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Abstract—The ever-increasing needs of supporting real-time
applications have spurred a considerable number of studies on
minimizing Age-of-Information (AoI), a new metric character-
izing the data freshness of the system. This work revisits and
significantly strengthens the seminal results of Sun et al. on the
following fronts: (i) The optimal waiting policy is generalized
from the 1-way delay to the 2-way delay setting; (ii) A new way
of computing the optimal policy with quadratic convergence rate,
an order-of-magnitude improvement over the state-of-the-art
bisection methods; and (iii) A new low-complexity adaptive online
algorithm that provably converges to the optimal policy without
knowing the exact delay distribution, a sharp departure from the
existing AoI algorithms. Contribution (iii) is especially important
in practice since the delay distribution can sometimes be hard to
know in advance and may change over time. Simulation results
in various settings are consistent with the theoretic findings.

I. INTRODUCTION

Thanks to the accelerating growth of networked systems in
the past decades, the capability of providing real-time status
updates has been the cornerstone of many important practical
systems. Examples include remote health monitoring, GPS
location tracking and closed-loop drone control [1]–[3]. Recent
development of the Internet of Things (IoT) also promises real-
time communication between numerous devices [4].

Since stale data is often of less value, it is crucial to maintain
the data freshness of the system. An elementary approach is to
transmit as many updates as possible. This, however, may clog
the network [5] and consume excessive energy [6]. Recently,
Age-of-Information (AoI) was introduced to characterize the
level of information freshness [7], which has since been the
foundation of many studies on data freshness control [8].

Early AoI minimization works [9]–[11] studied the model
where update packets arrive at the destination according to
specific stochastic processes. Various queueing models from
M/M/1 to M/G/1 were considered and the closed-form
expression of the average AoI was derived and minimized
in [12], [13]. [14] proposed the generate-at-will model and
showed that to minimize the average AoI, the source node
often has to wait before sending the next packet even when
the channel/queue is currently idle.

Generalizing [14], Sun et al. [15], [16] considered the 1-
way delay model, where random delay exists in the source-
to-destination direction while the destination-to-source ACK is
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instantaneous, and characterized the optimal waiting time. [17]
later showed that the transmitter should employ a threshold-
based waiting policy in a different but related context of
remote estimation of a Wiener process.

This work revisits and significantly strengthens the existing
results [15], [16] with the following main contributions: (i)
Generalization from the 1-way delay to the 2-way delay
setting, i.e., the ACK also experiences delay. For compari-
son, almost all1 existing works [12], [13], [15]–[17], [19]–
[22] considered 1-way delay with instantaneous ACK. The
generalization to 2-way delay will significantly broaden the
applications of the theoretic AoI results to countless many
practical scenarios in which the forward and backward delays
are of comparable magnitude.

(ii) All existing results [15]–[18] used a bisection search
to find the optimal policy, which is known to exhibit linear
convergence. In contrast, we propose a new way of computing
the optimal policy with quadratic convergence, an order-of-
magnitude improvement over the state of the art.

(iii) In all prior works [12], [13], [15]–[22] except [23],2 the
knowledge of exact probability distribution of delay is required
before one can numerically find the optimal waiting policy.
On the surface, this requirement seems to be indispensable
since the main goal of AoI minimization is to optimally adjust
the waiting time to “match” the underlying delay distribution.
Nonetheless, in practice it may be difficult if not impossible
to know the underlying delay distribution3 a priori since the
delay distribution is constantly subject to network topology
changes and traffic fluctuations [24], [25]. This work derives
a new low-complexity adaptive online algorithm that provably
converges to the optimal policy without knowing the exact de-

1 [18] also considered 2-way delay. For comparison, the main focus of
[18] was to unify AoI minimization [15], [16] and remote estimation [17]. A
more traditional dynamic-programming-based solution was proposed in [18],
which is fundamentally different from the fixed-point equation analysis in this
work. Furthermore, [18] relied on the linearly-convergent bisection method
and required the complete knowledge of the delay distribution. Both points
are remarkably improved in this work.

2 [23] proposed a reinforcement learning (RL) approach to learn the waiting
time without knowing the delay distribution. While exhibiting some promising
performance, RL is not able to converge to the optimal scheme in any of the
simulation in [23], which consists of both the exponential and log-normal
delays. In contrast, this work proposes a provably optimal adaptive scheme.

3Even the task of estimating the delay distribution can be time-consuming
since each sample (transmission) takes a full round-trip-time to complete and
one may need many samples to accurately estimate the probability density
function.



lay distribution, a surprising result that could have substantial
impact to practical AoI minimization protocol design.

II. MODEL AND FORMULATION

A. System Model with Two-way Delay
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Fig. 1: Our system model with two-way delay.

Consider the system in Fig. 1, which comprises a source, a
destination, a forward source-to-destination (s2d) channel and
a backward destination-to-source (d2s) channel. We assume
the following ACK-based model: At any time instant t ∈ R+,
the source can generate a (status) update packet and transmit it
to the destination, the generate-at-will model [14]–[16]. After
the transmission, the source enters a listening mode and waits
for the ACK from the destination. Once the source receives
the ACK, then it can either transmit the next update packet
immediately or wait for an arbitrary amount of time. After the
next transmission, it again enters the listening mode and waits
for ACK. The process repeats itself indefinitely.

Whenever the destination receives an update packet, an
ACK is transmitted back to the source immediately. Both
the s2d and d2s channels incur some random delay. We also
assume all packets are time stamped. We now describe the
detailed system evolution as follows.

Time sequences: The system consists of three discrete-time
real-valued non-negative random processes Xi, Yi, and Zi, for
all i ≥ 0. Xi is the waiting time of the i-th update packet at
the source;4 Yi (resp. Zi) is the random delay for the i-th use
of the s2d (resp. d2s) channel.

The instant when the i-th waiting time is over is denoted
by Si. That is, at time Si, the i-th packet is generated and
immediately transmitted. It is delivered to the receiver at time
Di. The source will receive its ACK at time Ai. The values
of (Si, Di, Ai) refer to the absolute time instants while the
values of (Xi, Yi, Zi) represent the lengths of the intervals.
They are related by the following equations: Initialize A0 =
X0 = Y0 = Z0 = 0. For all i ≥ 1, we have Si = Ai−1 +Xi,
Di = Si + Yi, and Ai = Di + Zi. We call the time interval
[Ai−1, Ai) as the i-th round, which consists of the i-th waiting
time Xi at the source, the i-th forward delay Yi and backward
delay Zi. See Fig. 2 for illustration.

Age-of-Information and its penalty: Following [7], we define
the Age-of-Information ∆(t) at time t by

∆(t) , t−max{Si : i satisfies Di ≤ t}. (1)

4As in most TCP-based control protocols [26], this setting prohibits the
source from transmission before receiving the ACK (i.e., Xi ≥ 0). One may
design an even better scheme that transmits anticipatively before ACK is
received, which, however, is beyond the scope of this work.

Let γ(·) : [0,∞) → [0,∞) be a continuous, non-negative,
and non-decreasing penalty function satisfying γ(0) = 0.
We use γ(∆(t)) to represent the level of data staleness.
Three popular choices are: (i) linear γlin(∆) = ∆ [27]; (ii)
exponential γexp(∆) = ea∆− 1 for some constant a > 0 [16];
and (iii) quadratic γqdr(∆) = ∆2 [15]. Our results hold for any
choice of γ(·). The evolution of γ(∆(t)) is plotted in Fig. 2.

Technical assumptions: We assume (i) Y and Z are of
bounded support; (ii) (Yi, Zi) can be of arbitrary joint distri-
bution PY Z but the vector random process {(Yi, Zi) : i ≥ 1}
is stationary and memoryless; and (iii) E{Yi}+ E{Zi} > 0.
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Fig. 2: Evolution of the AoI penalty function γ(∆(t)).

B. The Objective

Our goal is to minimize the long-term average AoI penalty:

β∗ , min
{Xi}

lim sup
T→∞

1

T

∫ T

0

E {γ(∆(t))} dt. (2)

We now define two deterministic functions:

G(y′, z′, x, y) ,
∫ y′+z′+x+y

0

γ(t)dt−
∫ y

0

γ(t)dt (3)

G1(y′, z′, x) ,EY {G(y′, z′, x, Y )} (4)

where G1(y′, z′, x) is the expectation of G(y′, z′, x, Y ) over
Y . The intuition behind defining (3) is that the shaded area in
Fig. 2 is characterized by G(Yi−1, Zi−1, Xi, Yi). By noticing
that the overall area underneath γ(∆(t)) can be decomposed
as a summation of smaller sub-areas with shapes similar to
the shaded area G(Yi−1, Zi−1, Xi, Yi) in Fig. 2, we have

β∗ = min
{Xi}

lim
n→∞

n∑
i=1

E {G(Yi−1, Zi−1, Xi, Yi)}

n∑
i=1

E {Yi−1 + Zi−1 +Xi}
. (5)

Since (5) is a Markov decision problem with
i.i.d. {(Yi, Zi)}, it suffices to find the optimal policy
for the single-round optimization problem instead (see [15],
[16] for the detailed derivation). The optimization problem
(5) can thus be simplified as

β∗ = min
Xi

E {G1(Yi−1, Zi−1, Xi)}
E {Yi−1 + Zi−1 +Xi}

(6)

where the numerator of (6) follows from (4) and from Yi being
independent of (Yi−1, Zi−1, Xi).



III. MAIN RESULTS

A. Optimal Hitting-time-based Policy

At time Ai−1, the source has the knowledge of the past
delays Yi−1 and Zi−1 since all packets are time stamped. As a
result, we can write any waiting time rule Xi = φ(Yi−1, Zi−1)
as a function of (Yi−1, Zi−1). The resulting5 averaged AoI
penalty, not necessarily the minimum one, becomes

Avg. AoI Penalty:
E {G1 (Yi−1, Zi−1, φ(Yi−1, Zi−1))}
E {Yi−1 + Zi−1 + φ(Yi−1, Zi−1)}

. (7)

We now describe a special scheme. For any given β > 0,
the scheme Γβ has the following special decision rule:

Xi = φΓ,β(Yi−1, Zi−1) (8)

, inf

{
t > 0 :

d

dt
G1(Yi−1, Zi−1, t) > β

}
. (9)

By (4), G1(Yi−1, Zi−1, t) is the conditional expectation
(given (Yi−1, Zi−1)) of the expected AoI penalty (the shaded
area in Fig. 2) if the i-th waiting time is Xi = t. Therefore,
the decision rule φΓ,β essentially chooses the hitting time for
which the growth rate6 of the conditional expected AoI penalty
G1(Yi−1, Zi−1, t) first hits the threshold β.

For this scheme Γβ , we use fΓ(β) to denote its average AoI
penalty, which can be computed by substituting the φ in (7)
with the φΓ,β in (8). The input argument “(β)” highlights the
fact that the average AoI penalty of the decision rule φΓ,β is
a function of the hitting time threshold β. Before proceeding,
we introduce a simple lemma without its proof.

Lemma 1: For any positive constants p1, T1, r1, p2, T2, r2,
τ , rτ > 0, we have the following two “=⇒” statements:

p1T1r1 + p2(T2r2 + τrτ )

p1T1 + p2(T2 + τ)
≤ rτ (10)

=⇒ p1T1r1 + p2T2r2

p1T1 + p2T2
≤ p1T1r1 + p2(T2r2 + τrτ )

p1T1 + p2(T2 + τ)
(11)

and
p1T1r1 + p2T2r2

p1T1 + p2T2
≥ rτ (12)

=⇒ p1T1r1 + p2(T2r2 + τrτ )

p1T1 + p2(T2 + τ)
≤ p1T1r1 + p2T2r2

p1T1 + p2T2
. (13)

Proposition 1: For any arbitrary scheme A with scheduling
rule φA, we use βA to denote its average AoI penalty,
computed by substituting the φ in (7) with φA. The following
inequality must hold: fΓ(βA) ≤ βA.
That is, for any scheme A with average AoI penalty βA, if we
use βA as the hitting time threshold in (9), then fΓ(βA), the
AoI penalty of the new scheme ΓβA , will be no worse than
the average AoI penalty βA of the original scheme A.

5The scheduling rule φ can be deterministic or randomized. In case of the
latter, the expectation in (7) takes the average over the randomness in φ.

6If G1(Yi−1, Zi−1, t) is not differentiable, we can use the subgradient
instead [28]. For simplicity, we assume differentiability.

Proof: Due to the space limit, we provide a high-level
sketch of the proof. For schemes A and ΓβA , define SAi and
SΓ
i as the respective times when the i-th packet is transmitted.

Suppose we are in the event of SΓ
i < SAi , i.e., the scheme

ΓβA sends the i-th update earlier than the scheme A. During
the interval

[
SΓ
i , S

A
i

]
, the growth rate of G1(Yi−1, Zi−1, t) is

higher than βA since SΓ
i , as implied in (9), is the first time the

growth rate hits βA and the growth rate is non-decreasing (due
to non-decreasing γ(·)). Compared to the original scheme A,
the new scheme ΓβA avoids “higher-than-βA” average during
the interval

[
SΓ
i , S

A
i

]
, which in turn helps make its average

AoI penalty fΓ(βA) smaller than the benchmark βA.
Mathematically speaking, average AoI penalty is the ratio of

two expectations, see Lemma 1. In the left-hand side of (10),
there is a duration of length τ that has the penalty growth rate
rτ larger than the current average, the inequality in (10). By
avoiding this duration, the new average becomes the left-hand
side of (11), which is better than the original average AoI, i.e.,
the inequality in (11).

Similarly, in the event of SAi ≤ SΓ
i , during the inter-

val
[
SAi , S

Γ
i

]
, scheme ΓβA will experience “lower-than-βA”

growth rate since the growth rate of G1(Yi−1, Zi−1, t) has not
hit βA yet, which again helps make fΓ(βA) lower than βA
(as proved in (12) and (13)). Since in either case the average
AoI penalty of ΓβA has improved over the benchmark βA, we
have Proposition 1.

Recall that β∗ is the minimum of (6). Since Γβ∗ is yet
another scheme, (6) implies β∗ ≤ fΓ(β∗). On the other hand,
Proposition 1 implies β∗ ≥ fΓ(β∗). Jointly we have

Corollary 1: β∗ is a root of the fixed-point equation

β = fΓ(β). (14)

Furthermore, if we know the value of β∗, then we can obtain
the optimal policy for the 2-way delay setting by plugging β∗

into the hitting time rule φΓ,β(·, ·) in (8) and (9).
Remark 1: Corollary 1 is similar to [15, Theorem 3] and

[16, Theorem 1]. This is as expected since our 2-way setting
collapses to those of [15], [16] when hardwiring Zi = 0.

Remark 2: The way we derive Corollary 1 is new. In [15],
[16], the authors first defined the corresponding Lagrangian,
then reformulated and solved it as a convex optimization
problem, and finally showed that it admits no duality gap.
The analytical tools used include the extension of Dinkelbach’s
method and the geometric multiplier technique.7 In contrast,
we first prove an intuitive result in Proposition 1 and the
optimality conditions then follow suit naturally.

Remark 3: The function fΓ(β) can be computed easily by
(3), (4), (7), (8), (9), together with the complete knowledge of
distribution PYi−1,Zi−1

.

B. Fast Fixed-point Iteration for Computing β∗

Lemma 2: The root of β = fΓ(β) is unique, regardless of
how we choose the penalty function γ(·).

7The setting in [15], [16] includes the maximum update frequency con-
straint (MUFC), which is not considered in this work. It is possible that the
MUFC mandates the use of more advanced analytical tools.



We omit the proof due to space limits. We now present a
new way of computing β∗ using (14).

Proposition 2: Assume a non-restrictive condition that
fΓ(β) is doubly continuously differentiable.8 Set β0 = 0 and
iteratively compute βi = fΓ(βi−1) for all i = 1, 2, 3, · · · .
The resulting sequence {βi : i ≥ 1} is non-increasing and
converges to the optimal β∗ with quadratic convergence speed.

Proof: For all i strictly larger than 0, we have

βi+1 = fΓ(βi) ≤ βi (15)

where “≤” follows from Proposition 1. {βi : i ≥ 1} is thus
non-increasing. Since βi ≥ β∗ for all i ≥ 1, the sequence
converges. Since limi→∞ βi must be a root of β = fΓ(β),
Lemma 2 implies limi→∞ βi = β∗. The quadratic convergence
is established by proving ∀i ≥ 1,

|βi+1 − β∗| ≤
(

max
z∈[β∗,β1]

|f ′′Γ (z)|
2

)
|βi − β∗|2. (16)

To that end, we apply Taylor’s theorem [29] to fΓ(β):

βi+1 − β∗ = fΓ(βi)− β∗

=

(
fΓ(β∗) + (βi − β∗)f ′Γ(β∗) +

f ′′Γ (z)

2
(βi − β∗)2

)
− β∗

for some z ∈ [β∗, βi]. Then, by (i) fΓ(β∗) = β∗ and (ii)
f ′Γ(β∗) = 0 (since β∗ minimizes fΓ(β), see Sec. III-A), we
have

βi+1 − β∗ =
f ′′Γ (z)

2
(βi − β∗)2. (17)

Eq. (17) implies that (16) holds for all i ≥ 1.

IV. DISTRIBUTION-OBLIVIOUS ONLINE ALGORITHM

The design of the distribution-oblivious online algorithm is
much more involved and we thus omit all the proofs due to
the limited space. Before proceeding, we first define

g1(y′, z′, β) ,G1(y′, z′, φΓ,β(y′, z′)) (18)

g2(y′, z′, β) ,y′ + z′ + φΓ,β(y′, z′) (19)

g1(β) ,EYi−1,Zi−1
{g1(Yi−1, Zi−1, β)} (20)

g2(β) ,EYi−1,Zi−1
{g2(Yi−1, Zi−1, β)} (21)

Comparing these four definitions to (7) and recalling that
fΓ(β) is defined as the average AoI penalty when Xi =
φΓ,β(Yi−1, Zi−1), it is clear that

fΓ(β) =
g1(β)

g2(β)
. (22)

8For instance, if Yi and Zi have finite support and γ is doubly continuously
differentiable, then fΓ(β) is also doubly continuously differentiable.

A. Description of the Proposed Scheme

For any i ≥ 1, at time Ai−1, the source learns the values
of (Yi−1, Zi−1) from the time stamps in the received ACK,
and computes a βi value, in a way to be explained shortly.
After βi is computed, the source substitutes the β in (9) with
βi and computes the i-th waiting time Xi(βi), for which we
use “(βi)” to emphasize that βi is used as the threshold.

At time Si = Ai−1 + Xi(βi), the source generates and
transmits the update packet. The βi used at time Ai−1 will be
iteratively computed according to the following formula.

First choose a sufficiently large9 constant βmax that is
guaranteed to be larger than β∗. Then set β1 = β2 = 0 and
for all i ≥ 3 set

βi = min

(∑i−1
j=1 g1(Yj−1, Zj−1, βj)∑i−1
j=1 g2(Yj−1, Zj−1, βj)

, βmax

)
(23)

= min

(∑i−1
j=1 g1(Yj−1, Zj−1, βj)

Si−1
, βmax

)
(24)

where each g1(Yj−1, Zj−1, βj) in the numerator can be viewed
as the empirical AoI penalty experienced during time interval
(Sj−1, Sj). There is no need to repeat the summation

∑i−1
j=1

g1(Yj−1, Zj−1, βj) for each i and we only need to “update”
the sum by adding the increment from i to i + 1. The
denominator

∑i−1
j=1 g2(Yj−1, Zj−1, βj) = Si−1 follows from

g2(Yj−1, Zj−1, βj) = Yj−1 + Zj−1 + φΓ,βj (Yj−1, Zj−1)

= Yj−1 + Zj−1 +Xj = Sj − Sj−1. (25)

Note that (24) computes the ratio of the past total AoI
penalty over the past duration [0, Si−1], which is essentially
the empirical average AoI penalty. We then use it as the new
threshold βi to decide the Xi(βi) for the i-th round. This
closely follows the spirit of the fixed-point iteration

βi = fΓ(βi−1) =
g1(βi−1)

g2(βi−1)
(26)

in Proposition 2. The differences between (23) and (26) are
(i) (23) not only depends on βi−1 but also on {βj : j ≤
i− 1} and (ii) (23) uses the empirical g1(Yj−1, Zj−1, βj) and
g2(Yj−1, Zj−1, βj) rather than the expectations g1(βi−1) and
g2(βi−1). Therefore, {βi} in (23) is a random process but
{βi} in Proposition 2 is a deterministic sequence.

Proposition 3 (Convergence): There exists an α ∈ (0, 0.5)
and four constants c1, c2, c3, c4 > 0 such that ∀i ≥ 1,

P
(
βi+1 < β∗ − c1 · i−(0.5−α)

)
≤ c2 exp

(
−c3 · i2α

)
(27)

E{βi − β∗} ≤ c4 · i−(0.5−α) (28)

Proposition 3 shows that the random process {βi : i} com-
puted in (24) converges to β∗ in probability.

9We introduce βmax for the rigor of the analysis, which prevents βi from
growing unboundedly. In practice, we can simply choose an extremely large
βmax, e.g., 109, which will have zero impact on how the algorithm runs.



B. Analyzing the Knowledge Required to Run the Algorithm

The source automatically knows the value of the denomi-
nator of (24) by its local clock Si−1. Since the source knows
the history of (Yj−1, Zj−1, βj), to compute the numerator of
(24), the algorithm only needs to know how to compute the
value of g1(y′, z′, β) for all (y′, z′, β) and then plugs in the
historical values of (Yj−1, Zj−1, βj) along the way. However,
a closer look at (3), (4), and (18) shows that

g1(y′, z′, β) = EY

{∫ y′+z′+φΓ,β(y′,z′)+Y

Y

γ(t)dt

}
(29)

which still requires some knowledge of the distribution PY .
However, for the three popular choices of γ(∆) in Sec. II-A,
the computation of g1(y′, z′, β) takes little effort. For example,
with linear γlin(∆) = ∆, applying simple calculus to (3), (4),
(9), and (18) shows that

φΓ,β(y′, z′) = max (β − E{Y } − y′ − z′, 0) (30)

g1(y′, z′, β) =
(y′ + z′ + φΓ,β(y′, z′))

2

2
+ (y′ + z′ + φΓ,β(y′, z′))E{Y } (31)

which requires only the knowledge of E{Y }. In practice, we

can replace E{Y } with the running empirical average
∑i−1
j=1 Yj

i−1
and we thus have a truly distribution-oblivious online algo-
rithm. Similarly, with exponential γexp(∆), one only needs
E{eaY } to compute g1(y′, z′, β). With quadratic γqrd(∆), one
only requires E{Y } and E{Y 2} to compute g1(y′, z′, β).
Again, we can use running empirical average as a substitute
when executing the algorithm.

V. SIMULATION RESULTS

Fig. 3 presents our numerical results of (i) the distribution-
oblivious online algorithm and (ii) fixed-point-iteration-based
computation of β∗. Exponential and log-normal delays are
used since they are empirically reasonable channel models
[30], [31]. In Sec. IV-B, we discuss the difference of still
requiring E{Y } versus using the running empirical average as
a substitute. In our simulation results, there is no visible dif-
ference between the two versions and we thus report only the
results using the running empirical average of E{Y }, E{Y 2}
and E{eaY } when computing g1(y′, z′, β). In other words, the
results of the truly distribution-oblivious algorithms.

First, we consider independent exponential delays with
λY = λZ = 0.2 and linear AoI penalty γlin(∆) = ∆. Fig. 3a
plots the evolution of βi versus i and benchmarks βi against β∗

(the red dashed line). The three curves in Fig. 3a are generated
by different random seeds. For each curve, βi is within 6%
of β∗ after just 102 iterations. Since it is an online algorithm,
it means that using our distribution-oblivious scheme, after
sending just 100 update packets, the average AoI penalty of
the underlying system (over the last 100 packets) is already
within 6% of the best offline solution that requires complete
knowledge of the delay distributions. The gap is less than
2% after 104 iterations. The behavior is consistent with the
analytical convergence results in Proposition 3.

The trajectories of the fixed-point computation βi+1 =
fΓ(βi) versus the bisection method are plotted in Fig. 3b. The
advantage of our scheme is twofold. Firstly it is faster than the
bisection method.10 Secondly, as proved in Proposition 2, the
sequence {βi} is non-increasing and thus does not fluctuate
as in the case of the bisection search.

Almost identical behaviors can be observed when changing
the linear penalty to exponential penalty γexp(∆) = e(∆/10)−
1 while using the same Y and Z distributions, see Figs. 3c
and 3d. For quadratic AoI penalty γqrd(∆) = ∆2 with
Yi and Zi being independent log-normal with (µY , σ

2
Y ) =

(0.5, 0.25) and (µZ , σ
2
Z) = (0.5, 0.5) see Figs. 3e and 3f.

Our distribution-oblivious algorithm always converges to the
optimal value, and the fixed-point computation outperforms
the bisection method, as expected by Proposition 2 and 3.
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Fig. 3: Left: Evolution of βi using the online algorithm (red
dashed line for β∗). Right: The offline computation of β∗.

VI. CONCLUSION

We have proposed a new 2-way-delay AoI minimization
framework, and derived the corresponding optimal waiting
policy with quadratic convergence. We have also developed the
first provably optimal distribution-oblivious online algorithm
on AoI minimization.

10The closer βi is to β∗, the greater the convergence speed improvement
since one is quadratic and the other is linear.
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