMAL(river flow min, river flow
max, river flow mean, river flow standard deviation, river flow seed value).
Including the seed value provides means for adequate comparisons across si-
mulations because the seed provides unique random sequence of values for each
unique seed value.
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(Fig. 11d), but because of habitat loss during droughts and in the most
sensitive parts of the year the native animal population declines
(Fig. 11e). Finally, the NPV of irrigation never approached breakeven-
since crop production declines, revenues were not able to recoup costs
of irrigation (Fig. 11f).

What management or policy recommendations would be altered
given this counterfactual assumption in river flow? First, altering flows
to include both wet and dry year cycles does not alleviate the pressure
to the native animal population, as any benefit of improved habitat and
per capita forage availability experienced during wet years is not en-
ough to overcome the losses in dry years. Therefore, the management
and policy concerns for the native population remains regardless of the
flow assumptions compared here. However, new management pressures
arise in the agricultural sector given the collapse in crop production and
economic failure of investing in the irrigation system. If, given the al-
ternative river flow trajectory, collapse in the agricultural sector is
expected, policy-makers would be faced with the trade-off of either not
approving the investment (if being analyzed prospectively), halting
crop production before the irrigation investment NPV worsens after the
first 10 years (if being analyzed retrospectively), or creating support
mechanisms for the agricultural sector such that it is less susceptible to
reductions in river flow (e.g., insurance that offsets annual losses; im-
provements in irrigation efficiency).

The first two responses would lead to improvements in native an-
imal population since irrigation diversion would cease but would en-
sure a non-viable agricultural sector. In the third response, the decline
in native animal population would only accelerate, since irrigation di-
versions would not be as responsive to changes in river flow (under an
insurance scheme) or because of the reduction in return flows to the
refuge (under improved irrigation efficiency). Therefore, given these
counterfactual river flow assumptions, management and policy
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Fig. 13. Boundary adequacy (policy) test for optimal water diversion rates with and without reservoir storage and the resulting behavior patterns in reservoir storage
(panel a), incoming flow to the refuge (panel b), ecosystem plants (panel c), crop production (panel d), native animals (panel e), and net present value of irrigation

(panel f).

pressures arising due to agricultural collapse would erode conservation-
oriented efforts to balance irrigation economics and the wildlife refuge.
Under the original, static river flow assumption, reductions in base
water diversion rate and irrigation efficiency were pinpointed as the
most significant factors conducive of sustaining a stable native animal
population (Table 4). Counterfactual trajectories such as these aid in
examining the trade-offs and consequences of alternative assumptions
(Appendix Section 3.4. provides an example of a failed counterfactual
tests).

4.4.2. Boundary-adequacy testing

Boundary adequacy testing can be used in the context of model
structure (is the model boundary appropriate given the model pur-
pose?), behavior (can new model structure be conceptualized that sig-
nificantly alters its behavior?), or policy (how does modifying the
model boundary alter policy recommendations?; and
Senge, 1980). Here we focus on model boundary tests in the context of
behavior and policy recommendations. The current model boundary
(Fig. 2) encompasses the wildlife refuge that is habitat for the eco-
system plants and native animals, the surrounding cropland, and the
river flow that supplies surface water diversions for irrigation. A

Forrester
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relevant boundary-adequacy test would be expansion of the model
boundary to include a new state (stock) variable capable of expressing
its own unique dynamics. After adding the new structure, we can then
examine how the expanded model may influence the problem of in-
terest. In this case, we expand the model boundary by asking: what-if
the watershed constructed a reservoir system for irrigation deliveries
that would help regulate river flow and avoid the effects caused by
seasonal river flow diversions for irrigation? The hypothesis here would
be that the reservoir would help redistribute the water supply from the
non-growing season to the growing season thereby reducing the impact
of irrigation to the refuge. To complete this test, additional model
structure was added representing reservoir storage and release
(Fig. 12a).

In the added structure, a certain percentage of river flow (30%) is
diverted for storage with the remainder immediately released for the
ecosystem (70%). The diversions enter a reservoir storage, which incurs
losses due to natural leakage and evaporation (0.001%) and through
downstream releases. Releases downstream are a function of the re-
servoir release time (capturing average residence time of water in sto-
rage, =12 months) plus the water released for irrigation during the
crop growing season (i.e., no water for irrigation is released during the
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population size.

non-growing season). Since no new agronomic assumptions are in-
cluded in this scenario, once water for irrigation is delivered it remains
subject to the same irrigation efficiencies and return flow rates as the
base case. By storing water during the non-growing season and re-
leasing it throughout the year, we hypothesize that a different behavior
pattern will arise in the native animal population. The resulting beha-
vior patterns given the expanded model boundary are then compared to
the behaviors prior to model boundary expansion. Adding the reservoir
storage and release structure did improve the native animal population
size relative to 30% direct surface water diversions for irrigation, but
did not change the overall behavior pattern (Fig. 12b). This is a strong
test of the model boundary that, due to the resulting behavior in native
animals, strengthens confidence in the original boundary. If the test
resulted in a different behavior-mode in native animals, reexamining
the original model structure and its links to the native animal popula-
tion would be warranted.

An additional boundary experiment includes examining alternative
policy recommendations that would arise given the expanded model
boundary and structure representing reservoir storage. First, we iden-
tify the management recommendation concerning irrigation diversions
under the original model boundary and given the policy-goal is to
achieve a stable native animal population in equilibrium that still al-
lows for profitable crop production. We then identify the management
recommendation under the expanded model boundary and compare
that to the original recommendation. In order to identify these points,
the base water diversion rate used for determining irrigation was ma-
nipulated by hand until the policy-goal conditions were reached.

Under the original model boundary, the base water diversion rate
found to balance native animals without jeopardizing crop production
and profitability was 25% of river flows. Without any reservoir storage
potential (Fig. 13a), incoming river flow to the refuge is anchored to the
total river flow, 100 c.f.s., in the non-growing season, but is subject to
large declines during the growing season (to as low as 70 c.f.s) when the
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refuge needs water the most (Fig. 13b). Due to return flows, the in-
coming flow to the refuge peaks over 100 c.f.s., but the marginal benefit
of the additional flow is negligible since it occurs after the primary
growing season. Ecosystem plants, with the reduction in incoming river
flows during the growing season, declines to a peak of 12,000 tons
(Fig. 13c), while crop production peaks at 2,000 tons (Fig. 13d). The
goal to maintain a viable native animal population and a profitable
agricultural system is achieved, with mean animals ending at 15 head
(Fig. 13e) and NPV of irrigation ending above $200,000 (Fig. 13f).

Under the expanded model boundary, the storage water diversion
rate (i.e., the percentage of river flow diverted to storage) found to
balance native animals without jeopardizing crop production and
profitability was also 25%. Given that diversion rate, reservoir storage
would need to be capable of storing between 40,000 and 50,000 acre-
feet of water (Fig. 13a). Because the river flow is being redistributed
with storage, the incoming flow to the refuge was anchored at 75 rather
than 100 c.f.s. (Fig. 13b). However, the refuge receives more water
during the growing season, up to 90 c.f.s., due to the releases from
storage combined with return flows from the irrigation system. This
leads to a more stable ecosystem plant community (Fig. 13c¢) and
greater irrigation levels supportive of almost double crop production
(Fig. 13d). With a more stable plant community, native animals reach
equilibrium near 20 head (+33% compared to the original re-
commendation above). The NPV of irrigation reached over $800,000
(or a 400% increase over the original recommendation) due to in-
creased crop productivity. As observed here, the expanded model
boundary would lead to significantly different management re-
commendations (Appendix Section 3.4. provides examples of failed
boundary-adequacy tests one might encounter).

4.4.3. Determination of intervention thresholds
Finally, we estimate the intervention thresholds (i.e., the minimum
intervention size and intervention time that results in the desired
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behavior change) for the native species population. As shown in Fig. 3,
the atomic behavior pattern exhibited by the native animal population
given irrigation diversions is goal-seeking decline. The desired post-
intervention behavior would be s-shaped growth, which would reflect a
population that increases up to a new equilibrium level equal to the
baseline population prior to irrigation diversion (potential behavior
shown Appendix Fig. A1). Assume that construction of the reservoir
system, described in the previous section, would not be approved due to
other social, environmental, and economic concerns (e.g., rural com-
munity relocation, fish habitat connectivity, uncertain NPV due to
regulatory and litigation costs). Other possible interventions include
reintroducing new animals once the population declines below a po-
pulation threshold determined by the policy-makers or importing feed
resources as supplement to offset losses in ecosystem plants.

Both of these interventions are unfortunately low leverage. We can
infer from the previous experiments the chain of causality driving na-
tive animal population declines: the feedback process between eco-
system plants (regulated by river flow) and native animals via per ca-
pita forage availability. Declines in native animal population are a
symptom of the problem which, at the structural level, arises where
river flow supplies the refuge. Reintroducing animals or supplying feed
resource supplementation are symptomatic-solutions which may work
only in the short-term and at a very high cost to the system (Appendix
Section 3.4. provides the simulation evidence for these). A more fun-
damental solution would be address the problem at the refuge level. For
example, what if rather than focusing on symptomatic solutions of the
native animal population (via policy-interventions that “prop up” the
population), investment is made in expanding the wildlife refuge?
Under such a scenario, effort may be made to improve the surrounding
habitat for the population and expand the wildlife refuge, thereby in-
creasing the per capita forage availability.

In order to implement this test, a refuge expansion intervention
function is added to the model (similar to the step equation in Eq. (6))
where a specified refuge expansion rate (zero to 100%) and refuge ex-
pansion time are determined. The refuge expansion intervention applies
to the stock of ecosystem plants based on the refuge expansion rate (e.g.,
a 100% refuge expansion rate would double the size of the current re-
fuge). Expanding the suitable habitat would create additional land
costs, but with greater forage availability for native animals, we would
hypothesize that the behavior pattern of native animals is shifted from a
decline-oriented behavior to one of s-shaped growth and stabilization.

To test this hypothesis and identify the minimum intervention
needed for returning the native animal population back to its initial
state (mean 25 animals), we apply a Latin grid experimental design
(similar to the sensitivity tests in Section 4.3.3) with the input para-
meters being refuge expansion rate (ranging from zero, no expansion, to
one, doubling the refuge size, in increments of 0.01) and refuge ex-
pansion time (ranging from 120 months to 240 months in increments of
1.2 months). This Latin grid experimental design (100 x 100) resulted
in 10,000 simulations, one for every unique combination of refuge ex-
pansion rate and refuge expansion time.'”> The Latin grid design is pre-
ferred over Monte Carlo simulation in this case because of the explicit
interest in identifying the specific intervention size and time that results
in the desired behavior pattern. Use of Monte Carlo simulation risks
duplicating certain input values (or at least very near combinations of
values) and does not guarantee that all possible combinations of input
values will be sampled. A Latin grid design ensures all possible com-
binations of input values are sampled and, although computationally
intensive, is still more efficient than the required sample size to achieve

21 the Vensim modeling environment, these simulations were completed in
under five minutes. With the grid selection based on refuge expansion rate, the
10 year or 120 month period for refuge intervention time was not evenly dis-
tributed. Therefore, the simulation results were matched to the nearest whole
month.
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the necessary input combinations using Monte Carlo simulation.

Following Walrave (2016) an indicator value was specified to de-
termine if the desired behavior shift was achieved. In this case, the
indicator variable used was the moving average of native animals and
its first derivative."” Mean native animals was chosen as the behavior
pattern measure given that the behavior of native animals inherently
oscillates (due to annual reproduction and mortality dynamics) and
because the oscillation can grow or decline as ecosystem conditions
change such as it does with the onset of irrigation (i.e., the population
does not oscillate around a stable fixed point). Using the moving-
average smooths out these oscillations, resulting in a behavior where
the signs of the first and second derivatives are quite stable. Under goal-
seeking decline the value of the first derivative of mean native animals
is negative and under goal-seeking growth it is positive. Therefore, we
monitor the number of sign changes in the first derivative of mean
native animals from negative to positive. If a change in sign does occur,
we then identify if the mean population size reaches its desired level
prior to irrigation (25 animals).

The results of the intervention experiment are shown in Fig. 14,
including the percentile intervals and intervention threshold graph.
Percentile intervals display the percentage of simulations falling within
a particular range at a given point in time. As expected, ecosystem
plants increased as a result of refuge expansion (Fig. 14a), with over
half of the intervention combinations resulting in peaks up to 21,000
tons. Due to the additional land costs involved with improving the
surrounding habitat and expanding the refuge, the NPV of irrigation
does decline, but even the most extreme outcomes result in positive
NPV near $100,000 (Fig. 14b). Importantly, these two outcomes illus-
trate that the intervention strategy does expand the refuge and can do
so without financially taxing the system to an unprofitable level.

The behavior pattern changes in the native animal population re-
sulting from the intervention combination were much more dynamic
relative to ecosystem plants and NPV of irrigation (Fig. 14c). Nearly
half of the simulations made no shift in behavior pattern (40% of all
simulations). Of the 60% of simulations that did create a behavior
pattern shift from goal-seeking decline to s-shaped growth, only 9%
achieved a mean native animal population of 25 animals.

Using the resulting simulation data, an interventions threshold
graph was constructed to illustrate the combination of minimum refuge
intervention sizes and refuge intervention times that would be required to
achieve an s-shaped growth to equilibrium of at least 25 animals
(Fig. 14d). In order to shift the behavior pattern from decline to growth,
the minimum refuge intervention size was 39% in month 120, increasing
up to 50% in month 240 (denoted as X > 0). Any refuge intervention size
below 39% would not reverse the native animal population decline. In
order to restore the native animal population (denoted as x >0; ¥
>25), the minimum refuge intervention size would have to be at least
79% at month 120, up to 95% by month 186. After month 186, the
intervention size would have to be more than double the size of the
current refuge (over 1 on Fig. 14d, outside the range of values per-
formed in the experiment). The resulting graphs indicate the minimum
combination of intervention inputs needed to create a shift the domi-
nant feedback processes (i.e., tipping point) from goal-seeking decline
(negative feedback) to s-shaped growth (positive feedback). An im-
portant note regarding intervention thresholds such as these is that the
intervention combinations included in the experiment had dissimilar
incubation times due to a fixed end point of the simulation at 360
months. Because of this, novel behavior characteristics may be

13 The natural behavior mode for native animals is oscillation, but with the
onset of irrigation, the overall pattern becomes goal-seeking decline. However,
the infinitesimal changes in native animals, even under goal-seeking decline,
still express oscillations albeit with smaller and smaller amplitudes. Because the
first derivative of oscillatory behavior modes is misleading, we use the first
derivative of the moving average of the stock (Walrave 2017).
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exhibited beyond month 360 that would not be observable with a fixed
final simulation time, but could be included under a dynamic final si-
mulation time.

5. Conclusion

Dynamic systems models are increasingly used by scientists, man-
agers, and policy-makers due to the growing complexity and inter-
dependency of problems that persist in ecologic and socio-economic
systems. Coupled to this is the growing awareness that, when con-
fronted with such complexity, our human intuition rarely properly in-
fers the underlying dynamics driving decision-making and its outcomes.
Formal mathematical models are therefore essential tools for improving
our understanding and decision-making in the face of such complexity.
The above experimental examples illustrate a number of key tests (with
increasing degree of difficulty from novice to advanced skill levels) any
investigator can and should perform in order to evaluate and test their
particular model. Each of the experiments demonstrate several key
lessons: 1) that model experiments help uncover unforeseen flaws or
incorrect formulations, including flaws in our own mental models, since
all models are based on our mental representations of a given problem
or system; 2) that good model experiments provide a means to glean
valuable insights about the structure and behavior of a model; and 3)
model experiments enhance the confidence (validity) of the model for
its intended use, especially after the iterative process of identifying
errors or flaws in model structure or behavior, updating and improving
our mental model, and then revising the formal simulation model in
turn. The comprehensive suite of tests explored is not an exhaustive list
of model testing procedures as there a number of other advanced
methods for understanding uncertain parameter values, identifying
dominant feedback structures, and testing alternative decision-making
theories. Although insightful, such tests are beyond the skill-level of
novice modelers and depending on the problem and objective of the
model, the insights generated may not be important to the issue or
efficient to attain given the required investment in time and resources.

Novices should be aware of what expert modelers will recognize
from the experiments and discussion presented above — that model
development and experimentation is an iterative process, often re-
quiring numerous iterations of experimentation, analysis, and revision
(to both mental and simulation models; Fig. 1). The experimental re-
sults and discussion in this paper are the final product of that iterative
process. In early stages of development, a model will not perform
adequately when exposed to the barrage of tests outlined above and
novices will soon find errors or omissions in model structure that lead
to implausible or unexpected behaviors that require explanation and
correction. The model presented above was exposed to numerous
rounds of revision and correction prior to “passing” the model behavior
experiments. Then it was exposed to comprehensive sensitivity ana-
lyses. After adequately withstanding the sensitivity tests, the model
moved forward to the more complex experiments dealing with
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alternative assumptions and structure. Novices should not be dis-
couraged when their models fail any of these tests along the reiterative
modeling process. Failing any one test can be expected and provides the
needed feedback to the modeler about which model component needs
to be improved prior to looking for strategy or policy insights to guide
decision-making.

The increasing interest in and more frequent application of systems
models by ecologists, agriculturalists, and natural resource managers is
a positive indicator of the recognition of modeling as a valuable tool to
better understand and manage the complex, dynamic systems that we
operate in. Employing such models has the potential to increase our
understanding of the many, poorly understood feedback processes that
must be well-managed if such systems are to function as society desires.
If researchers who begin or are currently using systems modeling ap-
proaches do not have at least a basic understanding of the highly
iterative, systems analysis process or of the fundamental experimental
tests that are required to build confidence that the resulting model is
trustworthy to be used, the potential for making management and
policy recommendations based on fundamentally flawed analyses (i.e.,
incorrect and unreliable model recommendations) is high. This paper
provides a basic introduction and guide to experimental testing of a
developed model in order to build confidence that the model is capable
of providing robust insight into a given problem. By providing this
guide, we hope that more modelers will be better prepared to build,
evaluate, and test their models such that the resulting model-generated
insights will be more capable of mitigating unintended consequences or
improving desired functions of the complex ecological or natural re-
source systems we are tasked with managing.
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Appendix

1. Understanding behavior modes

Behavior modes expressed over time are indicators of the underlying feedback processes that interact to produce the observed behavior pattern of
a particular variable of interest in a system. From a systems thinking perspective, these feedback processes are often simplified into single-loop
positive (reinforcing) or negative (balancing) processes perceived to be the dominant parameters or feedback structure. Unfortunately, without a
rigorous quantitative analysis, identification of the most influential parameters and feedback structure is spurious at best. Therefore, it is important
to be able to differentiate between alternative behavior modes via their mathematical indicators (e.g., the first- and second derivatives; Fig. Al).
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Atomic behavior patterns with their key characteristics
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Fig. Al. Atomic behavior patterns and their associated key characteristics observed in the first (x) and second (%) derivative.

2. Model documentation

Included in the supplementary material are: a) a copy of the model formulated in Vensim modeling environment (Ventana Systems); b) Microsoft
Excel file that includes all simulation results and is a template for analyzing the results of the experiments; and c) data file of the intervention
thresholds results. Fig. A2 provides an expanded conceptual model of Fig. 2 in the paper for additional details regarding auxiliary variables included
around the core feedback structure.

3. Examples of common model revisions made during iterative model testing process

One may observe that the model presented in the paper successfully passed all of the performed tests. As noted in the text, modeling is an iterative
process, the presented results being the end of a longer series of experimentation and model revision. In order to illustrate how these techniques and
tests work together in practice in an iterative model development, testing, and revision process, this appendix section provides examples of situations
where the model (either mental or quantitative) failed a test and therefore required revision of the model. The revisions here are meant to illustrate
common mistakes that many, particularly beginners, may encounter, not an exhaustive protocol for model error identification.

3.1. Extreme conditions tests
There are several common errors or mistakes one may find when the extreme conditions test is failed. Consider the example from section 4.3.1

where river flow is increased from 100 c.f.s. to 150 c.f.s., and the resulting behavior pattern observed in ecosystem plants and native animals is
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Fig. A2. Expanded stock-and-flow diagram of the irrigation-wildlife case-study model.
Ecosystem Plants Native Animals
40B 4M
30B 3M
@
2 208 g 2M
=2 =
10B 1M
0 0
1 91 181 270 360 1 91 181 270 360
Time (Month) Time (Month)
Ecosystem Plants : Current Native Animals : Current
-
Graph Lockep - ecofyitem growth rate Craph Lookup - €X0iyiten growth rate
[ I Export
Pt Pt
o Osd You P’“— 2 Yo
o e - T ¢ fom - e -
o . {40 005 — o
T Y Al (3505 [o0wsae -\ S
feser  [0oowr 1§l e oo ’I
) \ 11113t [0 00N K \
N\ e \
.".A ., Y |
[ [ | S~ Yon | . Yo
. e — ] = b =
| | |
_iegot Ve | e o) 004 0 06211 Yoo | 20000 w| Reset Scarg | Yo |0 =19 0 0eeTe Yo | 20000 w| Plasnt Scalng
0 | CowPorns | OowMtPorts | CusRet| OowPotwece | PotiCu|  Cove | Ok | OosPorts | CowmdPorts | Cusfiet| Cowfistworce | fetsCu|  Cocel |
- ————— =

Fig. A3. Example of failed extreme conditions test due to open-ended bound on the ecosystem growth rate function (see Fig. A2).

runaway, exponential growth (Fig. A3a and b). In order to correct this, we may inspect the stock-flow and auxiliary structures around ecosystem
plants and native animals. We may find that we originally parameterized the graphical function ecosystem growth rate with a minimum value of 0.002
at 20,000 tons of ecosystem plants. Because many dynamic modeling programs default to extrapolation of graphical functions at the end points for
input values beyond the parameterized range, having a positive value for the growth rate at the estimated biophysical maximum value of 20,000 tons
means that for any value of ecosystem plants above 20,000 tons defaults to a 0.002 growth rate per month (Fig. A3 panel c), leading to greater
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Fig. A4. Example of failed extreme conditions test due lack of first-order negative feedback processes on stock variables and static natality parameter value that
necessarily lead to runaway exponential growth (panels a and b), with the inclusion of a dynamic natality rate (panel c).

ecosystem plants subject to the same 0.002 growth rate per month. This leads to the runaway growth behavior in Fig. A3 panel a. The native animal
population, without any forage limitation, also grows in conjunction with ecosystem plants (Fig. A3 panel b). By adjusting the ecosystem growth rate to
0 at the biophysical maximum for the habitat in the refuge, 20,000 tons, means that any values of ecosystem plants above 20,000 tons will default to 0
for the growth rate (Fig. A3 panel d), and therefore ecosystem plants will cease to grow exponentially.

Suppose that change is made and we expect to see the problem corrected in the model, yet we still observe runaway exponential growth in native
animals and runaway exponential decay in ecosystem plants (Fig. A4). We again examine the stock-flow and auxiliary variable structures around each
variable. We find that the resulting behavior pattern is due to grazing loss to ecosystem plants increasing exponentially (Fig. A4 panel a) due to the fact
that grazing loss is directly proportional to native animals (Fig. A4 panel b). In reality, we know that ecosystem plants and native animals, being a
physical quantities, cannot take on negative values (in the case of ecosystem plants) or grow forever despite the fact that there are no resources to do
so (in the case of native animals). Further checks of the model reveals that native animals was first parameterized with a static natality values, with
natality possessing a greater value than the mortality index. When natality >mortality, the result is exponential growth in the population. In order to
alleviate this issue, a dynamic natality rate was developed (Fig. A4 panel c). The assumption here would be that if the population declines below the
expected equilibrium value of 25 animals, the natality rate also declines due to the greater energy requirements for searching for and finding
reproductive mates. Correcting this should bring the dynamic natality rate into equilibrium with the mortality rate (a function of the forage availability
index, Fig. A2). By doing so, native animals (and therefore grazing loss) will be constrained. In addition, we don't want ecosystem plants to take on
negative values. Examining the outflows reveals that the model lacked first-order negative feedback controls to regulate the stock-flow dynamics to
be physically conserved. In the first instance, grazing loss was simply a function of consumption rate (= native animals X forage consumption per month).
With the revised model, grazing loss is regulated by ecosystem plants such that the grazing cannot exceed the available biomass in the ecosystem plant
stock [grazing loss = MIN(consumption rate, ecosystem plants — decomposition)].

3.2. Step, pulse, and ramp functions

Examining how a model responds to various steps, pulses, or ramps is an valuable exercise in developing depth of system understanding, and like
extreme conditions tests, helps identify places for model improvement when the simulation results fail to align with expected or observed behaviors
in the real-world system.

First, consider a step change in planting costs (the most significant annual input cost to the irrigation system) from $50 to $100 dollars per ton
(Fig. A5 panel a). Due to the increase in cost, we would expect profitability to decline, leading to feedback sequence of declines in subsequent
planting and irrigation rates, crop production, and finally long-term profits. However, we see that annual costs decline into negative values (Fig. A5
panel b). Because annual costs are an outflow from cumulative profits (Fig. A2) and stock or state variables are typically difference equations
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Fig. A5. Example of unexpected model response to a step function in planting costs (panel a) and the resulting decrease (into negative values) in annual costs (panel
b) and the management response to increase adjusted crop planting density (panel c).

(stock = inflow - outflow), when outflows take on negative values they inadvertently increase the value of the stock (which in this case is the
profitability of the irrigation system). Since profitability is improved rather and stressed, the adjusted crop planting density is continually adjusted
up, further reinforcing crop profitability (R1 in Fig. A2). The observation that annual costs become negative is clear indication that we erroneously
inserted the wrong sign, either to the cost function (flow) or cumulative profit equation (stock). Identifying and reversing the sign so that costs are
positive, which have a negative effect on profitability, corrects the issue.

In Section 4.3.1., a pulse function was applied to river flow in order to mimic periodic drought conditions (Fig. A6 panel a) and observe the
responses in ecosystem plants and native animals. In an earlier iteration of the test, suppose we observe that native animals are hardly effected by the
loss of ecosystem plants in drought years and that they “rebound” back to near their long-run equilibrium value much too quickly (Fig. A6 panels b
and c). Having previously examined the stock-flow structures around ecosystem plants, as well as the natality rate in native animals, we now examine
the forage availability index (= ecosystem plants / native animals) influence on mortality rate (B1 in Fig. A2). This graphical function was parameterized
using a distribution derived from data collected from the real-world system, with a mean =200 tons per head (corresponding to =14% mortality
rate). Unfortunately, this form of graphical function breaks several best modeling practices. First, graphical functions should not start and end in the
same place (in this case, at 0% mortality rate on the tails of each side of the curve). Because of the function is parabolic, with one side exhibiting a
positive slope and another side exhibiting a negative slope, interpretation of the polarity of this variable on native animals is confounding, because it
both accelerates and slows mortality rate depending on which side of the distribution the forage availability index value falls on. Although some
circumstances may call for using a specified distribution (which many programs allow via built-in function rather than graphical/table functions), it
is questionable here since the estimated mortality rate given the drought conditions (only 5 out of the 30 years) falls near the right and left bounds of
the distribution for mortality rate due to sampling for ecosystem plants that did not accurately account for years of drought. Graphical functions can
indeed be nonlinear but should have either a positive or negative slope, not both. In this case, removing the left tail (positive slope of the distribution;
Fig. A6 panel e), corrects the polarity error resulting in native animals that express a more realistic and expected decline in behavior pattern (Fig. A6
panel f).

Not all model revisions will be in the quantitative model, but rather correct model performance that we did not properly intuit should lead us to
revise our mental model. Consider a linear ramp function similar to that applied to river flow in Section 4.3.1., but instead applied to irrigation
efficiency. In the river flow test, a linear increase in river flow led to a linear increase in crop production (Fig. 7) and profits. This was simple enough to
mentally intuit, since there was no change in the rate in which water was converted into crop production only the volume of water applied as
irrigation. However, applying a positively-sloped ramp change to irrigation efficiency (Fig. A7 panel a) increases the rate at which irrigation
applications are converted into crop production (Fig. A7 panel b). However, because of the economic feedback between the cropping system and
profitability (R1 and R2 in Fig. A2), greater crop production improves profit, signaling for greater planting densities in subsequent years, which
increases demand for and applications of irrigation water that produces greater crop volumes because of the positively-sloped ramp. Intuitively, we
may suspect that the linear improvement in irrigation efficiency would lead to linear increases in the cropping system. The result, however, is a
nonlinear or exponential increase in water use, crop production, and profitability due to the underlying feedback processes (Fig. A2). In this
particular test, the model was operating correctly and helped expose a limitation in our mental model. Updating our mental models to be more
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Fig. A6. Example of unexpected model response to a pulse function in river flow (panel a) and the resulting behavior in ecosystem plants (panel b) and native animals
(pane c) due to an improperly reasoned graphical function for the forage availability index effect on mortality rate (panel d). One solution to the graphical function
(panel e) results in the more realistic behaving decline in native animals (panel f).

representative of the dynamic and nonlinear nature of the systems we work in, although challenging, is greatly enhanced by the use of models for this
reason.

3.3. Identification of behavior patterns

As described in Table 2, one of the common limitations in novice modelers is properly differentiating between alternative behavior patterns.
Given the irrigation-wildlife refuge data (Fig. 3) and the atomic behavior patterns (Fig. A1), we can identify the resulting behavior patterns exhibited
from the sensitivity analysis or expected patterns of behavior during intervention analysis (Fig. A8).

3.4. Comparative analysis of alternative assumptions, decision rules, or policies (counterfactuals or what-ifs?)

The final set of examples illustrate some iterative model revision steps during counterfactual trajectory analysis, boundary-adequacy testing, and
intervention analysis. Counterfactual trajectories provide a means to examine model behavior under alternative basic assumptions underpinning the
model about past or potential future conditions. However, the failure to adequately envision conditions that are significantly different than the
original model assumptions may mislead modelers to conclude that the problem-behavior being modeled is robust enough that even under alter-
native conditions the same behavior patterns are observed. This could become particularly problematic when decisions will be based on insights
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Fig. A7. Example of a correct nonlinear response in the system from a linear change in an input parameter. In this instance, irrigation efficiency (panel a) is increased
linearly via a ramp function, which creates a nonlinear response in crop production (panel b), profits (panel c), and adjusted crop planting density (panel d), which
reinforce each other through the economic feedback of the system (R1 in Fig. A2).

generated from counterfactual tests. For example, the counterfactual test in Section 4.4.1. represented a test for extremely variable river flow
(distributed from 0 to 125 c.f.s.) and illustrated that both the native animals and the irrigation system would be highly vulnerable to long-term
variability in river flows. However, if the counterfactual assumptions are more conservative (e.g., river from 60 to 125 c.f.s.; Fig. A9 panel a), the
resulting behavior patterns in crop production (panel b), ecosystem plants (panel c), and native animals (panel d) would be the same as the observed
conditions that motivated the study. Failure to envision a significantly new set of conditions runs the risk of basing new strategy or policy changes on
flawed insights about the range of possible behavior patterns the model expresses.

Boundary-adequacy tests require expansion of the model structure to incorporate elements previously not contained in the original endogenous
feedback structure of the model. This requires creativity to envision and design new model structure. Failure to do so may lead modelers to look for
alternative adjustments to expand model structure. For example, a stock may be disaggregated into a series of stock-flow structures. In this case, the
stock of native animals may be disaggregated into several age-classes that progress from younger to older individuals (Fig. A10 panel a). Un-
fortunately, this does not expand the model boundary, only adds specificity to model structure within the existing model boundary. Simulating the
model with the disaggregated native animal stocks leads to an oscillatory behavior pattern in native animals (Fig. A10 panel b) and ecosystem plants
(Fig. A10 panel ¢) which is not observed in the real-world system (Fig. 3 in Section 4.1), which may lead one to make erroneous conclusions about
the adequacy of the existing model boundary and structure.

Another boundary-adequacy pitfall is likely to be insuring that, once new model structure is created, that the feedback connectivity is correctly
linked with the original model structures. For example, consider the reservoir storage stock-flow structure from Section 4.4.2. Assume that the new
structure is correctly formulated and upon simulation, the reservoir storage stock indeed behaves the way we would expect (Fig. A11 panel a).
However, the volume of flow entering the river refuge (Fig. 11 panel b) remains static, and the resulting dynamics in ecosystem plants and native
animals (Fig. 11 panels ¢ and d) remain unchanged. Because the reservoir storage capacity is not infinite, we know that some water has to be released
downstream to the refuge, so the fact that river refuge flow is static is a key indicator that not all of the feedback connections have been incorporated
yet.

Lastly, in searching for interventions to alleviate the systemic root-cause of the problem, we can test our intuitions about strategies that would
work only symptomatically in the short-term. For example, reintroducing animals (Fig. A12 panel a) only increases the native animal population for the
year they are introduced, since the ecosystem plants required to support the population remain unchanged (panel b) as irrigation water diversion
continues to support the base crop production (panel c). On the other hand, supplemental feeding for native animals (up to 95% of their forage demand)
to alleviate pressure on ecosystem plants does work in the short- to medium-term (Fig. A13 panels a and b), but because revision to the water
allocation mechanisms that drive both the refuge and irrigation system remain unchanged, the irrigation system (represented by crop production and
adjusted water irrigation level, panels ¢ and d) is still allowed to grow, albeit at a slower rate due to the costs of importing the supplemental feed.
Although feeding works moderately well, the long-term result of the system is the same as if no feeding would have occurred.
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Fig. A8. Panel a illustrates the four behavior patterns expressed during multivariate sensitivity analysis.
be expressed during intervention thresholds analysis.
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Fig. A9. Panel a illustrates a counterfactual assumption in river flow (distributed from 60 to 120 c.f.s.) and the resulting behavior pattern in crop production (panel
b), ecosystem plants (panel c), and native animals (panel d).
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Fig. A10. Disaggregation of the stock of native animals (panel a) disguised as a model boundary adequacy test, with the resulting behavior pattern in native animals
(labeled ‘revised’; panel b) and ecosystem plants (panel c).
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Fig. A11. Model boundary test using the reservoir storage scenario described in the paper but with an error in the water balance equations that drive water to the
wildlife refuge. Reservoir storage (panel a) provides irrigation water, however the water entering the river refuge (panel b) is static, indicating that there are no
return flows accounted for in this particular simulation. The reduced water to the refuge reduces ecosystem plants and therefore native animals.
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Fig. Al12. Failed intervention test using native animal introduction (panel a) with no improvement to ecosystem plants (panel b) or trade-off to crop production
(panel c) that drives the irrigation system behaviors.
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Fig. A13. Failed intervention test using feed resource supplementation (up to 95% of forage demand), illustrating the only the short-term enhancement in native
animals (panel a) and ecosystem plants (panel b) and the increase in crop production (panel c¢) and adjusted water irrigation level (panel d) over a longer timer period

relative to the original scenario.
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